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Abstract—Many applications in wireless cellular networks rely
on the ability of the network to reliably and efficiently disseminate
data to a large client audience. The stochastic nature of packet
loss across receivers and channel interference constraints between
cells complicate this task, however. In this paper, we analyze the
problem of minimizing the delay of data dissemination in dense
multi-channel wireless cellular networks, using rateless coding
transmission. We begin with an extreme value analysis of the
delay in a single cell setting, and show that the growth rate of
this random variable becomes deterministic as the client audience
scales up. Next, we extend the analysis to multi-cell, multi-channel
settings and derive tight performance bounds on the delay. Our
analysis reveals that the availability of more channels does not
always reduce delay proportionally. This sub-linear gain effect
is guaranteed to occur if the difference between the chromatic
number and the fractional chromatic number of the graph is
greater than one.

I. INTRODUCTION

The proliferation of affordable mobile devices has signif-
icantly boosted deployments of wireless cellular networks
(e.g., Wi-Fi, 3G, LTE, etc.). Such wireless cellular networks
typically consist of two components: base stations, which
provide backbone communication, and wireless clients; these
are illustred in Fig. 1 with a five-cell wireless network, where
each base station (henceforth clusterhead) is surrounded by
clients within its radio range (collectively called a cluster).

The client population within one cluster can be quite high
for modern wireless networks; for example, the statistics bu-
reau of Japan reports a population density of 5751 persons per
sq km in Tokyo [1], many of whom carry smartphones. Indeed,
growing density in wireless networks is an inevitable trend,
which in turn, raises challenges for some data transmission
applications.

This paper focuses on the fundamental problem of designing
efficient data dissemination strategies in such dense wireless
networks, where communication occurs through a broadcast
channel, as may be witnessed, for example, when smartphones
receive updates of events happening around their location or
when wireless sensors schedule periodic firmware updates.
The aim of data dissemination is to broadcast a set of identical
data packets from a media source, to all targeted wireless
clients in the network through the clusterheads in an efficient
manner (i.e., short time duration). Several intrinsic factors of
wireless networks make this objective particularly challenging.

Fig. 1. Illustration of a wireless cellular network. Wireless clients are
connected to base stations (clusterheads), which are interconnected via reliable
wireline/wireless links themselves. The dotted irregular shapes contour radio
signal range of each clusterhead. It is assumed that one or more of the
clusterhead is connected to greater networks (not shown in the figure).

The first difficulty rises from high rates of packet losses
typically experienced by wireless clients. Given a big client
audience, base stations can be overwhelmed by the number
of retransmission requests, a phenomenon called “broadcast
storm” [2], making traditional (N)ACK-based retransmission
mechanism infeasible. Instead, a rateless code, which is a form
of packet-wise forward error correction (FEC) scheme, allow
each wireless client to decode packets from any sufficiently
large subset of encoded packets. Yet, there still remains the
question of how many broadcasting packets are needed for
the data dissemination to complete, and especially how this
number is affected by the stochastic environment of lossy
wireless channels.

The second difficulty results from the diversity of wireless
network topologies. This difficulty emerges mainly because
of the radio channel conflicts among clusters: simultaneous
operation on the same frequency by neighboring clusterheads
will cause interference and can affect data packet reception. As



such, broadcasting must be carefully scheduled to avoid this
type of interference problem, potentially reducing dissemina-
tion efficiency.

The third difficulty arises when one wishes to exploit
channel diversity; for example, in the U.S., IEEE 802.11
wireless nodes can transmit over 11 different channels in the
2.4 GHz band, three of which are non-overlapping. In an
effort to maximize dissemination efficiency while avoiding
interference, one needs to solve the allocation problem of these
channel resources over both space and time.

Our goal is to determine optimal strategies for minimizing
the time required for all the wireless clients to receive a
disseminated file (i.e. maximizing dissemination efficiency) for
general multi-cell topologies and multiple channels, given all
the factors described above, using rateless coding transmission.

Our contributions are as follows. First, we conduct a study
of the fluctuation of the completion time in a single cluster.
Specifically we perform an extreme value analysis of the
completion time, asymptotic in increasing client audience 𝑁 ,
and find that the completion time scales proportionally to
log(𝑁) + 𝑜(log(𝑁)) in probability. This result implies that,
despite the stochastic nature of packet loss, the problem lends
itself to a deterministic optimization problem. We further
argue that this deterministic phenomenon also spreads out
to multiple clusters, which substantiates the feasibility of
employing a deterministic scheduling policy. Thus, we propose
asymptotically optimal transmission policies for general multi-
cluster, multi-channel topologies and provide tight lower and
upper bounds on their completion time. As part of our analysis,
we find that dissemination efficiency is subject to a sub-linear
gain with respect to growing channel availability, unlike the
case for cluster chains [3] where linear gain can be achieved.
This sublinear curve stands as the absolute bound that any
asymptotical scheduling policy can achieve, a fact that is
valuable for those who design and operate cellular networks.

The rest of the paper is organized as follows: Section II
discusses related work and introduces graph coloring back-
ground that is necessary to our later analysis. In Section III
we describe our models of the problem and its formulation.
Section IV deals with single cluster rateless coding transmis-
sion, where the fluctuation of dissemination delay is studied
and its deterministic trend is revealed. We expand our analysis
to general multiple cluster topologies in Section V with details
of our optimal policy and performance bounds. Finally, we
conclude this paper in Section VI.

II. PRELIMINARIES

A. Related Work

Considerable effort has been invested in the literature in
search of solutions to some of the issues described above.

In [4] the authors conduct a quantitative analysis on the
performance of FEC codes, such as rateless codes, in the
presence of a large client population. An asymptotic cumu-
lative distribution function (CDF) of the completion time is
derived. However, this work only considers the analysis of a
single cluster, whereas our work consider the fluctuation of the

completion time itself for its asymptotic behavior, and take
multiple clusters organized along an arbitrary topology into
consideration as well.

The work in [3] analyzes plaintext data dissemination over
simple cluster topologies, namely, linear chains of clusters.
The limitation of this work is that it does not consider the
scenario of rateless coding, nor general multi-cluster topolo-
gies. Moreover, unlike our work, the results of [3] apply to
the expected completion time, while our work consider the
behavior of the completion time random variable itself.

The work in [5] analyzes the gain of network coding
(another FEC coding scheme) in a layered, multi-transmitter
multi-receiver systems, where packets are passed over layer
by layer using a random transmission scheme. However, this
model is inconsistent with ours, where packets are considered
to be ready in all base stations at first and spread out
simultaneously instead of being passed down layer by layer.

There has been substantial work on resource allocation for
maximizing the throughput of multi-hop wireless networks
(see [6] for a survey). In [13] the authors show that maximizing
throughput for a single channel over one-hop is equivalent to
the classical Maximum Weighted Matching problem, solvable
in polynomial time. The problem of obtaining an efficient
interference-aware link scheduling scheme for a wireless
network is also considered in [12]. The authors in [14]
present low-complexity (although not optimal) algorithms for
distributed scheduling of wireless nodes in a network. In [7]
the authors study the multi-flow problem and showed the NP-
hardness of finding Maximum Independent Set (MIS).

Our paper is distinct from this previous body work in several
aspects. First, we consider delay as the primary optimization
metric rather than throughput. Since network traffic is typically
bursty, the delay of a burst of data (generically referred
to as a file in this paper) is often the primary metric of
interest. Second, we explicitly model packet loss rather than
assuming that communication is loss free even if certain
interference constraints are satisfied. This leads to a more
realistic model since wireless links are notoriously prone to
packet losses due to fading, etc. Finally, our analysis focuses
on the case of densely populated networks, the key fact that
significantly simplifies the design of scheduling algorithms for
lossy wireless networks, as detailed in the sequel.

B. Graph Coloring Background

Our analysis in this paper is related to some fundamental
graph coloring problems, the most significant of which we list
herein for sake of completeness.

Definition 1: An independent set of a graph 𝐺 is a set of
vertices, such that no two of them are adjacent. A maximal
independent set (MIS) of 𝐺 is an independent set that is not
a subset of any other independent set of 𝐺.

We use a matrix I to represent a collection of independent
sets (or maximal independent sets) of a graph 𝐺(𝑉,𝐸).
Each row index corresponds to one vertex and each column
represents a distinct independent set. Every element in this
matrix takes on a value of either 0 or 1, with 1 indicating



the existence of the corresponding vertex in the associated
independent set.

Definition 2: A vertex coloring of a graph 𝐺 is a labeling of
the graph’s vertices with colors such that no adjacent vertices
have the same color. The chromatic number 𝜒(𝐺) of 𝐺 is the
smallest number of colors among all vertex coloring scheme
of the graph.

Definition 3: A b-fold coloring of a graph 𝐺 is an assign-
ment of color sets of size 𝑏 to vertices, such that each vertex is
assigned one set and adjacent vertices receive disjoint sets. An
𝑎 : 𝑏-coloring is a b-fold coloring, whose sets are subsets of
a universe of 𝑎 available colors. The b-fold chromatic number
𝜒𝑏(G) of 𝐺 is the smallest 𝑎 for which an 𝑎 : 𝑏-coloring exists.

Definition 4: The fractional chromatic number 𝜒𝑓 (𝐺) is
defined to be

𝜒𝑓 (𝐺) = lim
𝑏→∞

𝜒𝑏(𝐺)

𝑏
= inf

𝑏

𝜒𝑏(𝐺)

𝑏
.

The difference between 𝜒𝑓 (𝐺) and 𝜒(𝐺) is unbounded
in general. More details about 𝑏-fold and fractional coloring
problems can be found in [9].

III. MODELS AND PROBLEM FORMULATION

A. Network Topology

We assign the scattered wireless clients (also simply called
nodes) to a set of clusters based on physical proximity to
base stations (also called clusterheads), as shown in Fig. 1.
Specifically, all the nodes associated with a given base station
are considered as belonging to the this cluster. A node is
associated with only one base station, as is typically the case in
practice, even if it is under the range of multiple base stations.
Base stations transmit data packets via broadcast, that is, each
packet is simultaneously transmitted to all the nodes within
radio range.

Physical interference constraints induce a logical graph
𝐺(𝑉,𝐸), where the vertex set 𝑉 represent base stations, and
edge set 𝐸 represent interference constraints i.e., an edge
between vertex 𝑖 and 𝑗 means that the the coverage areas
(clusters) of base stations 𝑖 and 𝑗 overlap. For example, the
cluster graph corresponding to Fig. 1 is a pentagon, one cluster
per node. We assume that the cluster topology is arbitrary but
fixed, i.e., it does not change during data dissemination.

We also assume that cluster 𝑖 contains 𝑁𝑖 = 𝛼𝑖𝑁 nodes,
where 𝛼𝑖 is a constant coefficient, with

∑∣𝑉 ∣
𝑖=1 𝛼𝑖 = 1, and 𝑁

refers to the scaling variable. In this paper we focus on the
asymptotic regime of a large client population. Therefore, our
analysis applies to the case where 𝑁 → ∞.

B. Transmission Model

We consider the problem of disseminating a file consisting
of 𝑀 packets to all the wireless clients via broadcasts from
base stations. We assume that links between base stations are
fast and reliable, meaning that the entire file is available at
every base station before data dissemination proceeds. The
time axis is slotted and each broadcast packet transmission
takes one time slot. Base stations are equipped with a single

radio, as is typically the case, meaning that a node can either
transmit or receive (but not both) on one channel at a point of
time.

Furthermore, we consider the use of rateless coding for
transmitting the file. Instead of transmitting the original 𝑀
packets, the base station transmits a long sequence of encoded
packets (e.g., using random linear codes) of these 𝑀 packets.
In each slot, the base station generates and transmits a new
packet. The generating algorithm is devised in such a way that
as soon as a node receives 𝑀 different correct packets1, it can
restore the original file.

C. Channel Interference Model

We assume that there are 𝐶 non-overlapping channels
available in total that can be operated on by base stations, all
of them having identical, but independent statistical character-
istics. The packet loss probability on each channel is denoted
𝑝. Thus, the probability that a node within a cluster does not
correctly receive a packet broadcast by the base station is 𝑝,
independently of all other events (e.g., correct reception or not
of that packet by other nodes in the cluster).

In general, the presence of interference or crosstalk between
neighboring clusters results in jamming. We assume that a
packet transmission in a cluster on a specific channel will bring
interference to its neighboring clusters if they communicate
on the same channel, i.e., all cluster nodes will be unable
to correctly receive packets. As a result, transmission on a
channel in a cluster bars all its neighboring clusters from
operating on the same channel during the same time slot.

D. Problem Formulation

Our objective henceforth is to determine a control policy
that minimizes the completion time (i.e., the total number of
transmission time slots needed) until all the 𝑁 nodes receive
the entire file (𝑀 distinct decoded packets) in a network with
𝐶 channels and interference constraints modeled by a graph
𝐺. We denote 𝑇𝐶

𝑁 (𝐺) the minimum completion time obtained
using the optimal control policy.

IV. SINGLE CLUSTER TOPOLOGY

In this section, we investigate the performance of data
dissemination in single cluster topology as the first step to
develop analysis for general multi-cluster topologies. Specifi-
cally, we consider a single cluster containing 𝑁 nodes. Since
there is no interference constraints from neighboring clustering
in this case, we do not expect benefit of using multiple
channels. Hence, we simplify the notation of completion time
in this section to 𝑇𝑁 .

Because of the fact that rateless coding is designed to
handle multiple clients, the optimal control policy of this case
is nothing but letting the clusterhead keep transmitting new
rateless encoded packets until completion. In the rest of this
section, we analyze the completion time of data dissemination
𝑇𝑁 under this policy and show that its growth becomes

1This is true for an ideal rateless code. In practical scenarios, a receiver
may need slightly more packets for decoding.



deterministic for large 𝑁 . Our analysis use the standard
asymptotic 𝑂(⋅) and 𝑜(⋅) notations [11].

Consider first the completion time for a specific node 𝑛
(1 ≤ 𝑛 ≤ 𝑁 ), which we denote 𝑇 (𝑛). The probability that
the completion time for this node takes exactly 𝑀 + 𝑘 slots
is given by a negative binomial distribution.

The CDF of this probability distribution can be expressed
as Pr{𝑇 (𝑛) ≤ 𝑀 + 𝑘} = 1 − 𝐼𝑝(𝑘 + 1,𝑀), where 𝐼𝑝(⋅)
corresponds to the so-called regularized incomplete beta func-
tion [10]:

𝐼𝑝(𝑘+ 1,𝑀) =
𝑘+𝑀∑
𝑗=𝑘+1

(𝑘 +𝑀)!

𝑗!(𝑘 +𝑀 − 𝑗)!
𝑝𝑗(1− 𝑝)𝑘+𝑀−𝑗 . (1)

Given 𝑁 nodes, the completion time of the entire cluster
is the maximum value of the completion time of all its nodes,
namely, 𝑇𝑁 = max{𝑇 (1), 𝑇 (2), ⋅ ⋅ ⋅ , 𝑇 (𝑁)}.

Next, we examine how 𝑇𝑁 scales as 𝑁 grows. The re-
lationship between them is described with the help of a
function 𝑘(𝑁). When considering a specific function 𝑘(𝑁),
the following lemma, whose proof is omitted, provides us with
a sufficient condition on the convergence of probabilities.

Lemma 1: If lim𝑁→∞ 𝑁 ⋅ 𝐼𝑝(𝑘(𝑁) + 1,𝑀) = 0, then
lim𝑁→∞ Pr{𝑇𝑁 ≤ 𝑀 + 𝑘(𝑁)} = 1. On the other hand, if
lim𝑁→∞ 𝑁 ⋅ 𝐼𝑝(𝑘(𝑁) + 1,𝑀) = ∞, then lim𝑁→∞ Pr{𝑇𝑁 ≤
𝑀 + 𝑘(𝑁)} = 0.
As a result, the following theorem predicts the completion time
of data dissemination.

Theorem 1: For fixed 𝑀 and 𝑝, the completion time of data
dissemination using rateless coding in a single cluster is, with
probability one,

𝑇𝑁 = log𝜆 𝑁 + 𝑜(log𝜆 𝑁),

where 𝜆 = 1/𝑝. In other words, 𝑇𝑁

log𝜆 𝑁 → 1 in probability.
Proof: The proof follows from bounding the expression

𝑁 ⋅ 𝐼𝑝(𝑘(𝑁) + 1,𝑀) followed by showing that the choices
of 𝑘(𝑁) = log𝜆 𝑁 + 𝑀 log𝜆 log𝜆 𝑁 and 𝑘(𝑁) = log𝜆 𝑁 −
log𝜆 log𝜆 𝑁 respectively make 𝑁 ⋅ 𝐼𝑝(𝑘 + 1,𝑀) go to 0 (in
the plus sign case) and 1 (in the minus sign case). The proof
is fulfilled by applying this result to Lemma 1.

The key insight offered by this theorem is that, despite
the stochastic nature of the environment, the order of growth
of the completion time becomes deterministic, when 𝑁 gets
large. We conducted simulation of the delay for parameters
𝑀 = 10, 𝑝 = 0.2 over 4500 iterations and found that 35% of
instances occurs at the mode of 21 packets when 𝑁 = 103,
while 43% of instances occurs at the mode of 29 packets when
𝑁 = 107. Further, in both cases, over 90% of the samples have
a completion time that differ at most by two packets from the
mode. This property greatly simplifies the design of efficient
scheduling policies for multiple clusters, as explained in the
next section.

V. MULTIPLE CLUSTER TOPOLOGIES

In this section, we extend our analysis to the general case
of multiple clusters with multiple channels. As described

in Section III, we use the notation of 𝑁𝑖 = 𝛼𝑖𝑁 where∑∣𝑉 ∣
𝑖 𝛼𝑖 = 1 to represent the number of nodes in the 𝑖-th

cluster. As a result, when considering the transmission demand
for an individual cluster, the results of Section IV remains
applicable by replacing 𝑁 with 𝛼𝑖𝑁 .

We first show that asymptotically the same time is needed
for each cluster to complete dissemination to all nodes. Our
problem is then reduced to a scheduling problem among
the clusters. Our primary goal is to determine the optimal
control policy and derive its performance, and secondary
goal is to assess the impact of increasing the number of
channels available for data dissemination on the completion
time performance. All the asymptotic results of this section
hold with probability one as 𝑁 → ∞.

A. Structure of the Optimal Transmission Policy

Denote 𝑇𝑁𝑖 to be the total number of transmissions required
for cluster 𝑖. Though these numbers differ amongst different
clusters for finite 𝑁 , they scale identically as 𝑁 gets large,
as the following lemma (whose proof is also omitted) demon-
strates, based on Theorem 1.

Lemma 2: For a fixed set of coefficients 𝛼𝑖, 𝑖 =
1, 2, ⋅ ⋅ ⋅ , ∣𝑉 ∣, the total number of transmission slots required
by different clusters scale identically as 𝑁 → ∞, namely

𝑇𝑁𝑖 = log𝜆 𝑁 + 𝑜(log𝑁), ∀ 1 ≤ 𝑖 ≤ ∣𝑉 ∣.
This lemma shows that as 𝑁 → ∞ the transmission demand

of different clusters becomes identical to 𝑇𝑁 , the number given
by Theorem 1.

According to our channel interference model, we further
have the following lemma (proof is omitted).

Lemma 3: For any transmission policy that induces in-
terference, there exists another policy that does not induce
interference and causes no greater transmission delay.

In summary, to solve the problem of finding an asymptot-
ically optimal transmission policy, it is sufficient to find for
each time slot an appropriate maximal independent set (MIS)
for each channel. Note that the selected MIS may change from
one time slot to the next.

B. Analysis

In this section, we derive the optimal policy for general
multi-cluster topologies with multiple channels. Then, we
provide bounds on the optimal completion time that reveal
an interesting relationship with both 𝜒(𝐺) and 𝜒𝑓 (𝐺).

1) Optimal Transmission Policy: The availability of multi-
ple channel resource allows us to select 𝐶 MISs for each time
slot (a different channel is assigned to each MIS). As a result,
some clusters may belong to multiple MISs and have multiple
channels available for transmission, whereas only one of them
can be used.

We recall that I corresponds to be the matrix of all 𝑟
maximal independent sets of 𝐺. We also introduce a matrix
P in which each row index 𝑖 represents a different MIS
(corresponding to a different column of I) and each column 𝑗
represents a different transmission schedule corresponding to



a different combination of 𝐶 MISs chosen out of 𝑟 available.
Therefore the dimensions of this matrix are 𝑟 × (

𝑟
𝐶

)
. Note

that the sum of the elements in each column of P is equal to
𝐶. An entry P𝑖𝑗 is set to 1 if MIS 𝑖 belongs to transmission
schedule 𝑗.

Note that we assume 𝑟 > 𝐶, since the case of 𝐶 ≤ 𝑟 is
trivial: each MIS can be assigned a channel so the completion
time is the same as for a single cluster.

The product I ⋅ P yields a ∣𝑉 ∣ × (
𝑟
𝐶

)
matrix. The value

of the (𝑖, 𝑗) entry of this matrix corresponds to the number
of channels allocated to cluster 𝑖 using transmission schedule
𝑗. Since each cluster can only use one channel in a given
time slot, we introduce a cutoff function 𝑓(⋅) , which takes an
integer matrix as its argument and returns a binary matrix of
the same dimension.

𝑓(A)𝑖𝑗 =

{
1 if A𝑖𝑗 ≥ 1
0 if A𝑖𝑗 = 0.

In this way, 𝑓(I ⋅ P) gives the number of effective channels
usable in each cluster (i.e., 0 or 1).

Our optimization problem is thus:

Minimize
(𝑟
𝐶)∑

𝑖=1

𝑥𝑖 (2)

Subject to 𝑓(

⎡⎣ I

⎤⎦ ⋅
⎡⎣ P

⎤⎦)
⎡⎢⎣ 𝑥1

...
𝑥(𝑟

𝐶)

⎤⎥⎦ ≥

⎡⎢⎣1...
1

⎤⎥⎦
𝑥1, ⋅ ⋅ ⋅ , 𝑥(𝑟

𝐶)
≥ 0.

where 𝑥𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑥(𝑟
𝐶)

) stands for the portion of time
that the network should transmit using a specific transmission
schedule, i.e., a specific combination of 𝐶 MISs out of
𝑟 available as indicated by the 𝑖-th column of matrix P.
For convenience, we denote x and 1 the column vector
[𝑥1, ⋅ ⋅ ⋅ , 𝑥(𝑟

𝐶)
]𝑇 and [1, ⋅ ⋅ ⋅ , 1]𝑇 respectively.

We denote 𝜃(𝐺,𝐶) the optimal objective value returned by

(2), i.e., 𝜃(𝐺,𝐶) = min(
∑(𝑟

𝐶)
𝑖=1 𝑥𝑖). This number refers to the

amount of time normalized by 𝑇𝑁 . Clearly, 𝜃(𝐺,𝐶) is no
less than 1. The minimal dissemination delay achievable is
𝑇𝐶
𝑁 (𝐺) = 𝜃(𝐺,𝐶)𝑇𝑁 by applying the following policy:

∙ Solve the programming problem (2).
∙ Transmit in MISs indicated by the 𝑗-th column P for

𝑥𝑗/
∑(𝑟

𝐶)
𝑖=1 𝑥𝑖 portion of time, until every cluster finishes.

The order does not matter.

2) Performance bound: We now bound 𝜃(𝐺,𝐶). The pur-
pose of these bounds is to assess the gain achieved by the
availability of additional channels and establish a relationship
between 𝜃(𝐺,𝐶) and the chromatic and fractional chromatic
numbers of the graph.

Computing the optimal policy involves solving program-
ming problem (2). To compute a lower bound, we first replace

𝑓(I ⋅P) by I ⋅P in the constraint, namely,

Minimize
(𝑟
𝐶)∑

𝑖=1

𝑥𝑖 (3)

Subject to I ⋅P ⋅ x ≥ 1

x ≥ 0.

Because 𝑓(I ⋅P) ≤ I ⋅P by definition of 𝑓(⋅), the solution of
(2) also satisfies all constraints of (3) but does not necessarily
achieve the minimum of (3). Denoting 𝜃′(𝐺,𝐶) the solution
of (3), we have 𝜃′(𝐺,𝐶) ≤ 𝜃(𝐺,𝐶).

Using this relaxation, the following lemma shows the com-
pletion time for 𝐶 channels is at most 𝐶 times smaller than
that for a single channel if 𝐶 ≤ 𝜒𝑓 (𝐺). The proof of this
lemma is omitted for space consideration.

Lemma 4: For 𝐶 ≤ 𝜒𝑓 (𝐺)

𝜃(𝐺,𝐶) ≥ 𝜒𝑓 (𝐺)

𝐶
.

Note that this bound is tight when 𝐶 = 1.
The following lemma shows that the (normalized) com-

pletion time for 𝐶 channels is smaller or equal to 𝜒(𝐺)/𝐶
if 𝐶 ≤ 𝜒(𝐺). Moreover, by the definition of the chromatic
number, this bound is tight when 𝐶 = 𝜒(𝐺). The proof of
this lemma is omitted for space consideration.

Lemma 5: For 𝐶 ≤ 𝜒(𝐺),

𝜃(𝐺,𝐶) ≤ 𝜒(𝐺)

𝐶
.

Combining Lemmas 4 and 5, we obtain the following
bounds on the performance of the optimal policy in general
topologies with multiple channels:

Theorem 2:

max(
𝜒𝑓 (𝐺)

𝐶
, 1) ≤ 𝜃(𝐺,𝐶) ≤ max(

𝜒(𝐺)

𝐶
, 1)

or equivalently,

max(
𝜒𝑓 (𝐺)

𝐶
𝑇𝑁 , 𝑇𝑁 ) ≤ 𝑇𝐶

𝑁 (𝐺) ≤ max(
𝜒(𝐺)

𝐶
𝑇𝑁 , 𝑇𝑁 ).

3) Sub-linear performance gain: Theorem 2 shows that the
completion time decreases with the number of channels. With
one channel the lower bound in Theorem 2 can always be
achieved. However, with increasing channels this lower bound
is no longer guaranteed. Generally, for topologies whose frac-
tional coloring number 𝜒𝑓 (𝐺) differs from the vertex coloring
number 𝜒(𝐺), performance will diverge from the lower bound
𝜒𝑓 (𝐺)/𝐶 as 𝐶 increases. We refer to this phenomenon as
to the sub-linear gain effect. Theorem 2 implies a sufficient
condition on 𝐶 for this type of sub-linear gain effect to occur,
namely 𝜒𝑓 (𝐺) < 𝐶 < 𝜒(𝐺). This result holds because
we know that if 𝜒(𝐺)/𝐶 > 1 then 𝜃(𝐺,𝐶) ≥ 1 (since
𝜃(𝐺,𝐶) = 1 only when 𝐶 ≥ 𝜒(𝐺)). Note that the condition
𝜒𝑓 (𝐺) < 𝐶 < 𝜒(𝐺) is sufficient but not necessary for the
sub-linear effect to occur as shown by the next example.

To illustrate, we consider a specific random graph 𝐺 of 12
clusters (not shown for space consideration), with fractional



Fig. 2. The performance gain ratio 𝜃(𝐺, 1)/𝜃(𝐺,𝐶) of a random graph of
12 clusters. The horizontal line indicates the highest (linear) gain achievable.
The case 𝐶 = 4 (see circled region) is where the sub-linear gain effect occurs.

chromatic number 𝜒𝑓 (𝐺) = 4.333 and chromatic number
𝜒(𝐺) = 5. By solving (2), we obtain 𝜃(𝐺,𝐶) for different
values of 𝐶. As it turns out, the optimal performance for
𝐶 = 1 is 𝜃(𝐺, 1) = 𝜒𝑓 (𝐺) = 4.333. For 𝐶 = 2 and
𝐶 = 3, we respectively have 𝜃(𝐺, 2) = 𝜒𝑓 (𝐺)/2 = 2.167 and
𝜃(𝐺, 3) = 𝜒𝑓 (𝐺)/3 = 1.444. However, for 𝐶 = 4, we have
𝜃(𝐺, 4) = 1.111 > 𝜒𝑓 (𝐺)/4 = 1.083. Ultimately, for 𝐶 = 5,
𝜃(𝐺, 5) = 𝜒(𝐺)/5 = 1. Fig. 2 depicts the ratio of 𝜃(𝐺, 1)
to 𝜃(𝐺,𝐶) and illustrates the divergence of the performance
gain from the linear line when 𝐶 = 4.

The sub-linear effect results from the nature of rateless cod-
ing, i.e., having multiple channels available in a given cluster
does not help in reducing the completion time performance of
its member nodes. Thus, the cases of linear performance gain
for small 𝐶 are achieved by going to great lengths to search
for alternative MISs, in an effort to balance channel coverage.
The sub-linear effect occurs when such other MIS options fail.

The occurrence rate of the sublinear gain effect greatly
depends on the network size (in terms of clusters) and inter-
ference constraints. In fact, we conducted a simulation using
1000 Erdős-Rényi random graphs (probability of connection
between any two vertices is set 0.3). When the network size
is ∣𝑉 ∣ = 10 clusters, less than 2% of all graphs showed sub-
linear gain effect, but when ∣𝑉 ∣ increases to 16 clusters, this
percentage increased to close to 15%.

VI. CONCLUSION

We consider the problem of achieving minimum delay
rateless data dissemination in lossy, multi-channel wireless
cellular networks with arbitrary topologies. We show that
the transmission demand (i.e., the number of transmissions
required in each cluster) grows almost deterministically when
the number of clients grows to infinity. This enables the
use of linear programming to provide asymptotically optimal
transmission policies.

Our analysis shows that the completion time in a single

channel multi-cluster topology using the optimal policy is
about 𝜒𝑓 larger than the completion time in a single cluster,
where 𝜒𝑓 is the fractional chromatic number of the graph
representing the inter-cluster topology. As the number of
channels made available for data dissemination is increased,
the completion time is reduced until the number of channels
is equal to 𝜒, the chromatic number of the graph. Since the
fractional chromatic number is always smaller or equal to the
chromatic number, the gain in completion time grows less than
linearly in the number of channels. More precisely, we show
that if there exists a value 𝐶 such that 𝜒𝑓 < 𝐶 < 𝜒, then the
sub-linear effect is guaranteed to occur. Thus, this condition
always holds if 𝜒−𝜒𝑓 > 1. These results could be useful for
network providers who are gauging the usefulness of acquiring
additional spectrum for their network.
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