
i

IoT-Scan: Network Reconnaissance for the
Internet of Things

Stefan Gvozdenovic∗, Johannes K Becker†, John Mikulskis‡ and David Starobinski§

Abstract—The rapid growth of the IoT has resulted in an array
of competing, largely incompatible wireless communication tech-
nologies. This plethora of technologies has resulted in a complex
landscape, notably a lack of visibility, making it difficult for
organizations to come up with appropriate policies and tools to
secure their operational environments. In this paper, we present
IoT-Scan, a holistic approach for IoT network reconnaissance
to enable enumeration of IoT devices in one’s organization.
IoT-Scan is based on software defined radio (SDR) technology,
which allows for a flexible software-based implementation of
radio protocols. We present a series of passive, active, multi-
channel, and multi-protocol scanning algorithms to speed up the
discovery of devices with IoT-Scan. We benchmark the passive
scanning algorithms against a theoretical traffic model based
on the non-uniform coupon collector problem. We implement
the scanning algorithms for four popular IoT protocols: Zigbee,
Bluetooth LE, Z-Wave, LoRa. Through extensive experiments
with dozens of IoT devices, we evaluate and compare the
performance of the various algorithms in terms of their discovery
time, packet loss, and energy consumption. Notably, using multi-
protocol scanning, we demonstrate a reduction of 70% in the
discovery times of Bluetooth and Zigbee devices in the 2.4GHz
band and of LoRa and Z-Wave devices in the 900MHz band,
compared to sequential passive scanning.

Index Terms—Device management, naming and addressing,
service middleware and platform.

I. INTRODUCTION

The Internet of Things (IoT) device market is currently exhibit-
ing exponential growth [1]. These devices run a variety of low-
power wireless communication protocols, such as Bluetooth
Low Energy (BLE) [2], Zigbee [3], Z-Wave [4], and LoRa [5].
which support applications in smart homes, assisted living,
smart grid, health care, and environmental monitoring. These
various IoT protocols grew organically, with little coordination
between communication standard bodies. Thus, each protocol
has its own network interface card (NIC) implementations with
associated software stack tools.

The heterogeneity of the IoT ecosystem represents a major
challenge from a network security monitoring perspective [6],
[7]. A recent report by Palo Alto Networks concluded “the
first thing businesses need to do is get visibility into the exact
number and types of devices on their networks, keeping a
detailed, up-to-date inventory of all connected IoT assets, their
risk profiles, and their trusted behaviors” [8, p. 5].

Reconnaissance is a critical process toward improving the
security of IoT networks [9], [10]. It entails the ability to

∗†‡§Department of Electrical and Computer Engineering, Boston Univer-
sity Boston, US
∗tesla@bu.edu, †jkbecker@bu.edu, ‡jkulskis@bu.edu, §staro@bu.edu

enumerate all the IoT devices in one’s organization, verify their
authenticity, and assess their potential vulnerabilities to known
attacks. In the context of the Internet of Things, network
reconnaissance is challenging for several reasons:

• IoT fragmentation. The IoT ecosystem is fragmented
into a multitude of competing, non-interoperable stan-
dards and platforms. Even devices operating on the
same protocol may be incompatible if they run different
versions of the protocol (e.g., normal versus long-range
Z-Wave [11]). Using dozens of different USB dongles or
network cards for each protocol is prohibitive for practical
network security auditing.

• Lack of IP addressing. Many popular IoT protocols,
including BLE, Zigbee, Z-Wave, and LoRa do not support
IP addressing. As such, traditional network reconnais-
sance tools that operate on top of the IP protocol stack,
such as Nmap [12], are fundamentally limited when it
comes to IoT devices. Proposed solutions to standardize
communications, such as Thread [13] and Matter [14],
are promising, but touch only a fraction of technologies
in use today and partly support backward-compatibility
with legacy devices.

• Physical-layer constraints. In many IoT devices, PHY-
layer parameters are hard coded on the network card.
For instance, in Z-Wave and LoRa, networks identifiers
are hard coded; devices that wish to communicate must
use the same network identifier. These constraints sig-
nificantly complicate the detection of IoT devices and
analysis of their traffic.

To address this current challenge, we propose IoT-Scan,
an extensible, multi-protocol IoT network reconnaissance tool
for enumerating IoT devices. IoT-Scan runs both on the
900 MHz and 2.4 GHz bands and currently supports four
popular IoT protocols: Zigbee, BLE, LoRa, and Z-Wave.
Remarkably, IoT-Scan runs on a single piece of hardware,
namely a software-defined radio (SDR) [15]. The small form
factor of the SDR simplifies portability.
IoT-Scan leverages software-defined implementation of

IoT communication protocol stacks, mostly under the GNU
Radio ecosystem [16], [17]. This approach reduces the amount
of hardware needed to address the growing number of IoT
protocols. This further allows for future expansion into new
protocol versions, thus eliminating the need for purchasing or
upgrading protocol-specific hardware [18].

A key challenge faced in the design of IoT-Scan lies in
minimizing the discovery time of devices. A simple approach
(which we refer to as a sequential algorithm) is to scan devices

in a round robin fashion across each individual protocol, and
in turn across each individual channel within each protocol.
However, this approach does not scale. Consider, for instance,
that Zigbee devices can communicate over 16 different chan-
nels.

To address the above, we propose, implement, and bench-
mark several scanning algorithms to speed up the discovery
of IoT devices. These algorithms, of increasing sophistication,
can listen in parallel across different channels and different
protocols. To achieve this, our work takes on the challenge
of integrating single-protocol software radio receiver imple-
mentations into a hybrid receiver which can switch between
protocols (scanning one at a time) or may receive several
protocols in parallel. The parallel scanning across channels
and protocols depends mainly on the constraints of limited
instantaneous bandwidth (i.e., the range of frequencies to
which the SDR is tuned at a given point in time). Indeed,
the channel spread defined by most protocols operating in
the 2.4 GHz band is wider than the typical instantaneous
bandwidth of an SDR, i.e., it is typically not possible to
monitor the entire spectrum of a protocol simultaneously with
one monitoring device.

Another challenge is that some IoT devices transmit spar-
ingly, and enumerating devices passively on the wireless chan-
nel can result in long discovery times. To speed up discovery
of such devices, we propose active scanning algorithms that
send probe messages to discover which channels are actively
used by devices of a given protocol, and skip channels on
which no communication is taking place. We implement and
evaluate the performance of these algorithms, both in terms of
discovery time and energy consumption, for Zigbee devices.

Another important consideration is evaluating the efficiency
of the scanning algorithm implementation on the SDR, namely
whether devices are indeed discovered as fast as possible and
no packet loss is incurred due to imperfect SDR implemen-
tation. We achieve this by establishing a connection between
our network scanning problem and the non-uniform coupon
collector problem [19], [20], whereby each transmission by
a specific device corresponds to a coupon of a certain type
and the objective is to collect a coupon of each type as fast
as possible. The non-uniformity of the problem stems from
the different rates at which different devices transmit packets.
Under appropriate statistical assumptions, we can analyze this
problem and numerically compute the expectation of the order
statistics of the discovery times (i.e., the average time to
discover n out of N devices, for any n = 1, 2, . . . , N). For the
cases of Zigbee and BLE, we show that the discovery times, as
measured through several repeated experiments, closely align
with these theoretical benchmarks.

Our main contributions can thus be summed up as follows:
• We introduce IoT-Scan, a universal tool for IoT net-

work reconnaissance. IoT-Scan consists both of a col-
lection of efficient and practical IoT scanning algorithms
and of their implementations using a single commercial
off-the-shelf software-defined radio device, namely a
USRP B200 SDR [21].

• We validate the performance of the algorithms through
extensive experiments on a large collection of devices.

We demonstrate multi-protocol, multi-channel scanning
both on the 2.4 GHz band for Zigbee and BLE, and on
the 900 MHz band for LoRa and Z-Wave. Our implemen-
tation allows to promiscuously listen to network traffic,
even when the network ID is encoded at the PHY layer.

• We propose new active scanning algorithms and show
an implementation for Zigbee, which cuts down the
discovery time by 87% (from 365 seconds to 46 seconds)
compared to a sequential passive scanning algorithm. We
further demonstrate a similar performance gain in terms
of energy savings (from 770 J with passive scanning to
98 J with active scanning).

• We evaluate the efficiency of the scanning algorithm
implementation on the SDR through a theoretical bench-
mark based on the non-uniform coupon collector prob-
lem [19], [20]. We show that passive scan algorithms for
Zigbee and BLE perform near that benchmark.

Threat model. The purpose of IoT-Scan is to enumerate
IoT devices and their properties at a given location (e.g.,
an office, a hospital room, etc.). This can be used to detect
hidden unauthorized devices, some of which may have been
intentionally planted by an adversary for malicious purposes
(e.g., eavesdropping). We assume that these devices transmit
packets, such as beacons, and/or respond to queries according
to their respective wireless protocols. Note that it is hard to
detect devices that do not transmit at all. IoT-Scan can also
be used to identify missing devices which may have been de-
activated or stolen by a malicious party (these devices would
appear in scans up to some point, but disappear afterward).

The rest of this paper is structured as follows. Section II dis-
cusses related work. Section III presents the scanning methods
and algorithms forming the core of IoT-Scan. Section IV
discusses performance metrics for the algorithms, as well
as a theoretical model for benchmarking device discovery.
Section V provides background on each of the IoT protocols
covered in this paper, and elaborates on how IoT-Scan
discovers the addresses of devices in each case. Section VI
presents our experiments, including implementation aspects,
experimental setup, and results. Section VII provides an addi-
tional in-depth study of the active scan performance of Zigbee,
including a discussion with respect to energy consumption.
Section VIII concludes our findings, discusses ethical issues,
and presents an outlook on future work.

An earlier and abbreviated version of this paper appeared
in [22]. The main differences between the journal version
and the conference version are the following: (i) we rewrote
Section III, providing more detail on each algorithm, in-
cluding providing pseudo-code for supporting functions (cf.
Algorithms 1, 3, 5, and 6) and for an additional scanning
algorithm, namely active multiprotocol scan (cf. Algorithm 8);
(ii) we rewrote Section V to explain in much more detail
how IoT-Scan discovers device addresses for each of the
IoT protocols covered in this paper; (iii) we expanded Sec-
tion VI to discuss implementation challenges and parameter
optimizations, including experimental evaluation of different
channel dwell times (cf. Figure 11); (iv) we added an entirely
new section, Section VII, which provides additional experi-
mental data for Zigbee scanning, including per-device scan

times, likelihood of discovering short versus long addresses;
and energy consumption comparison of active versus passive
scans; (v) we added discussion of future work and inherent
constraints of IoT-Scan in Section VIII-A; (vi) we updated
the abstract, introduction, conclusion and bibliography.

II. RELATED WORK

This section presents related work. Most existing work fo-
cuses on protocol-specific techniques. In contrast our work
introduces several cross-protocol algorithms for IoT scanning,
and further benchmarks their performane both theoretically
and experimentally.

Heinrich et al. presents BTLEmap [23], a BLE-focused
device enumeration and service discovery tool inspired by
traditional network scanning tools like Nmap [12]. While
BTLEMap supports both Apple’s Core Bluetooth protocol
stack and external scanner sources, it is limited to Bluetooth
LE by design and does not aim to support multiple protocols.
In contrast, IoT-Scan is not tied to a particular vendor as
a host device, and supports multiple protocols simultaneously,
with one radio source.

Sharma et al. propose Lumos [24], a system that identi-
fies and further localizes hidden devices, using commodity
hardware (e.g., a MacBook or an iPhone). Lumos is currently
limited to Wi-Fi devices and does not support other IoT
protocols.

Tournier et al. propose IoTMap [25], which models inter-
connected IoT networks using various protocols, and deduces
network characteristics on multiple layers of the respective
protocol stacks. IoTMap requires dedicated radios for each
protocol in order to operate, whereas IoT-Scan achieves de-
vice detection across multiple protocols with a single software-
defined radio transceiver.

Mikulskis et al. present Snout [26] and showcase scanning
of BLE and Zigbee devices under a common SDR platform.
IoT-Scan encompasses additional protocols, namely LoRa
and Z-Wave. Furthermore, our work introduces novel scanning
algorithms and conducts extensive evaluation of these algo-
rithms, both theoretically and empirically with dozens of IoT
devices. In contrast, the work in [26] does not present scanning
algorithms and has no evaluation contents (either theoretical
or empirical).

Bak et al. [27] optimize BLE advertising scan (i.e., device
discovery) by using three identical BLE dongles. This ap-
proach is not scalable since it requires a new hardware receiver
for each new channel, and equally does not scale beyond the
BLE protocol. In contrast, our SDR-based approach uses the
same SDR hardware to receive multiple protocols.

Kilgour [28] presents a multi-channel BLE capture and
analysis tool implemented on a field programmable gate array
(FPGA). This multi-channel BLE tool allows receiving data
from multiple channels in parallel. However, the focus is
on BLE PHY receiver implementation and related signal
processing rather than actual scanning and enumeration of
devices. In contrast, our work extends beyond Bluetooth LE,
and crucially performs practical device enumeration scans to
quantify scanning performance.

Park et al. describe a Wi-Fi active scan technique performed
using BLE radio using cross-protocol interference [29]. The
active scan algorithms in IoT-Scan are motivated by similar
ideas, but require judicious use of protocol-specific mecha-
nisms (i.e., sending beacon request packets in Zigbee).

Hall et al. [30] describe a tool, called EZ-Wave that can
discover Z-Wave devices passively and actively. The EZ-Wave
tool actively scans a Z-Wave device by sending a “probe”
packet with acknowledgement request flag set. In the older
version S0 of the Z-Wave protocol, it was compulsory for
a Z-Wave device to reply with acknowledgements to such
packets. By getting this acknowledgement back, the EZ-Wave
tool learns about a device’s presence. However, the EZ-Wave
tool only supports older versions of Z-Wave protocol. In the
new version (S2) of the Z-Wave protocol, acknowledgements
are not compulsory and this is not a reliable active scan mech-
anism. The old Z-Wave protocol uses only the R1 (9.6 kbps)
and R2 (40 kbps) physical layers. Our work adds R3 (100 kbps
PHY) as well as multi-protocol capabilities. The R1, R2, and
R3 rates are defined in [4, Table 7-2].

Choong [31] implements a multi-channel IEEE 802.15.4
receiver using a USRP2 software-defined radio. Choong de-
scribes a channelization method similar to the receive chain
used in this work (see Section VI) that extracts multiple
channels from a wider raw signal stream. However, Choong’s
work focuses on the performance impact of the SDR host
computer, and is a Zigbee-specific implementation, whereas
our work focuses on device enumeration in a multi-channel as
well as multi-protocol context.

Our Zigbee, BLE, and Z-Wave GNU Radio receiver im-
plementations are based on scapy-radio [17] flowgraphs. Our
LoRa GNU Radio receiver flowgraph is based on a work by
Tapparel et al. [5]. A similar multi-channel LoRa receiver was
implemented by Robyns in [32]. In order to support multi-
radio, multi-channel capabilities, IoT-Scan implements sev-
eral changes to these GNU Radio receiver implementations. In
general, these changes pertain to the signal path between the
SDR source and the receive chains for individual channels and
protocols (i.e., frequency translation, filtering, and resampling,
see Section VI-A). Additionally, our LoRa receiver can listen
to LoRa packets promiscuously.

We summarize the capabilities of existing tools and their
limitations associating them with different wireless protocols
they support, as shown in Table I. Related works supporting
Wi-Fi are not listed as Wi-Fi devices generally have scannable
IP addresses in contrast to the other IoT protocols listed in the
table.

III. SCANNING ALGORITHMS

In this section, we introduce SDR-based scanning algorithms
that form the core of IoT-Scan. The notion of channel in this
section refers to a 3-tuple containing the center frequency of
the channel, the channel bandwidth (i.e., a range of frequencies
delineated by the lower and upper frequencies of the channel),
and the protocol type. The concept of instantaneous bandwidth
refers to the range of frequencies captured by the SDR at any
given point of time. The center frequency corresponds to the
frequency at the middle of the range.

Table I: Related Works and Supported Protocols

Research Work Zigbee BLE Z-Wave LoRa
BTLEMap [23] ✓

Snout [26] ✓ ✓
EZ-Wave [30] ✓

Bak [27] ✓
Kilgour [28] ✓
Choong [31] ✓
Tapparel [5] ✓
Robyns [32] ✓

IoT-Scan [22] ✓ ✓ ✓ ✓

Algorithm 1: Listen(ch, dwell_time)
▷ Receive packets on channel ch for duration

dwell_time and return a list of discovered

devices

1 tstart ←time() ▷ Store current time

2 device_list← {} ▷ Initialize device list

3 while time()−tstart ≤ dwell_time do
4 Listen on channel ch
5 Get packet and extract address dev_addr
6 device_list = device_list ∪ dev_addr
7 end while
8 return device_list

A. Single-channel methods

The key building block to any of the following scanning
algorithms is the function Listen() (Algorithm 1). It takes
two input parameters, namely a channel ch (defined by a
center frequency, bandwidth and protocol) and a time period
dwell_time after which the procedure terminates listening
to channel ch. During execution of this procedure, the SDR
decodes any packet received on the channel, and extracts
address information dev_addr that identifies a device (line 5).
Note that some packets (e.g., acknowledgements in Zigbee)
may have no address information, in which case dev_addr
is an empty set. Next, the device address is added to the
list of discovered devices device_list (line 6). By definition,
if dev_addr already appears in device_list, then the union
operation does not change the contents of the list. Upon the
expiration of the channel dwelling time, the procedure returns
the list of discovered devices.

Algorithm 2 presents a simple sequential scanning pro-
cedure Passive_Scan that can be used in conjunction with
any IoT protocol. This algorithm represents a baseline against
which the performance of more advanced algorithms can be
compared. The algorithm invokes the Listen procedure in a
round-robin fashion on each channel of a given channel list
ch_list, which is provided as an input to the procedure. The
total scan time is set by the scan_time input parameter. Note
that generally scan_time ≫ dwell_time, and hence each
channel is visited several times during the scan. The algorithm
returns the list of discovered devices.

Sequential passive scanning can be slow, especially if an
IoT protocol supports many channels, but only a few channels
are used. In order to speed up device discovery, Algorithm 4,
which we refer to as Active_Scan, implements a two-phase

Algorithm 2: Passive_Scan(ch_list,
dwell_time, scan_time)
▷ Enumerate devices by repeatedly listening for

duration dwell_time on each channel in ch_list

and stop after scan_time

1 tstart ←time() ▷ Store current time

2 device_list← {} ▷ Initialize device list

3 i← 0 ▷ Set channel counter to zero

4 while time()−tstart ≤ scan_time do
▷ ch_list(i) is the i-th element in ch_list

5 new_dev ← Listen(ch_list(i), dwell_time)
6 device_list = device_list ∪ new_dev
7 i← (i+ 1) mod |ch_list|
8 end while
9 return device_list

Figure 1: Find_Channels_In_Range (Algorithm 5) starts at
the lowest channel in the provided list and returns all channels
that are in range of the SDR hardware based on the provided
instantaneous bandwidth parameter.

approach. During the first phase (line 4), it invokes a helper
function Probe_Channels (Algorithm 3), which sends a probe
packet on each channel ch in the provided channel_list and
waits for a response. If one or more devices respond, then
channel ch is added to the active_channels list. During
the second phase (lines 5–7), Algorithm 4 performs passive
scanning only on channels appearing in the active_channels
list for the remaining scan time. Algorithm 4 is especially
useful for protocols such as Zigbee, which defines 16 differ-
ent channels, not all of which may be in use. For Zigbee,
IoT-Scan implements the probe packet using a beacon
request frame, to which Zigbee devices respond with a beacon
frame (see also Section V).

B. Multi-channel methods

The subsequent algorithms expand from single channel scan-
ning to handling multiple channels and multiple protocols, at
the same time.

Prior to discussing multi-channel and multi-protocol scan-
ning algorithms, we need a method of grouping channels
within the range of the instantaneous bandwidth of the SDR.
The function Find_Channels_In_Range (Algorithm 5) identi-
fies all channels in an input channel list (ordered by ascending
frequency) by selecting all channels that fit the instantaneous
bandwidth under consideration of their respective center fre-
quencies and channel bandwidths, see Fig. 1. Note that while
some channels overlap, transmissions on these channels do not

Algorithm 3: Probe_Channels(ch_list, dwell_time)
▷ Actively probe each channel ch from the channel list ch_list for duration of dwell_time.

1 active_channels← {}
2 device_list← {}
3 for ch ∈ ch_list do
4 Send probe on channel ch ▷ Trigger responses

5 new_dev ← Listen(ch, dwell_time)
6 if new_dev ̸= {} then
7 device_list← device_list ∪ new_dev ▷ Add found devices

8 active_channels← active_channels ∪ ch ▷ Add channel to active channel list

9 end if
10 end for
11 return active_channels, device_list

Algorithm 4: Active_Scan(ch_list, dwell_time, scan_time)
▷ Enumerate devices by first identifying the list of active_channels in ch_list and then performing

passive scanning only on those active_channels

1 device_list← {} ▷ Initialize list of found devices

2 active_channels← {} ▷ Initialize list of busy channels

3 tstart ←time() ▷ store current time

▷ Phase 1: Scan active devices

4 active_channels, device_list← Probe_Channels(ch_list, dwell_time)
▷ Phase 2: Passive-scan known active channels for the remaining time

5 tscan ← scan_time− (time()− tstart) ▷ Compute remaining scanning time

6 new_dev ← Passive_Scan(active_channels, dwell_time, tscan) ▷ Run passive scan on active channels

7 device_list← device_list ∪ new_dev ▷ Add devices found during passive scanning

8 return device_list

Algorithm 5: Find_Channels_In_Range(ch_list, bandwidth)
▷ Identify all channels in ch_list (ordered by ascending frequency) that can fit in the instantaneous

bandwidth, starting from the first element ch_list(0).

1 ch_range←{all ch in ch_list such that (ch.freq + ch.bw/2)− (ch_list(0).freq − ch_list(0).bw/2) ≤ bandwidth}
2 return ch_range

occur continuously. Hence, it is possible to decode packets if
they do not collide, which is usually the case. For a channel
to be considered in range, the entire bandwidth of the signal
must be contained in the captured instantaneous bandwidth of
the SDR. In practice, the center frequency of each group of
channels is set such that the first channel from the channel list
(i.e., the one with the lowest frequency) is at the far left end
of the instantaneous bandwidth. If none of the other channels’
bandwidths overlap with the current instantaneous bandwidth,
the function will return the first element of the input channel
list, i.e., it will default to single-channel selection.

We further define a helper function Listen_In_Parallel (Al-
gorithm 6) which simultaneously listens to multiple channels
by calling Listen (Algorithm 1) on all provided channels.
Note that implementing this algorithm requires extracting
multiple signal streams by frequency-shifting, filtering, and
resampling the incoming signal relative to its center frequency
and the parameters of the channel. This procedure is called
channelization. The implementation aspects of this procedure
are described in Section VI-A.

Multiprotocol_Scan (Algorithm 7) describes a parallel
multi-protocol scan that can be used with any number of
IoT protocols. Based on a list of channels to consider (or-
dered by ascending frequencies), the algorithm starts at the
lowest frequency and determines all channels within range
of the first channel by calling Find_Channels_In_Range
(Algorithm 5). It subsequently listens to those channels by
invoking Listen_In_Parallel (Algorithm 6). Note that if only
one channel is in range at given step of the while loop
(line 12), then the algorithm’s behavior becomes identical
to Passive_Scan (Algorithm 2). Each such channel hop is
scanned for the defined channel dwell_time. Once all un-
scanned channels are exhausted, the algorithm restarts from the
lowest channel until the desired scan_time has elapsed. Note
that the total scan_time is typically much longer than the
channel dwell_time. Depending on the frequency allocation
of the protocols involved, the multi-protocol scan algorithm
can significantly speed up IoT device discovery process by
receiving multiple protocols simultaneously, as demonstrated
in Section VI-C.

Algorithm 6: Listen_In_Parallel(ch_range, dwell_time)
▷ Scan in parallel all channels in ch_range for a duration dwell_time. Note that all channels are

assumed to be within the instantaneous bandwidth of the SDR, e.g. as produced by

Find_Channels_In_Range()

1 do in parallel
2 new_dev ← {Listen(ch, dwell_time) for all ch in ch_range}
3 device_list← device_list ∪ new_dev
4 end parallel
5 return device_list

Algorithm 7: Multiprotocol_Scan(ch_list, dwell_time, scan_time, bandwidth)
▷ This algorithm enumerates devices by scanning as many channels as can fit in the instantaneous

bandwidth of bandwidth for a duration dwell_time in each iteration.

1 ch_unscanned← ch_list ▷ All channels in the list are unscanned

2 ch_groups← {} ▷ Initialize list of channel groups

3 while ch_unscanned ̸= {} do
▷ Find channels that can be scanned simultaneously as they fit the instantaneous bandwidth.

4 ch_range← Find_Channels_In_Range(ch_unscanned, bandwidth)
▷ Scan channels that fit in instantaneous bandwidth BW around center freq.

ch_groups← ch_groups ∪ {ch_range} ▷ Add this group to the list of channel groups

5 ch_unscanned← ch_unscanned \ ch_range ▷ Remove channels from unscanned list

6 end while
7 tstart ←time() ▷ Store current time

8 device_list← {} ▷ Initialize list of found devices

9 i← 0 ▷ Set channel counter to zero

10 while time()−tstart ≤ scan_time do
▷ Scan all channels of the i’th channel group in parallel

11 new_dev ← Listen_In_Parallel(ch_group(i), dwell_time)
▷ Add newly found device(s) to the device list

12 device_list← device_list ∪ new_dev
13 i← (i+ 1) mod |ch_groups|
14 end while
15 return device_list

Algorithm 8: Active_Multiprotocol_Scan(ch_list, ch_probe_list, dwell_time, scan_time, bandwidth)
▷ Enumerate devices by first identifying list of busy_channels from ch_probe_list and then performing

multi-protocol scanning only on those active channels and on other channels provided in ch_list.

1 device_list← {} ▷ Initialize list of found devices

2 active_channels = {} ▷ Initialize list of busy channels

3 tstart ← time() ▷ Store current time

▷ Probe all channels in ch_probe_list to identify active channels

4 active_channels, device_list← Probe_Channels(ch_probe_list, dwell_time)
5 tscan ← scan_time− (time()− tstart) ▷ Compute remaining scanning time

▷ Merge successfully probed channels with regular channels and sort by ascending frequency

6 active_channels← sort(active_channels ∪ ch_list)
▷ Run passive scan on all active channels for the remaining time tscan

7 new_dev ← Multiprotocol_Scan(active_channels, dwell_time, tscan, bandwidth)
8 device_list← device_list ∪ new_dev ▷ Add devices found during passive scanning

9 return device_list

Finally, Active_Multiprotocol_Scan() (Algorithm 8) is a
combination of the aforementioned active scanning and multi-
protocol scanning capabilities. It is useful for scanning mul-
tiple protocols, some actively and some passively (such as
a combination of Zigbee and BLE). Note that Algorithm 8
receives two lists of channels: ch_probe_list and ch_list.
Active channels (e.g., Zigbee channels) are only sought among
channels in the ch_probe_list. This step is skipped for chan-
nels (e.g., BLE channels) in the ch_list.

IV. PERFORMANCE METRICS AND ANALYSIS

In this section, we define metrics to benchmark the various
algorithms. We further formalize IoT device discovery as
a variation of the non-uniform (weighted) coupon collector
problem [19], [20]. Under appropriate statistical assumptions,
the coupon collection time can be computed numerically and
serve as a baseline against which the performance of the
algorithms can be compared.

A. Metrics

Our main metric is the discovery time of IoT devices, which
we aim to minimize. Assume there are N devices in total,
with corresponding discovery times T1, T2, . . . , TN . We are
interested in characterizing the order statistics of these random
variables, i.e., the time elapsing till one device is discovered,
which is denoted X1:N , then till two devices are discovered
which is denoted X2:N , and so on till all devices are discov-
ered, which is denoted XN :N . We thus have

X1:N = min(T1, T2, . . . , TN), (1)
X2:N = min({T1, T2, . . . , TN} \X1:N), (2)
. . .

XN :N = max(T1, T2, . . . , TN). (3)

In our experiments, we estimate the expectation of the n-
th order statistics E[Xn:N], for n = 1, 2, . . . , N . To obtain
these estimates, we run each scanning algorithm M times and
denote by x

(m)
n:N the time till n devices are discovered at the

m-th iteration, where m = 1, 2, . . . ,M . We then compute the
sample mean for the n-th order statistics as follows:

x̄n:N =

∑M
m=1 x

(m)
n:N

M
. (4)

We also provide (1− α)100% confidence intervals for our
estimates

[x̄n:N − en:N , x̄n:N + en:N], (5)

based on computing the sample standard deviation sn:N and
the confidence interval parameter en:N as follows:

sn:N =

√√√√ 1

M − 1

M∑
m=1

(x
(m)
n:N − x̄n:N)2, (6)

en:N = tα/2,M−1 ×
sn:N√
M

, (7)

with tα/2,M−1 denoting the 1 − α/2 quantile of the t-
distribution with M−1 degrees of freedom [33]. In our exper-
iments, described in Section VI, we run M = 10 independent
iterations for each algorithm and consider 95% confidence

intervals (i.e., α = 0.05), hence tα/2,M−1 = 2.262. [33,
Table 1].

B. Theoretical Model

We next propose a theoretical model to estimate the expec-
tations of order statistics of the discovery time, under appro-
priate statistical assumption. The analysis further assumes an
idealized channel environment where no packet loss occurs
(in practice such losses could occur due to imperfect receiver
implementation or interference). In Section VI-C, we show
that the performance of the scanning algorithms approaches
that predicted by the theoretical model, which demonstrates
the efficiency of the algorithms.

1) Statistical assumptions: To model device enumeration,
we need statistics of the inter-arrival times of packets gener-
ated by each device. For the sake of analytical tractability,
we assume that devices transmit in a memoryless fashion, i.e.,
the inter-arrival times of their packets follow an exponential
distribution. Note that the mean and standard deviation of
an exponential random variable are equal. Hence, we expect
that this model can provide a reasonable approximation, if
for each device i, its mean inter-arrival time µi and standard
deviation of inter-arrival times σi are roughly equal. We stress
that this assumption is not needed for the implementation of
the scanning algorithms, only for their analysis.

To check this assumption, we collected statistics of the inter-
arrival times of packets of the Bluetooth and Zigbee devices
listed in Table II below. Specifically, for each device i, we
measure the times of packet arrivals with K + 1 timestamps.
We then calculate the K inter-arrival times τi,k = ti,k+1−ti,k,
where k = 1, 2, . . . ,K . Based on this data, we obtain estimates
of the expectation for each device i

µi =
1

K

K∑
k=1

τi,k, (8)

as well as the standard deviation

σi =

√√√√ 1

K

K∑
k=1

(τi,k − µi)2. (9)

Table II indicates that indeed for all tested BLE devices and
most Zigbee devices µi ≈ σi.

2) Analysis of order statistics: Enumerating devices
shares similarities with the non-uniform coupon collector’s
problem [19], albeit with certain modifications. The coupon
collector’s problem assumes a probability distribution in which
each draw results in a coupon (i.e., a discovered device). This
cannot be applied directly to a scenario in which devices’
transmission characteristics may result in null coupons, i.e., a
scan iteration in which no new device is discovered. Anceaume
et al. [20] provide a method of calculating the expectation
of the non-uniform coupon collector problem which accounts
for a null coupon. Define the probability vector p in which
p0 is the probability of no device transmitting, and pi is the
probability of device i transmitting, i = 1, 2, . . . , N . The

expectation for the n-th order statistics Xn,N (i.e., the time to
to discover n out of N devices) is then given by

E[Xn:N (p)] =

n−1∑
h=0

RN,n,h

∑
J∈Sh,N

1

1− p0 − PJ
(10)

where

RN,n,h = (−1)n−1−h

(
N − h− 1

N − n

)
. (11)

Here, Sh,N denotes all
(
N
h

)
subsets containing exactly h

devices. Denote by J any subset of Sh,N that contains exactly
h devices. Then, PJ =

∑
j∈J pj is the summation of the

transmission probabilities of all devices belonging to J . Note
that the second summation term in Eq. (10) works out to a
summation over all possible subsets J of cardinality h.

Assuming all N devices send packets in an independent
and identically distributed memoryless fashion as discussed
above, the device traffic can be modeled as N independent
Poisson processes with rate λi = 1/µi. The combined influx
of packets from all the devices then follows a Poisson process
with rate λ =

∑N
i=1 λi. By selecting a small interval ∆t such

that either zero or one packet arrives during any interval ∆t,
we can use Eq. (10) to compute the expectation of the order
statistics of the discovery time of devices. Let Z be a Poisson
random variable with mean λ∆t that counts the number of
packets arriving from all devices during a time interval ∆t.
We have

Pr(Z = 0) = e−λ∆t, (12)
Pr(Z = 1) = (λ∆t)e−λ∆t, (13)
Pr(Z ≥ 2) = 1− Pr(Z = 0)− Pr(Z = 1). (14)

In order to determine a suitable ∆t, we select it such that
Pr(Z≥2) becomes negligible, as discussed in Section VI-C.
If all devices transmit on one channel that is continuously
monitored, the probability pi that device i transmits during an
interval ∆t is then

pi = (λi∆t)e−λi∆t ≈ λi∆t. (15)

Note that if all devices are randomly distributed on any
of C available channels, a randomly channel-hopping radio
scanner would receive a transmission from device i with
probability pi/C. This can also be used as an approximation
when the scanner visits channels in a round-robin rather than
in a random fashion.

V. PROTOCOL DEVICE ENUMERATION

In the previous sections, the concepts of “listening to a
channel” and “extracting device addresses” were presented in
a generic way. We now discuss these aspects for all the IoT
protocols implemented in IoT-Scan.

A. Zigbee

Zigbee is a network and application layer protocol which
uses the IEEE 802.15.4 physical layer specification [3]. It
is widely used in home and commercial building automation
applications such as lighting, climate, and access control [34].
Zigbee operates on 16 channels on the 2.4GHz ISM band.

Figure 2: Zigbee medium access control (MAC) layer frame
structure [34].

Figure 3: The BLE advertising packet format (top)
and the Advertising Channel PDU Header (bottom)
for common advertising messages (PDU Types
ADV_IND, ADV_NONCONN_IND, ADV_SCAN_IND)
[2, p. 2562, 2567].

Each channel is 2 MHz wide and centered at fc = 2405 +
5(k − 11)MHz for channels k = 11...26 [3, p. 387].

Zigbee defines three types of devices: coordinators, routers,
and end-devices, each of which behave differently on the net-
work. End-devices do not route traffic, and are typically mobile
and battery-powered, i.e. energy-constrained. As a result, end
devices are frequently sleeping, i.e., remain inactive in order to
save power. Routers route traffic, receive and store messages
for their children (i.e., end devices that they route traffic from
and to), and communicate with new nodes requesting to join
the network. Therefore, routers cannot sleep and are typically
mains-powered devices. A Zigbee coordinator is a special
router which, in addition to all of the router capabilities,
also forms a network. Before creating a network, Zigbee
coordinators scan available channels to select a good, i.e. low
interference, channel for the network.

Address Information. IoT-Scan enumerates Zigbee de-
vices by both their short (16 bits) and long (64 bits) address
(whichever of those address types is present in a given
packet), ensuring no device is counted double despite these
two address formats. While short addresses are unique within
a network, long addresses are globally unique and assigned by
the manufacturer. Short and long addresses can be parsed from
the “Source Address” variable-length field in Figure 2. Some
Zigbee packets (e.g. acks) include no address. Note that the
PAN ID (personal area network identifier), shown in the same
figure, is a network specific identifier. While we do not use it
in our scanning, it could be useful to differentiate between two
devices with the same short address but on different networks.

Implementation. IoT-Scan implements both passive and
active scans for Zigbee. A passive scan listens on each
channel for a certain amount of time (i.e., the channel dwell
time) repeatedly until the total scan time expires. With active
scanning, channels with network activity are discovered by
sending beacon requests on each channel. Receiving a beacon
frame in response to a beacon request indicates that there is a
network on the current channel.Subsequent passive scanning

rounds can then be limited to these active channels (line 6 in
Algorithm 4), in order to detect any further devices that did
not respond to active scanning.

B. Bluetooth Low Energy (BLE)

Bluetooth LE [2] is a popular short-range wireless protocol
on the 2.4GHz ISM band. Its physical layer comprises 40
channels (0-39), three of which are so-called advertising
channels which are used to broadcast device information using
advertising packets. Bluetooth LE operates on 40 RF (radio
frequency) channels in the 2.4GHz band. Each channel is
1 MHz wide with center frequency fc = 2402 + 2k MHz
where k = 0...39. The 40 RF channels are mapped to
either data channels or advertising channels (see [35]). The
advertising channels are centered at 2402 MHz (channel 37),
2426 MHz (38), and 2480 MHz (39) to ensure coexistence
with other wireless protocols, i.e. minimize interfering with
the most populated Wi-Fi channels 1, 6, and 11.

Address Information. Advertising BLE packets contain
two address-related data fields in the packet structure of their
most common packet types: the access address and the adver-
tising address (Fig. 3. We use the advertising address (AdvA,
6 bytes long) to enumerate BLE devices. For advertising, the
access address is set to the constant 0x8E89BED6 and is used
as a sync word for frame synchronization. As it is the same
for all advertisers, it cannot be used for device enumeration.

The advertising addresses of the BLE devices tested in
this work did not change over time. Hence, we focused on
identifying scanned devices by their advertising address. Note,
however, that some devices, such as Apple devices, randomize
their advertising addresses over time [35], [36]. In such cases,
to infer the identity of BLE devices, one could use the data
payload of BLE advertising messages, which include device
identifiers, counters, or battery levels [37].

Implementation. In BLE, data channels are used for com-
munication after a connection has been established, whereas
advertising channels are used between devices that are in range
to discover one another and exchange metadata. Therefore,
IoT-Scan only scans the three advertising channels (i.e.,
there is no need to monitor data channels). Typically, adver-
tising packets are sent on all three advertising channels for
any given advertising event. This redundancy makes device
discovery more resilient in cases where some of the channels
experience interference. This means that scanning for BLE de-
vices on any one of the three advertising channels is as good as
a multi-channel scan (sequentially scanning each advertising
channel), a fact that we also verified experimentally.

C. LoRa

LoRa is a proprietary physical layer wireless protocol pow-
ering network layer protocols, such as LoRaWAN [38] long-
range wide-area networks (LP-WAN) and Sidewalk [39]. LoRa
defines all supported modulations and physical layer signaling.
On the other hand, LoRaWAN defines a subset of all possible
modulations and signal parameters, such as frequency allo-
cations and channel widths. The physical layer of the LoRa
protocol was patented by Semtech1, and the specification of

1https://www.semtech.com/

Figure 4: The LoRaWAN packet structure [38].

LoRaWAN is governed by the LoRa Alliance [38]. Work by
security researchers have yielded SDR implementations of the
physical LoRa layer [5], [32].

LoRaWAN uplink channels consists of 64 125 KHz wide
channels (centered around fc = 903.2 + 0.2k MHz where
k = 0...63) and 8 500 KHz wide channels (centered around
fc = 903 + 1.6(k − 64)MHz where k = 64...71). LoRaWAN
downlink channels consists of 8 500 KHz wide channels (cen-
tered around fc = 923.3 + 0.6k MHz where k = 0...7) [40].

Address Information. We use the third byte after the sync
word to enumerate the LoRa devices under test. Indeed, from
the traffic we collected, the value of the third byte changed
between four values, corresponding to the IDs of the four
YoLink devices under test. Incidentally, this third byte of the
payload is part of the 32-bit device address (DevAddr) as
specified in LoRaWAN frame format [38]. Furthermore, the
first byte of DevAddr is used as a network identifier (NwkID),
which is fixed for all devices in the same network. In this
context, a network consists of a LoRa gateway and end-devices
connected to that gateway.

Implementation. In our implementation, we scan Yolink
devices listed in Table II. The major challenge in receiving
any Yolink traffic is in determining the PHY-layer network
sync word or network ID. We overcome the challenge of
fixed sync word by modifying the LoRa receiver of [5]. Our
implementation allows one to promiscuously listen for all sync
words (as in [41]), as well as configure the bandwidth, the
center frequency, the bit rate, and other parameters. A key
advantage of scanning LoRa using an SDR implementation is
that all sync words can be monitored simultaneously, whereas
certified LoRa transceiver chips are programmed to receive a
specific sync word.

D. Z-Wave

Z-Wave is another proprietary physical layer wireless protocol,
based on the ITU-T G.9959 specification [4]. It is used in
smart home applications, most notably Ring Home Security
Systems.

In the US, Z-Wave operates on the 900 MHz ISM band
and comes in a few physical layer (PHY) variants, most
importantly differentiated by its center frequency and bit rates

https://www.semtech.com/

Figure 5: Z-Wave physical (PHY) and medium access control
(MAC) layer frame structure [4].

(channel widths): 908.4 MHz at 9.6 Kbps (R1) and 40 Kbps
(R2); 916 MHz at 100 Kbps (R3). Z-Wave long range PHYs at
912 MHz and 920 MHz are less common. For Z-Wave devices
listed in Table II, IoT-Scan discovered traffic on the R2 and
R3 PHYs, with corresponding channel widths of 40 KHz and
100 KHz respectively.

Address Information. Z-Wave packets contain two
address-related data fields: the home (network) identifier, and
the node (device) identifier. We use the single byte Source
ID [42] to enumerate Z-Wave devices. Z-Wave supports up
to 232 devices per network, hence this byte is sufficient to
distinguish between devices on the same network. The Z-Wave
primary controller (Z-Wave gateway) has a Source ID of 1. A
Z-Wave device which has not been connected to a controller
must use a Source ID of 0 before obtaining an actual non-
zero Source ID. The Z-Wave network identifier or Home ID
consists of 4 bytes that precede the node ID, as shown in
Fig. 5. In the case of multiple overlapping networks, the Home
ID can be used to distinguish between devices on different
networks.

Implementation. IoT-Scan uses the Source ID [42] in
the MAC header to enumerate Z-Wave devices. R1 and R2
Z-Wave PHY implementations are based on scapy-radio [17].
We built the R3 Z-Wave PHY receiver flowgraph based on the
existing R2 PHY implementation, the main difference being
the bit rate/sampling rate which is 2.5 times larger.

VI. EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of the
scanning algorithms of IoT-Scan. We detail SDR imple-
mentation aspects, the experimental set-up (including the list
of tested devices), and the experimental results.

A. Algorithm Implementation

The main software components of our implementation consist
of GNU Radio 3.8 [16] and Scapy-radio 2.4.5 [17]. Scapy-
radio is a pentest tool with RF fuzzing capabilities. Note that
Scapy-radio is based on GNU Radio version 3.7. We ported
receiver flowgraphs to GNU Radio 3.8 gaining great reception
improvements due to the automatic gain control (AGC) inside
the USRP Source block.

1) Flowgraph control: We implement the scanning algo-
rithms described in Section III in Python. Signal processing
parameters, such as the SDR center frequency, the channel
frequency offsets, and the channel bandwidths, are managed
by a GNU Radio flowgraph. The GNU Radio flowgraph is
imported into the main application as a Python module and
is controlled with its native Python API. This allows for
dynamic control of flowgraph parameters during the runtime

Table II: Tested IoT devices.

of the flowgraph. Controlling the flowgraph in this way is
crucial for correct time-keeping of the experiments, as it
allows to compensate for seconds of startup delays due to
the initialization of the USRP hardware driver library.

2) Signal processing: The process of converting an un-
filtered full-bandwidth signal from an SDR source into the
channel-wide receive chain (i.e., the sequence of DSP blocks
connected serially starting with radio source, demodulator, fil-
ter, and clock recovery) of a particular protocol is referred to as
channelization [43]. Channelization is particularly important
in multi-protocol scanning, since it selects (filters out) a few
narrow band signals (receive chains) from the raw wide band
signal. Multi-protocol scans require parallel decoding of two or
more receive chains which can overwhelm the capabilities of a
typical host computer if the processing chain in the flowgraph
is not correctly optimized.

Channelization in IoT-Scan comprises three signal pro-
cessing steps: frequency translation (from the center frequency
of the raw radio signal to the center frequency of the de-
sired channel), channel filtering (filtering out other channels,
protocols and potential interference), and re-sampling (down
conversion) to reduce the computational load. Reducing the
sample rate relies on Nyquist’s theorem, which dictates that the
sample rate of a signal be at least twice the signal’s bandwidth,
in order to not lose any information.

B. Experimental Setup

We implemented all the scanning algorithms described in
Section III on a single SDR device, namely a USRP B200
device [21], with a PC capable enough to handle data process-
ing in real-time without dropping samples (i.e., overflowing
buffers). Thus, all our experiments were run on a ThinkCentre
8 Core Intel i7 running Ubuntu 20.04.

The devices used in the experiments are listed in Table II.
All scanning experiments were based on IoT devices under
our control, which were placed on the same office desk as the
SDR. Any foreign device from the environment was filtered
out. In order to only account for our devices, we initially
enumerated them with a passive scan inside an RF shielded
box (Ramsey box STE3500) to determine their addresses.

Traffic of the BLE and Zigbee devices were statistically
analyzed to derive the parameters of the theoretical traffic
model introduced in Section IV-B. Note that we did not
analyze transmission statistics of low-power Z-Wave and LoRa
devices due to their periodic transmission patterns (devices
transmit once every hour or so).

We conducted all scanning experiments using the default
network configuration of the respective devices and protocols.
In all experiments, the tested devices were in an idle state,
i.e., not actively used by an operator. Manually operating
devices in a way that generates network communication, e.g.,
actuating Zigbee lights via the Amazon Alexa smartphone app,
would impact scanning performance. We expect the results
presented in this section to be conservative estimates of the
scanning time, since generating additional traffic from the
devices should speed up the discovery of the devices.

Additional network configuration consisted of the following:

• The Amazon Echo 4.0 device was paired to all smart light
bulbs.

• Most BLE devices in our experiments come with an as-
sociated application. Specifically, Philips Hue lights were
connected to the Amazon Echo 4.0 using the Amazon
Alexa app. Tile trackers, Fit2, and the Mi smart band were
activated using their respective companion smartphone
apps.

• The YoLink LoRa devices were left in their default con-
figuration after pairing the end devices (moisture sensor,
smart plug, door sensor) to the YoLink LoRa hub, using
the YoLink app.

• The Z-wave devices (motion sensor, door sensor, keypad,
and range extender) were paired to the Ring Security Base
Station using the Ring app.

When IoT-Scan discovers a new device name, it also
saves its associated frequency channel information. Devices
in this study form three Zigbee networks on channels 11, 15,
and 20. No device appears on more than a single channel.
Regarding the parameters of the algorithms, the channel dwell
time (i.e., the scanning time of each channel in each round)
was set to 1 second. We also tried channel dwell times of
0.1 second and 3 seconds, and found that the scanning times
did not differ significantly. The channel dwell time during
active scan of Zigbee was set to 0.2 second. When scanning
each individual protocol, we set the instantaneous bandwidth
parameter according to the protocol’s bit rate. Specifically,
BLE’s channel bandwidth was set to 1 MHz, Zigbee to 2 MHz,
LoRa to 125 KHz, and Z-Wave to 40/100 KHz. When im-
plementing multiprotocol scanning algorithms, we used wider
bandwidth to fit the bandwidth of each protocol and channel
spacing in between. Both the Zigbee/BLE and Z-Wave/LoRa
and multiprotocol experiments used 8 MHz of bandwidth.

C. Results

In this section, we discuss experimental results of the scanning
algorithms. The figures show the sample means and 95%
confidence intervals of the order statistics of the discovery time
of the n-th device (see Eqs. (4) and (5)). Each point represents
an average over 10 experiments with identical parameters.

Figure 6: Zigbee theoretical model and experimental passive
scan results. The 95% confidence intervals indicate a good fit.

Figure 7: BLE passive scan results align closely with the
theoretical model.

1) Passive Zigbee and BLE Scans and Comparison with
Theoretical Model: We first evaluate the performance of the
passive scanning algorithms (Algorithm 2) for Zigbee and BLE
devices, and compare those with the expected discovery times
based on the theoretical model described in Section IV-B.

To build the theoretical traffic model (see Section IV-B),
we measured device characteristics of our tested devices by
running one long continuous scan of 100 minutes on every
Zigbee channel and on every BLE advertising channel, in
order to collect a baseline of traffic for each device. The traffic
statistics are shown in Table II. We set ∆t = 0.1s in Eq. (15) to
compute pi for each device. We then use Eq. (10) to compute
the expectation of the order statistics of the discovery time of
devices. Note that for Zigbee, we replace pi by pi/16, since
with Algorithm 2, the SDR listens to only one out of the 16
Zigbee channels at a time.

Fig. 6 shows curves for the experimental results of Zigbee
passive scanning and the theoretical model. The model fits
inside most of the 95% confidence intervals. This shows
that our passive scan implementation is close to the best
performance possible, and our testbed has minimal packet
losses. The deviation from the model could be attributed to
interference (e.g., from Wi-Fi) and the fact that transmissions
of some Zigbee devices are not memoryless.

Fig. 7 shows experimental results for BLE passive scanning
and the theoretical benchmark. The measured discovery times

Figure 8: Zigbee active versus passive scan.

again fit the model well. Since all BLE advertising channels
are equivalent, scanning is performed on channel 37 only.
Note that BLE device discovery can only be performed as a
passive scan, since BLE does not allow for broadcast-type scan
requests as performed in Zigbee. While BLE scan requests
could be a useful active scanning technique for gathering
additional device data, they are always directed scans, i.e.,
they require knowledge of the target device’s address.

2) Active Zigbee Scan: We next evaluate the performance
of active scanning (Algorithm 4) and compare it to passive
scanning in the context of Zigbee. Fig. 8 shows that the passive
discovery of 12 Zigbee devices takes 365 seconds on average
while active Zigbee discovery takes only 46 seconds, i.e., a
reduction of 87% in the scan time. While active scanning
discovers the 12 devices within one minute, passive scanning
discovers only 4 devices within one minute.

Note that Zigbee supports up to 64,000 nodes per network. It
is conceivable that the improvement of active scan over passive
scan would be even more significant with a larger number
of nodes. Zigbee routers and coordinators (mains-powered
devices) are typically continuously active and will reply to
beacon requests, which contributes to the discovery of several
devices almost immediately during the active scan, whereas
end-devices are usually battery-powered and optimized for
power saving, and may not respond to beacon requests.
However, since end devices are on the same channel as their
coordinator, limiting the second phase of the active scan to
the known active channels significantly speeds up discovery
by virtue of spending more time on each relevant channel.
Among our tested devices, we have three Zigbee coordinators
occupying three channels: GE Link/Quirky hub on channel
11, IKEA Gateway on channel 15, and Amazon echo 4.0
on channel 20. As a result, the second phase of the active
scan (cf. Algorithm 4, line 6) cycles through 3 instead of 16
channels, shortening the detection speed by a factor of roughly
16/3 = 5.333 for the remaining end-devices.

3) Zigbee and BLE Multiprotocol Scan: We next evaluate
the performance of active multiprotocol Zigbee and BLE scan
and compare it to sequential passive scan. Sequential passive
scan consists of passive BLE scan followed by passive Zigbee
scan. Sequential passive scan enumerates the 24 considered
devices in 395 seconds on average, while active multiprotocol
Zigbee and BLE scan takes 118 seconds on average, which

Figure 9: Zigbee/BLE multiprotocol active scan vs. sequential
passive scan.

corresponds to a 70% improvement (Fig. 9). Within 1 minute
active multiprotocol scan discovers 22 devices while sequential
scan discovers only 10. Breaking down sequential passive
scan into two: the first 106 seconds corresponds to a BLE
passive scan, followed by 289 seconds of Zigbee scan, which
is consistent with the results shown in Figs. 6 and 7. The
speed-up is achieved because of two aspects: active scan and
multiprotocol scan. Zigbee active scan narrows the search
down from 16 to only 3 channels. Multiprotocol scan supports
reception of one Zigbee and one BLE channel in parallel. Note
that parallel reception is possible only if the two channels
fit within the instantaneous bandwidth. As mentioned earlier,
the instantaneous bandwidth for multiprotocol scan was set to
8 MHz. Three Zigbee active channels were identified, namely
channel 11, 15, and 20. BLE has three well-known advertising
channels, namely 37, 38, and 39. BLE channel 37 and Zigbee
channel 11 can be received in parallel as well as BLE channel
38 and Zigbee channel 15. However, Zigbee channel 20 and
BLE channel 39 are scanned separately since they do not fit
within the same instantaneous bandwidth.

4) Z-Wave and LoRa Multiprotocol Scan: We next eval-
uate the performance of passive multiprotocol LoRa and Z-
Wave scan on 900 MHz band (Algorithm 7) and compare it to
sequential passive scan (Algorithm 2). Passive multiprotocol
scan consists of scanning each of 3 frequency channels (2
Z-Wave and 1 LoRa) in a round robin fashion. The passive
scanning operation visits the LoRa and Z-Wave channel in
a round-robin fashion, one at a time. Due to having 2 Z-
Wave channels (908.4 and 916 MHz) and only 1 LoRa channel
(910.29 MHz), Z-Wave has an advantage in passive scanning.

Fig. 10 shows that sequential LoRa and Z-Wave scan takes
about 8.1 hours on average while multiprotocol Z-Wave and
LoRa scan takes 2.5 hours, which represents a reduction
of about 70% in the discovery time. Within a single hour
passive scan discovers less than 1 device on average while
multiprotocol scan discovers 5 out of the 7 devices. This
significant speed-up is achieved because multiprotocol scan
receives all three channels (from the two protocols) in parallel,
namely 908.4 MHz (Z-Wave R2 PHY), 910.23 MHz (LoRa
uplink), and 916 MHz (Z-Wave R3 PHY).

Figure 10: Multiprotocol passive scan (Z-Wave, LoRa)

Figure 11: Zigbee passive scan discovery times for channel
dwell times of 0.1, 1, and 3 seconds.

5) Channel Dwell Time: We last examine the impact of
properly setting the value of the channel dwell parameter,
which is an input to several of the algorithms. Each trial mea-
sures the time to passively scan 12 BLE and 12 Zigbee devices.
Passive Zigbee scan hops between 3 active Zigbee channels.
A passive BLE scan involves channel hopping between three
advertising BLE channels. Our experiments indicate that the
scanning times do not differ significantly for channel dwell
times of 0.1, 1, and 3 seconds. Fig. 11 shows the channel dwell
time experiment for Zigbee, but similar results hold for BLE.
Thus, in all our experiments, we chose a value of 1 second for
the channel dwell times, the only exception being in the first
phase of Zigbee active scan, where the dwell time was set to
0.2 seconds (which was sufficient to receive beacon responses
and move on).

VII. IN-DEPTH ZIGBEE SCANNING EVALUATION

In this section, we provide more details regarding per-device
discovery times and energy considerations, focusing on Zig-
bee. We aim to answer the following questions: Is active scan
effective for all or only some devices? Which address types
(i.e., short vs. long) are most easily discoverable? How does
energy consumption of active scan compare to that of passive
scan?

1) Setup: The IoT testbed setup is slightly different from
that in Section VI, namely, there are four active Zigbee

0 10 20 30 40 50
Discovery time [seconds]

Cree
GE L1
Ikea L
Ikea h
Quirky

Ring
Hue4
Hue2
Hue3
Hue1
Wink
Echo

Figure 12: Zigbee device average discovery times during active
scan with 95% confidence intervals.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Estimated probability

Echo
Wink
Hue4
Hue1
Ring
Hue2
Hue3

Quirky
Ikea h
Ikea L
GE L1
Cree

Pr
ob
ab
ilit
y
of
 d
isc

ov
er
in
g

Zi
gb

ee
 d
ev
ice

 d
ur
in
g
ac
tiv
e
ph

as
e

Figure 13: Estimated probability of discovering Zigbee device
during phase 1 of active scan with 95% confidence intervals.

channels, not three, namely channels 11, 15, 20, and 25. The
Ring Base Station and GE Quirky operate on channel 11. The
Wink hub and Ikea hub are on channel 15. The Amazon Echo
and Hue lights are on channel 20. The remaining Ikea, Cree
and GE light bulbs are on channel 25.

The Ring Base Station, Wink hub and Echo act as Zigbee
coordinators. The Ikea, Cree and GE lights are not connected
to any Zigbee router nor coordinator. Nevertheless, we will
show in the following that they are still discoverable.

Average values from the figures in this section are based on
100 independent trials. Figures show 95% confidence intervals
based on 100 trials, except Figure 14 which is based on 10
trials.

2) Per-device discovery time: Figure 12 shows the average
per-device discovery times with active scan (Algorithm 4).
Per-device discovery time is the average time until a specific
device is discovered, through either its short or long address.
A device can be discovered either during phase 1 of active
scan (namely the probing stage) or during phase 2 (namely the
passive stage) of active scan. Figure 12 shows that the Cree
light bulb takes on average the shortest time to be discovered
and while the Echo takes the longest. This figure is consistent

Figure 14: Cummulative distribution function (CDF) of dis-
covery time of Zigbee devices with active scan.

with the Zigbee active scan curve shown in Figure 8 in that it
takes on average about a minute to discover all devices.

Figure 13 shows the estimated probability of discovering
Zigbee devices during phase 1 of active scan. We observe that
the Cree, GE Lamp1, Ikea light, and Ikea hub are the most
likely to be discovered during phase 1 of active scan while
the Echo and Wink devices are the least likely. We note that
Zigbee coordinators (Wink, Quirky, and Echo) are no more
likely to be discovered during phase 1 than other types of
devices.

To cross-validate our results, we plot the cumulative distri-
bution function (CDF) of the discovery time of the Ring, Wink,
and Echo devices, as shown in Fig. 14. The figure confirms
that either one of the devices are quickly discovered during
the probing stage of active scan, or more slowly during its
passive stage.

While the Ikea, Cree and GE lights are orphan Zigbee
devices (not connected to a router or coordinator), they are
still discovered by IoT-Scan. Furthermore, Wink and Ikea
hub are Zigbee coordinator and router on channel 15 without
any end-devices, yet IoT-Scan is still effective. Of course,
device discovery with IoT-Scan also works in fully con-
nected Zigbee network, e.g., the Echo hub coordinating Hue
lights.

3) Discovery time by address type: Remember that Zigbee
devices map to different addresses, namely 16-bit short and
64-bit long address. During the device discovery process, we
will mark a device as discovered after seeing any of the
two addresses. In practice, devices tend to be more readily
discovered by their short addresses.

Figure 15 shows that, during phase 1 of active scan, devices
are almost always discovered by their short Zigbee address.
Note that Cree, Hue4, Hue2, and Echo devices were only
discovered via short addresses, hence the lack of confidence
intervals. While during the entirety of active scan, devices can
also be discovered via their long addresses (see Figure 16).
Nevertheless, in aggregate, discovery through the short address
is still more likely.

We note in passing that Zigbee coordinators may have

0.0 0.2 0.4 0.6 0.8 1.0

Quirky
Ring

Ikea h
Wink
Echo
Hue1
Hue2
Hue3
Hue4
Cree

GE L1
Ikea L

Likelihood of discovery during phase 1

Short
Long

Figure 15: Likelihood of discovery of short Zigbee device
addresses during phase 1 of active scan.

0.0 0.2 0.4 0.6 0.8 1.0

Quirky
Ring

Ikea h
Wink
Echo
Hue1
Hue2
Hue3
Hue4
Cree

GE L1
Ikea L

Likelihood of discovery during entire active scan

Short
Long

Figure 16: Likelihood of discovery of short Zigbee device
addresses during the entire active scan.

the same short address 0x00000000. However, this is not a
problem in our set up, because there is only one network per
channel (each network has a unique coordinator). If multiple
networks operate on the same channel, the coordinators could
be distinguished by their long addresses or PAN IDs.

4) IoT-Scan’s Energy Consumption: Our next goal is
to assess the energy consumption of active scan and compare
it to that of passive scan. Specifically, we show that, while
active scan relies of the transmission of probing packets that
expend some energy, the energy savings achieved by reducing
the scanning time ends up being much more significant.

We obtain the energy consumption by measuring the SDR
transmission and reception powers. Specifically, the power
consumption of the SDR is measured using a MakerHawk
USB power meter [44] using a USB3 cable (see Figure 17).

In more detail, the SDR’s transmission power is measured
on the power meter by having the host computer run a
GNURadio flowgraph that constantly transmits a constant
carrier at Zigbee’s 2.4GHz band, across different transmit
gains. The SDR’s received power is measured on the power
meter while the host runs a flowgraph that constantly receives

Figure 17: SDR power consumption is measured with Maker-
Hawk a USB power meter.

samples (with receive gain configuration set to automatic gain
control or AGC) across different sample rates. The measured
transmission and reception powers are shown in Table III. We
choose these sample rates (and their multiples) in accordance
with the protocols IoT-Scan supports. Table III shows that
the transmission gain and the sample rate have relatively
limited impact on the power consumed during transmission
and reception, respectively.

Our active scan energy calculation is based on the measured
transmission power of Ptx = 2.456 W at a 80 dB transmit gain.
The passive scan energy calculation is based on the measured
receive state power consumption of Prx = 2.109 W at 4 Msps.
Thus, we conclude that transmission and reception powers
do not differ by much. Therefore, the energy consumption
of different types of scans (i.e., active vs. passive) mostly
depends on the total scan time and less on the radio’s state
(i.e., transmission vs. reception).

We calculate the total cumulative energy consumption of
scans as the power multiplied by the scanning time. The aver-
age passive and active scan times for Zigbee are listed earlier
in this section (Subsection 2). We assume that Phase 1 of
active scan takes around Ttx = dwell_time∗|channel_list| =
0.2 ∗ 16 s= 3.2 s during which SDR transmits and receives
on all 16 channels. During phase 1, the radio is in both
transmission and reception state. In this case, we assume that
the radio consumes the higher of the two measured powers,
which is the transmission power.

Through this computation, we obtain that active scan con-
sumes on average Pact = Ptx∗Ttx+Prx∗(tscan−Ttx) = 98 J,
while passive scan consumes Ppas = Prx∗tscan = 770 J. This
shows that Zigbee Active_Scan saves energy, in addition to
saving time, compared to Passive_Scan.

VIII. CONCLUSION

We presented IoT-Scan, an extensible multi-protocol net-
work reconnaissance tool for the Internet of Things that can
be employed for security auditing and network monitoring.
IoT-Scan leverages the capabilities of SDRs to process
multiple streams in parallel. Accordingly, we introduced sev-

Table III: SDR transmit (TX) and receive (RX) power con-
sumption vary little with the output gain and the sample rate.

Output gain Tx Power
[dB] [Watt]

0 2.254
20 2.259
40 2.254
60 2.265
70 2.265
80 2.383
90 2.383

Sample rate Rx power
[Msps] [Watt]
0.125 1.916
0.25 1.921
0.5 1.926
1 1.931
2 1.955
4 1.997
8 2.077

eral scanning algorithms and evaluated them both theoretically
and experimentally. Using the theoretical model, we showed
that our implementation is efficient and achieves minimal
packet loss in reception. We implemented multi-protocol,
multi-channel scanning both on the 2.4GHz band for Zigbee
and BLE, and on the 900 MHz band for LoRa and Z-Wave, and
demonstrated significant improvement over sequential passive
scanning.

Our SDR implementations should prove especially useful in
overcoming the incompatibility of different protocols based on
the same PHY layer. For instance, besides Zigbee, there exist
several IoT protocols based on the IEEE 802.15.4 standard,
such as Thread [13] and WirelessHART [45]. We expect that
these protocols could readily be integrated into IoT-Scan.

The design of IoT-Scan does not raise ethical issues in
itself. However, like other penetration testing tools, usage of
this tool does require explicit consent from the owners of the
devices under test. Specifically, active scanning, while brief,
may interfere with existing network traffic and delay time-
sensitive communication. A major advantage of IoT-Scan
versus a tool like Nmap is that it also supports a passive
scanning mode, which does not generate traffic.

A. Discussion and Future Work

This paper opens several avenues for future work. First,
one could explore FPGA implementations of IoT-Scan
to increase the number of channels and protocols that can
be decoded in parallel and further speed up the discovery
of IoT devices. While this should yield useful performance
improvements, we expect that such implementations would
still rely on the algorithms introduced in Section III.

Another interesting research avenue lies in the design of
active scanning methods for LoRa and Z-Wave, as devices in
these protocols transmit sparingly. We have publicly released
data traces obtained with IoT-Scan in [46]. We envision that
these traces should be useful for the design and evaluation
of scanning algorithms and other IoT-related research (see,
e.g., [47]).

While IoT-Scan hold promise for enhancing device dis-
covery and communication in IoT networks, it faces several
inherent constraints. Overcoming these limitations in the fu-
ture will requires interdisciplinary research efforts, combining
aspects of communications engineering, signal processing,
and operating systems. These limitations encompass various
aspects such as:

• Limited bandwidth: Many SDR frameworks utilize

general-purpose OS, which often have limited processing
power and and not designed for real-time operations. This
can lead to issues such as overlows and underflows in
buffer management, affecting reliability of data transmis-
sion and reception. To overcome this, future work could
focus on developing a lightweight multi-protocol real-
time scheduling mechanisms [48].

• Packet collisions: Number of devices that can be scanned
simultaneously by active scan is limited due to collisions
in response messages. Future work could investigate
techniques such as directed or non-broadcasting probe
requests [49].

• Ineffective Adaptive Algorithms: Ineffective carrier fre-
quency compensation and timing recovery algorithms’
implementations can result in signal distortions, leading
to increased bit error rates and reduced overall net-
work performance. Future research could explore more
advanced algorithms that address these challenges such
as [50].

• SDR Non-linearity: The non-linearity of SDR com-
ponents can introduce signal distortions, affecting the
quality of communication and exacerbating energy effi-
ciency of SDRs. Researchers could delve into developing
advanced signal processing techniques to mitigate non-
linear effects, potentially incorporating adaptive compen-
sations, such as digital predistortion [51].

ACKNOWLEDGEMENTS

This research was supported in part by the US National Sci-
ence Foundation under grants CNS-1717858, CNS-1908087,
CCF-2006628, EECS-2128517, AST-2229104, and by an Ig-
nition Award from Boston University.

REFERENCES

[1] Ericsson. (2020) Internet of Things Forecast. [Online]. Available:
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast

[2] Bluetooth Special Interest Group (SIG). (2016) Bluetooth Core
Specification. v5.0. [Online]. Available: https://www.bluetooth.com/
specifications/specs/core-specification/

[3] IEEE Standards Association, 802.15.4-2015 - IEEE Standard for Low-
Rate Wireless Networks, IEEE, Ed., New York, New York, USA, 2015.

[4] International Telecommunication Union. (2015) G.9959: Short range
narrow-band digital radiocommunication transceivers - PHY, MAC,
SAR and LLC layer specifications. [Online]. Available: https:
//www.itu.int/rec/T-REC-G.9959

[5] J. Tapparel, O. Afisiadis, P. Mayoraz, A. Balatsoukas-Stimming, and
A. Burg, “An Open-Source LoRa Physical Layer Prototype on GNU
Radio,” in SPAWC 2020, 2020, pp. 1–5.

[6] J. Ortiz, C. Crawford, and F. Le, “DeviceMien: network device behavior
modeling for identifying unknown IoT devices,” in Proceedings of the
International Conference on Internet of Things Design and Implemen-
tation. New York, NY, USA: ACM, Apr, pp. 106–117.

[7] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “IoT
Inspector,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 4, no. 2, pp. 1–21, Jun 2020.
[Online]. Available: https://dl.acm.org/doi/10.1145/3397333

[8] Palo Alto Networks Inc., “The Connected Enterprise: IoT Security
Report 2020,” Palo Alto Networks, Inc., Santa Clara, CA, USA, Tech.
Rep. [Online]. Available: https://www.paloaltonetworks.com/resources/
research/connected-enterprise-iot-security-report-2020

[9] B. Burns, D. Killion, N. Beauchesne, E. Moret, J. Sobrier, M. Lynn,
E. Markham, C. Iezzoni, P. Biondi, J. S. Granick, S. Manzuik, and
P. Guersch, Security power tools. O’Reilly Media, Inc., 2007.

[10] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber scanning: a comprehen-
sive survey,” IEEE communications surveys & tutorials, vol. 16, no. 3,
pp. 1496–1519, 2013.

[11] M. Klein. (2020) What is Z-Wave Long Range and How Does it
Differ from Z-Wave? [Online]. Available: https://z-wavealliance.org/
what-is-z-wave-long-range-and-how-does-it-differ-from-z-wave/

[12] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning, 2nd ed. Sunnyvale, CA,
USA: Insecure.Com LLC, 2008.

[13] Thread Group. (2023) What is Thread? [Online]. Available: https:
//www.threadgroup.org/What-is-Thread/Overview

[14] Connectivity Standards Alliance. (2023) Matter: Smart Home Device
Solution. [Online]. Available: https://csa-iot.org/all-solutions/matter/

[15] T. Ulversoy, “Software Defined Radio: Challenges and opportunities,”
IEEE Communications Surveys & Tutorials, vol. 12, no. 4, pp. 531–550,
2010.

[16] GNU Radio Project. (2022) GNU Radio. [Online]. Available:
https://www.gnuradio.org

[17] Bastille Research. (2015) scapy-radio. [Online]. Available: https:
//github.com/BastilleResearch/scapy-radio

[18] Y. He, J. Fang, J. Zhang, H. Shen, K. Tan, and Y. Zhang, “MPAP:
Virtualization Architecture for Heterogenous Wireless APs,” ACM SIG-
COMM Computer Communication Review, no. 4, pp. 475–476, Aug.

[19] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, no. 3, pp. 207–229, Nov 1992.

[20] E. Anceaume, Y. Busnel, and B. Sericola, “New Results on a Generalized
Coupon Collector Problem Using Markov Chains,” Journal of Applied
Probability, vol. 52, no. 2, p. 405418, 2015.

[21] Ettus Research. (2022) USRP B200. [Online]. Available: https:
//www.ettus.com/all-products/ub200-kit/

[22] S. Gvozdenovic, J. K. Becker, J. Mikulskis, and D. Starobinski, “IoT-
Scan: Network Reconnaissance for the Internet of Things,” in IEEE
Conference on Communications and Network Security (CNS) 2022,
Austin, TX, USA, October 2022.

[23] A. Heinrich, M. Stute, and M. Hollick, “BTLEmap: Nmap for
Bluetooth Low Energy,” in Proceedings of the 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, ser. WiSec
’20. Association for Computing Machinery, 2020, p. 331333. [Online].
Available: https://doi.org/10.1145/3395351.3401796

[24] R. A. Sharma, E. Soltanaghaei, A. Rowe, and V. Sekar, “Lumos:
Identifying and localizing diverse hidden {IoT} devices in an unfamiliar
environment,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 1095–1112.

[25] J. Tournier, F. Lesueur, F. Le Mouël, L. Guyon, and H. Ben-Hassine,
“IoTMap: A protocol-agnostic multi-layer system to detect application
patterns in IoT networks,” in 10th International Conference on the
Internet of Things (IoT 2020), Malmö, Sweden, Oct. 2020.

[26] J. Mikulskis, J. K. Becker, S. Gvozdenovic, and D. Starobinski, “Poster:
Snout - An Extensible IoT Pen-Testing Tool,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 2529–2531.

[27] S. Bak and Y.-J. Suh, “Designing and Implementing an Enhanced
Bluetooth Low Energy Scanner with User-Level Channel Awareness
and Simultaneous Channel Scanning,” vol. 102, no. 3. The Institute
of Electronics, Information and Communication Engineers, 2019, pp.
640–644.

[28] C. D. Kilgour, “A Bluetooth low-energy capture and analysis tool using
software-defined radio,” Master’s Thesis, Simon Fraser University,
2013. [Online]. Available: http://summit.sfu.ca/item/12931

[29] W. Park, D. Ryoo, C. Joo, and S. Bahk, “BLESS: BLE-aided Swift
Wi-Fi Scanning in Multi-protocol IoT Networks,” in IEEE INFOCOM
2021-IEEE Conference on Computer Communications, 2021, pp. 1–10.

[30] J. Hall, B. Ramsey, M. Rice, and T. Lacey, “Z-wave Network Reconnais-
sance and Transceiver Fingerprinting Using Software-Defined Radios,”
in ICCWS 2016.

[31] L. Choong, “Multi-Channel IEEE 802.15.4 Packet Capture Using Soft-
ware Defined Radio,” UCLA Networked & Embedded Sensing Lab,
vol. 3, pp. 1–20, 2009.

[32] P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A Multi-Channel
Software Decoder for the LoRa Modulation Scheme,” in IoTBDS 2018,
2018, pp. 41–51.

[33] B. Schmeiser, “Batch Size Effects in the Analysis of Simulation Output,”
Operations Research, vol. 30, no. 3, pp. 556–568, 1982.

[34] Connectivity Standards Alliance. (2021) Zigbee – The Full-Stack
Solution for All Smart Devices. [Online]. Available: https://csa-iot.org/
all-solutions/zigbee/

[35] N. K. Gupta, Inside Bluetooth Low Energy, 2nd ed. Boston, London:
Artech House, 2016.

https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.bluetooth.com/specifications/specs/core-specification/
https://www.bluetooth.com/specifications/specs/core-specification/
https://www.itu.int/rec/T-REC-G.9959
https://www.itu.int/rec/T-REC-G.9959
https://dl.acm.org/doi/10.1145/3397333
https://www.paloaltonetworks.com/resources/research/connected-enterprise-iot-security-report-2020
https://www.paloaltonetworks.com/resources/research/connected-enterprise-iot-security-report-2020
https://z-wavealliance.org/what-is-z-wave-long-range-and-how-does-it-differ-from-z-wave/
https://z-wavealliance.org/what-is-z-wave-long-range-and-how-does-it-differ-from-z-wave/
https://www.threadgroup.org/What-is-Thread/Overview
https://www.threadgroup.org/What-is-Thread/Overview
https://csa-iot.org/all-solutions/matter/
https://www.gnuradio.org
https://github.com/BastilleResearch/scapy-radio
https://github.com/BastilleResearch/scapy-radio
https://www.ettus.com/all-products/ub200-kit/
https://www.ettus.com/all-products/ub200-kit/
https://doi.org/10.1145/3395351.3401796
http://summit.sfu.ca/item/12931
https://csa-iot.org/all-solutions/zigbee/
https://csa-iot.org/all-solutions/zigbee/

[36] J. K. Becker, D. Li, and D. Starobinski, “Tracking Anonymized Blue-
tooth Devices,” in Proceedings on Privacy Enhancing Technologies, vol.
2019, no. 3, Jul. 2019, pp. 50–65.

[37] G. Celosia and M. Cunche, “Discontinued privacy: Personal data leaks
in apple Bluetooth-low-energy continuity protocols,” in Proceedings on
Privacy Enhancing Technologies, vol. 2020, 2020, pp. 26–46.

[38] LoRa Alliance. (2018, July) Lorawanő specification v1.0.3. [Online].
Available: lora-alliance.org/wp-content/uploads/2020/11/lorawan1.0.3.
pdf

[39] Jon Callas. (2022) Understanding amazon sidewalk. [Online]. Available:
https://www.eff.org/deeplinks/2021/06/understanding-amazon-sidewalk

[40] LoRa Alliance, “LoRaWANő Regional Parameters,” 2021. [On-
line]. Available: lora-alliance.org/wp-content/uploads/2021/05/RP002-1.
0.3-FINAL-1.pdf

[41] C. Bernier, F. Dehmas, and N. Deparis, “Low complexity lora frame
synchronization for ultra-low power software-defined radios,” IEEE
Transactions on Communications, vol. 68, no. 5, pp. 3140–3152, 2020.

[42] C. W. Badenhop, S. R. Graham, B. W. Ramsey, B. E. Mullins, and L. O.
Mailloux, “The Z-Wave routing protocol and its security implications,”
Computers & Security, vol. 68, pp. 112–129, 2017.

[43] Marija Dimitrijevic. (2018) Replacing many RF receivers with only
ONE using Channelization. [Online]. Available: ettus.com/wp-content/
uploads/2018/12/Channelization_-_Article_.pdf

[44] Tina Zhu. (2023) MakerHawk USB 3.0 Tester. [Online]. Available:
https://www.makerhawk.com/products

[45] FieldComm Group, “WirelessHART: HART Without The Wires,” 2021.
[Online]. Available: https://www.fieldcommgroup.org/technologies/
wirelesshart

[46] S. Gvozdenovic, J. K. Becker, J. Mikulskis, and D. Starobinski. (2022)
IoT-Scan Traces. [Online]. Available: https://github.com/nislab/iot-scan

[47] J. K. Becker and D. Starobinski, “Optimizing Freshness in IoT Scans,”
in 8th IEEE World Forum on Internet of Things (IEEE WF-IoT) 2022,
Yokohama, Japan, November 2022.

[48] J. Bush. (2019) Radio scheduling in dynamic mul-
tiprotocol iot applications. Aug 29, 2023. [On-
line]. Available: https://www.electronicspecifier.com/industries/wireless/
radio-scheduling-in-dynamic-multiprotocol-iot-applications

[49] M. Jaakkola, A. Suomi, and J. Poyhonen, “Usage of multiple ssids
for doing fast wlan network discovery,” Jan. 4 2007, uS Patent App.
11/372,037.

[50] E. Faulkner, Z. Yun, S. Zhou, Z. J. Shi, S. Han, and G. B. Giannakis,
“An advanced gnu radio receiver of ieee 802.15. 4 oqpsk physical layer,”
IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9206–9218, 2021.

[51] R. Marsalek and M. Pospisil, “Evaluation of digital predistortion using
the usrp n200 software defined radio transceiver,” in 2014 NORCHIP.
IEEE, 2014, pp. 1–4.

lora-alliance.org/wp-content/uploads/2020/11/lorawan1.0.3.pdf
lora-alliance.org/wp-content/uploads/2020/11/lorawan1.0.3.pdf
https://www.eff.org/deeplinks/2021/06/understanding-amazon-sidewalk
lora-alliance.org/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf
lora-alliance.org/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf
ettus.com/wp-content/uploads/2018/12/Channelization_-_Article_.pdf
ettus.com/wp-content/uploads/2018/12/Channelization_-_Article_.pdf
https://www.makerhawk.com/products
https://www.fieldcommgroup.org/technologies/wirelesshart
https://www.fieldcommgroup.org/technologies/wirelesshart
https://github.com/nislab/iot-scan
https://www.electronicspecifier.com/industries/wireless/radio-scheduling-in-dynamic-multiprotocol-iot-applications
https://www.electronicspecifier.com/industries/wireless/radio-scheduling-in-dynamic-multiprotocol-iot-applications

	I Introduction
	II Related Work
	III Scanning Algorithms
	III-A Single-channel methods
	III-B Multi-channel methods

	IV Performance Metrics and Analysis
	IV-A Metrics
	IV-B Theoretical Model
	1 Statistical assumptions
	2 Analysis of order statistics

	V Protocol Device Enumeration
	V-A Zigbee
	V-B Bluetooth Low Energy (BLE)
	V-C LoRa
	V-D Z-Wave

	VI Experimental Evaluation
	VI-A Algorithm Implementation
	1 Flowgraph control
	2 Signal processing

	VI-B Experimental Setup
	VI-C Results
	1 Passive Zigbee and BLE Scans and Comparison with Theoretical Model
	2 Active Zigbee Scan
	3 Zigbee and BLE Multiprotocol Scan
	4 Z-Wave and LoRa Multiprotocol Scan
	5 Channel Dwell Time

	VII In-depth Zigbee Scanning Evaluation
	1 Setup
	2 Per-device discovery time
	3 Discovery time by address type
	4 IoT-Scan's Energy Consumption

	VIII Conclusion
	VIII-A Discussion and Future Work

	References

