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Abstract. The methods used in our two survey papers on real business cycles (King, Plosser and
Rebelo, 1988a, b) are detailed in this document. Our presentation of the basic neoclassical model of
growth and business cycles is broken into three parts. First, we describe the model and its steady state,
discussing: the structure of the environment including government policy rules; the nature of optimal
individual decisions and the dynamic competitive equilibrium; technical restrictions to insure steady
state growth; comparable restrictions on preferences and policy rules; stationary levels and ratios in
the steady state; and the nature of a transformed economy. Second, we detail methods for studying
near steady-state dynamics, considering: the linear approximation approach; the rational expectations
solution algorithm; the nature of alternative solutions; and the special case of the fixed labor model.
Third, we discuss the computation of simulations, moments and impulse responses.

The objective of this appendix is to provide a detailed analysis of a neoclassical economy that is
sufficiently flexible to permit: (a) exogenous steady state growth; (b) distorting tax rules of various
sorts; and (c) time varying government spending. Although we do not focus on all of these issues
in the present discussion, other investigations in progress will utilize this framework. The appendix
is divided into three main parts. Part A describes the artificial economy under study and analyses
its steady state, Part B develops methods to study approximate dynamics around the steady state,
and Part C derives a set of formulas for generating population moments. This technical appendix
is designed to serve two functions. First, it develops the theoretical material in Sections 2 and 3
of the main text in more depths. Second, it serves as a detailed guide to PC-MATLAB programs
for computing dynamic equilibria, written by King and Rebelo in the Spring of 1987. Notation in
programs and the technical appendix has been detailed as closely as feasible.

Key words: specifications, steady state, solutions, algorithm, key elements

1. Steady State Growth in the Basic Neoclassical Model
1.1. ENVIRONMENTAL AND POLICY SPECIFICATIONS

The economy is populated by many identical agents, of sufficient number that each
perceives his influence on aggregate quantities to be insignificant.
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88 ROBERT G. KING ET AL.

1.1.1. Preferences

Each agent has preferences

o0
U=) FuC. L) 0<p<l, (A1)
t=0
where the amount of consumption is C; and the amount of leisure is L,. The func-
tion u(C;, L,) is assumed to be strictly increasing, concave, twice continuously
differentiable and to satisfy Inada-type conditions that ensure that the optimal so-
lution for C, and L, is always (if feasible) interior. Later in the text we impose
further restrictions on 8 to guarantee that life-time utility U is finite.

1.1.2. Production Technology

For each agent, output at a point in time is the result of a constant returns to scale
production function,

Fi(Ky, Ny, (A2)

where K, is the predetermined capital stock and N, is the quantity of labor input.
We take the production function to be constant returns-to-scale because it admits
natural aggregation. By writing the production function as F;(K,, N;) we permit
general time variation, including the temporary ‘shocks’ to production opportu-
nities and permanent technological change that are discussed below. We assume
that F;(-) has standard neoclassical properties, i.e., it is concave, twice continu-
ously differentiable, satisfies the Inada conditions and implies that both factors of
production are essential.

1.1.3. Accumulation Technology

In this simple neoclassical economy there is only one commodity that can either
be consumed or invested, i.e., stored for use in production in the next period. The
evolution of capital is thus

Kipy=0=-8g)K; + I, (A3)

where [; is gross investment (i.e., the amount of current output stored to be used in
next period’s production) and & is the rate of depreciation.

1.1.4. Individual Resource Constraints

In each period, an individual agent faces two resource constraints: (i) his total
amount of time cannot exceed the endowment of unity and ii) his total uses of
goods (for consumption and investment) cannot exceed his disposable income,
which derives from output less his net transactions with the government. These
conditions are

Li+N =<1, (A4)
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C+L<Y'=(0-1)Y,+T, (A5)

where 7, is the tax rate on output and 7; is the level of transfer payments at date 7.
It is straightforward to extend the model to consider different tax rates on capital
and labor income.

1.1.5. Policy Rules

The government specifies a path for the per capita level of government purchases
(G,) and taxes output at a rate that varies according to a policy rule which links
this rate (z;) to the levels of exogenous variables — for example, the level of per
capita government purchases (G,) —and to the level of endogenous variables in the
economy. The general form of this rule is

Tt = Tt(At’ Qt’ Kt’ Mt) ’ (A6)

where 7, is twice continuously differentiable and we indicate per capita quanti-
ties by an underbar. The government follows a balanced budget policy with the
difference between the government expenditures and the output tax revenue being
financed by lump sum taxes or transfers (7).

TtX[ = Qt + 2; ’ (A7)

1.1.6. Per Capita Resource Constraints

The per capita resource constraints follow from the combination of private and
government constaints.

L, +N, <1, (A8)

C,+1,+G,<Y,, (A9)

1.2. OPTIMAL INDIVIDUAL DECISIONS AND THE COMPETITIVE EQUILIBRIUM

Since all agents are identical, in competitive equilibrium there will be no intertem-
poral trade, so we can focus on the decision problem for an individual agent facing
a sequence of resource constraints. The agent seeks to maximize (A1) subject to
the sequence of constraints implied by (A2) through (AS5), given sequences of tax
rates and transfers. The Lagrangian associated with the optimization problem is

L= FluC.1-N)]

=0 (A10)

o0
+ Y M=) F(K, N)+ T, + (1 = 85)K; — C; — Kyl
t=0
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90 ROBERT G. KING ET AL.

where K, is treated as given and A, is the multiplier attached to the ¢ pe-
riod resource constraint. (The single constraint is obtained by combinations of
(A2)~(A5)).

Using the notation D, f to denote the partial derivative of the function f with
respect to its nth argument,! the efficiency conditions (for an interior optimum) are
the following four equations,

B Diu(Ci, 1 — Ny) — A, =0, (A11)
—B'Du(C;, 1 — N;) + A, (1 — t,)DrF, (K, N)) =0, (A12)
Al = 5 ) D1 Frt (Ker, Ne) + (1 = 8x)]1 — A, =0, (A13)
(1 —w)F (K, N)+T,+ (1 -8g)K; — Ki11 —Cr =0, (Al4)
fort =0,1,2,..., 00 and the ‘transversality condition’, lim;_, o, A;K;+; = 0.2

The system of Equations (A11)—(A14) can be expressed either as a second-
order difference equation in the capital stock or as a system of two first-order
difference equations in the Lagrange multiplier and the capital stock. There is an
infinite number of paths consistent with Equations (A11)—(A14). However, only
one of these paths is consistent with the initial value for the capital stock (Kg) and
the ‘transversality condition’. Finding this unique path amounts to determining the
value of the two constants in the solution to the system of difference equations by
using the two boundary conditions of the problem (the knowledge that at # = O the
capital stock is K and the ‘transversality condition’).>

The preceding optimal decisions are valid for arbitrary specifications of tax
and spending sequences. In perfect foresight competitive equilibrium, given the
policy specifications (A6)—(AS8), tax and transfer sequences depend on individual
decisions, which in turn depend on tax rates. As in Romer (1986), equilibrium
sequences can be obtained by combining the individual’s efficiency conditions
with aggregate consistency conditions, which in this case are the constraints of the
government. Then, equilibrium sequences [{C,}72,, {N,};2q, {K,}ro, and {A;};2,]
satisfy the following four equations,

B'Diu(C,, 1 —N,) — A, =0, (A15)
:BtD2u(Q;ﬂ 1 _ﬂt) - At[l - Tt(Ars Qtﬂ Eta M[)]DZE(E[’ E;) = 0, (A16)

At-{-l{[l - Tt+1(At+1a Qt.Ha Kt.{-]s K{+1)]D1E+1(Kt+15 MH_])

Al7

+(1= 80} — A, =0, (A7)

R, N)+(A-86)K, - K,,,—-C, -G, =0, (A18)
forallz =0,1,2,..., 00 and the ‘transversality condition’, lim; . A, K, | = 0.4
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There is substantial generality in the specification of preferences and technol-
ogy described in this section. In the next two sections, we explore the restrictions
generated by the requirement that, in the absence of distorting taxes, the system
displays steady state growth. Steady state growth is defined to be a situation in
which C;, Y;, I;, K; and the wage rate grow at constant, but possibly differing
rates. We begin with restrictions on the form of technical progress and on the form
of the production function F.

1.3. TECHNOLOGICAL RESTRICTIONS TO ENSURE STEADY STATE GROWTH

As is familiar from Swan (1963) and Phelps (1966), there must be restrictions
on the form of technical progress if a steady state is to be feasible. (To discuss
the feasibility of steady state growth, we consider the economy without taxes or
government purchases). In particular, the form of technical progress — implicit in
the notation F;(K;, N;) — must be expressible in a labor augmenting form.

This may be (tediously) demonstrated as follows. Suppose that we write the
production function as Y; = AF(Xk,K;, Xn:N;), where Xk, represents capi-
tal augmenting technical progress and Xy, represents labor augmenting technical
progress. Let X g, and Xy, grow respectively at the rates yxx and yxy.’> The growth
rate of YV, yy, satisfies yy = [Viq/Vi] = [Xg 1 Kipt/ Xi K AF (L, Zi41)/
F(Q,Z,)], where Z; = Xn;N,/ Xk:K;.

There are two cases to be explored. In the first case, the ratio Z is constant
over time so that yy = yxxyk, from the preceding expression for yx since this
expression — with Z constants over time — links the growth rate of Y to that of
capital augmenting technical progress and that of capital. The resource constraint
(A9) implies that yx = [Y — C]/K + (1 — 8g). If Y > C, so that investment
is strictly positive, in order for yx to be constant, then, it must be the case that
Y/K and C/K are constant as well. The constancy of Y /K implies that yx = yy,
which in turn implies that yy = yxxyx = yk. Equivalently, yxx = 1. Thus,
the feasibility of steady state growth requires that there be no capital augmenting
technical progress.

The second case is that the ratio [F(Z;+1, 1)/ F(Z,, 1)] is constant irrespective
of the constancy of the ratio Z = Xy N/ X K. In that case, the production function
is Cobb-Douglas, so that it is always possible to write the technical progress as
labor augmenting. That is, ¥; = A(Xg,K;)'™*(Xy,N,)* can always be written as
Y, = AK} X%, where Xy, = XU "Xy,

Thus, technical change must be expressible in labor augmenting form. This
implies that Hicks neutral technological progress, which corresponds to the case
in which Xy; = Xg;,, is only consistent with the feasibility of steady state growth
when the production technology is Cobb-Douglas.

The observed long-run constancy of factor shares is a frequently employed
rationale for the restriction to the Cobb-Douglas form (see, e.g., Prescott, 1986).
The preceding analysis implies, however, that with labor augmenting technolog-
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92 ROBERT G. KING ET AL.

ical change, any constant returns-to-scale production function is compatible with
constant long-run factor shares, i.e., shares that are invariant to the scale of X.°
However, in order to facilitate comparison of our analysis with other studies, we
utilize the Cobb-Douglas form in our analysis in the main text. In view of the
foregoing, though, we write that production function as

Y, = Ar(Kt)l_a(NtXt)aa (A19)

where X, is a smoothly varying ‘trend’ growth in labor augmenting technical
change and A, is a temporary displacement to total factor productivity.

1.3.1. Implications for Feasible Steady States

In order to determine what are the feasible steady state growth rates we start by ex-
amining the model’s production and accumulation structures, under the assumption
that A, is constant for all time, i.e., A; = A. These implications are as follows:

(i) Since the amount of time devoted to work (N) has to be between zero and 1,
the only feasible constant growth rate for N is zero, that is, yy = 1.

(ii) From the commodity resource constraint, C + I = Y, it follows that if
I > O the steady state growth rates of consumption and investment must be equal
to the growth rate of output and to each other, i.e., yc = y; = yy.” 8

(iii) From the accumulation equation (K;.; = (1 — éx)K; + I), it follows that
the growth rate of gross investment and capital must be equal in the steady state,
YK = VI

(iv) Any constant returns to scale production function — along with fixity of
N - implies that yy = yx = yx in a steady state, since ¥; = A, F(K;, X;) =
XA F(K,/X,,1). Thus constancy of K/X is necessary for a steady state, unless
the production function is Cobb-Douglas.® Thus, K and X grow at the same rate.
Further, with K/ X constant, Y and X grow at a common rate.

Collecting these results, we can conclude that the growth rates of all commodity
quantity variables are equal to the rate of growth of labor augmenting technical
change.

YW=Yc=VYK=VI=Vx-. (A20)

Thus, this model has a unique steady state growth rate, although no restrictions
have so far been placed on the levels of any quantity variable. Furthermore, the
technology places strong restrictions on the relationship between the steady state
growth rates of the different variables.

1.3.2. Implications for Steady State Marginal Products

First, the marginal product of capital, ADF(K,;, NX;), is constant over time,
since yx = yx, and constant returns-to-scale impliesthat this is homogeneous
of degree zero in X, so that it may be written AD,F(K,/X,, N ).10 Second, the
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marginal product of a unit of time, X;AD,F (K, NX,), grows at rate yy, since
AD,F(K;, NX,) is also homogeneous of degree zero in X .“

1.3.3. Implications for Local Elasticities

The constant returns to scale structure also has implications for elasticities of mar-
ginal products near the steady state. To avoid considering scale directly, define
k; = K;/X, and y; = Y,/ X,. Then, the production function may be written as
y; = A;F(k;, N;). Let the shares of capital and labor be sx and sy, which are
invariant to scale as discussed above. Under constant returns to scale, of course,
skx + sy = 1. Let the elasticity of the marginal product of capital, A, D, F (k;, N;)
with respect to capital be denoted &; and that with respect to labor &y. Simi-
larly, let Eyn and &y, denote elasticities of the marginal product of labor. It is
a standard result of production theory!'? that these elasticities arguments can be
simply described, using the local elasticity of substitution of labor for capital,
Gew = —dllog(k/N)1/d[log(Dy F (ki Np)/ Dy F (ki N).

bk = —&xv = —SN/ kN » (A21a)
Eny = —énik=—(1 —sy)/Gn - (A21b)
For the Cobb-Douglas case, {yy = 1 and sy = «, so that & = —&n = —« and

Eny = =i = —(1 —a).

1.4. RESTRICTIONS ON PREFERENCES AND POLICY RULES

The next step involves checking whether this steady state path verifies the house-
hold’s equilibrium conditions (A11)—(A14). Since we are interested in growing
economies, we will focus on the case in which yx > 1. From above, we know
that a technologically feasible steady state satisfies (A20), which specifies that
consumption, investment, output, and capital all grow at the rate of labor aug-
menting technical progress. If the household equilibrium conditions turn out to be
incompatible with the technologically feasible steady state growth rate, the steady
state is of no interest to us, since it will never be the outcome of this economy’s
competitive equilibrium. Consequently, we restrict preferences so that the feasible
steady state is, in fact, an optimal (and competitive equilibrium) outcome.

The efficiency condition (A13) or (A17), which are equivalent without taxes,
specifies that the shadow price of capital will grow at a constant rate in the steady
state, which we define to be y,. This growth rate is a function of the ratio k;, =
K,/ X,. Thatis, yA[AD F(k, N)+ (1 -8k )] = 1, where the absence of time dating
of k and N indicates these are constant over time, which will hold in a steady state
because X and K grow at the same rates and N is constant.
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94 ROBERT G. KING ET AL.

(i) Invariant Intertemporal Substitution in Consumption

The optimality of a steady state restricts the utility function so that there is an
intertemporal elasticity of substitution in consumption that is invariant to the scale
of consumption.

The requirement for an efficient intertemporal plan (All) implies that the
growth rate of marginal utility is constant over time,

Dyu(Cy, L)
Dyu(Cry1, L)
But, from the commodity resource constraint, a feasible steady state consumption
program has the form C; = Xo(yx)’ [AF (k, N)+ (1 -8 —yx)k]. Thus, if marginal
utility is to grow at a constant rate for all potential values of Xy, it must be the case
that

= B/ya = BIAD F(k, N) + (1 — )] (A22)

|:D11”(Ct+1a L)Ct+l] dXo  Duu(Ci, L)C; dXq —0 (A23)
Du(Ciy1, L) Xo Dwu(C,, L) X '

which implies that % has to be constant over time. Define o, as the

(absolute value) elasticity of marginal utility with respect to consumption. The
preceding condition implies that o, is invariant to the scale of consumption. In-
tegrating both sides of C Dy u(C, L)/Du(C, L) = —o, gives us the candidate
momentary utility function forms ##(C, L) = C'~%wv(L) + v,(L) for o, not equal
to unity and u#(C, L) = log(C)v, (L) 4+ vo(L), where v; (L) are arbitrary functions
of L. Strict concavity of the momenary utility function requires that o, > 0,
which we impose.

Invariance of Efficient Steady State Labor

Within an efficient plan, the conditions (A15) and (A16) specify that the marginal
rate of substitution between consumption and leisure equals the marginal rate of
transformation. Taking logarithms, it follows that

log(D1u(Cy, Ly)) + log(X;AD,F(K;, NX;)) = log(Dyu(Cy, Ly)) . (A24)

From the analysis above, we know that a steady state implies three conditions,
which are important in the evolution of the expressions in the equation above.
First, the marginal product of effective labor, AD, F(K,, NX;) = AD,F(k;, N),
is constant in the steady state. Second, technology (X;) grows at rate yx. Third,
the marginal utility of consumption D u(C,, L,) grows at rate (y¢)~ %, where o, is
the elasticity defined above and where y¢c = yx is the growth rate of consumption.
Denote the elasticity of the marginal utility of leisure with respect to consumption
as &.. In a steady state, it follows (from the differentiation) that this is constant
over time and satisfies 1 — o, = &.. This additional requirement that 1 — &,. = o,
yields further restrictions on admissible forms, which imply that v, (L) is constant
in the non-log case and v; (L) is constant in the log case.!”> Since these cosntants
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do not affect preference orderings, we set them equal to unity in writing the utility
function as the following.

1
u(C,L)= WCI_"CU(L) if0<o., <loro, > 1, (A25a)

u(C,L) =log(C)+v(L) ifo,=1. (A25b)

To insure that consumption and leisure are goods and that utility is concave, we
need to impose some additional structure. When momentary utility is additively
separable (A25b), all that we require is that v(L) is increasing and concave. When
momentary utility is multiplicatively separable, then we require that (i) v(c) is
increasing and concave if o, < 1 and decreasing and convex if o, > 1. Further, we
require that —o.[LD*v(L)/Dv(L)] > (1 — o.)[LDv(L)/v(L)] to assure overall
concavity of u(-).

There is economic content to these preference restrictions. Time is bounded, so
that in a steady state it cannot grow. As discussed in the main text, for balanced
growth to be optimal with labor supply chosen by agents, utility must be such
that there are exactly offsetting income and substitution effects of the changes in
real wages associated with sustained growth in productivity. In a static framework
with no non-wage income, this invariance arises whenever utility is any concave
transformation of u(C, L) = C'~%v(L)/(1—0,), including — if utility is additively
separable — log(C) + v(L).!® The preference restrictions are the same on a steady
state path in our model despite the presence of capital income because, in the
steady state, variations in capital income are proportional to movements in labor
productivity or to wage income.!”

(iii) Conditions on Government to Guarantee Steady State

Our objective is to analyze competitive equilibria that are suboptimal due to taxes
and government spending, but we wish to maintain steady state growth in the face
of these interventions. For this reason, we specify that there is a constant share
of government purchases in national product, s, = (G/Y), and that there is a
‘normal level’ of the tax rate, t, that is invariant to the scale of the economy. In
the analysis below, it is frequently convenient to consider the ‘wedge’ function,
defined as ©2; = (1 — 1;), and we let 2 denote the steady state wedge.

1.5. LEVELS AND RATIOS IN STEADY STATE

We can use the efficiency conditions together with the requirement that all variables
grow at a constant rate to pin down the steady state value of several variables and
ratios.

Ratios: From the requirement that log(ya/f) = —o.log(yc) = —o.log(yy)
the level of the gross marginal product of capital is determined according to
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[ AD{F(k,N) + (1 — 8g)1B* = yx, where B* = B(yx)' ™ and k = K/X.
Since sy = kADF(k, N)/AF (k, N), the output capital ratio is'8

Y
ras {lyx = B*(1 = 80)1/[B"sk 1} . (A206)
The fact that yy > 1 and 8* < 1 guarantee that Y /K is always positive.

Shares of output: From the per-capita resource constraint and the preceding
conditions, it follows that the share of output devoted to gross investment (s;) is

= 1-6 K
si = lyx— (1 — K)]?

= {lyx — (L =8)1B*(sx)Q/lyx — B*(1 =81} -

Further, given that the share of government (s, ) is treated as exogenous, it follows
that the share of consumption (s.) is determined by the preceding as s, = 1 —s; —s,.

(A27)

Steady State Level of Labor: Given a particular specificatio of preferences, it is
possible to solve for the steady state level of labor using the equilibrium conditions
(A15) and (A16), in combination with the preceding expressions. In a steady state,
these expressions imply that Dju(C;, 1 — N)QX,AD,F(K,;, NX;) = Du(C;, 1 —
N). For the preferences specifications with o, # 1, we could divide both sides
of the expression by Y,(I_UC), so that it can be written Dyju(sc, 1 — N)Q3} =
Dzu(sc,l — N)orv(l = N)QF = % —Dv(l — N). With 0. = 1, it follows
that =Q% = DV (1 — N). Since Q and sN are parameters and s, has been deter-
mmed earher the appropriate one of these conditions determines the level of N.
For most specifications of utility, we must solve this expression numerically, but
there are a few exceptions. For example, if u(C, L) = log(C) + 6, log(L) and the
production function is Cobb-Douglas, then it is easy to show that this condition
implies N = («¢€2)/(«¢2 + s.6;).

But, practically, we do not have information on preference parameters (such
as 6;) that determine the steady state level of hours. Fortunately, we do not need
to determine these parameters explicitly — in order to analyze near steady state
dynamics all we need is to specify the number of hours worked per period in the
steady state (see below). In any case, a value of steady state N combined with the
preceding conditions on ratios yields the steady state paths of all of the system’s
variables.

1.6. THE TRANSFORMED ECONOMY

Having restricted technology, preferences and government behavior so that a steady
state path exists and is consistent with the private agent’s efficiency conditions, our
objective is now to characterize the local dynamics around the steady state path.
But before turning to the study of the dynamics of our economy it is convenient to
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transform its variables, expressing preferences and technology in terms of variables
that will be constant in the steady state. Since all the original variables (except N,)
grow at the same rate as X, in the steady state, this can be accomplished by de-
flating these variables by X; : c = C/X, k= K/ X, g = G/ X, etc. Our economy
expressed in terms of the transformed variables is identical to an economy in which
technological progress is absent and growth rates are zero in the steady state with
two exceptions.

First, the capital accumulation equation is altered as follows. In the level econ-
omy, K;1 = (1 =8g)K;+ I, = (1 —6x)K; + A F(K;, N;X;) — C; so that in the
transformed economy

vrkiv1r = (Kip1/ XD (Xe1/ X0)

. (A28)
= (I =éx)k; +i; = (1 = 8g)k; + AsF ks, Ni) — ¢t

Second, the process of transforming consumption (by dividing by X;) in the pref-
erence specification potentially alters the effective rate of time preference. That
is,

U= BuC.L)l=)_ BlulcX, Ll

t=0 t=0
(X ") (B e “v(L)]  foro, # 1
Ztoio(ﬁ*)t[l()g(ct) + v(L;) +log(X;)] foro.=1

where we have defined 8* = B(yx)!~°. In order to ensure that lifetime utility (U/)
is finite, we assume that 8* < 1. Thus, we can express preferences in terms of
u(c;, L;) and the discount factor 8* for all values of o, since the terms X (1)—% and
> 2o B'llog(X,)] can be ignored since they do not affect the preference orderings
on the transformed variables. That is, we may set Xy = 1 or Ztoio B'llog(X)] =0
in the preceding expressions. Consider maximizing transformed utility subject to
the private resource constraint analogous to (A14) and then requiring that (A28)
hold for the economy as a whole. The resulting equilibrium conditions analogous
to (A15)—(A18) are most useful if the transformation to current valued multipliers
is employed, i.e.,

Dyu(c;, 1 — Ny) — A =0, (A29)
Dyu(c;y 1 — Ny) — A Q2 ADyF(kyy N) =0, (A30)
B* X141 AD F (kyy1y Neyr) + (1= 8x)] — Lyx =0, (A31)
AF (kiy No) 4+ (1 = 8x)ky — yxkey1 —cr — g = 0. (A32)
Forallt = 0,1, ... and where A, = ]\, / (B)".1° The ‘transversality condition’ can

now be expressed as lim,_, o (8*)' A:k;11 = 0.
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2. Near Steady State Dynamics

The objective of this section is to analyze the local dynamics around the steady
state, when the economy faces alternative deterministic sequences of ‘shocks’.
In the present setting, the shocks are taken to be proportionate variations in gov-
ernment spending (G,) and total factor productivity (A,) but it is easy enough to
incorporate alternative displacements using the methods outlined in this section.

Our method is to analyze near steady state dynamics by considering the
economy expressed in terms of transformed variables.

2.1. LINEAR APPROXIMATION

We now turn to analysis of approximate economies. As discussed in the body of
the paper, our strategy is to approximate conditions (A29)—(A32) linearly around a
steady state and then to solve the resulting linear dynamic system. Our presentation
of this approach is designed to facilitate understanding of the general method,
which is presented in more detail in King (1987). Since the neoclassical model
has only a single state (capital) variable, there are presentations that are more direct
than the one that we undertake here. However, our presentation is designed to make
clear that the methods we employ can be readily extended to analysis of economies
with multiple state variables (see the examples in King, 1987).

Approximation of (A29)-(A32) near the stationary levels (k, N, c, g, and i)
implied by A; = A yields expressions for percentage deviations from steady state
levels, which we denote by a circumflex (). The first two expressions imply that

Eccls — EIN /(1 — N)YN; = &, (A33)

Evel — E{N/(L = NN, = {hs + A, + Eniks + Enn Ny}

A . . R (A34)
+{waA; + wrks + oy N; + wg 8} .

In these expressions, there are a nmber of elasticities, all of which are evaluated at
the stationary point (k, N, c, y, etc.).

First, the £’s on the left-hand side of (A33) and (A34) are elasticities of mar-
ginal utility. Generally, these may be shown to be &, = c¢Dyu(c, L)/Dyu(c, L);
§c = LDynu(c,L)/Dyu(c,L); & = cDyulc, L)/Dyu(c,L); and &, =
L Dyu(c, L)/ Dyu(c, L). When the utility function is additively separable, (A25b),
it is the case that &, = —1; &, = 0; &, = 0; and &, = LD*v(L)/Dv(L). When
the utility function is multiplicatively separable, (A25a), it follows that £,, = —o;
£4 = LDv(L)/v(L); & = 1 — o,; and & = LD?v(L)/Dv(L). There is an
additional restriction which must be satisfied and is discussed in Supplementary
Note #2.

Second, the £’s on the right-hand side of (A34) are elasticities of the marginal
product labor, as given by (A21b); in the Cobb-Douglas case, these are &y, =
(1 — @) and £Eyy = « — 1. Third, the w’s are elasticities of the wedge function,
Q; = (1 — t,), with respect to its arguments.
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Differentiation of the intertemporal efficiency (A31) condition implies that
st + naAvir + mikopr + 0y Nepr + 06841} = As (A35)

where 74 is the elasticity of the net after-tax marginal product of capital,
[2(k, N, A, g)AD, F(k, N) — (1 — 8g)], with respect to A evaluated at the steady
state, etc. The elasticities may be showntobe ns = [yx — (1 —=8x)llwa+ 11/ yx;
e = lyx —B*(1=8x) llowx+éxx1/vxs nv = lyx —B*(1=68k)llwn +Ekn]/vx and
ng = lyx — B*(1 — éx)llwg]/vx, where again the ’s are the elasticities of the tax
wedge. (Recall that under the Cobb-Douglas structure £gx = —« and gy = ).
Finally, differentiation of the resource constraint implies

A

Yy = {At +SNNt +SK]€t}
= Scét + Sgé?t + Si¢kt+l —s5i(¢ — Dk,

where sk, sy, s¢, s, and s; are shares discussed earlier and ¢ = yx/[yx — (1 —
8k)] > 1 given that yx > 1. The elasticities of production with respect to inputs
(sy and sg) take on simple forms under the Cobb-Douglas production structure,
sy =« and sg = (1 — ).

The solution algorithm will be discussed in more detail in materil that follows
(Section B.2 below), but it is desirable to provide an overview before preceding
to some further details. (A33)-(A36) can be combined to eliminate consumption,
effort, and output flows, yielding a difference equation system in capital stock k)
and shadow price (A). This difference system can then be solved, subject to the
transversality condition, to produce a unique solution sequence for the capital stock
(l%) and shadow price ), given specification of exogenous sequencesfor (A) and
(G).

(A36)

Solutions for Flows and Relative Prices: With the solution sequence for A and k
in hand, (A33) and (A34) make it possible to compute solution sequences for the
flow variables N, and ¢,. Further, given these solutions and the following expres-
sions, expressions for other variables of interest can be constructed. In particular,
we can develop approximate solutions for output, labor productivity (real wages)
and investment.

% = A, + sy N, + sgh; , (A37)

5= Ny = A, + (L —sy)N, + sxhy (A38)

A 1., Se So A

Iy = — Y — _Cct - _gé’t . (A39)
Si S Si
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2.2. SOLUTION ALGORITHM

In discussion of the solution algorithm, we utilize the language of discrete time
optimal control, since methods are based on the extensive applied mathematics
literature which deals with linear optimal control problems. Expressions (A33) and
(A34) relate the flow variables (‘controls’) ¢; and Nt to the capital stock and shadow
price (controlled state and co-state variables), as well as to the exogenous vari-
ables, technology shocks and government purchases (uncontrolled states). These
expressions may be written

¢ k A
M| 2 =My | ) |+Mm.| 7, (A40)
N, A 8t

where the M., M., and M., are 2 x 2 matrices. The mnemonic in the matrix
notation is that M, relates controls to controls, M., relates controls to states, and
M., relates controls to exogenous variables. )

The expressions (A35) and (A36) relate variations in controlled state (k) and co-
state (1) to changes in controls and exogenous state variables. These expressions
may be written as

i ¢ i
MuB) | T =M | T My | T (A41)
Ayl Nis &r+1

where M, (B), M,.(b), and M,,(B) are matrix polynomials in the backshift opera-
tor B at most of power 1. The notation is continued from above so that M, relates
states to controls, etc. The components of any first order matrix polynomial M (B)
are expressed as My (the constant term) and M, (the term that multiplies B).

Since M., is invertible (as a consequence of strict concavity of momentary
utility), the combination of these expressions implies:?

~

1 ki1 - Arti
[M”(B) - MSC(B)MCC Mcs] ~ = [Mse(B) + Msc(B)Mcc Mce] N
141 81+1
. R (A42)
k A
or M:B)| T =My T
Ar+1 8r+1
where M (B) and Mj;,(B) are first-order matrix polynomials in B. To convert this
system to a normal difference equation form, premultiply by the inverse of M,
yielding the fundamental dynamic system of the neoclassical model.
k k A
At+1 — —[M:SO]_IM:SI A[ + [M:SO]—IM;;O At"rl
A1 A 8i+1
(A43)

A
-1 t

+[ :50] :el |: A :| *
&t
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Define the matrices W = —[M}17'M}, R = [M}]'M;, and Q =
[M* 17'M* . In the present application, these are all 2 x 2 matrices, since there

550 seq
are two elements of the state-costate vector and two exogenous variables, but the

formal analysis below will be conducted as though there were an arbitrary number
of elements of the state-costate vector (2n;) and #, exogenous variables, in which
case the W matrix would be (2r,) x (2rn,) and the R and Q matrices are (2rn) X (12,).
The system dynamics are governed by the characteristic roots and characteristic
vectors of the W matrix. Let P be the matrix of eigenvectors and let x be a diagonal
matrix with the roots on the diagonal, ordered in ascending absolute value. Then,
PuP~! = W and the solution to the fundamental difference equation at date ¢ is
given by

k k d A,_
At —p ,LLtP_l AO + Z P ,uhP_lR At h+1
A Ao h=0 8i—h+1
d A
+> Pu'PQ { e } .

h=0 8t—h

(A44)

For undistorted economies, the characteristic roots of the matrix W satisfy the
restrictions that p; < (82 < 1 < (B*)~2 < u, (see below). Further, for
economies that are not too different from the undistorted one, it will be the case that
the roots p; and p, are such that one is unstable and one is stable, a requirement
which we impose in our simulations by means of constraints on the tax function.?!
In this case, there will be a single choice of the initial shadow price ()ALO) which
makes the solution for {):,}fio and {k;};2,, consistent withthe transversality condi-
tion. This ‘saddle point’ instability characteristic is familiar from the continuous
time growth model of Cass (1965) and Koopmans (1965), in which the dynamics
are in differential equation form.

To determine this initial condition on the shadow price, ():0), we follow
Vaughan’s (1970) line of argument, which has been applied to linear rational ex-
pectations models by Blanchard and Kahn (1980). We begin by partitioning the
matrices P, u, P~', R and Q as follows:

P:[Pu Plz] P_1:|:p>1kl PTz]
P21 P22 Py Py

-5 2]
0 wr |’
R:[Rke]’ Q:[le]’
Rke Q)»e
where — in this application — all of the elements of P, P~! and p are scalars and

the elements of R and Q are (1 x 2) row vectors. More generally, the submatrixes
of P, P~ and i are n, x n; matrices and the submatrices of R and Q are n; X ;.
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Since the characteristic vectors in P are only defined up to a linear transformation
we will latter normalize P;; = 1 and Py, = 1 (this is different from the standard
normalization P2 + P} = 1).

This partitioning makes particularly apparent the saddlepoint instability of the
neoclassical model, for we may write

p -1 — purtipl + porhpy purtph + porlpi,
puntipl + porhpy purtph + porlp,

As h becomes large, the terms in this expression are dominated by ug which is
growing at a rate greater than f.

Vaughan’s approach involves multiplying the state-costate vector by ~P‘l, thus
defining a new vector of state and co-state variables, which are denoted k; and )NL,.

IE’ =p! IE’ )
8 A

Multiplying both sides of the fundamental dynamic equation by P~! leads to

]Et+1 _ p-l k41
Art1 Art1
-1 ]gf -1ps -15

= P~'W % + P 'Re; 1+ P77 Qe (A45)

t

];f -1ps -1n5
= K i +P Ret+1+ P Qeta
t

where the second equality follows from P~'W = P~'P uP~! = uP~! The
system (A45) is comprised of two decoupled difference equations (or, with mul-

tiple state variables, vectors of difference equations). The transformed capital
component of this system is given by

];t+1 = Ml];t + [PTl Rye + PTzRAe]étH + [PTl Qke + PTz le]ét . (A46)

Thus, given an initial value of IEO (see below), this is a stable difference equa-
tion, since the elements of are less than 1 in absolute value and, hence, the
specification of the initial value kg fully determines the subsystem solution.

By contrast, the analogous decoupled difference equation for the transformed
shadow price is unstable in the backward direction since the elements of u, exceed
1 in absolute value. For this reason, as Vaughan points out, one needs to impose a
terminal rather than an initial value boundary condition of the transformed shadow
price. To do this, it is easiest to pre-multiply the subsystem by w5 I so it may be
written as

it = P«z_l):tﬂ - I«LZ_I[Pﬁlee + p;QR)»e]ét-i-l

—1r_ % * A (A47)
— My [P21 Qe + P QOjele: .
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Solving this equation forward, using the terminal condition that i, grows at rate
less than w5 ! (implied by the transversality condition) yields the solution:

o0
o= - Z F‘z_j_l[Pﬁlee + P Rielérr
=0
(A48)
oo .
+ 3 1T 8 Qre + i Quelér
j=0

To return to our original specification for the state and co-state variables, we utilize
the inverse transformation

This transformation is applied to the previously determined solutions for the
transformed state and co-state variables, which may be written in matrix form as:

B

+ |: PTlee + pTsze ] ét-i—l + |: PTl Qke + PTsze :| ét (A49)

0 0
0
+ [ J ] Set1s
where f; = —(X %01y [P Ree + PHRderijn + Yooy’ (95 Cre +
P53, Qrelér+j). Thus it follows that the solutions for the original variables take the

forms

A4l 0 0 As

* Rio + p* R A
+P|:(p11 keoplz M)j|et+1

+P[(plleegple}‘e):|21+P[(I)i|ft+1- (A50)

ki1 pupipyy pupapiy || ke + P11(P}1Rke + P}y Rye) s
~ = A t+1
Art1 paipapyy papapyy || A P21(P}1Rke + P}y Rxe)

+ P11(PT; Qke + P}, Oie) - P12 o
p21(P} ke + P1, Qse) p2
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In contrast to the earlier general solution, this system is now stable in the backward
direction.

Initial Conditions: The relationship between the solutions is given, compactly,
by

k= pike + piohe. (A51a)

A= phke + Pk (A51Db)
The second of these conditions implies that

he = PRI 0 — P37 phk (A52)

which implies an initial condition for the shadow price, given the initial capital
stock ko and the initial condition on the transformed shadow price, which is given
by the preceding analysis (A48). The combination of (A51a) and (AS52) implies
that

iét = phk+ PTz)ALt = pik + PT2[[P;2]_1)~% - [Pﬁz]_lpélkr] (A53)

= [P}y — PLlpnl™ Phlk + Phlpnl ™ A,
which indicates that specification of the initial capital stock and the transformed
shadow price yield an initial condition on the transformed capital stock.

2.3. ALTERNATIVE SOLUTIONS

There are two alternative solutions that will prove useful in considering some
alternative experiments with this class of models.

First, if one is interested in evaluating the effects of a particular sequence of
exogenous variables, {¢;}7°,, then the computationally advantageous solution is
to compute 5\0 and then to use the general solution ({%45) above, which can be
computed recursively, to supply subsequent values of k£ and A. This is the natural
procedure for certain hypothetical policy experiments, such as investigating the
implications of a temporary rise in military spending for a war of specified duration
(Wynne, 1987).

Second, working under a certainty equivalence assumption, one can study the
stochastic processes generated by the model economy using a linear, Markov
structure for the exogenous forcing variables. Then, an alternative approach is the
natural one.

In this approach, the sequences {é;, 1520 in the preceding solutions are re-
placed by E{é; j}?ozollt, where I, contains the history of ¢. Then, the discounted

sums present in A, can be collapsed to specified linear functions of I, using the
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Hansen-Sargent (1930, 1981) formulas for forecasting of discounted sums. De-
note this solution as A(/;). Then, the combination of the capital component of the
fundamental difference equation

kot = [P phy + pmapilk + [pum plh + pomapili )

+ RkeE[ét+l]|It + leét s
and the preceding relation between transformed and untransformed shadow prices,
b = P53~ Re = [P ke (A54b)

yields the following equilibrium law of motion for the capital stock.

(A54a)

kvt = [pnpapy Tk + [pumiply, + papapillph1 7 YALL]

. . (AS5)
+ RkeE[et+l]|It + leet s

where we use the formula [py1]1™' = p}, — ph,[p%17"' p},, which is obtained from
the standard formula for inversion of a partitioned matrix.

Computation of *(I)): The transformed shadow price equation (A49) can be
expressed in the form:

~ 1= ~ A
At = My Aip1 + 2141 + 206,

where A, is an ns x 1 vector, u, is an ns X ns matrix, €, is an ne x 1 vector,
and z, z; are ns X ne matrices. Under the certainty equivalence assumption, this
difference equation is assumed to hold in expectation form,

he =13 Ehpt + 21Elrn + 20Eré; . (A56)

For scalar versions of this type of expression, Hansen and Sargent (1980, 1981)
have provided formulas, under the assumption that the exogenous variables are
governed by ARMA processes. The forecasting formulas to be employed will uti-
lize the fact that 1, is a diagonal matrix, so that the Hansen-Sargent formulas can
be employed on an appropriate ‘line-by-line’ basis.

First, partition zo and z; into ns row vectors, denoted zo; and z3;,1 =1, ..., ns.
Then, a representative equation can be written as
> —1 > N ~
Air = Mo, Eihirq1 + 21iEre i + 20i€; (AST)

This can be solved forward in the standard manner and Hansen-Sargent formulas
applied. To take the concrete (and easy) example that we utilize throughout our
analysis, suppose that the vector of exogenous variables is an AR(1),

é = pé_ + &, (A58)
where p is an ne x ne matrix. Then, it follows that zy; E;€;.1 +2zoié; = [21:0+ Zoi1é:
and that

Lir = [z1ip + 2011 — p3' 0178, . (A59)
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Figure 1.

Application of this result to each of the ns equations yields the desired forecasting
formula.

In combination with the law of motion for the exogenous variables, these
expressions form a linear system comprising the state (k), co-state (A) and the
exogenous variables. Thus, multivariate linear system methods can be used for
computation of (i) impulse responses; (ii) population moments; and (iii) stochastic
simulations of the form reported in the text. The flow chart presented in Figure 1
summarizes the operations required to obtain these three types of output.

That is, in the specific case under study with a single capital stock and a first
order autoregressive processes for the forcing variables, there will be a linear sys-
tem that expresses the optimal evolution of the state variable, k, which is under the
control of agents, and the exogenous state variables A and g.

kiy1 M1 TTka Tkg k; 0
St = | A [ =] 0 paa pag A |+ €art |, (A60)
8141 0 pea Pgg & €g.14+1

where €4 and €, are shocks to the system that are serially uncorrelated but are
potentially contemporaneously correlated. The coefficients p44, pag, Pga, and pge
govern the model’s exogenous dynamics; under the maintained assumption that the
shocks to the system are temporary in form, we require that the exogenous process
for (A and @) is stationary. The coefficients 74 and 7y, are given by combining
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(A56) and (A60) above, involving both forecasting and technological parameters.
For convenience, we write this solution in the vector autoregressive form as s; | =
M s; + €.

The other variables of the system, (the shadow price, consumption, effort, in-
vestment, output, productivity, etc.) can all be written as linear functions of s,
using (i) the preceding relation, ):t = p5 1)NL(I,f) - D5 ! pé‘llgt; (ii) the preceding
expressions for optimal controls, (A40), and the relations governing flows and
relative prices, (A37)—(A39). Letting the vector of variables of interest be described

as z;, these linear restrictions can be expressed as z; = I1s;.

2.4, DETAILED EXAMPLE: THE STANDARD NEOCLASSICAL MODEL

As a concrete application of the forgoing, consider the basic neoclassical model
with fixed labor and public expenditures financed by lump sum taxes. Then, it
follows that we eliminate (A34) and treat IQ, = 0 in all other equations above. The
reduction to a single control makes it relatively easy to carry out the algebra that
corresponds to our general solution strategy. The equation (A40) relating the single
control to the state, co-state and exogenous variables, written in the general form

18
R k A
Mccct = Mcs At + Mce At 5
Ag 8t

where M., = —o,, M., = [0 1] and M, = [0 O]. The equation relating states to
controls and exogenous variables is

k A A
M, (B) [ A } = M,.(B)ér1 + Moo (B) [ R } ,

)“t-‘rl gt-‘rl

where M ;(B) = [q)b?; (1)] + [2 _01 ] B withg = —[si(¢ — 1) + (1 — @)].

M,.(B) = [g]+[_(lc]3 and M,.(B) = [_(’)“ 8]+ [(1) _‘;]B. The

fundamental dynamic equation is

M;(B)|:]ft+l :| =M;(B)|:I?t+l:| ’

t+1

where M} (B) = [M(B) — M.(B)[M..]"'M,,] has a particularly simple form
because M., = [0 O].

* | ome 1 0 -1
M”(B)‘[m 0]+[q —sc/ac]B'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108 ROBERT G. KING ET AL.
Further, M., = [0 O] implies that
M,(B) = [M.(B) + M,.(BYM' M..] = M.(B).

The state-costate transition matrix is

W=—[M;;0]-'M;;I=—<s,~q>>-1[ ¢ efod) ]

—eq (sc/0)Nk — siP

The other expressions in the fundamental difference system are as follows.
_ 0 0
— 1 —
R =M1 "M, = [ A 0] .

Thus, the partitioning of this matrix as outlined above involves R;, = [0 0] and
R;. = [—1n40]. Similarly,

-1 S s
Q =M 17 Mg, = —(s:¢) [ ]
Nk —Sghk
can be partitioned into Qr, = [(s5:¢) ™! — s.(s5;¢)7'] and Qj. = [—1i(s:¢)!
Sgnk(si¢)_l]-

The Decomposition W = P uP~': The first step involves computing the char-
acteristic roots associated with the system of difference equations. These are the
solutions to |W — ZI| = 0. Since in this case W is a 2 x 2 matrix, it is easy to
prove that the two characteristic roots, denoted by p;, are given by:

K1+ H2 = wip + waa,

M1z = Wi W2 — WipW2y ,
where w;; denotes the (i, j) element of W. That implies that:

1 Scllk
w1+ p2=—(q +8cne/oc = ¢si)[¢si = - — —— + 1,
B ocSid

_ _@=-Dsit(l-0o) 1
Hip2 = —q/$si = Y =

The characteristic vectors, x;, are the solutions to (W — w; I)x; = 0. To simplify
the computations we normalize x;; to be equal to one, instead of using the tradi-
tional normalization x?; + x2, = 1. The characteristic vectors are then of the form
[1 (; — wy1)/wi2]. Using the fact that wy; = g, it follows that the matrix of
characteristic vectors is given by:

[(1-dx)+ (1 —e)Y/K]=1/B"

1 1

P=1 pm—p) pal—pm)
wiz Wiz
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and

po(l — pr)
Wwi2

—pr (1 — p2)
W2

“t=qpPp!
1

with |P| = £2-£L “ L. Using Equation (A49) and the fact that M =L “2 we can
write the solutlon for A, as:
> _ Py

1
Ay = ZW {UAAtH +

1—1«0214 Se (1—M2)A}
t - &t .
dsiwyy ¢si  win

Using (A55a) we can write

. A Sg
kv = pike + (1 Py + 2 PHIPHTT A — me— + =3 -

¢si bsi
Substituting A, and rearranging terms:
hv1 = prks + ! ! ([SC na — 1+B] A1+ 5401 —B)g,H) .
pagsi 1 — puy ' B=1 \ | o¢

Figure 2 may help in the interpretation of the following qualitative statements about
the roots. For the undistorted economy we have been considering, it is unambigu-
ous that the roots satisfy ;1 < 1 < (8*)~! < u,. The larger is the (positive) ratio
(—seni/ocsi@), then the smaller is pq and the larger is p,, since an increase in
this ratio shifts the dotted line outward.?? (This ratio is positive since the elasticity
of the (after-tax) marginal product of capital with respect to capital stock (r;) is
negative.)

3. Simulations, Moments and Impulse Response Functions

The linear character of the (approximate) dynamic system produced in the preced-
ing section implies that we can draw upon the extensive body of material dealing
with analysis of these systems.?*> For the purpose of the present study, the key
elements are as follows.

First, the linear system’s state variables evolve according to

sie1 =M s; + &, (A61)
and the remainder of variables of interest are governed by

Zt = HSI . (A62)

Simulations:  Given specification of the ‘innovations’ in the stochastic processes
for the exogenous variables, €4, and €g;, it is straightforward to generate simu-
lated time paths given: (i) initial state values, s,; and (ii) sequences of the ¢, for a
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ul +u, =1/ B*_Scnk/ (ch)si) +1

— i =1/p

v

Hy Ky
Figure 2.

given sample interval, t = 1, ..., 7. In our view, to avoid dependence on initial
conditions, s, should be generated as a draw from a tri-variate random variale,
with probability distribution given by the stationary distribution of s. Recursive
computation of the 7" period simulation is direct.

Impulse Response Functions: It is also straightforward to use the system (A61—
A62) to generate impulse response functions. The programs that we employ
undertake this in a direct manner, specifying ¢, and then utilizing the formula
(A61) recursively. (A62) then gives the other variables of interest, directly from
the computed state responses.

Population Moments Computation of population moments is also straightfor-
ward. We employ the following procedure. First, we decompose the system matrix
M as follows.

M=PM DM PM™!,

where PM is the matrix of eigenvectors of M and DM contains the eigenvalues
on its diagonal (and zeros elsewhere). Then, we define transformed states as

* -1
s, =PM™ s,
and transformed innovations as
e =PM .

it?

Then, the covariance between any two elements, s7, and s}, is given by

Els}sil = [1 — dmjdm;] " Ele}e};]

jtvit
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where dm; is the ith diagonal elements of the matrix DM. Calculation of the
variance-covariance matrix of the original (untransformed) state variables then is
given by reversing the transformation:

Els;si]] = PM E[s¥s}1PM™",

The first order autoregressive form of the linear system makes it particularly easy
to compute autocovariances at any desired lead or lag j > O:

lags: E[sts;_j] = M/ E[ss)],

leads: Elss;, ;1 = Els;s;](M")/.

Moments of the other variables of interest can also readily be calculated

Elz2)s;] = 1 Elsis)y, 1T
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Supplementary Note #1: Marginal Product Elasticities

This note reports the details of elasticity calculations behind Equations (A21a,b).
The details follow Ferguson, C.E. (1972). Microeconomic Theory, 3rd edn., 414—
425.

Let the production function ¥ = F(K, N): Dividing by the quantity of labor
input and defining a production ( f (k)) function for output per unit of labor input:

Y/N = F(K/N,1) = f(k),

where k = K /N. Then, it is straightforward to verify that the marginal products of
labor and capital are

9Y/ON = f(k) —kDf(k),
0Y/dK = Df(k).
Now, define the marginal rate of technical substitution of labor for capital as

dY/IN _ f(k) — kDf (k)
AY /0K Df (k) ’

mrSg N =
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It follows that the derivative of mrsg y with respect to k is just

_ f)D*f (k)
(Df (k))?
so that the elasticity of substitution of capital is just
_Df(k)Lf (k) — kDf (k)]
kf (k)D* f (k) '

Note that the elasticity of substitution of labor for capital is equal to that of capital
for labor, since log(x) = —log(1/x).
The relevant elasticities of the marginal products are computed as follows:

_ [ (3N 4 (2L KD
&N_hWQWﬂ {5ﬂ_ﬂ@—wﬂ@_{M’

_ (2 (YN g [(2Y\] 2 kP2 i) _
&K_&ﬁ<ﬁﬁ][gfﬂ_lvw T e

where the right-hand equalities may either be verified directly or viewed as a prop-
erty of the zero degree homogeneity of the marginal products (as derivatives of the
production function, which is homogeneous of degree one).

Now, define factor shares as follows:

N@Y/IN)  f(k) —kDf (k)

{kn =dlog(K/N)/dlog(mrsk n) =

W Ty o
_ K@Y/dK) _ kDf(k)
T Ty T i

Then, it follows that
__kDf(k) f(k) = fDf(k)

KN = = s /Enn -

fy  KD*f(k)

Similarly,

_ flk) —kDf (k) [szf(k)
kN =

fk) Df (k)
Thus, it follows that

]=w@m.

Exkk = —Exkn =SN/CknN

Enny = —Enk =Sk/lknN-

Thus, determination of the values of sy, sx (subject to the constraint that sy +sx =
1) and ¢gn determines the elasticities of the marginal product schedules. In effect,
we are using the property that any constant returns to scale production function is
locally approximated by a CES function.
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Supplementary Note #2: Utility and Demand Theory

The objects of these notes are to add some additional information concerning utility
and demand theory for the steady state of the growth model. The objective is to re-
late the elasticities of marginal utility used in the technical appendix and programs
to more traditional demand concepts.

Consider an agent choosing consumption and labor supply (leisure demand) so
as to maximize

u(c, L),
subject to a budget constraint
wL—I—cSw—i—aEyf,

where the time endowment if normalised to unity; ¢ denotes other income; and y'
is ‘full income’.

1. Results from Demand Theory

From standard demand analysis, we know that the Marshallian demands take
the form ¢ = m.(w, yf) and L = my(w, y/). For these demands, (i) share
weighted income elasticities of demand must sum to unity; (ii) share weighted
price elasticities €; and ¢, satisfy an additional restriction:

wlL + wlL + c w

— 4+ —€+ —e.=—.

yhooyf ey
Given the shares, then, there are only two independent income and price elasticities.
In addition, our growth restriction requires that

lemL nysz

=0,
L L

i.e., the income elasticity and price elasticity of leisure demand sum to zero.
Taken together, then, in a steady state that has implicitly determined expenditure
shares, there is only one degree of freedom.

Implications for Elasticities of Marginal Utility

With the type of preferences described in the main text, which we write as

[ev(L) — 1177,

1
u(c,L) = T— o

there is a marginal rate of substitution condition

Dsu(c, L)/ Dyu(c, L) = [cDv(L)/v(L)]=w.
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With a little algebra, this implies that
selLDv(L)/v(L)IIN/(1 — N)] = sy .

Hence, it follows that [LDwv(L)/v(L)] is pinned down given the steady state, not a
free parameter.
With the specified preference, elasticities of marginal utility are given by

scc = —0 "ECL = (1 - G)[LDU(L)/U(L)]
E.c= (1 —0) &1 = —o[LDv(L)/v(L)|+ [LD*v(L)/Dv(L)].

These expressions contain two free parameters: o, which controls intertempo-
ral substitution/risk aversion and [LD?v(L)/Dv(L)]. Log differentiation of the
marginal rate of substitution condition indicates that o does not enter, so that
specification of [L D*v(L) /Dv(L)] is equivalent to specification of the single free
parameter in the Marshallian demand system.

Notes

1 For functions of a single variable we use Df and D! f (i > 1) to denote respectively the first
and the ith total derivate of f with respect to its argument.

2 If our economy had a finite horizon, T, we would have to impose the restriction that K71 > 0.
Otherwise it would be possible to consume an infinite amount by driving K741 to —oo. The effi-
ciency condition associated with the non-negativity constraint imposed on K741 is A7 K741 = 0.
The ‘transversality condition’ is the counterpart of this equation when the economy has an infinite
horizon. For a detailed discussion of the conditions under which the Euler equations (A11)-(A14) and
the transversality condition are sufficient or necessary for the associated capital path to be optimal,
Weitzman (1973) and Romer and Shinotsuka (1987).

3 Engineers usually refer to this as a ‘two-point boundary value’ problem, due to the fact that the
boundary conditions are not contemporaneous (in this case we have one condition at 1 = 0 and the
other at 1 = 00).

4 The existence and uniqueness of a solution to this problem are not guaranteed in general. See
Romer and Sasaki (1984) for an existence proof for an economy in which the competitive equilibrium
is suboptimal.

5 Throughout our discussion, we use notation y4 = g:/g:—1, i.€., ¥g is one plus the growth rate
of g; for expositional convenience, we sometimes refer to y4 as the (gross) growth rate of g.

6 This may be demonstrated as follows. The marginal product of a unit of time is AX; Dy F (K;,
N X;) on a steady state path. Labor’s share is sy = ANX; Dy F(K;, NX;)]. On a steady state path,
F(K;/NX;, l)isconstant and the F(K;NX;) = NX; F(K;/NX;). Hence, labor’s share is invariant
to the scale of X in steady state.

7 This should not be regarded as a general feature, since it is peculiar to models in which capital
is simply stored consumption good.

8 1t is straightforward to demonstrate this result, though more tedious in discrete time than in the
familiar continuous time case. Define s+ = C;/Y; and s;; = I;/Y:. Then, taking ratios of output in
two adjacent periods, it follows that (Y;11/Y;) = Cr1/Ye) + (s 1/ Ye) = Ve s+15ct + VIt +15ir =
YT,t4+1- Since si; + s¢¢ = 1 for all ¢, it follows that (ye s+1 — Vi s+1)5ct = (Yy,e41 — Vit4+1)-
Thus, if there is steady state growth (all y’s are independent of ¢), then the above condition can be
fulfilled only by one of the two following situations: (a) s, is constant if it is not true that y¢ — y; =
yy —yr = 0; or (b) yc = vr = yy. But, if s¢ is constant, then it follows that C and Y are growing
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at the same rate, which contradicts the requirement of condition (a). Thus, condition (b) must hold in
any steady state.

9 If the production function is Cobb-Douglas, then log(yy) = alog(yyx) + (1 — «)log(yk).
In conjunction with the requirement that y; = yg = yy, this then leads to the conclusion that
YY =YK = VX

10 This is easy to see in the Cobb-Douglas case, since AD1F(K;, NX;) = (1— a)AKt_“(NXt)“.

1 1 the Cobb-Douglas case, X;ADyF(K;, NX;) = aAKtl_“(N)“_lX?‘.

12 gee, for example, Ferguson (1964), pp. 417-419, or Supplementary Note #1 at the back of this
document.

13 In these expressions, L is not dated since its growth rate is zero in a steady state.

1410 the conventional neoclassical model L is fixed exogenously, so that the intertemporal
requirement exhausts the implications of a steady state.

15 To check this, simply differentiate i.

161 a static framework, (A25a) and (A25b) are both representative of the same preferences
since they are monotonic transformations of each other. However, in a dynamic framework that
is not the case since (A25a) or (A25b) only represent momentary utility. The utility function is
U=%7 Btu(cs, L).

=0
17 In a static framework the optimum number of leisure hours is determined by m v(L)=
%. It is clear that if K = 0 or rK /w is constant, L will also be constant. In our economy, the

capitcal and labor share are constant implying constancy of r K /w.

18 Under the Cobb-Douglas assumption this requirement yields the following expressions: (i) The
effective labor-capital ratio, N X /K, is given by (XN /K) = {yx—B*(1=8x)1/[B* (sg)24)}1/sv);
(ii) the output-capital ratio is (Y/K) = [yx — B*(1 — 8g)1/[B*(sx)2]}, and (iii) the output-labor
ratio is (Y/NX) = AV/D(B*(sg)Q)/[yx — B*(1 — 8x)1}6K)/SN Note that these expressions
contain the influence of the steady state wedge (£2) on capital accumulation.

19 X, are the present valued Lagrange multipliers that correspond to the maximization problem for
the transformed economy (not in the text). Recall that we used A; to denote the Lagrange multipliers
associated with the original (untransformed) economy.

20 1 the presence of tax rules such as (A6), further restrictions have to be imposed on 7; to ensure
invertibility of M.

21 Ope of these constraints for the fixed labor model, is wg < —&pp. When og = =&, u1 = 1,
i.e., after a displacement there is no tendency for the economy to return to the steady state. In that
case, the decrease in the tax rate associated with an increase in capital exactly offsets the decreasing
returns to capital. When wg > —&g; the steady state is no longer stable.

22 The two equations that determine the roots in the economy with a constant output tax are:

— (=8)p*(Q=D+yx _ _ Scmk
pipy = 5 am i and g+ pg = pipg — i+ L

23 See, for instance Harvey (1981) and Chow (1975).
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