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Dynamic Programming
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Background
• Our previous discussion of optimal consumption over 

time and of optimal capital accumulation suggest 
studying the general decision problems on the next 
pages, where

c = control (consumption)
k = state
x = exogenous variable

• In each case, we might solve the dynamic optimization 
problem using a “discrete time optimal control” approach 
as in prior lectures.
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Finite horizon problem

{ },{ }
0

1

0

1 1

max ( , , )       :  momentary objective

. . ( , , )    :   state law of motion

( )

t t

T
t

c k t t t
t

t t t t t

T T

u k x c u

s t k k g k x c g

k

k b x

b
=

+

+ +

- =

³

å



SZG macro 2011 lecture 3 4

Infinite horizon problem
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We might attack the finite horizon 
problem by forming 
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We might attack the infinite horizon 
problem by forming 
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Either case

• Outcome is sequence of optimal control 
{ct }, optimal state {kt }, and optimal shadow 
prices {t } that satisfy FOCs and TC give 
the path {xt }.

• Desirable because we have both real 
outcomes and a means of deriving 
“supporting” prices.
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We will study an alternative, 
dynamic programming, next

• Why?
– Alternative tool for toolkit
– DP is better for certain problems with 

uncertainty
– DP logic applied in other, equilibrium contexts
– LS: “the imperialism of recursive methods”
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Outline

1. Certainty optimization problem used to 
illustrate:

a. Restrictions on exogenous variables {xt }
b. Value function
c. Policy function
d. The Bellman equation and an associated  

Lagrangian
e. The envelope theorem
f. The Euler equation
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Outline Cont’d

2. Adding uncertainty

3. Applications
optimal consumption over time 
optimal consumption under uncertainty. 
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1. A certainty dynamic problem 
and the DP approach

• Maximize

• Subject to

and
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What’s different from 
background setup?

• Immediate jump to infinite horizon problem, not 
essential but matches presentation in LS chapter 
(note differences in notation, though).

• The exogenous (x) variable(s) are now functions 
of a vector of exogenous state variables, which 
evolve according to a difference equation 
(perhaps nonlinear, perhaps in a vector).

• The latter is a key part of the vision of Richard 
Bellman, the inventor of DP: his experience in 
other areas (such as difference equations) led 
him to think in terms of describing dynamics in 
terms of state variables.
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Recursive policies
• Suppose controls are functions of states, 

• Then, the state vector evolves according to a 
recursion 

that can be used to generate future states from given 
initial conditions
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Evaluating the objective 

• Under any recursive policy, we can see that 
all of the terms which enter in the objective 
are a function of the initial state (s0 ) so that 
the objective is also a function of the initial 
state  
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Recursion for objective 
under arbitrary recursive policy
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Notice the switch

• Given that there is a policy function (), 
the objective is now a function of the state 
vector.

• We have made the change – we are now 
thinking in terms of functions rather than 
sequences.

• But we haven’t optimized yet! We could be 
calculating the objective with a very bad 
policy.
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Bellman’s core idea

• Subdivide complicated intertemporal 
problems into many “two period” problems, 
in which the trade-off is between the 
present “now” and “later”.

• Specifically, the idea was to find the 
optimal control and state “now”, taking as 
given that latter behavior would itself be 
optimal.
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The Principle of Optimality

• “An optimal policy has the property that, 
whatever the state and optimal first 
decision may be, the remaining decisions 
constitute an optimal policy with respect to 
the state originating from the first 
decisions”—Bellman (1957, pg. 83)
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Following the principle, 
• The natural maximization problem is

• Where the right hand side is the current 
momentary objective (u) plus the 
consequences (V) for the discounted 
objective of behaving optimally in the 
future.
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Noting that time does not enter in 
an essential way

• We sometimes write this as (with ‘ meaning next 
period)

• So then the Bellman equation is written as 
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After the maximization
• We know the optimal policy (which we will 

call 
 

as above, but with the proviso that it is 
optimal) and can calculate the associated 
value, so that there is now a Bellman 
equation of the form

• A functional equation is defined, colloquially, 
as an equation whose unknowns are 
functions. In our context, the unknowns are 
the policy and value functions.
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How to do the optimization?

• You are free to choose, depending on the 
application

• Sometimes we take the Euler route, 
substituting in the constraint and 
maximizing directly over k’

• Other times we want to use a Lagrange 
approach, putting a multiplier on the 
constraint governing k’
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The associated Lagrangian

• Takes the form

• The optimal policy, state evolution and 
related multiplier are obtained by 
maximizing with respect to c,k’ and 
minimizing with respect to . Hence these 
are all functions of the state variables.
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For an optimum (off corners)

• We must have

• And, at the values which solve these 
equations, V=L
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The envelope theorem 
(Benveniste-Scheinkman)

• Question: what is the effect of an infinitessimal 
change in k on V?

• Answer: It is given by 

when we evaluate at the optimal policy and 
the associated multiplier. As in LS, this may 
also be written a form which does not involve 
the multiplier,  
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Outline of proof
• Nontrivial to show differentiability of V
• But if we have this (as we will frequently assume) then

• While this looks ugly, all terms involving behavior are 
multiplied by coefficients that are set to zero by the FOCs.
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Details on ET
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Iterating on the Bellman Equation

• Under specific conditions on the functions u and 
g, the Bellman equation has a unique, strictly 
concave (in k) solution.

• Under these conditions, it can be calculated by 
considering the limit

• These iterations are interpretable as calculating 
the value functions for a class of finite horizon 
problems, with successively longer horizons.
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3. A Stochastic dynamic problem 
and the DP approach

• Maximize

• Subject to

and Markovian exogenous state variables
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Markov examples
• Markov chains (LS, Chapter 1)
• Linear state space systems
• Nonlinear difference equations with iid shocks, 

• We won’t be more explicit until necessary.
• Key point: states are enough to compute 

expectations. 
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Bellman Equation

• Uncertainty case is minor modification of 
certainty case
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Proceeding as above
• Lagrangian

• FOCs

• ET is unchanged

{ ( , , ( )) ( ', ') | ( , )}
[ ( , ( ), ) ']

L u c k x EV k k
k g k x c k

   
 

 
  

( , , ( )) ( , ( ), ) 0

( ', ') 0
' '

[ ( , ( ), ) '] 0

L u c k x g k x c
c c c
L EV k
k k
L k g k x c k

 

 




  
  

  
 

   
 


   




SZG macro 2011 lecture 3 33

Implications for optimal policies 
and state evolution

• Functions of states

• State evolution is now a larger Markov 
process. For example,  
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Value Function

• Since c,k,x depend on states, the value 
function also is V(s).

• It is the maximized RHS of the Bellman 
equation. 
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What we’ve covered in this lecture

• Introduction to DP under certainty
• Bellman Equation
• Associated Lagrangian
• FOCs and the ET
• DP with exogenous variables that are functions 

of a Markov process (exogenous state vector)
• What follows:

– Optimal consumption over time via dynamic 
programming: calculation of policy and value 
functions in a simple case

– Setting up optimal consumption problem with 
uncertain income
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3A. Optimal consumption over time

• Simple case (no k,x in u)

• Accumulation of assets

• And R=1 (level consumption)
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Bellman Equation
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Taking an Euler Route
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Learning about consumption

• Update ET and insert in EE to get

• Suppose there is a linear policy function
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Requiring c=c’, we have equations that 
restrict undetermined coefficients
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Economic Rules

• Consume the normal level of income (y)
• Consume the interest from asset stock, 

leaving the asset stock unchanged period 
to period (except as noted next)

• Consume based on the “present value” of 
deviations from normal income, treating 
this as if it were another source of wealth; 
allow variations in asset position on this 
basis.
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Could have gotten 
these rules more directly
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Questions & Answers

• If we could have gotten them more easily, then why do we 
need DP? 
– Because there are many problems that we cannot 

solve so easily and DP is a procedure for solving them.
• What is the value function?

– Easy to determine in this case because c is constant over time; V 
inherits properties of u

– Check: take this v, insert in Bellman equation as v’, show optimal 
form c has specified form, show v has this form.
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3B. Optimal consumption with 
fluctuating income: setting up a DP
• Simple case (no k,x in u)

• Accumulation of assets (don’t necessarily 
restrict R)

• Income process
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One version of 
the Bellman equation
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FOCs and ET 

• Make sure you can work these out following 
the recipe above, 
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Implications for policies

• Optimal consumption depends on (a) 
wealth; and (b) the variables that are useful 
for forecasting future income.

• But solving for this function is no longer 
easy. Rationalizes SL’s discussion of 
numerical methods, a topic that we will 
consider further later.

( , )c a 
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Implication for value function

• Value function is objective evaluated at 
optimal consumption policy, which is a 
function of a Markov process, so that 

• Value function satisfies the Bellman functional 
equation.
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