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Introduction to dynamic macroeconomics: 
Analysis of Saving and Investment
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Outline of lecture

A. Investment and capital accumulation 
with given output and factor prices: partial 
equilibrium

B. The Solow model: exogenous saving

C. The Ramsey-Cass-Koopmans model
in discrete time: endogenous saving and 
investment in general equilibrium 
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A. Two visions of 
the demand for capital

• Both visions will assume that there is 
– a constant returns to scale (CRTS) production 

function at the firm and aggregate level.
– market in which capital rents at rate “q”.

• The production function will be
– y=F(k,n) in general 
– y=ak1−αnα (Cobb-Douglas form) for examples
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A1. Demand for capital with labor given

• A firm maximizes profit, F(k,n)-qk, taking 
as given the quantity of labor (n). 

• With labor fixed, there is a diminishing 
marginal product of capital

• Profit maximization requires Fk(k,n)-q=0
• The demand for capital is kd=κ(q,n), 

depending negatively on the rental price
• Increases in the quantity of labor raise the 

demand for capital.
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Vision 1 in a diagram
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A2. Demand for capital with output given

• A firm can also buy labor at wage rate w
• A firm minimizes cost wn+qk taking factor prices 

and an output level y as given. 
• Changes in w and q induce factor substitution 

(along an isoquant)
• With CRTS, the factor demands are

– kd=κ(q/w)y
– nd=η(q/w)y

• Increases in output (scale) and the wage rate 
(substitution) raise the demand for capital, 
increases in the rental rate lower it (substitution).
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Vision 2 in a diagram
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Investment and the demand for capital

• Suppose that a period is the length of time that it takes 
for investment (i) to become productive as capital (k).

• The rental market can reallocate the existing capital 
stock, but cannot change the predetermined quantity.

• Production: yt=F(kt,nt) with k predetermined

• Capital accumulation: kt+1-kt=it-δkt, where δ is the 
depreciation rate.
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Investment and the demand for capital 
(note that the κ functions are different across visions)
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Interest and rental rates

• An individual who invests in capital at t 
earns a return qt+1-δ. (To maintain his 
capital, he must deduct depreciation).

• The cost of borrowing to invest in capital is 
rt (sometimes this is dated as rt+1).

• Absence of profits implies rt =qt+1-δ
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2. Solow’s dynamic model

• Stress on production function of 
neoclassical form – smooth substitution 
between factor inputs.

• Cambridge controversy: when is an 
aggregate production function useful?

• Short-cut of fixed saving rate “s” brought a 
great deal of tractability.
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Four key equations
• Production function

• Marginal products

• Capital accumulation
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Stationary point

• Value of capital such that if kt=k then kt+1=k, 
which is the condition that sf(k)=δk

• With Cobb-Douglas
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Stationary point: sf(k)=δk
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Golden rule

• Max   c=f(k)-δk with respect to k. 
• Optimal saving rate?
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Transitional Dynamics I: A Function
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Transitional dynamics II: A Path
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Implications for factor prices

• Under CRTS, marginal products depend 
only on ratio (k/n). Hence

– Since k grows along transition path and since 
marginal product of k falls, q (and r) must fall

– Since k grows along transition path and since 
marginal product of labor increases in k, w 
must rise 
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Implications for factor prices
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C. Outline of RCK model 
discussion

1. The Setup
2. Stationary Points
3. Dynamic paths from low initial k
4. Local dynamics
5. Properties of local, global paths
6. Market interpretations
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C1. The Setup

• Social planner maximizes 
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Constraints

• Initial capital given
• Resource 

constraint each 
period

• Terminal capital 
positive
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Finite horizon Lagrangian

• Multipliers on each constraint

• Efficiency condition are same as for infinite 
horizon problem below, except for last 
period  
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Terminal capital issues
• Think about from Kuhn-Tucker 

perspective: don’t leave valuable stuff
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Infinite horizon Lagrangian
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Necessary conditions for optimum
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C2. Stationary points

• One feasible stationary point is to just stay 
with the consumption level that is 
“sustainable” with initial capital
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Optimal stationary point

• If the initial capital stock is such that the last 
condition holds with equality, then there is no 
contradiction. The stationary point is optimal. Thus 
occurs when 

• It is optimal to keep consumption and capital 
constant when the “net return” to capital is equal to 
the rate of time preference: these levels are called 
the “modified golden rule” levels of c and k. They 
are less than the golden rule levels.

* *0 [ 1 ( )] ( ) 0k kk f kβ δ υ= − + Φ ⇔ − − =
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Key economic lesson

• When current consumption must be sacrificed to 
form capital that yields future consumption, it is 
not optimal to maximize stationary utility u(c).

• Generally, the solution to dynamic optimum 
problems does not involve maximizing the 
momentary objective u. The exception occurs if 
does not face real intertemporal trade-offs 
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Reconsidering the k0
stationary point

• Is this optimal? It is feasible in the sense that it satisfies 
the resource constraint. And the TC is satisfied too. In 
terms of the other two conditions, we’d have

• Constant consumption is not optimal because return to 
capital formation exceeds time preference. It is desirable 
to give up current consumption in exchange for future 
consumption 
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C. Dynamic paths from k0<k*

• Assertion: there is only one path from 
each initial k that (a) satisfies the FOCs 
and (b) has a limiting value of k*.

• Easier to understand this feature in 
continuous time, as in week 2 discussion 
of this model, because we can draw 
“phase plane”. 
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Generating a path 
• Start at any shadow price, initial capital

• This implies consumption (from FOC: c)

• Consumption and capital imply next period’s capital 
(resource constraint)

• Current shadow price and next period’s capital imply 
next period’s shadow price.

• Continue…
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Suboptimality of alternative paths

• Assume that utility and production are both 
strictly concave

• This implies that 
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Why? Diagram
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D. Local dynamics

• Taylor series approximation of FOCs
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Substitute out for “c”
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Local dynamics in matrix form (of capital and shadow price, 

after substituting out for consumption)
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Eigenvalues
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Eigenvalues (cont’d)

• The eigenvalues can be “located” in terms of 
size and the influence of various factors 
explored, as follows. 

• First, note that 1=βΦk or that Φk=1+ν>1
• Second, note that the equation above can be 

written as the intersection of a quadratic and a 
line with positive slope
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Eigenvalues cont’d (graph)
one root is 0<µs<1 and one root is µu>1+ν
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General solutions for k and λ
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Stable dynamics
* * *

0 1

* *
0

1

*
0 0 0

*
0 0

( ) ( )

( )

1( ) (1 )( ) ( )

1( ) (1 )( ) ( )

( ) [(1 ) ]( )

t t
t ks s s s t

t t
t s s s

t t t
cc

s
cc

cc s

k k q k k k k

q

k k k k
u

k k k k
u

u k k

λ

µ µ µ

λ λ µ λ λ µ

ν λ λ

µ ν λ λ

λ λ µ ν

−

∗ ∗ ∗
+

∗ ∗

∗

− = = − = −

− = = −

− = + − − −

− = + − − −

− = − + −



SZG macro 2010: Lecture 2 44

E. Properties of global, local paths
• Capital rises from low initial level to optimal stationary 

level, as in Solow
• Marginal product of capital falls through time (with capital 

stock), as in Solow. So too does the market rental and 
interest rate, rt=qt+1-δ

• Marginal product of labor rises through time (with capital 
stock), as in Solow, 

• Shadow price λ falls from high initial level to optimal 
stationary level

• Consumption rises from low initial level to optimal 
stationary level (inversely related to shadow price)

• With power utility, consumption growth rate declines over 
time (as a result of Fisher’s rule)

• Saving rate (i/y) may either rise or fall (or remain 
constant if there is log utility, Cobb-Douglas production, 
and δ =1).
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Using Fisher’s rule
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F. Market interpretations

• Shadow prices from planner’s problem can 
be used to decentralize this “optimal 
allocation” as a competitive equilibrium for 
an infinitely lived representative individual
– Of a Hicksian form with initial date markets

Intertemporal prices are Pt=βtpt=βtλt

– Of a Fisherian form with sequential markets
Interest rates are (1+rt)=λt/βλt+1



SZG macro 2010: Lecture 2 47

Why are alternative paths 
suboptimal? Algebra
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Why? (algebra cont’d)
• Last line is zero because feasible paths must start from 

the same point k0 and optimal paths have a specific 
growth in shadow prices (red components equal zero)
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Why? The result
• Concavity in u and f deliver implication
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Additional graph

• Welfare loss in production, consumption
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