
Chapter 2.
Time series

2.1. Two workhorses

This chapter describes two tractable models of time series: Markov chains and first-
order stochastic linear difference equations. These models are organizing devices
that put particular restrictions on a sequence of random vectors. They are useful
because they describe a time series with parsimony. In later chapters, we shall make
two uses each of Markov chains and stochastic linear difference equations: (1) to
represent the exogenous information flows impinging on an agent or an economy,
and (2) to represent an optimum or equilibrium outcome of agents’ decision making.
The Markov chain and the first-order stochastic linear difference both use a sharp
notion of a state vector. A state vector summarizes the information about the current
position of a system that is relevant for determining its future. The Markov chain
and the stochastic linear difference equation will be useful tools for studying dynamic
optimization problems.

2.2. Markov chains

A stochastic process is a sequence of random vectors. For us, the sequence will be
ordered by a time index, taken to be the integers in this book. So we study discrete
time models. We study a discrete state stochastic process with the following property:

Markov Property: A stochastic process {xt} is said to have the Markov
property if for all k ≥ 1 and all t ,

Prob (xt+1|xt, xt−1, . . . , xt−k) = Prob (xt+1|xt) .

We assume the Markov property and characterize the process by a Markov chain.
A time-invariant Markov chain is defined by a triple of objects, namely, an n-

dimensional state space consisting of vectors ei, i = 1, . . . , n , where ei is an n × 1
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unit vector whose ith entry is 1 and all other entries are zero; an n × n transition
matrix P , which records the probabilities of moving from one value of the state to
another in one period; and an (n× 1) vector π0 whose ith element is the probability
of being in state i at time 0: π0i = Prob(x0 = ei). The elements of matrix P are

Pij = Prob (xt+1 = ej |xt = ei) .

For these interpretations to be valid, the matrix P and the vector π must satisfy the
following assumption:

Assumption M:

a. For i = 1, . . . , n , the matrix P satisfies
n∑
j=1

Pij = 1. (2.2.1)

b. The vector π0 satisfies
n∑
i=1

π0i = 1.

A matrix P that satisfies property (2.2.1) is called a stochastic matrix. A stochas-
tic matrix defines the probabilities of moving from each value of the state to any other
in one period. The probability of moving from one value of the state to any other in
two periods is determined by P 2 because

Prob (xt+2 = ej |xt = ei)

=
n∑
h=1

Prob (xt+2 = ej|xt+1 = eh) Prob (xt+1 = eh|xt = ei)

=
n∑
h=1

PihPhj = P
(2)
ij ,

where P
(2)
ij is the i, j element of P 2 . Let P (k)

i,j denote the i, j element of P k . By
iterating on the preceding equation, we discover that

Prob (xt+k = ej |xt = ei) = P
(k)
ij .

The unconditional probability distributions of xt are determined by

π′
1 = Prob (x1) = π′

0P

π′
2 = Prob (x2) = π′

0P
2

...

π′
k = Prob (xk) = π′

0P
k,
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where π′
t = Prob(xt) is the (1 × n) vector whose ith element is Prob(xt = ei).

2.2.1. Stationary distributions

Unconditional probability distributions evolve according to

π′
t+1 = π′

tP. (2.2.2)

An unconditional distribution is called stationary or invariant if it satisfies

πt+1 = πt,

that is, if the unconditional distribution remains unaltered with the passage of time.
From the law of motion (2.2.2) for unconditional distributions, a stationary distribu-
tion must satisfy

π′ = π′P (2.2.3)

or
π′ (I − P ) = 0.

Transposing both sides of this equation gives

(I − P ′)π = 0, (2.2.4)

which determines π as an eigenvector (normalized to satisfy
∑n

i=1 πi = 1) associated
with a unit eigenvalue of P ′ .

The fact that P is a stochastic matrix (i.e., it has nonnegative elements and
satisfies

∑
j Pij = 1 for all i) guarantees that P has at least one unit eigenvalue, and

that there is at least one eigenvector π that satisfies equation (2.2.4). This stationary
distribution may not be unique because P can have a repeated unit eigenvalue.

Example 1. A Markov chain

P =

 1 0 0
.2 .5 .3
0 0 1


has two unit eigenvalues with associated stationary distributions π′ = [ 1 0 0 ] and
π′ = [ 0 0 1 ] . Here states 1 and 3 are both absorbing states. Furthermore, any
initial distribution that puts zero probability on state 2 is a stationary distribution.
See exercises 1.10 and 1.11.
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Example 2. A Markov chain

P =

 .7 .3 0
0 .5 .5
0 .9 .1


has one unit eigenvalue with associated stationary distribution π′ = [ 0 .6429 .3571 ].
Here states 2 and 3 form an absorbing subset of the state space.

2.2.2. Asymptotic stationarity

We often ask the following question about a Markov process: for an arbitrary initial
distribution π0 , do the unconditional distributions πt approach a stationary distri-
bution

lim
t→∞πt = π∞,

where π∞ solves equation (2.2.4)? If the answer is yes, then does the limit distri-
bution π∞ depend on the initial distribution π0 ? If the limit π∞ is independent of
the initial distribution π0 , we say that the process is asymptotically stationary with a
unique invariant distribution. We call a solution π∞ a stationary distribution or an
invariant distribution of P .

We state these concepts formally in the following definition:

Definition: Let π∞ be a unique vector that satisfies (I − P ′)π∞ = 0. If for all
initial distributions π0 it is true that P t′π0 converges to the same π∞ , we say that
the Markov chain is asymptotically stationary with a unique invariant distribution.

The following theorems can be used to show that a Markov chain is asymptotically
stationary.

Theorem 1: Let P be a stochastic matrix with Pij > 0 ∀(i, j). Then P has a
unique stationary distribution, and the process is asymptotically stationary.

Theorem 2: Let P be a stochastic matrix for which Pnij > 0 ∀(i, j) for some
value of n ≥ 1. Then P has a unique stationary distribution, and the process is
asymptotically stationary.

The conditions of theorem 1 (and 2) state that from any state there is a positive
probability of moving to any other state in 1 (or n) steps.
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2.2.3. Expectations

Let y be an n × 1 vector of real numbers and define yt = y′xt , so that yt = yi
if xt = ei . From the conditional and unconditional probability distributions that
we have listed, it follows that the unconditional expectations of yt for t ≥ 0 are
determined by Eyt = (π′

0P
t)y . Conditional expectations are determined by

E (yt+1|xt = ei) =
∑
j

Pijyj = (Py)i (2.2.5)

E (yt+2|xt = ei) =
∑
k

P
(2)
ik yk =

(
P 2y

)
i

(2.2.6)

and so on, where P (2)
ik denotes the (i, k) element of P 2 . Notice that

E [E (yt+2|xt+1 = ej) |xt = ei] =
∑
j

Pij
∑
k

Pjkyk

=
∑
k

∑
j

PijPjk

 yk =
∑
k

P
(2)
ik yk = E (yt+2|xt = ei) .

Connecting the first and last terms in this string of equalities yields E[E(yt+2|xt+1)|xt] =
E[yt+2|xt] . This is an example of the ‘law of iterated expectations’. The law of it-
erated expectations states that for any random variable z and two information sets
J, I with J ⊂ I , E[E(z|I)|J ] = E(z|J). As another example of the law of iterated
expectations, notice that

Ey1 =
∑
j

π1,jyj = π′
1y = (π′

0P ) y = π′
0 (Py)

and that

E [E (y1|x0 = ei)] =
∑
i

π0,i

∑
j

Pijyj =
∑
j

(∑
i

π0,iPij

)
yj = π′

1y = Ey1.
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2.2.4. Forecasting functions

There are powerful formulas for forecasting functions of a Markov process. Again let
y be an n× 1 vector and consider the random variable yt = y′xt . Then

E [yt+k|xt = ei] =
(
P ky

)
i

where (P ky)i denotes the ith row of P ky . Stacking all n rows together, we express
this as

E [yt+k|xt] = P ky. (2.2.7)

We also have ∞∑
k=0

βkE [yt+k|xt = ei] =
[
(I − βP )−1

y
]
i
,

where β ∈ (0, 1) guarantees existence of (I − βP )−1 = (I + βP + β2P 2 + · · · ).
One-step-ahead forecasts of a sufficiently rich set of random variables charac-

terize a Markov chain. In particular, one-step-ahead conditional expectations of n
independent functions (i.e., n linearly independent vectors h1, . . . , hn ) uniquely de-
termine the transition matrix P . Thus, let E[hk,t+1|xt = ei] = (Phk)i . We can
collect the conditional expectations of hk for all initial states i in an n × 1 vector
E[hk,t+1|xt] = Phk . We can then collect conditional expectations for the n indepen-
dent vectors h1, . . . , hn as Ph = J where h = [h1 h2 . . . hn ] and J is an the
n× n matrix of all conditional expectations of all n vectors h1, . . . , hn . If we know
h and J , we can determine P from P = Jh−1 .

2.2.5. Invariant functions and ergodicity

Let P, π be a stationary n-state Markov chain with the same state space we have
chosen above, namely, X = [ei, i = 1, . . . , n] . An n × 1 vector y defines a random
variable yt = y′xt . Thus, a random variable is another term for ‘function of the
underlying Markov state’.

The following is a useful precursor to a law of large numbers:

Theorem 2.2.1. Let y define a random variable as a function of an underlying

state x , where x is governed by a stationary Markov chain (P, π) . Then

1
T

T∑
t=1

yt → E [y∞|x0] (2.2.8)
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with probability 1 .

Here E[y∞|x0] is the expectation of ys for s very large, conditional on the initial
state. We want more than this. In particular, we would like to be able to replace
E[y∞|x0] with the constant unconditional mean E[yt] = E[y0] associated with the
stationary distribution. To get this requires that we strengthen what is assumed
about P by using the following concepts. First, we use

Definition 2.2.1. A random variable yt = y′xt is said to be invariant if yt =
y0, t ≥ 0, for any realization of xt, t ≥ 0.

Thus, a random variable y is invariant (or ‘an invariant function of the state’) if it
remains constant while the underlying state xt moves through the state space X .

For a finite state Markov chain, the following theorem gives a convenient way to
characterize invariant functions of the state.

Theorem 2.2.2. Let P, π be a stationary Markov chain. If

E [yt+1|xt] = yt (2.2.9)

then the random variable yt = y′xt is invariant.

Proof. By using the law of iterated expectations, notice that

E (yt+1 − yt)
2 = E

[
E
(
y2
t+1 − 2yt+1yt + y2

t

) |xt]
= E

[
Ey2

t+1|xt − 2E (yt+1|xt) yt + Ey2
t |xt

]
= Ey2

t+1 − 2Ey2
t + Ey2

t

= 0

where the middle term in the right side of the second line uses that E[yt|xt] = yt , the
middle term on the right side of the third line uses the hypothesis (2.2.9), and the
third line uses the hypothesis that π is a stationary distribution. In a finite Markov
chain, if E(yt+1 − yt)2 = 0, then yt+1 = yt for all yt+1, yt that occur with positive
probability under the stationary distribution.

As we shall have reason to study in chapters 16 and 17, any (non necessarily
stationary) stochastic process yt that satisfies (2.2.9) is said to be a martingale.
Theorem 2.2.2 tells us that a martingale that is a function of a finite state stationary
Markov state xt must be constant over time. This result is a special case of the
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martingale convergence theorem that underlies some remarkable results about savings
to be studied in chapter 16.1

Equation (2.2.9) can be expressed as Py = y or

(P − I) y = 0, (2.2.10)

which states that an invariant function of the state is a (right) eigenvector of P
associated with a unit eigenvalue.

Definition 2.2.2. Let (P, π) be a stationary Markov chain. The chain is said to
be ergodic if the only invariant functions y are constant with probability one, i.e.,
yi = yj for all i, j with πi > 0, πj > 0.

A law of large numbers for Markov chains is:

Theorem 2.2.3. Let y define a random variable on a stationary and ergodic

Markov chain (P, π) . Then

1
T

T∑
t=1

yt → E [y0] (2.2.11)

with probability 1 .

This theorem tells us that the time series average converges to the population
mean of the stationary distribution.

Three examples illustrate these concepts.

Example 1. A chain with transition matrix P =
[

0 1
1 0

]
has a unique invariant

distribution π = [ .5 .5 ]′ and the invariant functions are [α α ]′ for any scalar α .
Therefore the process is ergodic and Theorem 2.2.3 applies.

Example 2. A chain with transition matrix P =
[

1 0
0 1

]
has a continuum of

stationary distributions γ
[

1
0

]
+(1−γ)

[
0
1

]
for any γ ∈ [0, 1] and invariant functions[

0
α

]
and

[
α

0

]
for any α . Therefore, the process is not ergodic. The conclusion

1 Theorem 2.2.2 tells us that a stationary martingale process has so little freedom
to move that it has to be constant forever, not just eventually as asserted by the
martingale convergence theorem.



32 Chapter 2: Time series

(2.2.11) of Theorem 2.2.3 does not hold for many of the stationary distributions
associated with P but Theorem 2.2.1 does hold. Conclusion (2.2.11) does hold for
one particular choice of stationary distribution.

Example 3. A chain with transition matrix P =

 .8 .2 0
.1 .9 0
0 0 1

 has a continuum

of stationary distributions γ [ 1
3

2
3 0 ]′ + (1− γ) [ 0 0 1 ]′ and invariant functions

α [ 1 1 0 ]′ and α [ 0 0 1 ]′ for any scalar α . The conclusion (2.2.11) of The-
orem 2.2.3 does not hold for many of the stationary distributions associated with
P but Theorem 2.2.1 does hold. But again, conclusion (2.2.11) does hold for one
particular choice of stationary distribution.

2.2.6. Simulating a Markov chain

It is easy to simulate a Markov chain using a random number generator. The Matlab
program markov.m does the job. We’ll use this program in some later chapters.2

2.2.7. The likelihood function

Let P be an n × n stochastic matrix with states 1, 2, . . . , n . Let π0 be an n × 1
vector with nonnegative elements summing to 1, with π0,i being the probability
that the state is i at time 0. Let it index the state at time t . The Markov
property implies that the probability of drawing the path (x0, x1, . . . , xT−1, xT ) =
(ei0 , ei1 , . . . , eiT−1 , eiT ) is

L ≡ Prob
(
xiT , xiT−1 , . . . , xi1 , xi0

)
= PiT−1,iTPiT−2,iT−1 · · ·Pi0,i1π0,i0 .

(2.2.12)

The probability L is called the likelihood. It is a function of both the sample real-
ization x0, . . . , xT and the parameters of the stochastic matrix P . For a sample
x0, x1, . . . , xT , let nij be the number of times that there occurs a one-period transition
from state i to state j . Then the likelihood function can be written

L = π0,i0

∏
i

∏
j

P
nij

i,j ,

2 An index in the back of the book lists Matlab programs that can downloaded from
the textbook web site < ftp://zia.stanford.edu/˜sargent/pub/webdocs/matlab> .
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a multinomial distribution.
Formula (2.2.12) has two uses. A first, which we shall encounter often, is to

describe the probability of alternative histories of a Markov chain. In chapter 8, we
shall use this formula to study prices and allocations in competitive equilibria.

A second use is for estimating the parameters of a model whose solution is a
Markov chain. Maximum likelihood estimation for free parameters θ of a Markov
process works as follows. Let the transition matrix P and the initial distribution π0

be functions P (θ), π0(θ) of a vector of free parameters θ . Given a sample {xt}Tt=0 ,
regard the likelihood function as a function of the parameters θ . As the estimator of
θ , choose the value that maximizes the likelihood function L .

2.3. Continuous state Markov chain

In chapter 8 we shall use a somewhat different notation to express the same ideas.
This alternative notation can accommodate either discrete or continuous state Markov
chains. We shall let S denote the state space with typical element s ∈ S . The
transition density is π(s′|s) = Prob(st+1 = s′|st = s) and the initial density is
π0(s) = Prob(s0 = s). For all s ∈ S, π(s′|s) ≥ 0 and

∫
s′ π(s′|s)ds′ = 1; also∫

s
π0(s)ds = 1.3 Corresponding to (2.2.12), the likelihood function or density over

the history st = [st, st−1, . . . , s0] is

π
(
st
)

= π (st|st−1) · · ·π (s1|s0)π0 (s0) . (2.3.1)

For t ≥ 1, the time t unconditional distributions evolve according to

πt (st) =
∫
st−1

π (st|st−1)πt−1 (st−1) d st−1.

A stationary or invariant distribution satisfies

π∞ (s′) =
∫
s

π (s′|s)π∞ (s) d s

which is the counterpart to (2.2.3).

3 Thus, when S is discrete, π(sj |si) corresponds to Psi,sj in our earlier notation.
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Paralleling our discussion of finite state Markov chains, we can say that the
function φ(s) is invariant if ∫

φ (s′) π (s′|s) ds′ = φ (s) .

A stationary continuous state Markov process is said to be ergodic if the only in-
variant functions p(s′) are constant with probability one according to the stationary
distribution π∞ . A law of large numbers for Markov processes states:

Theorem 2.3.1. Let y(s) be a random variable, a measurable function of s , and let

(π(s′|s), π0(s)) be a stationary and ergodic continuous state Markov process. Assume

that E|y| < +∞ . Then

1
T

T∑
t=1

yt → Ey =
∫
y (s)π0 (s) ds

with probability 1 with respect to the distribution π0 .

2.4. Stochastic linear difference equations

The first order linear vector stochastic difference equation is a useful example of a
continuous state Markov process. Here we could use xt ∈ IRn rather than st to
denote the time t state and specify that the initial distribution π0(x0) is Gaussian
with mean µ0 and covariance matrix Σ0 ; and that the transition density π(x′|x)
is Gaussian with mean Aox and covariance CC′ . This specification pins down the
joint distribution of the stochastic process {xt}∞t=0 via formula (2.3.1). The joint
distribution determines all of the moments of the process that exist.

This specification can be represented in terms of the first-order stochastic linear
difference equation

xt+1 = Aoxt + Cwt+1 (2.4.1)

for t = 0, 1, . . ., where xt is an n× 1 state vector, x0 is a given initial condition, Ao
is an n× n matrix, C is an n ×m matrix, and wt+1 is an m× 1 vector satisfying
the following:

Assumption A1: wt+1 is an i.i.d. process satisfying wt+1 ∼ N (0, I).
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We can weaken the Gaussian assumption A1. To focus only on first and second
moments of the x process, it is sufficient to make the weaker assumption:

Assumption A2: wt+1 is an m× 1 random vector satisfying:

Ewt+1|Jt = 0 (2.4.2a)

Ewt+1w
′
t+1|Jt = I, (2.4.2b)

where Jt = [wt · · · w1 x0 ] is the information set at t , and E[ · |Jt] denotes the
conditional expectation. We impose no distributional assumptions beyond (2.4.2).
A sequence {wt+1} satisfying equation (2.4.2a) is said to be a martingale difference
sequence adapted to Jt . A sequence {zt+1} that satisfies E[zt+1|Jt] = zt is said to
be a martingale adapted to Jt .

An even weaker assumption is

Assumption A3: wt+1 is a process satisfying

Ewt+1 = 0

for all t and

Ewtw
′
t−j =

{
I, if j = 0;
0, if j �= 0.

A process satisfying Assumption A3 is said to be a vector ‘white noise’.4

Assumption A1 or A2 implies assumption A3 but not vice versa. Assumption
A1 implies assumption A2 but not vice versa. Assumption A3 is sufficient to justify
the formulas that we report below for second moments. We shall often append an
observation equation yt = Gxt to equation (2.4.1) and deal with the augmented
system

xt+1 = Aoxt + Cwt+1 (2.4.3a)

yt = Gxt. (2.4.3b)

Here yt is a vector of variables observed at t , which may include only some linear
combinations of xt . The system (2.4.3) is often called a linear state-space system.

4 Note that (2.4.2a) allows the distribution of wt+1 conditional on Jt to be
heteroskedastic.
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Example 1. Scalar second-order autoregression: Assume that zt and wt are scalar
processes and that

zt+1 = α+ ρ1zt + ρ2zt−1 + wt+1.

Represent this relationship as the system zt+1

zt

1

 =

 ρ1 ρ2 α

1 0 0
0 0 1

 zt

zt−1

1

+

 1
0
0

wt+1

zt = [ 1 0 0 ]

 zt

zt−1

1


which has form (2.4.3).

Example 2. First-order scalar mixed moving average and autoregression: Let

zt+1 = ρzt + wt+1 + γwt.

Express this relationship as[
zt+1

wt+1

]
=
[
ρ γ

0 0

] [
zt

wt

]
+
[

1
1

]
wt+1

zt = [ 1 0 ]
[
zt

wt

]
.

Example 3. Vector autoregression: Let zt be an n × 1 vector of random variables.
We define a vector autoregression by a stochastic difference equation

zt+1 =
4∑
j=1

Ajzt+1−j + Cywt+1, (2.4.4)

where wt+1 is an n × 1 martingale difference sequence satisfying equation (2.4.2)
with x′0 = [ z0 z−1 z−2 z−3 ] and Aj is an n×n matrix for each j . We can map
equation (2.4.4) into equation (2.4.1) as follows:

zt+1

zt

zt−1

zt−2

 =


A1 A2 A3 A4

I 0 0 0
0 I 0 0
0 0 I 0




zt

zt−1

zt−2

zt−3

+


Cy

0
0
0

wt+1. (2.4.5)

Define Ao as the state transition matrix in equation (2.4.5). Assume that Ao has
all of its eigenvalues bounded in modulus below unity. Then equation (2.4.4) can be
initialized so that zt is “covariance stationary,” a term we now define.
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2.4.1. First and second moments

We can use equation (2.4.1) to deduce the first and second moments of the sequence of
random vectors {xt}∞t=0 . A sequence of random vectors is called a stochastic process.

Definition: A stochastic process {xt} is said to be covariance stationary if it
satisfies the following two properties: (a) the mean is independent of time, Ext = Ex0

for all t , and (b) the sequence of autocovariance matrices E(xt+j−Ext+j)(xt−Ext)′
depends on the separation between dates j = 0,±1,±2, . . ., but not on t .

We use

Definition 2.4.1. A square real valued matrix A is said to be stable if all of its
eigenvalues have real parts that are strictly less than unity.

We shall often find it useful to assume that (2.4.3) takes the special form[
x1,t+1

x2,t+1

]
=
[

1 0
0 Ã

] [
x1,t

x2t

]
+
[

0
C̃

]
wt+1 (2.4.6)

where Ã is a stable matrix. That Ã is a stable matrix implies that the only solution
of (Ã − I)µ2 = 0 is µ2 = 0 (i.e., 1 is not an eigenvalue of Ã). It follows that the

matrix A =
[

1 0
0 Ã

]
on the right side of (2.4.6) has one eigenvector associated with

a single unit eigenvalue: (A − I)
[
µ1

µ2

]
= 0 implies µ1 is an arbitrary scalar and

µ2 = 0. The first equation of (2.4.6) implies that x1,t+1 = x1,0 for all t ≥ 0. Picking

the initial condition x1,0 pins down a particular eigenvector
[
x1,0

0

]
of A . As we

shall see soon, this eigenvector is our candidate for the unconditional mean of x that
makes the process covariance stationary.

We will make an assumption that guarantees that there exists an initial condition
(Ex0, E(x−Ex0)(x−Ex0)′) that makes the xt process covariance stationary. Either
of the following conditions works:

Condition A1: All of the eigenvalues of A in (2.4.3) are strictly less than one
in modulus.

Condition A2: The state space representation takes the special form (2.4.6) and
all of the eigenvalues of Ã are strictly less than one in modulus.
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To discover the first and second moments of the xt process, we regard the initial
condition x0 as being drawn from a distribution with mean µ0 = Ex0 and covariance
Σ0 = E(x − Ex0)(x − Ex0)′ . We shall deduce starting values for the mean and
covariance that make the process covariance stationary, though our formulas are also
useful for describing what happens when we start from some initial conditions that
generate transient behavior that stops the process from being covariance stationary.

Taking mathematical expectations on both sides of equation (2.4.1) gives

µt+1 = Aoµt (2.4.7)

where µt = Ext . We will assume that all of the eigenvalues of Ao are strictly less than
unity in modulus, except possibly for one that is affiliated with the constant terms
in the various equations. Then xt possesses a stationary mean defined to satisfy
µt+1 = µt , which from equation (2.4.7) evidently satisfies

(I − Ao)µ = 0, (2.4.8)

which characterizes the mean µ as an eigenvector associated with the single unit
eigenvalue of Ao . Notice that

xt+1 − µt+1 = Ao (xt − µt) + Cwt+1. (2.4.9)

Also, the fact that the remaining eigenvalues of Ao are less than unity in modulus
implies that starting from any µ0 , µt → µ .5

From equation (2.4.9) we can compute that the stationary variance matrix sat-
isfies

E (xt+1 − µ) (xt+1 − µ)′ = AoE (xt − µ) (xt − µ)′A′
o + CC′

or
Cx (0) ≡ E (xt − µ) (xt − µ)′ = AoCx (0)A′

o + CC′. (2.4.10)

5 To see this point, assume that the eigenvalues of Ao are distinct, and use the
representation Ao = PΛP−1 where Λ is a diagonal matrix of the eigenvalues of
Ao , arranged in descending order in magnitude, and P is a matrix composed of the
corresponding eigenvectors. Then equation (2.4.7) can be represented as µ∗

t+1 = Λµ∗
t ,

where µ∗
t ≡ P−1µt , which implies that µ∗

t = Λtµ∗
0 . When all eigenvalues but the first

are less than unity, Λt converges to a matrix of zeros except for the (1, 1) element,
and µ∗

t converges to a vector of zeros except for the first element, which stays at µ∗
0,1 ,

its initial value, which equals 1, to capture the constant. Then µt = Pµ∗
t converges

to P1µ
∗
0,1 = P1 , where P1 is the eigenvector corresponding to the unit eigenvalue.
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By virtue of (2.4.1) and (2.4.7), note that

(xt+j − µt+j) = Ajo (xt − µt) + Cwt+j + · · · +Aj−1
o Cwt+1.

Postmultiplying both sides by (xt − µt)′ and taking expectations shows that the
autocovariance sequence satisfies

Cx (j) ≡ E (xt+j − µ) (xt − µ)′ = AjoCx (0) . (2.4.11)

The autocovariance sequence is also called the autocovariogram. Equation (2.4.10) is
a discrete Lyapunov equation in the n × n matrix Cx(0). It can be solved with the
Matlab program doublej.m. Once it is solved, the remaining second moments Cx(j)
can be deduced from equation (2.4.11).6

Suppose that yt = Gxt . Then µyt = Eyt = Gµt and

E (yt+j − µyt+j) (yt − µyt)
′ = GCx (j)G′, (2.4.12)

for j = 0, 1, . . .. Equations (2.4.12) are matrix versions of the so-called Yule-Walker
equations, according to which the autocovariogram for a stochastic process governed
by a stochastic linear difference equation obeys the nonstochastic version of that
difference equation.

2.4.2. Impulse response function

Suppose that the eigenvalues of Ao not associated with the constant are bounded
above in modulus by unity. Using the lag operator L defined by Lxt+1 ≡ xt , express
equation (2.4.1) as

(I −AoL)xt+1 = Cwt+1. (2.4.13)

Recall the Neumann expansion (I − AoL)−1 = (I + AoL + A2
oL

2 + · · · ) and apply
(I −AoL)−1 to both sides of equation (2.4.13) to get

xt+1 =
∞∑
j=0

AjoCwt+1−j , (2.4.14)

6 Notice that Cx(−j) = Cx(j)′ .
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which is the solution of equation (2.4.1) assuming that equation (2.4.1) has been
operating for the infinite past before t = 0. Alternatively, iterate equation (2.4.1)
forward from t = 0 to get

xt = Atox0 +
t−1∑
j=0

AjoCwt−j (2.4.15)

Evidently,

yt = GAtox0 +G
t−1∑
j=0

AjoCwt−j (2.4.16)

Equations (2.4.14), (2.4.15), and (2.4.16) are alternative versions of a moving average
representation. Viewed as a function of lag j , hj = AjoC or h̃j = GAjoC is called
the impulse response function. The moving average representation and the associated
impulse response function show how xt+1 or yt+j is affected by lagged values of the
shocks, the wt+1 ’s. Thus, the contribution of a shock wt−j to xt is AjoC .7

2.4.3. Prediction and discounting

From equation (2.4.1) we can compute the useful prediction formulas

Etxt+j = Ajoxt (2.4.17)

for j ≥ 1, where Et(·) denotes the mathematical expectation conditioned on xt =
(xt, xt−1, . . . , x0). Let yt = Gxt , and suppose that we want to compute Et

∑∞
j=0 β

jyt+j .
Evidently,

Et

∞∑
j=0

βjyt+j = G (I − βAo)
−1
xt, (2.4.18)

provided that the eigenvalues of βAo are less than unity in modulus. Equation
(2.4.18) tells us how to compute an expected discounted sum, where the discount
factor β is constant.

7 The Matlab programs dimpulse.m and impulse.m compute impulse response
functions.
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2.4.4. Geometric sums of quadratic forms

In some applications, we want to calculate

αt = Et

∞∑
j=0

βjx′t+jY xt+j

where xt obeys the stochastic difference equation (2.4.1) and Y is an n× n matrix.
To get a formula for αt , we use a guess-and-verify method. We guess that αt can be
written in the form

αt = x′tνxt + σ, (2.4.19)

where ν is an (n× n) matrix, and σ is a scalar. The definition of αt and the guess
(2.4.19) imply

αt = x′tY xt + βEt
(
x′t+1νxt+1 + σ

)
= x′tY xt + βEt

[
(Aoxt + Cwt+1)

′
ν (Aoxt + Cwt+1) + σ

]
= x′t (Y + βA′

oνAo) xt + β trace (νCC′) + βσ.

It follows that ν and σ satisfy

ν = Y + βA′
oνAo

σ = βσ + β trace νCC′.
(2.4.20)

The first equation of (2.4.20) is a discrete Lyapunov equation in the square matrix ν ,
and can be solved by using one of several algorithms.8 After ν has been computed,
the second equation can be solved for the scalar σ .

We mention two important applications of formulas (2.4.19), (2.4.20).

Asset pricing

Let yt be governed be governed by the state-space system (2.4.3). In addition,
assume that there is a scalar random process zt given by

zt = Hxt.

8 The Matlab control toolkit has a program called dlyap.m that works when all
of the eigenvalues of Ao are strictly less than unity; the program called doublej.m
works even when there is a unit eigenvalue associated with the constant.
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Regard the process yt as a payout or dividend from an asset, and regard βtzt as a
stochastic discount factor. The price of a perpetual claim on the stream of payouts is

αt = Et

∞∑
j=0

(
βjzt+j

)
yt+j. (2.4.21)

To compute αt , we simply set Y = H ′G in (2.4.19), (2.4.20). In this application,
the term σ functions as a risk premium; it is zero when C = 0.

Evaluation of dynamic criterion

Let a state xt be governed by

xt+1 = Axt +But + Cwt+1 (2.4.22)

where ut is a control vector that is set by a decision maker according to a fixed rule

ut = −F0xt. (2.4.23)

Substituting (2.4.23) into (2.4.22) gives (2.4.1) where Ao = A − BF0 . We want to
compute the value function

v (x0) = −E0

∞∑
t=0

βt [x′tRxt + u′tQut]

for fixed matrices R and Q , fixed decision rule F0 in (2.4.23), Ao = A− BF0 , and
arbitrary initial condition x0 . Formulas (2.4.19), (2.4.20) apply with Y = R+F ′

0QF0

and Ao = A−BF0 . Express the solution as

v (x0) = −x′0Px0 − σ. (2.4.24)

Now consider the following one-period problem. Suppose that we must use deci-
sion rule F0 from time 1 onward, so that the value at time 1 on starting from state
x1 is

v (x1) = −x′1Px1 − σ. (2.4.25)

Taking ut = −F0xt as given for t ≥ 1, what is the best choice of u0 ? This leads to
the optimum problem:

max
u0

−{x′0Rx0 + u′0Qu0 + βE (Ax0 +Bu0 + Cw1)
′
P (Ax0 +Bu0 + Cw1) + βσ}.

(2.4.26)
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The first-order conditions for this problem can be rearranged to attain

u0 = −F1x0 (2.4.27)

where
F1 = β (Q+ βB′PB)−1

B′PA. (2.4.28)

For convenience, we state the formula for P :

P = R + F ′
0QF0 + β (A−BF0)

′ P (A−BF0) . (2.4.29)

Given F0 , formula (2.4.29) determines the matrix P in the value function that de-
scribes the expected discounted value of the sum of payoffs from sticking forever with
this decision rule. Given P , formula (2.4.29) gives the best zero-period decision
rule u0 = −F1x0 if you are permitted only a one-period deviation from the rule
ut = −F0xt . If F1 �= F0 , we say that decision maker would accept the opportunity
to deviate from F0 for one period.

It is tempting to iterate on (2.4.28), (2.4.29) as follows to seek a decision rule
from which a decision maker would not want to deviate for one period: (1) given
an F0 , find P ; (2) reset F equal to the F1 found in step 1, then use (2.4.29) to
compute a new P ; (3) return to step 1 and iterate to convergence. This leads to the
two equations

Fj+1 = β (Q+ βB′PjB)−1
B′PjA

Pj+1 = R+ F ′
jQFj + β (A−BFj)

′
Pj+1 (A−BFj) .

(2.4.30)

which are to be initialized from an arbitrary F0 that assures that
√
β(A − BF0) is

a stable matrix. After this process has converged, one cannot find a value-increasing
one-period deviation from the limiting decision rule ut = −F∞xt .9

As we shall see in chapter 4, this is an excellent algorithm for solving a dynamic
programming problem. It is called a Howard improvement algorithm.

9 It turns out that if you don’t want to deviate for one period, then you would
never want to deviate, so that the limiting rule is optimal.
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2.5. Population regression

This section explains the notion of a regression equation. Suppose that we have a
state-space system (2.4.3) with initial conditions that make it covariance stationary.
We can use the preceding formulas to compute the second moments of any pair of
random variables. These moments let us compute a linear regression. Thus, let X be
a 1×N vector of random variables somehow selected from the stochastic process {yt}
governed by the system (2.4.3). For example, let N = 2 ×m , where yt is an m× 1
vector, and take X = [ y′t y′t−1 ] for any t ≥ 1. Let Y be any scalar random variable
selected from the m × 1 stochastic process {yt} . For example, take Y = yt+1,1 for
the same t used to define X , where yt+1,1 is the first component of yt+1 .

We consider the following least squares approximation problem: find an N × 1
vector of real numbers β that attain

min
β
E (Y −Xβ)2 (2.5.1)

Here Xβ is being used to estimate Y, and we want the value of β that minimizes the
expected squared error. The first-order necessary condition for minimizing E(Y −
Xβ)2 with respect to β is

EX ′ (Y −Xβ) = 0, (2.5.2)

which can be rearranged as EX ′Y = EX ′Xβ or10

β = [E (X ′X)]−1 (EX ′Y ) . (2.5.3)

By using the formulas (2.4.8), (2.4.10), (2.4.11), and (2.4.12), we can compute
EX ′X and EX ′Y for whatever selection of X and Y we choose. The condition
(2.5.2) is called the least squares normal equation. It states that the projection error
Y −Xβ is orthogonal to X . Therefore, we can represent Y as

Y = Xβ + ε (2.5.4)

where EX ′ε = 0. Equation (2.5.4) is called a regression equation, and Xβ is called
the least squares projection of Y on X or the least squares regression of Y on
X . The vector β is called the population least squares regression vector. The law

10 That EX ′X is nonnegative semidefinite implies that the second-order conditions
for a minimum of condition (2.5.1) are satisfied.
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Figure 2.5.1: Impulse response, spectrum, covariogram, and sam-
ple path of process (1 − .9L)yt = wt .

of large numbers for continuous state Markov processes Theorem 2.3.1 states con-
ditions that guarantee that sample moments converge to population moments, that
is, 1

S

∑S
s=1X

′
sXs → EX ′X and 1

S

∑S
s=1X

′
sYs → EX ′Y . Under those conditions,

sample least squares estimates converge to β .
There are as many such regressions as there are ways of selecting Y,X . We have

shown how a model (e.g., a triple Ao, C,G , together with an initial distribution for
x0 ) restricts a regression. Going backward, that is, telling what a given regression
tells about a model, is more difficult. Often the regression tells little about the model.
The likelihood function encodes what a given data set says about the model.
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Figure 2.5.2: Impulse response, spectrum, covariogram, and sam-
ple path of process (1 − .8L4)yt = wt .
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Figure 2.5.3: Impulse response, spectrum, covariogram, and sam-
ple path of process (1 − 1.3L+ .7L2)yt = wt .

2.5.1. The spectrum

For a covariance stationary stochastic process, all second moments can be encoded
in a complex-valued matrix called the spectral density matrix. The autocovariance



Population regression 47

0 10 20 30
0

0.2

0.4

0.6

0.8

1
impulse response

0 1 2 3

10
0

10
1

10
2

spectrum

−15 −10 −5 0 5 10 15

2.2

2.4

2.6

2.8

3

3.2

covariogram

20 40 60 80

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

sample path

Figure 2.5.4: Impulse response, spectrum, covariogram, and sam-
ple path of process (1 − .98L)yt = (1 − .7L)wt .

sequence for the process determines the spectral density. Conversely, the spectral
density can be used to determine the autocovariance sequence.

Under the assumption that Ao is a stable matrix,11 the state xt converges to
a unique covariance stationary probability distribution as t approaches infinity. The
spectral density matrix of this covariance stationary distribution Sx(ω) is defined to
be the Fourier transform of the covariogram of xt :

Sx (ω) ≡
∞∑

τ=−∞
Cx (τ) e−iωτ . (2.5.5)

For the system (2.4.1), the spectral density of the stationary distribution is given by
the formula

Sx (ω) =
[
I −Aoe

−iω]−1
CC′ [I −A′

oe
+iω
]−1

, ∀ω ∈ [−π, π] . (2.5.6)

The spectral density contains all of the information about the covariances. They can
be recovered from Sx(ω) by the Fourier inversion formula12

11 It is sufficient that the only eigenvalue of Ao not strictly less than unity in mod-
ulus is that associated with the constant, which implies that Ao and C fit together
in a way that validates (2.5.6).
12 Spectral densities for continuous-time systems are discussed by Kwakernaak and

Sivan (1972). For an elementary discussion of discrete-time systems, see Sargent
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Cx (τ) = (1/2π)
∫ π

−π
Sx (ω) e+iωτdω.

Setting τ = 0 in the inversion formula gives

Cx (0) = (1/2π)
∫ π

−π
Sx (ω) dω,

which shows that the spectral density decomposes covariance across frequencies.13

A formula used in the process of generalized method of moments (GMM) estimation
emerges by setting ω = 0 in equation (2.5.5), which gives

Sx (0) ≡
∞∑

τ=−∞
Cx (τ) .

2.5.2. Examples

To give some practice in reading spectral densities, we used the Matlab program
bigshow2.m to generate Figures 2.5.1, 2.5.2, 2.5.4, and 2.5.3 The program takes as
an input a univariate process of the form

a (L) yt = b (L)wt,

where wt is a univariate martingale difference sequence with unit variance, where
a(L) = 1 − a2L − a3L

2 − · · · − anL
n−1 and b(L) = b1 + b2L + · · · + bnL

n−1 , and
where we require that a(z) = 0 imply that |z| > 1. The program computes and
displays a realization of the process, the impulse response function from w to y , and
the spectrum of y . By using this program, a reader can teach himself to read spectra
and impulse response functions. Figure 2.5.1 is for the pure autoregressive process
with a(L) = 1− .9L, b = 1. The spectrum sweeps downward in what C.W.J. Granger
(1966) called the “typical spectral shape” for an economic time series. Figure 2.5.2
sets a = 1 − .8L4, b = 1. This is a process with a strong seasonal component. That
the spectrum peaks at π and π/2 are telltale signs of a strong seasonal component.
Figure 2.5.4 sets a = 1 − 1.3L + .7L2, b = 1. This is a process that has a spectral
peak and cycles in its covariogram.14 Figure 2.5.3 sets a = 1 − .98L, b = 1 − .7L .

(1987a). Also see Sargent (1987a, chap. 11) for definitions of the spectral density
function and methods of evaluating this integral.
13 More interestingly, the spectral density achieves a decomposition of covariance

into components that are orthogonal across frequencies.
14 See Sargent (1987a) for a more extended discussion.
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This is a version of a process studied by Muth (1960). After the first lag, the impulse
response declines as .99j , where j is the lag length.

2.6. Example: the LQ permanent income model

To illustrate several of the key ideas of this chapter, this section describes the linear-
quadratic savings problem whose solution is a rational expectations version of the
permanent income model of Friedman (1956) and Hall (1978). We use this model as
a vehicle for illustrating impulse response functions, alternative notions of the ‘state’,
the idea of ‘cointegration’, and an invariant subspace method.

The LQ permanent income model is a modification (and not quite a special case
for reasons that will be apparent later) of the following ‘savings problem’ to be studied
in chapter 16. A consumer has preferences over consumption streams that are ordered
by the utility functional

E0

∞∑
t=0

βtu (ct) (2.6.1)

where Et is the mathematical expectation conditioned on the consumer’s time t

information, ct is time t consumption and u(c) is a strictly concave one-period utility
function and β ∈ (0, 1) is a discount factor. The consumer maximizes (2.6.1) by
choosing a consumption, borrowing plan {ct, bt+1}∞t=0 subject to the sequence of
budget constraints

ct + bt = R−1bt+1 + yt (2.6.2)

where yt is an exogenous stationary endowment process, R is a constant gross risk-
free interest rate, bt is one-period risk-free debt maturing at t , and b0 is a given
initial condition. We shall assume that R−1 = β . For example, we might assume
that the endowment process has the state-space representation

zt+1 = A22zt + C2wt+1 (2.6.3a)

yt = Uyzt (2.6.3b)

where wt+1 is an i.i.d. process with mean zero and identify contemporaneous covari-
ance matrix, A22 is a matrix the modulus of whose maximum eigenvalue is less than
unity, and Uy is a selection vector that identifies y with a particular linear combi-
nation of the zt . We impose the following condition on the consumption, borrowing



50 Chapter 2: Time series

plan:

E0

∞∑
t=0

βtb2t < +∞. (2.6.4)

This condition suffices to rule out ‘Ponzi schemes’. The state vector confronting the
household at t is [ bt zt ]

′ , where bt is his one-period debt that falls due at the
beginning of period t and zt contains all variables useful for forecasting his future
endowment. We impose this condition to rule out an always-borrow scheme that
would allow the household to enjoy bliss consumption forever. The rationale for
imposing this condition is to make the solution of the problem resemble more closely
the solution of problems to be studied in chapter 16 that impose non-negativity on
the consumption path. The first-order condition for maximizing (2.6.1) subject to
(2.6.2) is15

Etu
′ (ct+1) = u′ (ct) . (2.6.5)

For the rest of this section we assume the quadratic utility function u(ct) =
−.5(ct − γ)2 , where γ is a bliss level of consumption. Then (2.6.5) implies

Etct+1 = ct. (2.6.6)

Along with the quadratic utility specification, we allow consumption ct to be nega-
tive.16

To deduce the optimal decision rule, we have to solve the system of difference
equations formed by (2.6.2) and (2.6.6) subject to the boundary condition (2.6.4).
To accomplish this, solve (2.6.2) forward to get

bt =
∞∑
j=0

βj (yt+j − ct+j) . (2.6.7)

Take conditional expectations on both sides and use (2.6.6) and the law of iterated
expectations to deduce

bt =
∞∑
j=0

βjEtyt+j − 1
1 − β

ct (2.6.8)

15 We shall study how to derive this first-order condition in detail in later chapters.
16 That ct can be negative explains why we impose condition (2.6.4) instead of

an upper bound on the level of borrowing, such as the natural borrowing limit of
chapters 8, 16, and 17.
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or

ct = (1 − β)

 ∞∑
j=0

βjEtyt+j − bt

 . (2.6.9)

If we define the net rate of interest r by β = 1
1+r , we can also express this equation

as

ct =
r

1 + r

 ∞∑
j=0

βjEtyt+j − bt

 . (2.6.10)

Equation (2.6.9) or (2.6.10) expresses consumption as equalling economic income,
namely, a constant marginal propensity consume or interest factor r

1+r times the
sum of non-financial wealth

∑∞
j=0 β

jEtyt+j and financial wealth −bt . Notice that
(2.6.9) or (2.6.10) represents ct as a function of the state [bt, zt] confronting the
household, where from (2.6.3) zt contains the information useful for forecasting the
endowment process that enters the conditional expectation Et .

A revealing way of understanding the solution is to show that after the optimal
decision rule has been obtained, there is a point of view that allows us to regard the
state as being ct together with zt and to regard bt as an ‘outcome’. Following Hall
(1978), this is a sharp way to summarize the implication of the LQ permanent income
theory. We now proceed to transform the state vector in this way.

To represent the solution for bt , substitute (2.6.9) into (2.6.2) and after rear-
ranging obtain

bt+1 = bt +
(
β−1 − 1

) ∞∑
j=0

βjEtyt+j − β−1yt. (2.6.11)

Next shift (2.6.9) forward one period and eliminate bt+1 by using (2.6.2) to
obtain

ct+1 = (1 − β)
∞∑
j=0

Et+1β
jyt+j+1 − (1 − β)

[
β−1 (ct + bt − yt)

]
.

If we add and subtract β−1(1−β)
∑∞

j=0 β
jEtyt+j from the right side of the preceding

equation and rearrange, we obtain

ct+1 = ct + (1 − β)
∞∑
j=0

βj (Et+1yt+j+1 − Etyt+j+1) . (2.6.12)

The right side is the time t+ 1 innovation to the expected present value of the
endowment process y . Suppose that the endowment process has the moving average
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representation17

yt+1 = d (L)wt+1 (2.6.13)

where wt+1 is an i.i.d. vector process with Ewt+1 = 0 and contemporaneous covari-
ance matrix Ewt+1w

′
t+1 = I , d(L) =

∑∞
j=0 djL

j , where L is the lag operator, and
the household has an information set wt = [wt, wt−1, . . . , ] at time t . Then notice
that

yt+j − Etyt+j = d0wt+j + d1wt+j−1 + · · · + dj−1wt+1.

It follows that
Et+1yt+j − Etyt+j = dj−1wt+1. (2.6.14)

Using (2.6.14) in (2.6.12) gives

ct+1 − ct = (1 − β) d (β)wt+1. (2.6.15)

The object d(β) is the present value of the moving average coefficients in the repre-
sentation for the endowment process yt .

After all of this work, we can represent the optimal decision rule for ct, bt+1 in
the form of the two equations (2.6.12), (2.6.8), which we repeat here for convenience:

ct+1 = ct + (1 − β)
∞∑
j=0

βj (Et+1yt+j+1 − Etyt+j+1) (2.6.16)

bt =
∞∑
j=0

βjEtyt+j − 1
1 − β

ct. (2.6.17)

Recalling the form of the endowment process (2.6.3), we can compute

Et

∞∑
j=0

βjzt+j = (I − βA22)
−1
zt

Et+1

∞∑
j=0

βjzt+j+1 = (I − βA22)
−1
zt+1

Et

∞∑
j=0

βjzt+j+1 = (I − βA22)
−1A22zt.

17 Representation (2.6.3) implies that d(L) = Uy(I −A22L)−1C2 .
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Substituting these formulas into (2.6.16), (2.6.17) and using (2.6.3a) gives the fol-
lowing representation for the consumer’s optimum decision rule:

ct+1 = ct + (1 − β)Uy (I − βA22)
−1
C2wt+1 (2.6.18a)

bt = Uy (I − βA22)
−1
zt − 1

1 − β
ct (2.6.18b)

yt = Uyzt (2.6.18c)

zt+1 = A22zt + C2wt+1 (2.6.18d)

Representation (2.6.18) reveals several things about the optimal decision rule.
(1) The state consists of the endogenous part ct and the exogenous part zt . These
contain all of the relevant information for forecasting future c, y, b . Notice that finan-
cial assets bt have disappeared as a component of the state because they are properly
encoded in ct . (2) According to (2.6.18), consumption is a random walk with inno-
vation (1 − β)d(β)wt+1 as implied also by (2.6.15). This outcome confirms that the
Euler equation (2.6.6) is built into the solution. That consumption is a random walk
of course implies that it does not possess an asymptotic stationary distribution, at
least so long as zt exhibits perpetual random fluctuations, as it will generally under
(2.6.3).18 This feature is inherited partly from the assumption that βR = 1. (3) The
impulse response function of ct is a ‘box’: for all j ≥ 1, the response of ct+j to an in-
crease in the innovation wt+1 is (1−β)d(β) = (1−β)Uy(I−βA22)−1C2 . (4) Solution
(2.6.18) reveals that the joint process ct, bt possesses the property that Granger and
Engle (1987) called cointegration. In particular, both ct and bt are non-stationary
because they have unit roots (see representation (2.6.11) for bt ), but there is a linear
combination of ct, bt that is stationary provided that zt is stationary. From (2.6.17),
the linear combination is (1 − β)bt + ct . Accordingly, Granger and Engle would call
[ (1 − β) 1 ] a ‘co-integrating vector’ that when applied to the nonstationary vector
process [ bt ct ]

′ yields a process that is asymptotically stationary. Equation (2.6.8)
can be arranged to take the form

(1 − β) bt + ct = Et

∞∑
j=0

βjyt+j, (2.6.19)

which asserts that the ‘co-integrating residual’ on the left side equals the conditional
expectation of the geometric sum of future incomes on the right.19 Lettau, Martin

18 The failure of consumption to converge will also occur in chapter 16 when we
drop quadratic utility and assume that consumption must be nonnegative.
19 See Campbell and Shiller (1988) and Lettau and Ludvigson (2001, 2004) for

interesting applications of related ideas.
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2.6.1. Invariant subspace approach

We can glean additional insights about the structure of the optimal decision rule
by solving the decision problem in a mechanical but quite revealing way that easily
generalizes to a host of problems, as we shall see later in chapter 5. We can represent
the system consisting of the Euler equation (2.6.6), the budget constraint (2.6.2),
and the description of the endowment process (2.6.3) asβ 0 0

0 I 0
0 0 1

 bt+1

zt+1

ct+1

 =

 1 −Uy 1
0 A22 0
0 0 1

 btzt
ct

+

 0
C2

C1

wt+1 (2.6.20)

where C1 is an undetermined coefficient. Premultiply both sides by the inverse of the
matrix on the left and write bt+1

zt+1

ct+1

 = Ã

 btzt
ct

+ C̃wt+1. (2.6.21)

We want to find solutions of (2.6.21) that satisfy the no-explosion condition (2.6.4).
We can do this by using machinery from chapter 5. The key idea is to discover what
part of the vector [ bt zt ct ]

′ is truly a state from the view of the decision maker,
being inherited form the past, and what part is a ‘co-state’ or ‘jump’ variable that
can adjust at t . For our problem bt, zt are truly components of the state, but ct is
free to adjust. The theory determines ct at t as a function of the true state variables
[bt, zt] . A powerful approach to determining this function is the following so-called
invariant subspace method of chapter 5. Obtain the eigenvector decomposition of Ã :

Ã = V ΛV −1

where Λ is a diagonal matrix consisting of the eigenvalues of Ã and V is a matrix

of the associated eigenvectors. Let V −1 ≡
[
V 11 V 12

V 21 V 22

]
. Then applying formula

(5.5.11) of chapter 5 implies that if (2.6.4) is to hold, then the jump variable ct must
satisfy

ct = − (V 22
)−1

V 21

[
bt

zt

]
. (2.6.22)

Formula (2.6.22) gives the unique value of ct that assures that (2.6.4) is satisfied,
or in other words, that the state remains in the ‘stabilizing subspace’. Notice that
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the variables on the right side of (2.6.22) conform with those called for by (2.6.10):
−bt is there as a measure of financial wealth, and zt is there because it includes all
variables that are useful for forecasting the future endowments that occur in (2.6.10).

2.7. The term structure of interest rates

Asset prices encode investors’ expectations about future payoffs. If we suppose that
investors form their expectations using versions of our optimal forecasting formulas,
we acquire a theory of asset prices. Here we use the term structure of interest rates
as an example.

2.7.1. A stochastic discount factor

Let’s start with just a little background in the theory of asset pricing. To begin with
the simplest case, let {dt}∞t=0 be a stream of dividends. Let pt be the price of a
claim on what remains of the dividend stream from date t+1 on. The standard asset
pricing model under certainty asserts that

pt =
∞∑
j=1

(
j∏
s=1

mt+s

)
dt+j (2.7.1)

where mt+1 is a one-period factor for discounting dividends between t and t + 1
and

∏j
s=1mt+j is a j -period factor for discounting dividends between t + j and t .

A simple model assumes a constant discount factor ms = β , which makes (2.7.1)
become

pt =
∞∑
j=1

βjdt+j .

In chapter 13, we shall study generalizations of (2.7.1) that take the form

pt = Et

∞∑
j=1

(
j∏
s=1

mt+s

)
dt+j (2.7.2)

where mt+1 is a one-period stochastic discount factor for converting a time t + 1
payoff into a time t value, and Et is a mathematical expectation conditioned on time
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t information. In this section, we use a version of formula (2.7.2) to illustrate the
power of our formulas for solving linear stochastic difference equations.

We specify a dividend process in a special way that is designed to make pt be
the price of an n-period risk-free pure discount nominal bond: dt+n = 1, dt+j = 0
for j �= n , where for a nominal bond ‘1’ means one dollar. In this case, we add a
subscript n to help us remember the period for the bond and (2.7.2) becomes

pnt = Et

(
n∏
s=1

mt+s

)
(2.7.3)

We define the yield ynt on an n-period bond by pnt = exp(−nynt) or

ynt = −n−1 log pnt. (2.7.4)

Thus, yields are linear in the logs of the corresponding bond prices. Bond yields are
Gaussian when bond prices are log-normal (i.e., the log of bond prices are Gaussian)
and this will be the outcome if we specify that the log of the discount factor mt+1

follows a Gaussian process.

2.7.2. The log normal bond pricing model

Here is the log-normal bond price model. A one-period stochastic discount factor at t
is mt+1 and an n-period stochastic discount factor at t is mt+1mt+2 · · ·mt+n .20 The
logarithm of the one-period stochastic discount factor follows the stochastic process

logmt+1 = −δ − ezzt+1 (2.7.5a)

zt+1 = Azzt + Czwt+1 (2.7.5b)

where wt+1 is an i.i.d. Gaussian random vector with Ewt+1 = 0, Ewt+1w
′
t+1 = I ,

and Az is an m×m matrix all of whose eigenvalues are bounded by unity in modulus.
Soon we shall describe the process for the log of the nominal stochastic discount factor
that Backus and Zin (1994) used to emulate the term structure of nominal interest
rates in the U.S. during the post WWII period. At time t , an n-period risk free

20 Some authors use the notation mt+j,t to denote a j -period stochastic discount
factor at time t . The transformation between that notation and ours is mt+1,t =
mt+1, . . . ,mt+j,t = mt+1 · · ·mt+j .
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nominal bond promises to pay one dollar for sure in period t + n . According to
(2.7.3), the price at t of this bond is the conditional expectation of the product of
the n-period stochastic discount factor times the unit payout.21 Applying (2.7.4) to
(2.7.3) gives

ynt = −n−1 logEt [mt+1 · · ·mt+n] . (2.7.6)

To evaluate the right side of (2.7.6), we use the following property of log normal
distributions:

Log normal distribution: If logmt+1 ∼ N (µ, σ2) (i.e., logmt+1 is Gaus-
sian with mean µ and variance σ2 ), then

logEmt+1 = µ+
σ2

2
. (2.7.7)

Applying this property to the conditional distribution of mt+1 induced by (2.7.5)
gives

logEtmt+1 = −δ − ezAzzt +
ezCzCz

′ez′

2
. (2.7.8)

By iterating on (2.7.5), we can obtain the following expression that is useful for
characterizing the conditional distribution of log(mt+1 · · ·mt+n):

− (log (mt+1) + · · · log (mt+n)) = nδ + ez
(
Az +Az

2 + · · ·Azn
)
zt

+ ezCzwt+n + ez [Cz +AzCz ]wt+n−1

+ · · · + ez
[
Cz +AzCz + · · · +Az

n−1Cz
]
wt+1

(2.7.9)
The distribution of logmt+1 + · · · logmt+n conditional on zt is thus N (µnt, σ2

n),
where22

µnt = − [nδ + ez (Az + · · ·Azn) zt] (2.7.10a)

σ2
1 = ezCzCz

′ez ′ (2.7.10b)

σ2
n = σ2

n−1 + ez
[
I + · · · +Az

n−1
]
CzCz

′ [I + · · · +Az
n−1

]′
ez

′ (2.7.10c)

21 That is, the price of the bond is the price of the payouts times their quantities
added across states via the expectation operator
22 For the purpose of programming these formulas, it is useful to note that (I +
Az + · · · +Az

n−1) = (I −Az)−1(I −Az
n).
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where the recursion (2.7.10c) holds for n ≥ 2. Notice that the conditional means µnt
vary over time but that the conditional covariances σ2

n are constant over time.23 Applying
(2.7.6) and formula (2.7.7) for the log of the expectation of a log normally distributed
random variable gives the following formula for bond yields:

ynt =
(
δ − σ2

n

2 × n

)
+ n−1ez (Az + · · · +Az

n) zt. (2.7.11)

The vector yt = [ y1t y2t · · · ynt ]
′ is called the term structure of nominal

interest rates at time t . A specification known as the expectations theory of the term
structure resembles but differs from (2.7.11). The expectations theory asserts that
n period yields are averages of expected future values of one-period yields, which
translates to

ynt = δ + n−1ez (Az + · · · +Az
n) zt (2.7.12)

because evidently the conditional expectation Ety1t+j = δ+ezAjzzt . The expectations
theory (2.7.12) can be viewed as an approximation to the log-normal yield model
(2.7.11) that neglects the contributions of the variance terms σ2

n to the constant
terms.

Returning to the log-normal bond price model, we evidently have the following
compact state space representation for the term structure of interest rates and its
dependence on the law of motion for the stochastic discount factor:

Xt+1 = AoXt + Cwt+1 (2.7.13a)

Yt ≡
[

yt

logmt

]
= GXt (2.7.13b)

where

Xt =
[

1
zt

]
Ao =

[
1 0
0 Az

]
C =

[
0
Cz

]
and

G =



δ − σ2
1
2 ezAz

δ − σ2
2

2×2 2−1ez
(
Az +Az

2
)

...
...

δ − σ2
n

2×n n−1ez (Az + · · · +Az
n)

−δ −ez

 .

23 The celebrated affine term structure model generalizes the log-normal model by
allowing σ2

n to depend on time by feeding back on parts of the state vector. See Ang
and Piazzesi (2003) for recent estimates of an affine term structure model.
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2.7.3. Slope of yield curve depends on serial correlation of logmt+1

From (2.7.13), it follows immediately that the unconditional mean of the term struc-
ture is

Ey′t = [ δ − σ2
1 · · · δ − σ2

n

2×n ]′ ,

so that the term structure on average rises with horizon only if σ2
j /j falls as j in-

creases. By interpreting our formulas for the σ2
j ’s, it is possible to show that a term

structure that on average rises with maturity implies that the log of the stochastic
discount factor is negatively serially correlated. Thus, it can be verified from (2.7.9)
that the term σ2

j in (2.7.10) and (2.7.11) satisfies

σ2
j = vart (logmt+1 + · · · + logmt+j)

where vart denotes a variance conditioned on time t information zt . Notice, for
example, that

vart (log mt+1 + log mt+2) = vart (log mt+1) + vart (log mt+2) + 2covt (log mt+1, log mt+2)
(2.7.14)

where covt is a conditional covariance. It can then be established that σ2
1 >

σ2
2
2 can

occur only if covt(logmt+1, logmt+2) < 0. Thus, a yield curve that is upward sloping
on average reveals that the log of the stochastic discount factor is negatively serially
correlated. (See the spectrum of the log stochastic discount factor in Fig. 2.7.5 below.)

2.7.4. Backus and Zin’s stochastic discount factor

For a specification of Az , Cz, δ for which the eigenvalues of Az are all less than
unity, we can use the formulas presented above to compute moments of the stationary
distribution EYt , as well as the autocovariance function CovY (τ) and the impulse
response function given in (2.4.15) or (2.4.16). For the term structure of nominal
U.S. interest rates over much of the post WWII period, Backus and Zin (1994) provide
us with an empirically plausible specification of Az , Cz, ez . In particular, they specify
that logmt+1 is a stationary autoregressive moving average process

−φ (L) logmt+1 = φ (1) δ + θ (L)σwt+1

where wt+1 is a scalar Gaussian white noise with Ew2
t+1 = 1 and

φ (L) = 1 − φ1L− φ2L
2 (2.7.15a)

θ (L) = 1 + θ1L+ θ2L
2 + θ3L

3. (2.7.15b)
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Backus and Zin specified parameter values for that imply that all of the zeros of
both φ(L) and θ(L) exceed unity in modulus,24 a condition that assures that the
eigenvalues of Ao are all less than unity in modulus. Backus and Zin’s specification
can be captured by setting

zt = [ logmt logmt−1 wt wt−1 wt−2 ]

and

Az =


φ1 φ2 θ1σ θ2σ θ3σ

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0


and Cz = [σ 0 1 0 0 ]′ where σ > 0 is the standard deviation of the innovation
to logmt+1 and ez = [ 1 0 0 0 0 ].

2.7.5. Reverse engineering a stochastic discount factor

Backus and Zin use time series data on yt together with the restrictions implied by
the log normal bond pricing model and to deduce implications about the stochastic
discount factor mt+1 . They call this procedure ‘reverse engineering the yield curve’,
but what they really do is use time series observations on the yield curve to reverse
engineer a stochastic discount factor . They used the generalized method of moments
to estimate (some people say ‘calibrate’) the following values for monthly U.S. nominal
interest rates on pure discount bonds: δ = .528, σ = 1.023, θ(L) = 1 − 1.031448L+
.073011L2 + .000322L3 , φ(L) = 1− 1.031253L+ .073191L2 . Why do Backus and Zin
carry along so many digits? To explain why, first notice that with these particular
values θ(L)

φ(L) ≈ 1, so that the log of the stochastic discount factor is well approximated
by an i.i.d. process:

− logmt+1 ≈ δ + σwt+1.

This means that fluctuations in the log stochastic discount factor are difficult to
predict. Backus and Zin argue convincingly that to match observed features that are
summarized by estimated first and second moments of the nominal term structure
yt process and for yields on other risky assets for the U.S. after World War II, it

24 A complex variable z0 is said to be a zero of φ(z) if φ(z0) = 0.
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is important that θ(L), φ(L) have two properties: (a) first, θ(L) ≈ φ(L) so that
the stochastic discount factor is volatile variable whose fluctuations are difficult to
predict variable; and (b) nevertheless that θ(L) �= φ(L) so that the stochastic discount
factor has subtle predictable components. Feature (a) is needed to match observed
prices of risky securities, as we shall discuss in chapter 13. In particular, observations
on returns on risky securities can be used to calculate a so-called ‘market price of
risk’ that in theory should equal σt(mt+1)

Etmt+1
, where σt denotes a conditional standard

deviation and Et a conditional mean, conditioned on time t information. Empirical
estimates of the stochastic discount factor from the yield curve and other asset returns
suggest a value of the market price of risk that is relatively large, in a sense that we
explore in depth in chapter 13. A high volatility of mt+1 delivers a high market
price of risk. Backus and Zin use feature (b) to match the shape of the yield curve
over time. Backus and Zin’s estimates of φ(L), θ(L) imply term structure outcomes
that display both features (a) and (b). For their values of θ(L), φ(L), σ , Fig. 2.7.1–
Fig. 2.7.5 show various aspects of the theoretical yield curve. Fig. 2.7.1 shows the
theoretical value of the mean term structure of interest rates, which we have calculated
by applying our formula for µY = GµX to (2.7.13). The theoretical value of the
yield curve is on average upward sloping, as is true also in the data. For yields of
durations j = 1, 3, 6, 12, 24, 36, 48, 60, 120, 360, where duration is measured in months ,
Fig. 2.7.2 shows the impulse response of yjt to a shock wt+1 in the log of the stochastic
discount factor. We use formula (2.4.16) to compute this impulse response function.
In Fig. 2.7.2, bigger impulse response functions are associated with shorter horizons.
The shape of the impulse response function for the short rate differs from the others:
it is the only one with a ‘humped’ shape. Fig. 2.7.3 and Fig. 2.7.4 show the impulse
response function of the log of the stochastic discount factor. Fig. 2.7.3 confirms that
logmt+1 is approximately i.i.d. (the impulse response occurs mostly at zero lag), but
Fig. 2.7.4 shows the impulse response coefficients for lags of 1 and greater and confirms
that the stochastic discount factor is not quite i.i.d. Since the initial response is a
large negative number, these small positive responses for positive lags impart negative
serial correlation to the log stochastic discount factor. As noted above and as stressed
by Backus and Zin (1992), negative serial correlation of the stochastic discount factor
is needed to account for a yield curve that is upward sloping on average.

Fig. 2.7.5 applies the Matlab program bigshow2 to Backus and Zin’s specified
values of (σ, δ, θ(L), φ(L)). The panel on the upper left is the impulse response again.
The panel on the lower left shows the covariogram, which as expected is very close
to that for an i.i.d. process. The spectrum of the log stochastic discount factor is
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Figure 2.7.1: Mean term structure of interest rates with Backus-
Zin stochastic discount factor (months on horizontal axis).
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rity yields.

not completely flat and so reveals that the log stochastic discount factor is serially
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Figure 2.7.3: Impulse response of log of stochastic discount factor.
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Figure 2.7.4: Impulse response of log stochastic discount factor
from lag 1 on.

correlated. (Remember that the spectrum for a serially uncorrelated process – a
‘white noise’ – is perfectly flat.) That the spectrum is generally rising as frequency
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Figure 2.7.5: bigshow2 for Backus and Zin’s log stochastic dis-
count factor.

increases from ω = 0 to ω = π indicates that the log stochastic discount factor is
negatively serially correlated. But the negative serial correlation is subtle so that the
realization plotted in the panel on the lower right is difficult to distinguish from a
white noise.

2.8. Estimation

We have shown how to map the matrices Ao, C into all of the second moments of
the stationary distribution of the stochastic process {xt} . Linear economic models
typically give Ao, C as functions of a set of deeper parameters θ . We shall give ex-
amples of some such models in chapters 4 and 5. Those theories and the formulas
of this chapter give us a mapping from θ to these theoretical moments of the {xt}
process. That mapping is an important ingredient of econometric methods designed
to estimate a wide class of linear rational expectations models (see Hansen and Sar-
gent, 1980, 1981). Briefly, these methods use the following procedures for matching
observations with theory. To simplify, we shall assume that in any period t that an
observation is available, observations are available on the entire state xt . As discussed



Concluding remarks 65

in the following paragraphs, the details are more complicated if only a subset or a
noisy signal of the state is observed, though the basic principles remain the same.

Given a sample of observations for {xt}Tt=0 ≡ xt, t = 0, . . . , T , the likelihood
function is defined as the joint probability distribution f(xT , xT−1, . . . , x0). The
likelihood function can be factored using

f (xT , . . . , x0) = f (xT |xT−1, . . . , x0) f (xT−1|xT−2, . . . , x0) · · ·
f (x1|x0) f (x0) ,

(2.8.1)

where in each case f denotes an appropriate probability distribution. For system
(2.4.1), Sf(xt+1|xt, . . . , x0) = f(xt+1|xt), which follows from the Markov property
possessed by equation (2.4.1). Then the likelihood function has the recursive form

f (xT , . . . , x0) = f (xT |xT−1) f (xT−1|xT−2) · · · f (x1|x0) f (x0) . (2.8.2)

If we assume that the wt ’s are Gaussian, then the conditional distribution f(xt+1|xt)
is Gaussian with mean Aoxt and covariance matrix CC′ . Thus, under the Gaussian
distribution, the log of the conditional density of xt+1 becomes

log f (xt+1|xt) = −.5 log (2π) − .5 det (CC′)

− .5 (xt+1 −Aoxt)
′ (CC′)−1 (xt+1 −Aoxt)

(2.8.3)

Given an assumption about the distribution of the initial condition x0 , equations
(2.8.2) and (2.8.3) can be used to form the likelihood function of a sample of ob-
servations on {xt}Tt=0 . One computes maximum likelihood estimates by using a hill-
climbing algorithm to maximize the likelihood function with respect to the free pa-
rameters Ao, C .

When observations of only a subset of the components of xt are available, we need
to go beyond the likelihood function for {xt} . One approach uses filtering methods
to build up the likelihood function for the subset of observed variables.25 We describe
the Kalman filter in chapter 5 and the appendix on filtering and control, chapter 5.26

25 See Hamilton (1994) or Hansen and Sargent (in press).
26 See Hansen (1982), Eichenbaum (1991), Christiano and Eichenbaum (1992),

Burnside, Eichenbaum, and Rebelo (1993), and Burnside and Eichenbaum (1996a,
1996b) for alternative estimation strategies.
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2.9. Concluding remarks

In addition to giving us tools for thinking about time series, the Markov chain and the
stochastic linear difference equation have each introduced us to the notion of the state
vector as a description of the present position of a system.27 Subsequent chapters use
both Markov chains and stochastic linear difference equations. In the next chapter
we study decision problems in which the goal is optimally to manage the evolution of
a state vector that can be partially controlled.

Exercises

Exercise 2.1 Consider the Markov chain (P, π0) =

([
.9 .1
.3 .7

]
,

[
.5
.5

])
, and a random

variable yt = yxt where y =
[

1
5

]
. Compute the likelihood of the following three

histories for yt for t = 0, 1, . . . , 4:

a. 1, 5, 1, 5, 1.

b. 1, 1, 1, 1, 1.

c. 5, 5, 5, 5, 5.

Exercise 2.2 Consider a two-state Markov chain. Consider a random variable yt =

yxt where y =
[

1
5

]
. It is known that E(yt+1|xt) =

[
1.8
3.4

]
and that E(y2

t+1|xt) =[
5.8
15.4

]
. Find a transition matrix consistent with these conditional expectations. Is

this transition matrix unique (i.e., can you find another one that is consistent with
these conditional expectations)?

Exercise 2.3 Consumption is governed by an n state Markov chain P, π0 where
P is a stochastic matrix and π0 is an initial probability distribution. Consumption
takes one of the values in the n× 1 vector c . A consumer ranks stochastic processes

27 See Quah (1990) and Blundell and Preston (1998) for applications of some of
the tools of this chapter and of chapter 5 to studying some puzzles associated with a
permanent income model.
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of consumption t = 0, 1 . . . according to

E

∞∑
t=0

βtu (ct)

where E is the mathematical expectation and u(c) = c1−γ

1−γ for some parameter γ ≥ 1.
Let ui = u(ci). Let vi = E[

∑∞
t=0 β

tu(ct)|x0 = ei] and V = Ev , where β ∈ (0, 1) is
a discount factor.

a. Let u and v be the n×1 vectors whose ith components are ui and vi , respectively.
Verify the following formulas for v and V : v = (I − βP )−1u, and V =

∑
i π0,ivi .

b. Consider the following two Markov processes:

Process 1: π0 =
[
.5
.5

]
, P =

[
1 0
0 1

]
.

Process 2: π0 =
[
.5
.5

]
, P =

[
.5 .5
.5 .5

]
.

For both Markov processes, c =
[

1
5

]
.

Assume that γ = 2.5, β = .95. Compute unconditional discounted expected utility
V for each of these processes. Which of the two processes does the consumer prefer?
Redo the calculations for γ = 4. Now which process does the consumer prefer?

c. An econometrician observes a sample of 10 observations of consumption rates
for our consumer. He knows that one of the two preceding Markov processes gen-
erates the data, but not which one. He assigns equal “prior probability” to the two
chains. Suppose that the 10 successive observations on consumption are as follows:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Compute the likelihood of this sample under process 1 and
under process 2. Denote the likelihood function
Prob(data|Modeli), i = 1, 2.

d. Suppose that the econometrician uses Bayes’ law to revise his initial probability
estimates for the two models, where in this context Bayes’ law states:

Prob (Mi) |data =
(Prob (data)|Mi) · Prob (Mi)∑
j Prob (data)|Mj · Prob (Mj)

where Mi denotes ‘model i . The denominator of this expression is the unconditional
probability of the data. After observing the data sample, what probabilities does the
econometrician place on the two possible models?
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e. Repeat the calculation in part d, but now assume that the data sample is 1, 5, 5, 1, 5, 5, 1, 5, 1, 5.

Exercise 2.4 Consider the univariate stochastic process

yt+1 = α+
4∑
j=1

ρjyt+1−j + cwt+1

where wt+1 is a scalar martingale difference sequence adapted to
Jt = [wt, . . . , w1, y0, y−1, y−2, y−3] , α = µ(1 −∑j ρj) and the ρj ’s are such that the
matrix

A =


ρ1 ρ2 ρ3 ρ4 α

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1


has all of its eigenvalues in modulus bounded below unity.

a. Show how to map this process into a first-order linear stochastic difference equa-
tion.

b. For each of the following examples, if possible, assume that the initial conditions
are such that yt is covariance stationary. For each case, state the appropriate ini-
tial conditions. Then compute the covariance stationary mean and variance of yt
assuming the following parameter sets of parameter values:

i. ρ = [ 1.2 −.3 0 0 ], µ = 10, c = 1.

ii. ρ = [ 1.2 −.3 0 0 ] , µ = 10, c = 2.

iii. ρ = [ .9 0 0 0 ], µ = 5, c = 1.

iv. ρ = [ .2 0 0 .5 ], µ = 5, c = 1.

v. ρ = [ .8 .3 0 0 ] , µ = 5, c = 1.

Hint 1: The Matlab program doublej.m, in particular, the command
X=doublej(A,C*C’) computes the solution of the matrix equation A′XA+C′C = X .
This program can be downloaded from
< ftp://zia.stanford.edu/pub/˜sargent/webdocs/matlab> .

Hint 2: The mean vector is the eigenvector of A associated with a unit eigenvalue,
scaled so that the mean of unity in the state vector is unity.
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c. For each case in part b, compute the hj ’s in Etyt+5 = γ0 +
∑3
j=0 hjyt−j .

d. For each case in part b, compute the h̃j ’s in Et
∑∞

k=0 .95kyt+k =
∑3
j=0 h̃jyt−j .

d. For each case in part b, compute the autocovariance E(yt − µy)(yt−k − µy) for
the three values k = 1, 5, 10.

Exercise 2.5 A consumer’s rate of consumption follows the stochastic process

(1)

ct+1 = αc +
2∑
j=1

ρjct−j+1 +
2∑
j=1

δjzt+1−j + ψ1w1,t+1

zt+1 =
2∑
j=1

γjct−j+1 +
2∑
j=1

φjzt−j+1 + ψ2w2,t+1

where wt+1 is a 2 × 1 martingale difference sequence, adapted to
Jt = [wt . . . w1 c0 c−1 z0 z−1 ] , with contemporaneous covariance matrix Ewt+1w

′
t+1|Jt =

I , and the coefficients ρj , δj , γj, φj are such that the matrix

A =


ρ1 ρ2 δ1 δ2 αc

1 0 0 0 0
γ1 γ2 φ1 φ2 0
0 0 1 0 0
0 0 0 0 1


has eigenvalues bounded strictly below unity in modulus.

The consumer evaluates consumption streams according to

(2) V0 = E0

∞∑
t=0

.95tu (ct) ,

where the one-period utility function is

(3) u (ct) = −.5 (ct − 60)2 .

a. Find a formula for V0 in terms of the parameters of the one-period utility function
(3) and the stochastic process for consumption.

b. Compute V0 for the following two sets of parameter values:

i. ρ = [ .8 −.3 ] , αc = 1, δ = [ .2 0 ] , γ = [ 0 0 ] , φ = [ .7 −.2 ], ψ1 = ψ2 = 1.
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ii. Same as for part i except now ψ1 = 2, ψ2 = 1.

Hint: Remember doublej.m.

Exercise 2.6 Consider the stochastic process {ct, zt} defined by equations (1) in
exercise 1.5. Assume the parameter values described in part b, item i. If possible,
assume the initial conditions are such that {ct, zt} is covariance stationary.

a. Compute the initial mean and covariance matrix that make the process covariance
stationary.

b. For the initial conditions in part a, compute numerical values of the following
population linear regression:

ct+2 = α0 + α1zt + α2zt−4 + wt

where Ewt [ 1 zt zt−4 ] = [ 0 0 0 ].

Exercise 2.7 Get the Matlab programs bigshow2.m and freq.m from
< ftp://zia.stanford.edu/pub/˜sargent/webdocs/matlab> . Use bigshow2 to com-
pute and display a simulation of length 80, an impulse response function, and a
spectrum for each of the following scalar stochastic processes yt . In each of the fol-
lowing, wt is a scalar martingale difference sequence adapted to its own history and
the initial values of lagged y ’s.

a. yt = wt .

b. yt = (1 + .5L)wt .

c. yt = (1 + .5L+ .4L2)wt .

d. (1 − .999L)yt = (1 − .4L)wt .

e. (1 − .8L)yt = (1 + .5L+ .4L2)wt .

f. (1 + .8L)yt = wt .

g. yt = (1 − .6L)wt .

Study the output and look for patterns. When you are done, you will be well on your
way to knowing how to read spectral densities.

Exercise 2.8 This exercise deals with Cagan’s money demand under rational expec-
tations. A version of Cagan’s (1956) demand function for money is

(1) mt − pt = −α (pt+1 − pt) , α > 0, t ≥ 0,
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where mt is the log of the nominal money supply and pt is the price level at t . Equa-
tion (1) states that the demand for real balances varies inversely with the expected
rate of inflation, (pt+1 − pt). There is no uncertainty, so the expected inflation rate
equals the actual one. The money supply obeys the difference equation

(2) (1 − L) (1 − ρL)ms
t = 0

subject to initial condition for ms
−1,m

s
−2 . In equilibrium,

(3) mt ≡ ms
t ∀t ≥ 0

(i.e., the demand for money equals the supply). For now assume that

(4) |ρα/ (1 + α) | < 1.

An equilibrium is a {pt}∞t=0 that satisfies equations (1), (2), and (3) for all t .

a. Find an expression an equilibrium pt of the form

(5) pt =
n∑
j=0

wjmt−j + ft.

Please tell how to get formulas for the wj for all j and the ft for all t .

b. How many equilibria are there?

c. Is there an equilibrium with ft = 0 for all t?

d. Briefly tell where, if anywhere, condition (4) plays a role in your answer to part a.

e. For the parameter values α = 1, ρ = 1, compute and display all the equilibria.

Exercise 2.9 The n×1 state vector of an economy is governed by the linear stochas-
tic difference equation

(1) xt+1 = Axt + Ctwt+1

where Ct is a possibly time varying matrix (known at t) and wt+1 is an m × 1
martingale difference sequence adapted to its own history with Ewt+1w

′
t+1|Jt = I ,

where Jt = [wt . . . w1 x0 ] . A scalar one-period payoff pt+1 is given by

(2) pt+1 = Pxt+1
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The stochastic discount factor for this economy is a scalar mt+1 that obeys

(3) mt+1 =
Mxt+1

Mxt
.

Finally, the price at time t of the one-period payoff is given by qt = ft(xt), where
ft is some possibly time-varying function of the state. That mt+1 is a stochastic
discount factor means that

(4) E (mt+1pt+1|Jt) = qt.

a. Compute ft(xt), describing in detail how it depends on A and Ct .

b. Suppose that an econometrician has a time series data set
Xt = [ zt mt+1 pt+1 qt ] , for t = 1, . . . , T , where zt is a strict subset of the
variables in the state xt . Assume that investors in the economy see xt even though
the econometrician only sees a subset zt of xt . Briefly describe a way to use these
data to test implication (4). (Possibly but perhaps not useful hint: recall the law of
iterated expectations.)

Exercise 2.10 Let P be a transition matrix for a Markov chain. Suppose that P ′

has two distinct eigenvectors π1, π2 corresponding to unit eigenvalues of P ′ . Prove
for any α ∈ [0, 1] that απ1 + (1 − α)π2 is an invariant distribution of P .

Exercise 2.11 Consider a Markov chain with transition matrix

P =

 1 0 0
.2 .5 .3
0 0 1


with initial distribution π0 = [π1,0 π2,0 π3,0 ]′ . Let πt = [π1t π2t π3t ]

′ be the
distribution over states at time t . Prove that for t > 0

π1t = π1,0 + .2
(

1 − .5t

1 − .5

)
π2,0

π2t = .5tπ2,0

π3t = π3,0 + .3
(

1 − .5t

1 − .5

)
π2,0.

Exercise 2.12 Let P be a transition matrix for a Markov chain. For t = 1, 2, . . .,
prove that the j th column of P t is the distribution across states at t when the initial
distribution is πj,0 = 1, πi,0 = 0∀i �= j .
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Exercise 2.13 A household has preferences over consumption processes {ct}∞t=0 that
are ordered by

−.5
∞∑
t=0

βt
[
(ct − 30)2 + .000001b2t

]
(2.1)

where β = .95. The household chooses a consumption, borrowing plan to maximize
(2.1) subject to the sequence of budget constraints

ct + bt = βbt+1 + yt (2.2)

for t ≥ 0, where b0 is an initial condition, where β−1 is the one period gross risk-free
interest rate, bt is the household’s one-period debt that is due in period t , and yt is
its labor income, which obeys the second order autoregressive process(

1 − ρ1L− ρ2L
2
)
yt+1 = (1 − ρ1 − ρ2) 5 + .05wt+1 (2.3)

where ρ1 = 1.3, ρ2 = −.4.

a. Define the state of the household at t as xt = [ 1 bt yt yt−1 ]′ and the control
as ut = (ct − 30). Then express the transition law facing the household in the form
(2.4.22). Compute the eigenvalues of A . Compute the zeros of the characteristic
polynomial (1−ρ1z−ρ2z

2) and compare them with the eigenvalues of A . (Hint: To
compute the zeros in Matlab, set a = [ .4 −1.3 1 ] and call roots(a). The zeros
of (1 − ρ1z − ρ2z

2) equal the reciprocals of the eigenvalues of the associated A .)

b. Write a Matlab program that uses the Howard improvement algorithm (2.4.30)
to compute the household’s optimal decision rule for ut = ct − 30. Tell how many
iterations it takes for this to converge (also tell your convergence criterion).

c. Use the household’s optimal decision rule to compute the law of motion for xt

under the optimal decision rule in the form

xt+1 = (A−BF ∗)xt + Cwt+1,

where ut = −F ∗xt is the optimal decision rule. Using Matlab, compute the im-
pulse response function of [ ct bt ]

′ to wt+1 . Compare these with the theoretical
expressions (2.6.18).

Exercise 2.14 Consider a Markov chain with transition matrix

P =


.5 .5 0 0
.1 .9 0 0
0 0 .9 .1
0 0 0 1
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with state space X = {ei, i = 1, . . . , 4} where ei is the ith unit vector. A random
variable yt is a function yt = [ 1 2 3 4 ]xt of the underlying state.

a. Find all stationary distributions of the Markov chain.

b. Is the Markov chain ergodic?

c. Compute all possible limiting values of the sample mean 1
T

∑T−1
t=0 yt as T → ∞ .

Exercise 2.15 Suppose that a scalar is related to a scalar white noise wt with variance
1 by yt = h(L)wt where h(L) =

∑∞
j=0 L

jhj and
∑∞

j=0 h
2
j < +∞ . Then a special

case of formula (2.5.6) coupled with the observer equation yt = Gxt implies that the
spectrum of y is given by

Sy (ω) = h (exp (−iω))h (exp (iω)) = |h (exp (−iω)) |2

where h(exp(−iω)) =
∑∞
j=0 hj exp(−iωj).

In a famous paper, Slutsky investigated the consequences of applying the following
filter to white noise: h(L) = (1 + L)n(1 − L)m (i.e., the convolution of n two period
moving averages with m difference operators). Compute and plot the spectrum of y
for ω ∈ [−π, π] for the following choices of m,n :

a. m = 10, n = 10.

b. m = 10, n = 40.

c. m = 40, n = 10.

d. m = 120, n = 30.

e. Comment on these results.

Hint: Notice that h(exp(−iω)) = (1 + exp(−iω))n(1 − exp(−iω))m .

Exercise 2.16 Consider an n-state Markov chain with state space X = {ei, i =
1, . . . , n} where ei is the ith unit vector. Consider the indicator variable Iit = eixt

which equals one if xt = ei and 0 otherwise. Suppose that the chain has a unique
stationary distribution and that it is ergodic. Let π be the stationary distribution.

a. Verify that EIit = πi .

b. Prove that
1
T

T−1∑
t=0

Iit = πi
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as T → ∞ with probability one with respect to the stationary distribution π .

Exercise 2.17 (Lake model)

A worker can be in one of two states, state 1 (unemployed) or state 2 (employed).
At the beginning of each period, a previously unemployed worker has probability
λ =

∫ B
w̄
dF (w) of becoming employed. Here w̄ is his reservation wage and F (w) is

the c.d.f. of a wage offer distribution. We assume that F (0) = 0, F (B) = 1. At the
beginning of each period an unemployed worker draws one and only one wage offer
from F . Successive draws from F are i.i.d. The worker’s decision rule is to accept
the job if w ≥ w̄ , and otherwise to reject it and remain unemployed one more period.
Assume that w is such that λ ∈ (0, 1). At the beginning of each period, a previously
employed worker is fired with probability δ ∈ (0, 1). Newly fired workers must remain
unemployed for one period before drawing a new wage offer.

a. Let the state space be X = {ei, i = 1, 2} where ei is the ith unit vector. Describe
the Markov chain on X that is induced by the description above. Compute all
stationary distributions of the chain. Is the chain ergodic?

b. Suppose that λ = .05, δ = .25. Compute a stationary distribution. Compute the
fraction of his life that an infinitely lived worker would spend unemployed.

c. Drawing the initial state from the stationary distribution, compute the joint dis-
tribution gij = Prob(xt = ei, xt−1 = ej) for i = 1, 2, j = 1, 2.

d. Define an indicator function by letting Iij,t = 1 if xt = ei, xt−1 = ej at time t ,
and 0 otherwise. Compute

lim
T→∞

1
T

T∑
t=1

Iij,t

for all four i, j combinations.

e. Building on your results in part d, construct method of moment estimators of λ
and δ . Assuming that you know the wage offer distribution F , construct a method
of moments estimator of the reservation wage w̄ .

f. Compute maximum likelihood estimators of λ and δ .

g. Compare the estimators you derived in parts e and f.

h. Extra credit. Compute the asymptotic covariance matrix of the maximum likeli-
hood estimators of λ and δ .
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Exercise 2.18 (random walk)

A Markov chain has state space X = {ei, i = 1, . . . , 4} where ei is the unit vector
and transition matrix

P =


1 0 0 0
.5 0 .5 0
0 .5 0 .5
0 0 0 1

 .
A random variable yt = yxt is defined by y = [ 1 2 3 4 ].

a. Find all stationary distributions of this Markov chain.

b. Is this chain ergodic? Compute invariant functions of P .

c. Compute E[yt+1|xt] for xt = ei, i = 1, . . . , 4.

d. Compare your answer to part (c) with (2.2.9). Is yt = y′xt invariant? If not,
what hypothesis of Theorem 2.2.2 is violated?

d. The stochastic process yt = y′xt is evidently a bounded martingale. Verify that
yt converges almost surely to a constant. To what constant(s) does it converge?

A. A linear difference equation

This appendix describes the solution of a linear first-order scalar difference equa-
tion. First, let |λ| < 1, and let {ut}∞t=−∞ be a bounded sequence of scalar real
numbers. Then

(1 − λL) yt = ut, ∀t (2.A.1)

has the solution
yt = (1 − λL)−1 ut + kλt (2.A.2)

for any real number k . You can verify this fact by applying (1 − λL) to both sides
of equation (2.A.2) and noting that (1 − λL)λt = 0. To pin down k we need one
condition imposed from outside (e.g., an initial or terminal condition) on the path of
y .

Now let |λ| > 1. Rewrite equation (2.A.1) as

yt−1 = λ−1yt − λ−1ut, ∀t (2.A.3)
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or (
1 − λ−1L−1

)
yt = −λ−1ut+1. (2.A.4)

A solution is

yt = −λ−1

(
1

1 − λ−1L−1

)
ut+1 + kλt (2.A.5)

for any k . To verify that this is a solution, check the consequences of operating on
both sides of equation (2.A.5) by (1 − λL) and compare to (2.A.1).

Solution (2.A.2) exists for |λ| < 1 because the distributed lag in u converges.
Solution (2.A.5) exists when |λ| > 1 because the distributed lead in u converges.
When |λ| > 1, the distributed lag in u in (2.A.2) may diverge, so that a solution
of this form does not exist. The distributed lead in u in (2.A.5) need not converge
when |λ| < 1.



Chapter 3.
Dynamic Programming

This chapter introduces basic ideas and methods of dynamic programming.1 It sets
out the basic elements of a recursive optimization problem, describes the functional
equation (the Bellman equation), presents three methods for solving the Bellman
equation, and gives the Benveniste-Scheinkman formula for the derivative of the op-
timal value function. Let’s dive in.

3.1. Sequential problems

Let β ∈ (0, 1) be a discount factor. We want to choose an infinite sequence of
“controls” {ut}∞t=0 to maximize

∞∑
t=0

βtr (xt, ut) , (3.1.1)

subject to xt+1 = g(xt, ut), with x0 given. We assume that r(xt, ut) is a concave
function and that the set {(xt+1, xt) : xt+1 ≤ g(xt, ut), ut ∈ Rk} is convex and
compact. Dynamic programming seeks a time-invariant policy function h mapping

the state xt into the control ut , such that the sequence {us}∞s=0 generated by
iterating the two functions

ut = h (xt)

xt+1 = g (xt, ut) ,
(3.1.2)

starting from initial condition x0 at t = 0 solves the original problem. A solution in
the form of equations (3.1.2) is said to be recursive. To find the policy function h we
need to know another function V (x) that expresses the optimal value of the original
problem, starting from an arbitrary initial condition x ∈ X . This is called the value

1 This chapter is written in the hope of getting the reader to start using the methods
quickly. We hope to promote demand for further and more rigorous study of the
subject. In particular see Bertsekas (1976), Bertsekas and Shreve (1978), Stokey and
Lucas (with Prescott) (1989), Bellman (1957), and Chow (1981). This chapter covers
much of the same material as Sargent (1987b, chapter 1).
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