Chapter 2

INFINITE-HORIZON AND
OVERLAPPING-GENERATIONS
MODELS

This chapter investigates two models that resemble the .Solow mod.el.but in
which the dynamics of economic aggregates are determined by decisions a;
the microeconomic level. Both models continue to t_ake the growt‘h rates o;
labor and knowledge as given. But the modelsf derive the evolunon. of t1_1e
capital stock from the interaction of maxi.mizmg l}ouseholds and firms in
competitive markets. As a result, the saving rate is no longer exogenous,
i t be constant.
angflllteriﬁiescti 11111(:)de1 is conceptually the simplest. Competi‘tive firms rent cap-
ital and hire labor to produce and sell output, and a fixed number of hnll
finitely lived households supply labor, hold capital, consume, and save. This
model, which was developed by Ramsey (1928), C.ass (1965..), and Koopmans
(1965), avoids all market imperfections and all issues raised by.heteroge-
neous households and links among generations. It therefore provides a nat-
hmark case.
ura”ll“lllj: I;Cecond model is the overlapping—generation.s model developed by
Diamond (1965). The key difference between the Diamond model and Lhe
- Ramsey-Cass-Koopmans model is that the Diamond model assumes t] wjzﬁ
) there is continual entry of new households into the economy. As we
see, this seemingly small difference has important consequences.

Part A The Ramsey-Cass-Koopmans
Model

2.1 Assumptions

Firms

i i i h has access to the pro-
There are a large number of identical ﬁrms.. Eac ;
duction function Y = F(K, AL), which satisfies the same assumptions as
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in Chapter 1. The firms hire workers and rent capital in competitive factor
markets, and sell their output in a competitive output market. Firms take A
as given; as in the Solow model, A grows exogenously at rate g. The firms
maximize profits. They are owned by the households, so any profits they
earn accrue to the households.

Households

There are also a large number of identical households. The size of each
household grows at rate n. Each member of the household supplies 1 unit
of labor at every point in time. In addition, the household rents whatever
capital it owns to firms. It has initial capital holdings of K(0)/H, where K(0)
is the initial amount of capital in the economy and H is the number of
households. For simplicity, there is no depreciation. The household divides
its income (from the labor and capital it supplies and, potentially, from the
profits it receives from firms) at each point in time between consumption
and saving so as to maximize its lifetime utility.
The household’s utility function takes the form

U=/ e—P’u(C(t))M dt. (2.1
t=0 H

C(v) is the consumption of each member of the household at time t. u(e)
is the instantaneous utility function, which gives each member’s utility at
a given date. L(t) is the total population of the economy; L(t)/H is there-
fore the mumber of members of the household. Thus u(C(t)L(t)/H is the
household’s total instantaneous utility at ¢. Finally, p is the discount rate;
the greater is p, the less the household values future consumption relative
to current consumption.!

The instantaneous utility function takes the form

1-@
u(C(t)) = Ci(t_) 5 g0, p—n—(1-0)g>0. (2.2)

This functional form is needed for the economy to converge to a balanced
growth path. It is known as constant-relative-risk-aversion (or CRRA) util-
ity. The reason for the name is that the coefficient of relative risk aversion
(which is defined as —Cu"(C)/w'(C)) for this utility function is 6, and thus is
independent of C.

Since there is no uncertainty in this model, the household’s attitude
toward risk is not directly relevant. But 6 also determines the household’s

! One can also write utility as f:o e~7"tu(C(t)) dt, where p’ = p — n. Since L(t) = L(O)e™,
this expression equals the expression in equation (2.1) divided by L(0)/H, and thus has the
same implications for behavior.
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willingness to shift consumption between different periods. When 0 is
smaller, marginal utility falls more slowly as consumption rises, and so the
household is more willing to allow its consumption to vary over time. If 0
is close to zero, for example, utility is almost linear in C, and so the house-
hold is willing to accept large swings in consumption to take advantage of
small differences between the discount rate and the rate of return on sav-
ing. Specifically, one can show that the elasticity of substitution between
consumption at any two points in time is 1 /6.2

Three additional features of the instantaneous utlity function are worth
mentioning. First, C1~9 is increasing in C if 6 < 1 but decreasing if 6 > 1;
dividing C1-f by 1 — 0 thus ensures that the marginal utility of consump-
tion is positive regardless of the value of @ Second, in the special case
of 6 — 1, the instantaneous utility function simplifies to In C; this is of-
ten a useful case to consider.? And third, the assumption that p —n —
- (1 — 8)g > 0 ensures that lifetime utility does not diverge: if this condi-
tion does not hold, the household can attain infinite lifetime utility, and its
maximization problem does not have a well-defined solution.*

2.2 The Behavior of Households and
Firms

Firms

Firms’ behavior is relatively simple. At each point in time they employ the

stocks of labor and capital, pay them their marginal products, and sell the

resulting output. Because the production function has constant returns and
the economy is competitive, firms earn zero profits.

As described in Chapter 1, the marginal product of capital, 0F (K, AL)/9K,

is f'(k), where f()is the intensive form of the production function. Because

. markets are competitive, capital earns its marginal product. And because

there is no depreciation, the real rate of return on capital equals its earnings
per unit time. Thus the real interest rate at time tis

r(t) = f'(k(0). (2.3)

Labor’s marginal product is 9F (K, AL)/9L, which equals AJF (K, AL)/
JAL. In terms of f(e), this is A[f(k)} — kf!(k)].> Thus the real wage

2 See Problem 2.2.

3 To see this, first subtract 1/(1 — 8) from the utility function; since this changes utility
by a constant, it does not affect behavior. Then take the limit as @approaches 1; this requires
using I'Hopital’s rule. The result is InC.

4 Phelps (1966a) discusses how growth models can be analyzed when households can
obtain infinite utility.

5 See Problem 1.9.
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W(t) = AL k(D) — k(D) £ (kD). 2.4)

The wage per unit of effective labor is therefore

w(t) = £ k(D) — k(D) f(K(D)). 2.5)

Households’ Budget Constraint

The representative household takes the paths of r and w as given. Its bud-
get con_straint is that the present value of its lifetime consumption cannot
excee(_i its initial wealth plus the present value of its lifetime labor income
To write the budget constraint formally, we need to account for the fact that.
rmay vary over time. To do this, define R(t) as f:_o r(T) dT. One unit of the
output good invested at time 0 yields e*© units of the good at t; equiva-
ler;tly, the value of 1 unit of output at time t in terms of output at ;ime 0is
e~RO, For example, if r is constant at some level 7, R(t) is simply 7t and the
present value of 1 unit of output at tis e~"'. More generally, e*® shows the
effeFts of continuously compounding interest over the period [0, t].

Since the household has L(t)/H members, its labor incon’le at t is
W(nL(t)/H, and its consumption expenditures are C(t)L(t)/H. Its initial
wealth is 1/H of total wealth at time 0, or K(0)/H. The household’s bud-
get constraint is therefore

® - L@y , KO, [*
/t=0 e R(t)C(t)? dt < =t /t=0 -k W(t)% dt. (2.6)

In many cases, it is difficult to find the integrals in this expression. For-
tungtely, we can express the budget constraint in terms of the limiting be-
havior of the household’s capital holdings; and even when it is not possible
to compute the integrals in (2.6), it is often possible to describe the limiting
behszior of the economy. To see how the budget constraint can be rewrit-
ten in this way, first bring all the terms of (2.6) over to the same side and
combine the two integrals; this gives us

KO [T - L(t)
7+ /t e RO - C) = drz 0. @.7)

We can write the integral from t = 0 to t = o0 a imi i
. = = s a limit. .
equivalent to Thus @016

K(© :
lim [—H—) + /t R UCE cant? dt] 2 0. @8)
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Now note that the household’s capital holdings at time s are

E@ _ R(:)E_(E)_ /S R(s)-R(t) - £(L)
T = e i + o e [W(t) — C()] H dt. (2.9)
To understand (2.9), note that eX®K(0)/H is the contribution of the house-
hold’s initial wealth to its wealth at s. The household’s saving at t is
[W(t) — C(DIL(t)/H (which may be negative); eR®-R® shows how the value
of that saving changes from ¢ to s.

The expression in (2.9) is R4S times the expression in brackets in (2.8).
Thus we can write the budget constraint as simply

lim e‘””%s—) > 0. (2.10)

§—>00
Expressed in this form, the budget constraint states that the present value
of the household’s asset holdings cannot be negative in the limit.

Equation (2.10) is known as the no-Ponzi-game condition. A Ponzi game
is a scheme in which someone issues debt and rolls it over forever. That is,
the issuer always obtains the funds to pay off debt when it comes due by
issuing new debt. Such a scheme allows the issuer to have a present value of
lifetime consumption that exceeds the present value of his or her lifetime
resources. By imposing the budget constraint (2.6) or (2.10), we are ruling
out such schemes.®

Households’ Maximization Problem

The representative household wants to maximize its lifetime utility subject
to its budget constraint. As in the Solow model, it is easier to work with
variables normalized by the quantity of effective labor. To do this, we need
to express both the objective function and the budget constraint in terms
of consumption and labor income per unit of effective labor.

6 This analysis sweeps a subtlety under the rug: we have assumed rather than shown that
households must satisfy the no-Ponzi-game condition. Because there are a finite number
of households in the model, the assumption that Ponzi games are not feasible is correct. A
household can run a Ponzi game only if at least one other household has a present value of
lifetime consumption that is strictly less than the present value of its lifetime wealth. Since
the marginal utility of consumption is always positive, no household will accept this. But
in models with infinitely many households, such as the overlapping-generations model of
part B of this chapter, Ponzi games are possible in some situations. We return to this point
in Section 11.1.
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We start with the objective function. Define c(t) to be consumption per

unit of effective labor. Thus C(t), consumpti
e labor. , ption per worker, e
The household’s instantaneous utility, (2.2), is therefore quals 4.

CO?  [ADc@I-?
1-6 ~  1-6

_ [A(0e?T ~bc(1)1-9
== — @.11)

— AO-oen-0eCO7
1-06°
Substituting (2.11) and the fact that L(t i
bsit = L(0)e™ ’
objective function, (2.1)~(2.2), yields “ (@)er? fnto the household's

U= ” e_pt—-_C(t)l_eﬁ dt
t=0 1-¢ H

)
= / e~Pt
t=0

A(0)1-ee(1—9)gtcl(t)1‘9] L(0)em™ d

e
o 2.12)

_oL0) 10 (

= A= e-Plol-0gtont €0
H Jiso gt

o )

=g [ e#cW
/t=o et

where B= A(0)!°L(0)/Hand B=p~n— i
Neinti B=p~n—(1-0)g.From (2.2), B is assumed
Now_r consider the budget constraint, (2.6). The household’s total con-
ililtmp.uon at t, C(t)L(t)/H, equals consumption per unit of effective labor.
a %Ont;lmla: t;((})le 'household’s quantity of effective labor, A(t)L(t)/H. Simjlarly’
1 income at t equals the wage per unit of effective lab ’
3 Py T e Or, ?
Fme.s A(t)L(t)/H. And its initial capital holdings are capital per unit ova(etf)-
ective labor at time 0, k(0), times A(Q)L(0)/H. Thus we can rewrite (2.6) as

® RO AL AOLO) [
/t L° (= dt = k(O)—7— + /t . e—R“)w(r)A—_(t;JL(t) dt
(2.13)

A(DL(t) equals A(0)L(0)e+9), Substituting thi: i
: : £ s
both sides by A(0)L(0)/H yields g thisfactinto (2.13) and dividing

e~ RO a(p)en+a)t ®
/;0 c(t)e dt < k(0)+ [=0 e~ ROy(r)eln+a) gy, (2.14)
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Finally, because K(s) is proportional to k(s)ein+9s, we can rewrite the
no-Ponzi-game version of the budget constraint, (2.10), as

lim e~R©)en+95k(s) > 0. (2.15)

$—c0

Household Behavior

The household’s problem is to choose the path of c(t) to maximize life-
time utility, (2.12), subject to the budget constraint, (2.14). Although this
involves choosing ¢ at each instant of time (rather than choosing a finite
set of variables, as in standard maximization problems), conventional max-
imization techniques can be used. Since the marginal utility ofconsumption
is always positive, the household satisfies its budget constraint with equal-
ity. We can therefore use the objective function, (2.12), and the budget con-
straint, (2.14), to set up the Lagrangian:

_ g [T om0’
L= B/r:oe 10 dt
(2.16)

+/\[k(0)+/ e‘R("e("“’g)‘w(r)dr—/ e‘R(‘)e("““g)’c(t)dt].
t=0

t=0

The household chooses c¢ at each point in time; that is, it chooses infinitely
many c¢(t)'s. The first-order condition for an individual (1) is’

BePto(t)8 = Ae~ R0 +a), (2.17)

The household’s behavior is characterized by (2.17) and the budget con-
straint, (2.14).

7 This step is slightly informal; the difficulty is that the terms in (2.17) are of order dtin
(2.16); that is, they make an infinitesimal contribution to the Lagrangian. There are various
ways of addressing this issue more formally than simply “canceling” the dt's (which is what
we do in [2.17]). For example, we can model the household as choosing consumption over the
finite intervals [0, A1), [AL 2A1), [2A43AD), ..., with its consumption required to be constant
within each interval, and then take the limit as At approaches zero. This also yields (2.17).
Another possibility is to use the calculus of variations (see n. 13, at the end of Section 2.4).
In this particular application, however, the calculus-of-variations approach simplifies to the
approach we have used here. That is, here the calculus of variations merely provides a formal
justification for canceling the dt’s in (2.17).
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To see what (2.17) implies for the behavior of consumption, first take
logs of both sides:

InB-Bt—OInc(t)=mmA-R(t)+(n+ gt

¢ (2.18)
=InA- v dr+(n+ g,
T=0
where_ the second line uses the definition of R(t) as f ’_0 r(T) dT. Now note
that s_mce the two sides of (2.18) are equal for every t,TtBe derivatives of the
two sides with respect to t must be the same. This condition is

éo _
c(t)

where we have once again used the fact that the time derivative of the log
of a variable equals its growth rate. Solving (2.19) for é&(t)/c(t) yields

) _rit)-n-g-8
c(t) [
_ro-p-bg
—F
where the second line uses the definition of fas p—-n— (1 — 8)g.
To interpret (2.20), note that since C(t) (consumption per worker, rather

than consumption per unit of effective labor) equals c(t)A(t), the growth
rate of C is given by ,

-B-96 —r(t)+(n+g), (2.19)

(2.20)

€ _ Aw e
o - AD T

=g+r(t)_—g_9-" 2.21)
_rit)-p
~10-p,

where the second line uses (2.20). This condition states that consumption
per wquer is rising if the real return exceeds the rate at which the house-
hold discounts future consumption, and is falling if the reverse holds. The
smaller is #—the less marginal utility changes as consumption changes—the
larger are the changes in consumption in response to differences between
the real interest rate and the discount rate.

Equation (2.20) is known as the Euler equation for this maximization
prob’lem. A more intuitive way of deriving (2.20) is to think of the house-
hold’s consumption at two consecutive moments in time.8 Specifically,

8 The intuition for the Eul fon i i
) er equation is considerably easier if time is di
continuous. See Section 2.9. ’ o discrete raher than
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imagine the household reducing c at some date t by a small (formally, in-
finitesimal) amount A¢ investing this additional saving for a short (again,
infinitesimal) period of time At, and then consuming the proceeds at time
t+ At; assume that when it does this, the household leaves consumption
and capital holdings at all times other than t and t+ At unchanged. If the
household is optimizing, the marginal impact of this change on lifetime
utility must be zero. From (2.12), the marginal utility of c(t) is Be-Bte(t)C.
Thus the change has a utility cost of Be-Btc(t)-9Ac. Since the instantaneous
rate of return is #(f), c at time t+ At can be increased by elrO-n-glATAc,
Similarly, since c is growing at rate &()/c(t), we can write c(t+ At) as
c(t)elé®/c@Iat; thug the marginal utility of c(t+At)is Be-Bu+atic(ty Aty 0 =
Be-Ble+an[e(p)eléw/elat-0, Thus for the path of consumption to be utlity-
maximizing, it must satisfy

Be Fle()fac= Bo-B+aD[¢(p)ele®/c@Ia-BplrO-n-glAtAe  (2.22)

B

Dividing by Be-8tc(t)?Ac and taking logs yields

—BAt— 9% At+[r(t) —n—glat=0. (2.23)

Finally, dividing by At and rearranging yields the Euler equation in (2.20).
Intuitively, the Fuler equation describes how ¢ must behave over time
given c(0): if ¢ does not evolve according to (2.20), the household can rear-
range its consumption in a way that raises lifetime utility without changing
. the present value of its lifetime spending. The choice of c(0) is then deter-
. mined by the requirement that the present value of lifetime consumption
over the resulting path equals initial wealth plus the present value of fu-
ture earnings. When ¢(0) is chosen t00 low, consumption spending along
the path satisfying (2.20) does not exhaust lifetime wealth, and so a higher
‘path is possible; when ¢ (0) is set 100 high, consumption spending more than
uses up lifetime wealth, and so the path is not feasible.?

2.3 The Dynamics of the Economy

The most convenient way to describe the behavior of the economy is in
terms of the evolution of c and k.

9 Formally, equation (2.20) implies that c(t)=c(Q)elRW-(p+0a1/0 which implies
that e-RWem+altc(r) = c(0)eld-ORMHIn-A/S Thus c(0) is determined by the fact that
c(0) ft ‘fo 1-ORO)+@n-pt1/0 gt must equal the right-hand side of the budget constraint,
2.14)."
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¢ ¢=0

(¢>0) (¢ <0)

k*
k
FIGURE 2.1 The dynamics of ¢

The Dynamics of ¢

?)ifngil :]tl _ho?;eholds arle the same, equation (2.20) describes the evolution
just for a single household but for the economy as a wh i
r(t) = f'(k(t)), we can rewrite (2.20) as Y whole. Since

&) _ k@) ~p-6g
W= 0 (2.24)
’E::{sc ecas zz:o ;v(}llgn fl'(k) equals p + 6g. Let k* denote this level of k. When
eds k*, f'(k) is less than p + 0g, and so ¢ i ive; i
o ke e g o ¢ is negative; when k is less
T.hlS mform_ation is summarized in Figure 2.1. The arrows show the di-
r_ecnog of motion of ¢. Thus cis rising if k < k* and falling if k > k*. The
¢ =0 line at k = k* indicates that cis constant for this value of k.10

The Dynamics of k

As in the Sglow model, & equals actual investment minus break-even in-
vestinent. Since we are assuming that there is no depreciation, break-even

0 R N
Note that (2.24) implies that ¢ also equals zero when cis zero. That is, ¢ is also zero

along the horizontal axis of the dia; i ilibri
gram. But in equilibrium c is is i
not relevant to the analysis of the model. ¢1s never zero, and so this i
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(l&<0)

FIGURE 2.2 The dynamics of k

investment is (n + g)k. Actual investment is output minus consumption,
f(k) — c. Thus,

k() = k(D) — c(t) — (n + k(). (2.25)

For a given k, the level of c that implies k = 0 s given by f _(k) —(n+ 9k
in terms of Figure 1.6 (in Chapter 1), kis zero when copsumpnon eguals th.e
difference between the actual output and break-even investment lines. This
value of cis increasing in k until f'(k) = n+ g(the golden-rule level'of k) and
is then decreasing. When ¢ exceeds the level that yields k = 0, k is falling;
when cis less than this level, k is rising. For k sufficiently large, .b.reak-even

" investment exceeds total output, and so k is negative for all positive values
of ¢. This information is summarized in Figure 2.2; the arrows show the
direction of motion of k.

The Phase Diagram

i .3 combines the information in Figures 2.1 and 2.2. The arTows now
1s:ilg(;]vIvetlzljdjrections of motion of both c and k. To the left of the' ¢=0 locu.s
and above the k = 0 locus, for example, ¢ is positive and k negative. Thus cis
risihg and k falling, and so the arrows point up and tq tl.1e left. The.arrows
in the other sections of the diagram are based on 51m1l'ar reasoning. On
the ¢ = 0 and k = 0 curves, only one of cand kis changmg: On t.he ¢=0
T 0 locus. for example, cis constant and k is falling; thus
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c c=0

L.

k* k
FIGURE 2.3 The dynamics of cand k

the arrow points to the left. Finally, at Point E both ¢ and k are zero; thus
there is no movement from this point.!!

Figure 2.3 is drawn with k* (the level of k that implies ¢ = 0) less than
the golden-rule level of k (the value of k associated with the peak of the
k = 0 locus). To see that this must be the case, recall that k* is defined by
f(k*) = p + 6g, and that the golden-rule k is defined by f'(kgr) = n + g.
Since f”(k) is negative, k* is less than k¢ if and only if p + g is greater
than n + g. This is equivalent to p—n—(1 — 8)g > 0, which we have assumed
to hold so that lifetime utility does not diverge (see [2.2]). Thus k* is to the
left of the peak of the k = 0 curve.

The Initial Value of ¢

Figure 2.3 shows how cand k must evolve over time to satisfy households’
intertemporal optimization condition (equation [2.24]) and the equation

11 There are two other points where ¢ and k are constant. The first is the origin: if the
economy starts with no capital and no consumption, it remains there. The second is the
point where the k = 0 curve crosses the horizontal axis. Here all of output is being used to
hold k constant, so ¢= 0 and f(k) = (n + g)k. Since having consumption change from zero
to any positive amount violates households’ intertemporal optimization condition, (2.24), if
the economy is at this point it must remain there to satisfy (2.24) and (2.25). As we will see
shortly, however, the economy is never at this point.
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4 ¢=0

F
S
kO0) k* k
FIGURE 2.4 The behavior of ¢ and k for various initial values of ¢

relating the change in k to output and consumption {equation [2.25]) given
initial values of ¢ and k. The initial value of k is given; but the initial value
of ¢ must be determined.

This issue is addressed in Figure 2.4. For concreteness, k(0) is assumed
to be less than k*. The figure shows the trajectory of ¢ and k for various
‘assumptions concerning the initial level of ¢ If ¢(0) is above the k = 0 curve,
at a point like A, then ¢ is positive and k negative; thus the economy moves
continually up and to the left in the diagram. If c(0) is such that k is initially
zero (Point B), the economy begins by moving directly up in (k, ¢) space;
thereafter ¢ is positive and k negative, and so the economy again moves
up and to the left. If the economy begins shghtly below the k = 0 locus
(Point C), k is initially positive but small (since k is a continuous function
of ¢), and ¢ is again positive, Thus in this case the economy initially moves
up and slightly to the right; after it crosses the k = 0 locus, however, k
becomes negative and once again the economy is on a path of rising ¢ and
falling k.

Point D shows a case of very low initial consumption. Here ¢ and k are
both initially positive. From (2.24), ¢ is proportional to ¢; when cis small,
¢ is therefore small. Thus ¢ remains low, and so the economy eventually
crosses the ¢ = 0 line. After this point, ¢ becomes negative, and k remains
positive. Thus the economy moves down and to the right.

¢ and k are continuous functions of ¢ and k. Thus there is some critical
point between Points C and D—Point F in the diagram—such that at that
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level of initial ¢, the economy converges to the stable point, Point E. For any
level of consumption above this critical level, the k = 0 curve is crossed
before the ¢ = 0 line is reached, and so the economy ends up on a path
of perpetually rising consumption and falling capital. And if consumption
is less than the critical level, the ¢ = 0 locus is reached first, and so the
economy embarks on a path of falling consumption and rising capital. But
if consumption is just equal to the critical level, the economy converges to
the point where both cand k are constant.

All these various trajectories satisfy equations (2.24) and (2.25). But we
have not yet imposed the requirement that households satisfy their budget
constraint, nor have we imposed the requirement that the economy’s capital
stock not be negative. These conditions determine which of the trajectories
in fact describes the behavior of the economy.

If the economy starts at some point above F, c is high and rising. As a
result, the equation of motion for k, (2.25), implies that k eventually reaches
zero. For (2.24) and (2.25) to continue to be satisfied, ¢ must continue to
rise and k must become negative. But this cannot occur. Since output is
zero when k is zero, c must drop to zero. This means that households are
not satisfying their intertemporal optimization condition, (2.24). We can
therefore rule out such paths.

To rule out paths starting below F, we use the budget constraint ex-
pressed in terms of the limiting behavior of capital holdings, equation (2.15):
limg, ., e~ el +9)k(s5) > 0. If the economy starts at a point like D, eventu-
ally k exceeds the golden-rule capital stock. After that time, the real interest
rate, f’(k), is less than n + g, so e~R()eln+9 ig riging, Since k is also rising,
e RO)eln+aksk (5) diverges. Thus lim;._,.., e~R®e+9)5k(s) is infinity. From the
derivation of (2.15), we know that this is equivalent to the statement that
the present value of households’ lifetime income is infinitely larger than the
present value of their lifetime consumption. Thus each household can af-
ford to raise its consumption at each point in time, and so can attain higher
utility. That is, households are not maximizing their utility. Hence, such a
path cannot be an equilibrium.

Finally, if the economy begins at Point F, k converges to k*, and so r
converges to f'(k*) = p + 0g. Thus eventually e~%®e(1+9)s ig falling at rate
p-n—(1-8@)g= B >0, and so limg_,, e~ X1tk (s) is zero. Thus the
path beginning at F, and only this path, is possible.

The Saddle Path

Although this discussion has been in terms of a single value of k, the idea is
general. For any positive initial level of k, there is a unique initial level of ¢
that is consistent with households’ intertemporal optimization, the dynam-
ics of the capital stock, households’ budget constraint, and the requirement
that k not be negative. The function giving this initial c as a function of k is
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known as the saddle path; it is shown in Figure 2.5. For any starting value
for k, the initial cmust be the value on the saddle path. The economy then
moves along the saddle path to Point E.

2.4 Welfare

A natural question is whether the equilibrium of this economy represents
a desirable outcome. The answer to this question is simple. The first _ufel—
fare theorem from microeconomics tells us that if markets are competitive
and complete and there are no externalities (and if the n}lmber of ellge'nt.s
is finite), then the decentralized equilibrium is Pareto-efficient—that is, it is
impossible to make anyone better off without making someqne else worse
'off. Since the conditions of the first welfare theorem hold in our model,
the equilibrium must be Pareto-efficient. And since all hqgseholds have the
same utility, this means that the decentralized equilibrium producc:es
the highest possible utility among allocations that treat all households in
the same way. . '

To see this more clearly, consider the problem facing a social planner who
can dictate the division of output between consumption and investment at
each date and who wants to maximize the lifetime utility of a representa-
tive household. This problem is identical to that of an individual household
except that, rather than taking the paths of w and r as given, the planner
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takes into account the fact that these are determined by the path of k, which
is in turn determined by (2.25).

The intuitive argument involving consumption at consecutive moments
used to derive (2.20) or (2.24) applies to the social planner as well: reducing
cby Acat time t and investing the proceeds allows the planner to increase ¢
at time t + At by ef k(Date=(n+g)at A¢12 Thus ¢(t) along the path chosen
by the planner must satisfy (2.24). And since equation (2.25) giving the
evolution of k reflects technology, not preferences, the social planner must
obey it as well. Finally, as with households’ optimization problem, paths
that require that the capital stock becomes negative can be ruled out on the
grounds that they are not feasible, and paths that cause consumption to
approach zero can be ruled out on the grounds that they do not maximize
households’ utility.

In short, the solution to the social planner’s problem is for the initial value
of cto be given by the value on the saddle path, and for cand k to then move
along the saddle path. That is, the competitive equilibrium maximizes the
welfare of the representative household.13

2.5 The Balanced Growth Path
Properties of the Balanced Growth Path

The behavior of the economy once it has converged to Point E is identical
to that of the Solow economy on the balanced growth path. Capital, output,
and consumption per unit of effective labor are constant. Since y and c are
constant, the saving rate, (y — ¢)/y, is also constant. The total capital stock,
total output, and total consumption grow at rate n + g. And capital per
worker, output per worker, and consumption per worker grow at rate g.
Thus the central implications of the Solow model concerning the driving
forces of economic growth do not hinge on its assumption of a constant
saving rate. Even when saving is endogenous, growth in the effectiveness of

12 Note that this change does affect r and w over the (brief) interval from t to ¢ +At. rfalls
by f"(k) times the change in k, while w rises by —f"(k)k times the change in k. But the effect
of these changes on total income (per unit of effective labor), which is given by the change
inw plus k times the change in 7, is zero. That is, since capital is paid its marginal product,
total payments to labor and to previously existing capital remain equal to the previous level
of output (again per unit of effective labor). This is just a specific instance of the general
result that the pecuniary externalities—externalities operating through prices—balance in
the aggregate under competition.

13 A formal solution to the planner's problem involves the use of the calculus of varia-
tions. For a formal statement and solution of the problem, see Blanchard and Fischer (1989,
Pp. 38-43). For an introduction to the calculus of variations, see Section 8.2; Kamien and
Schwartz (1991); Dixit (1990, Chapter 10); or Obstfeld (1992).



64 Chapter 2 INFINITE-HORIZON AND OVERLAPPING-GENERATIONS

labor remains the only source of persistent growth in output per worker.
And since the production function is the same as in the Solow model, one
can repeat the calculations of Section 1.6 demonstrating that significant
differences in output per worker can arise from differences in capital per
worker only if the differences in capital per worker, and in rates of return
to capital, are enormous.

The Balanced Growth Path and the Golden-Rule Level
of Capital

The only notable difference between the balanced growth paths of the Solow
and Ramsey-Cass-Koopmans models is that a balanced growth path with a
capital stock above the golden-rule level is not possible in the Ramsey-Cass-
Koopmans model. In the Solow model, a sufficiently high saving rate causes
the economy to reach a balanced growth path with the property that there
are feasible alternatives that involve higher consumption at every moment.
In the Ramsey-Cass-Koopmans model, in contrast, saving is derived from
the behavior of households whose utility depends on their consumption,
and there are no externalities. As a result, it cannot be an equilibrium for
the economy to follow a path where higher consumption can be attained in
every period; if the economy were on such a path, households would reduce
their saving and take advantage of this opportunity.

This can be seen in the phase diagram. Consider again Figure 2.5. If the
initial capital stock exceeds the golden-rule level (that is, if k(0) is greater
than the k associated with the peak of the k = 0 locus), initial consumption

“is above the level needed to keep k constant; thus k is negative. k gradually
. approaches k*, which is below the golden-rule level.

Finally, the fact that k* is less than the golden-rule capital stock implies
that the economy does not converge to the balanced growth path that yields
the maximum sustainable level of c. The intuition for this result is clearest
in the case of g equal to zero, so that there is no long-run growth of con-
sumption and output per worker. In this case, k* is defined by f/(k*) = p
(see [2.24]) and k¢r is defined by fi(kgr) = n, and our assumption that
p—n—-{(1-6g>0 simplifies to p > n. Since k* is less than kgg, an in-
crease in saving starting at k = k* would cause consumption per worker to
eventually rise above its previous level and remain there (see Section 1.4).
But because households value present consumption more than future con-
sumption, the benefit of the eventual permanent increase in consumption
is bounded. At some point—specifically, when k exceeds k*—the tradeoff
between the temporary short-term sacrifice and the permanent long-term
gain is sufficiendy unfavorable that accepting it reduces rather than raises
lifetime utility. Thus k converges to a value below the golden-rule level. Be-
cause k* is the optimal level of k for the economy to converge 10, it is known
as the modified golden-rule capital stock.
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2.6 The Effects of a Fall in the
Discount Rate

Consider a Ramsey-Cass-Koopmans economy that is onits b

path, and suppose that there is a fall in p, theydiscoum ratz. liigﬁzg ;g)i(;v:}tlg
parameter governing households’ preferences between current and future
consumption, this change is the closest analogue in this model to a rise in
the saving rate in the Solow model.

Since the division of output between consumption and inv i
determl_ned by forward-looking households, we n?ust specify wilsettlill:? ttliz
change Is expected or unexpected. If a change is expected, households may
a}ter their behavior before the change occurs. We therefore focus on the
smple case where the change is unexpected. That is, households are opti-
mizing given their belief that their discount rate will not change, and the
economy is on the resulting balanced growth path. At some date hollseholds
sgddenly discover that their preferences have changed, and that they now
discount future utility at a lower rate than before.l4 ,

Qualitative Effects

Since the evolution of k is determined by technology ra -
ences, p enters the equation for ¢ but not Zhe one forglzl. TI'ItII;I: rortﬂ};altlhgréﬁ—ero
locus is affected. Recall equation (2.24): &(t)/c(t) = [F/(k(t))— p— 0g)/6 TI:us
_the value of k where ¢ equals zero is defined by f/(k*) = p + 6g Sincé f"(e)
is negative, this means that the fall in p raises k*. Thus the ¢ = 0 line shift:
to the right. This is shown in Figure 2.6. °

At the.time of the change in p, the value of k—the stock of capital per unit
of effective labor—is given by the history of the economy, and it cannot
change discontinuously. In particular, k at the time of the’ change equals
the. value of k* on the old balanced growth path. In contrast, c—the rate at
Wth.h households are consuming—can jump at the time of t’he shock

G1ve_n our analysis of the dynamics of the economy, it is clear what OC.CUI‘S'
at the instant of the change, ¢ jumps down so that the economy is on the.
new sgddle path (Point A in Figure 2.6).1> Thereafter, ¢ and k rise gradually
to their new balanced-growth-path values; these are higher than their values
on the original balanced growth path.

Thqs the effects of a fall in the discount rate are similar to the effects of
a rise in the saving rate in the Solow model with a capital stock below the

14 See Section 2.7 and
changes, and Problems 2.10 and 2.11 for examples of how to analyze anticipated

15 o .

. Smge we are assuming that the change is unexpected, the discontinuous change in ¢

t}(:e:‘s noF imply that h.ouseholds are not optimizing. Their original behavior is optimal given
eir beliefs; the fall in cis tlie optimal response to the new information that p is lower.
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FIGURE 2.6 The effects of a fall in the discount rate

golden-rule level. In both cases, k rises gradually to a new high.er level, and
in both c initially falls but then rises to a level above the one it started at.
Thus, just as with a permanent rise in the saving rate in the Sglow modgl,
the permanent fall in the discount rate produces temporary increases in
the growth rates of capital per worker and output per worker. The ‘only
difference between the two experiments is that, in the case of the fall in p,

. in general the fraction of output that is saved is not constant during the
adjustment process.

" The Rate of Adjustment and the Slope of the Saddle
‘Path

Equations (2.24) and (2.25) describe &(t) and k(t) as functions of k(t) and
c(t). A fruitful way to analyze their quantitative implications folr thg dy-
namics of the economy is to replace these nonlinear equations with ]Jngar
approximations around the balanced growth path. Thus we begin by takm*g
tirst-order Taylor approximations to (2.24) and (2.2 5)around k = k*, c= c*.
That is, we write

2o 06 w0 o+ (2.26)
[o=4 ak[k k*1+ aC[c c*l,
L * % —c* (2.27)
k ~ 512”( k*1+ aC[c c*},
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where 3¢/8k, 3¢/dc, dk/dk, and 9k/dcare all evaluated at k = k*, c= ¢*. Our
strategy will be to treat (2.26) and (2.27) as exact and analyze the dynamics
of the resulting system.!6

It helps to define &= ¢~ ¢* and k= k— k*. Since ¢* and k* are both con-
stant, ¢ equals ¢, and k equals k. We can therefore rewrite (2.26) and (2.27)
as

. 3. O,
b rk+ =0, (2.28)
2 ok, k.
ke k=02 (2.29)

(Again, the derivatives are all evaluated at k = k*, ¢ = ¢*.) Recall that ¢ =
{[f'(k) — p— 6g1/0}c (equation [2.24]). Using this expression to compute the
derivatives in (2.28) and evaluating them at k = k*, ¢ = c* gives us

o 00 230

(a0}

Similarly, (2.25) states that k = f(k) — c— (n + g)k. We can use this to find
the derivatives in (2.29); this yields

k=~ [f(k*) - (n + gk - &
=lp+0g) —(n+glk-¢ (2.31)
=pk~¢,

where the second line uses the fact that (2.24) implies that f'(k*) = p + 0g
and the third line uses the definition of 8 as p — n— (1 — 0)g. Dividing both
sides of (2.30) by & and both sides of (2.31) by k yields expressions for the
growth rates of ¢and k:

P n{ L%y % b

o ’C”‘T)C’_; (2.32)
£ &
=~ B— . 2.33
T P (2.33)

Equations (2.32) and (2.33) imply that the growth rates of &and k depend
only on the ratio of ¢and k. Given this, consider what happens if the values
of ¢and k are such that ¢ and k are falling at the same rate (that is, if they
imply &&= k/k). This implies that the ratio of & to k is not changing, and
thus that their growth rates are also not changing. That is, if ¢ — ¢* and

16 For a more formal introduction to the analysis of systems of differential equations
(such as [2.26]-[2.27]), see Simon and Blume (1994, Chapter 25).
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k— k* are initially falling at the same rate, they continue to fall at that rate.
In terms of the diagram, from a point where & and k are falling at equal
rates, the economy moves along a straight line to (k*, ¢*), with the distance
from (k*, c*) falling at a constant rate.

Let pt denote &/¢ Equation (2.32) implies

¢ frk*)c* 1
=—— 2.34)
k 6 u (
From (2.33), the condition that k/k equals &¢is thus
_ f//(k*)c* 1
u=p- 5 m (2.35)
or
't k* %
u? - Bu+ L(—ei —0. (2.36)
This is a qua.dratic equation in y. The solutions are
2 1 %Yk 1/2
o BEIB = 4 K)ct/O17 2:37)

2

Let py and p» denote these two values of p.

If p is positive, then ¢and k are growing; that is, instead of moving along a
straight line toward (k*, c*), the economy is moving on a straight line away
from (k*, c*). Thus if the economy is to converge to (k*, ¢*), then y must
be negative. Inspection of (2.37) shows that only one of the u's, namely
(B—1B? —4f"(k*)c*/01+/2)/2, is negative. Let u; denote this value of u. Equa-

” tion (2.34) (with u = ;) then tells us how ¢ must be related to k for both to
- be falling at rate ;.

Figure 2.7 shows the line along which the economy converges smoothly
to (k*, c*); it is labeled AA. This is the saddle path of the linearized system.
The figure also shows the line along which the economy moves directly away
from (k*, ¢*); it is labeled BB. If the initial values of c(0) and k(0} lay along
this line, (2.32) and (2.33) would imply that Zand k would grow steadily at
rate w217 Since f(s) is negative, (2.34) implies that the relation between ¢
and k has the opposite sign from . Thus the saddle path AA is positively
sloped, and the BB line is negatively sloped.

Thus if we linearize the equations for ¢ and k, we can characterize the
dynamics of the economy in terms of the model's parameters. At time O, ¢
must equal c*+[ f"(k*)c*/(O1)1(k—k*). Thereafter, cand k converge to their
balanced-growth-path values at rate yy. That is, k(f) = k* + et{k(0) — k*]
and c(t) = c* + e![c(0) — c*].

17 Of course, it is not possible for the initial value of (k, ¢) to lie along the BB line. As we
saw in Section 2.3, if it did, either k would eventually become negative or households would
accumulate infinite wealth.
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The Speed of Adjustment

To understand the implications of (2.37) for the speed of convergence to the
balanced growth path, consider our usual example of Cobb-Douglas pro-
duction, f(k) = k*. This implies f"(k*) = a(xx — 1)k**-2. Since consumption
on the balanced growth path equals output minus break-even investment,
consumption per unit of effective labor, c¢*, equals k** — (n + g)k*. Thus in
this case we can write the expression for y; as

— 1 2 4 *O0—2[L ko V2
Hi=5|B- {B — &= D[k —(n+g)k*]} ) (2.38)

Recall that on the balanced growth path, f'(k) equals p + g (see [2.24]).
For the Cobb-Douglas case, this is equivalent to ok**1 = p + 8g, or k* =

[(P + 8g)/ &]¥/*-1)_ Substituting this into (2.38) and doing some uninterest-
ing algebraic manipulations yields

1 41- e
u1=§<B—{B2+§—a“(p+eg)[p+99—a(n+g)]} ) (2.39)

Equation (2.39) expresses the rate of adjustment in terms of the underlying
parameters of the model.

To get a feel for the magnitudes involved, suppose « = %, p = 4%, n= 2%,
g =1%, and 6 = 1. One can show that these parameter values imply that on
the balanced growth path, the real interest rate is 5 percent and the saving
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rate 20 percent. And since B is defined as p— n—(1— )g, they imply B = 2%.
Equation (2.38) or (2.39) then implies 1y ~ —5.4%. Thus adjustment is quite
rapid in this case; for comparison, the Solow model with the same values
of o, n, and g (and as here, no depreciation) implies an adjustment speed
of 2 percent per year (see equation [1.31]). The reason for the difference is
that in this example, the saving rate is greater than s* when k is less than k*
and less than s* when k is greater than k*. In the Solow model, in contrast,
sis constant by assumption.

2.7 The Effects of Government
Purchases

_ Thus far, we have left government out of our model. Yet modern economies
devote their resources not just to investment and private consumption but
also to public uses. In the United States, for example, about 20 percent
of total output is purchased by the government; in many other countries
the figure is considerably higher. It is thus natural to extend our model to
include a government sector.

Adding Government to the Model

Assume that the government buys output at rate G(t) per unit of effective
labor per unit time. Government purchases are assumed not to affect util-
ity from private consumption; this can occur if the government devotes the
goods to some activity that does not affect utility at all, or if utility equals
the sum of utility from private consumption and utility from government-
provided goods. Similarly, the purchases are assumed not to affect future
output; that is, they are devoted to public consumption rather than pub-
lic investment. The purchases are financed by lump-sum taxes of amount
" G(t) per unit of effective labor per unit time; thus the government always
runs a balanced budget. Consideration of deficit finance is postponed to
Chapter 11. We will see there, however, that in this model the government’s
choice between tax and deficit finance has no impact on any important vari-
ables. Thus the assumption that the purchases are financed with current
taxes only serves to simplify the presentation.

Investment is now the difference between output and the sum of private
consumption and government purchases. Thus the equation of motion for
k, (2.25), becomes

k) = Fk@) — c(t) — G(t) — (n + g)k(D). (2.40)

A higher value of G shifts the k = 0 locus down: the more goods that are
purchased by the government, the fewer that can be purchased privately if
k is to be held constant.
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FIGURE 2.8 The effects of a permanent increase in government purchases

By assumption, households’ preferences ([2.1]-[{2.2] or [2.12]) are un-
changed. Since the Euler equation ([2.20] or [2.24]) is derived from house-
holds’ preferences without imposing their lifetime budget constraint, this
condition continues to hold as before. The taxes that finance the govern-
ment’s purchases affect households’ budget constraint, however. Specifi-
cally, (2.14) becomes

/ e RO¢c(n)en+9t gr < k(0)+/ e ROw(t) — G()]e 9t dr.  (2.41)
t=0 t=0

Reasoning parallel to that used before shows that this implies the same
expression as before for the limiting behavior of k (equation [2.15]).

The Effects of Permanent and Temporary Changes in
Government Purchases

To see the implications of the model, suppose that the economy is on a
balanced growth path with G(t) constant at some level G;, and that there
is an unexpected, permanent increase in G to Gy. From (2.40), the k = 0
locus shifts down by the amount of the increase in G. Since government
purchases do not affect the Euler equation, the ¢ = 0 locus is unaffected.
This is shown in Figure 2.8.18

18 we assume that Gy is not so large that kisnegative when ¢ = 0. That is, the intersection
of the new k = 0 locus with the ¢ = 0 line is assumed to occur at a positive level of ¢ If it
does not, the government’s policy is not feasible. Even if cis always zero, k is negative, and
eventually the economy’s output per unit of effective labor is less than Gy.
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We know that in response to such a change, ¢ must jump so that the
economy is on its new saddle path. If not, then as before, either capital
would become negative at some point or households would accumulate in-
finite wealth. In this case, the adjustment takes a simple form: c falls by
the amount of the increase in G, and the economy is immediately on its
new balanced growth path. Intuitively, the permanent increases in govern-
ment purchases and taxes reduce households’ lifetime wealth. And because
the increases in purchases and taxes are permanent, there is no scope for
households to raise their utility by adjusting the time pattern of their con-
sumption. Thus the size of the immediate fall in consumption is equal to
the full amount of the increase in government purchases, and the capital
stock and the real interest rate are unaffected.

An older approach to modeling consumption behavior assumes that con-
sumption depends only on current disposable income and that it moves
less than one-for-one with disposable income. Recall, for example, that the
Solow model assumes that consumption is simply fraction 1 — s of current
income. With'that approach, consumption falls by less than the amount of
the increase in government purchases. As a result, the rise in government
purchases crowds out investment, and so the capital stock starts to fall and
the real interest rate starts to rise. Our analysis shows that those results rest
critically on the assumption that households follow mechanical rules: with
intertemporal optimization, a permanent increase in government purchases
does not cause crowding out.

A more complicated case is provided by an unanticipated increase in G
that is expected to be temporary. For simplicity, assume that the terminal
date is known with certainty. In this case, ¢ does not fall by the full amount
.of the increase in G, Gy — Gr. To see this, note that if it did, consumption
“would jump up discontinuously at the time that government purchases re-
turned to Gy; thus marginal utility would fall discontinuously. But since the
return of G to Gy, is anticipated, the discontinuity in marginal utility would
also be anticipated, which cannot be optimal for households.

During the period of time that governiment purchases are high, k is gov-
erned by the capital-accumulation equation, (2.40), with G = Gg; after G
returns to Gy, it is governed by (2.40) with G = G;. The Euler equation,
(2.24), determines the dynamics of ¢ throughout, and ¢ cannot change dis-
continuously at the time that G returns to G;. These facts determine what
happens at the time of the increase in G: ¢ must jump to the value such
that the dynamics implied by (2.40) with G = Gy (and by [2.24]) bring the
economy to the old saddle path at the time that G returns to its initial level.
Thereafter, the economy moves along that saddle path to the old balanced
growth path.1®

19 A jn the previous example, because the initial change in G is unexpected, the discon-
tinuities in consumption and marginal utility at that point do not mean that households are
not behaving optimally. See n. 15.
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FIGURE 2.9 The effects of a temporary increase in government purchases

This is depicted in Figure 2.9. Panel (a) shows a case where the increase
in G is relatively long-lasting. In this case c falls by most of the amount of
the increase in G. As the time of the return of G to G approaches, however,
households increase their consumption and decrease their capital holdings
in anticipation of the fall in G.

Since r = f'(k), we can deduce the behavior of » from the behavior of k.
Thus r rises gradually during the period that government spending is high
and then gradually returns to its initial level. This is shown in Panel (b); to

denotes the time of the increase in G, and t; the time of its return to its
initial value.
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Finally, Panel (c) shows the case of a short-lived rise in G. Here households
change their consumption relatively little, choosing instead to pay for most
of the temporarily higher taxes out of their savings. Because government
purchases are high for only a short period, the effects on the capital stock
and the real interest rate are small.

Note that once again allowing for forward-looking behavior yields in-
sights we would not get from the older approach of assuming that con-
sumption depends only on current disposable income. With that approach,
the duration of a change in government purchases is irrelevant. But the idea
that households do not look ahead and put some weight on the likely future
path of government purchases and taxes is implausible.

_Empirical Application: Wars and Real Interest Rates

This analysis suggests that temporarily high government purchases cause
real interest rates to rise, whereas permanently high purchases do not. Intu-
itively, when the government’s purchases are high only temporarily, house-
holds expect their consumption to be greater in the future than it is in the
present. To make them willing to accept this, the real interest rate must
be high. When the government’s purchases are permanently high, on the
other hand, households’ current consumption is low, and they expect it to
remain low. Thus in this case, no movement in real interest rates is needed
for households to accept their current low consumption.
A natural example of a period of temporarily high government purchases
" is a war. Thus our analysis predicts that real interest rates are high during
wars. Barro (1987) tests this prediction by examining military spending and
interest rates in the United Kingdom from 1729 to 1918. The most signif-
icant complication he faces is that, instead of having data on short-term
real interest rates, he has data only on long-term nominal interest rates.
. Long-term interest rates should be, loosely speaking, a weighted average of
expected short-term interest rates.20 Thus, since our analysis implies that
temporary increases in government purchases raise the short-termrate over
an extended period, it also implies that they raise the long-term rate. Simi-
latly, since the analysis implies that permanent increases never change the
short-term rate, it predicts that they do not affect the long-term rate. In
addition, the real interest rate equals the nominal rate minus expected in-
flation; thus the nominal rate should be corrected for changes in expected
inflation. Barro does not find any evidence, however, of systematic changes
in expected inflation in his sample period; thus the data are at least consis-
tent with the view that movements in nominal rates represent changes in
real rates.

20 See Section 10.2.

2.7 The Effects of Government Purchases 75
6.5 0.6
6.0
1 0.5
5.5
o 0.4
]
g 4.5 103 §
5 =
£ 40 !
» 1 0.2 ¢
3.5
1 0.1
3.0
2.5 =4 00
2.0

] | 1 11 1 1 1
1740 1760 1780 1800 1820 1840 1860 18|80 19'00 -01
FIGURE 2.10 Tempo_rary r['lilitary spending and the long-term interest rate in
the United Kingdom (from Barro, 1987; used with permission)

Figure 2.10 plots British military spending as a share of GNP (relative
to the mean of this series for the full sample) and the long-term interest
rate. The spikes in the military spending series correspond to wars; for ex-
ample, the spike around 1760 reflects the Seven Years’ War, and the spike
around 1780 corresponds to the American Revolution. The figure suggests
that the interest rate is indeed higher during periods of temporarily high
government purchases.

To test this formally, Barro estimates a process for the military purchases
series and uses it to construct estimates of the temporary component of
military spending. Not surprisingly in light of the figure, the estimated tem-
porary component differs little from the raw series.?! Barro then regresses
the long-terin interest rate on this estimate of temporary military spending.
Because the residuals are serially correlated, he includes a first-order serial
correlation correction. The results are

Ri=354 + 26 G, A=091
027y 0.7) (0.03) (2.42)

R =0.89, s.e.e. =0.248, DW.=2.1.

21 - TS
; Sm.ce there is little permanent variation in military spending, the data cannot be used
to investigate the effects of permanent changes in government purchases on interest rates.
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Here R, is the long-term nominal interest rate, G, is the estimated value of
temporary military spending as a fraction of GNP, A is the first-order au-
toregressive parameter of the residual, and the numbers in parentheses are
standard errors. Thus there is a statistically significant link between tem-
porary military spending and interest rates. The results are even stronger
when World War 1 is excluded: stopping the sample period in 1914 raises
the coefficient on G; to 6.1 (and the standard error to 1.3). Barro argues that
the comparatively small rise in the interest rate given the tremendous rise
in military spending in World War I may have occurred because the gov-
ernment imposed price controls and used a variety of nonmarket means
of allocating resources. If this is right, the results for the shorter sample
may provide a better estimate of the impact of government purchases on
interest rates in a market economy.
Thus the evidence from the United Kingdom supports the predictions of
- the theory. The success of the theory is not universal, however. In particular,
for the United States real interest rates appear to have been, if anything,
generally lower during wars than in other periods (Barro, 1993, pp. 321~
322). The reasons for this anomalous behavior are not well understood.
Thus the theory does not provide a full account of how real interest rates
respond to changes in government purchases.

Part B The Diamond Model
2.8 Assumptions

We now turn to the Diamond overlapping-generations model. The central
difference between the Diamond model and the Ramsey-Cass-Koopmans
model is that there is turnover in the population: new individuals are con-
tinually being born, and old individuals are continually dying.

. With turnover, it turns out to be simpler to assume that time is dis-
crete rather than continuous. That is, the variables of the model are defined
for t = 0,1,2,...rather than for all values of t = 0. To further simplify the
analysis, the model assumes that each individual lives for only two periods.
Itis the general assumption of turnover in the population, however, and not
the specific assumptions of discrete time and two-period lifetimes, that is
crucial to the model’s results.??

22 gee Problem 2.14 for a discrete-time version of the Solow model. Blanchard (1985)
develops a tractable continuous-time model in which the extent of the departure from the
infinite-horizon benchmark is governed by a continuous parameter. Weil (1989a) considers a
variant of Blanchard’s model where new households enter the economy but existing house-
holds do not leave. He shows that the arrival of new households is sufficient to generate most
of the main results of the Diamond and Blanchard models. Finally, Auerbach and Kotlikoff
(1987) use simulations to investigate a much more realistic overlapping-generations model.
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L, individuals are born in period t. As before, population grows at rate
n; thus Ly = (1 + n)L,_;. Since individuals live for two periods, at time t
there are L, individuals in the first period of their lives and L;—; = L;/(1+ n)
individuals in their second periods. Each individual supplies 1 unit of labor
When he or she is young and divides the resulting labor income between
ﬁtrst-period consumption and saving. In the second period, the individual
simply consumes the saving and any interest he or she earns.

Let Cj; and Cp; denote the consumption in period t of young and old
individuals. Thus WOm at t, denoted U;, depends
on Cy; and Cyry1. We again assume constant-relative-risk-aversion utility:

CI—B 1 C1—9
=11—te+m12i+é’ 60, p>-L (2.43)
As before, this functional form is needed for balanced growth. Because life-
times are finite, we no longer have to assume p > n + (1 — 0)g to ensure
that lifetime utility does not diverge. If p > 0, individuals place greater
vyeight on first-period than second-period consumption; if p < 0, the situa-
tion is reversed. The assumption p-> —1 ensures that the weight on second-
period consumption is positive.

Production is described by the same assumptions as before. There are
many firms, each with the production function Y; = F(K, A:Ly). F(e) again
has constant returns to scale and satisfies the Inada conditions, and A again
grows at exogenous rate g (so A; = [1 + glA.1). Markets are competitive;
thus labor and capital earn their marginal products, and firms earn zero
proﬁts. As in the first part of the chapter, there is no depreciation. The real
interest rate and the wage per unit of effective labor are therefore given as
before by r; = f'(k;) and w; = f(k;} — kf'(k,). Finally, there is some initial
capital stock Ky that is owned equally by all old individuals.

Thus, in period O the capital owned by the old and the labor supplied
by the young are combined to produce output. Capital and labor are paid
their marginal products. The old consume both their capital income and
their existing wealth; they then die and exit the model. The young divide
their labor income, w:A,, between consumption and saving. They carry their
saving forward to the next period; thus the capital stock in period t + 1,
K;,1, equals the number of young individuals in period t, L, times each
of these individuals’ saving, w:A,; — Ci. This capital is combined with the
laboF supplied by the next generation of young individuals, and the process
continues.

Ue

2.9 Household Behavior

The second-period consumption of an individual born at t is

Corg1 = (1 + rrpa WA — C1p)- (2.44)
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Dividing both sides of this expression by 1 + r¢41 and bringing Ci, over to
the left-hand side vields the individual’s budget constraint:

Cre+ T—-I-:l_rt—;CZt+1 = AW (245)
This condition states that the present value of lifetime consumption equals
initial wealth (which is zero) plus the present value of lifetime labor income
(which is A;wy).

The individual maximizes utility, (2.43), subject to the budget constraint,
(2.45). We will consider two ways of solving this maximization problem. The
first is to proceed along the lines of the ntuitive derivation of the Euler equa-
tion for the Ramsey model in (2.22)~(2.23). Because the Diamond model is
in discrete time, the intuitive derivation of the Fuler equation is much easier
here than in the Ramsey model. Specifically, imagine the individual decreas-
ing C3, by a small (formally, infinitesimal) amount AC and then using the ad-
ditional saving and capital income to raise Czr+1 by (1+7r:4+1)AC. This change
does not affect the present value of the individual’s lifetime consumption
streain. Thus if the individual is optimizing, the utility cost and benefit of the
change must be equal. If the cost is less than the benefit, the individual can
increase lifetime utility by making the change. And if the cost exceeds the
benefit, the individual can increase utlity by making the opposite change.

The marginal contributions of Ci; and Cpr41 10 lifetime utility are Cl‘te
and [1/(1 + p)] 2}‘31, respectively. Thus as we let AC approach 0, the utility
cost of the change approaches Cl‘teAC and the utility benefit approaches
[1/(1 + p)]C{t‘il(l + rr41) AC. As just described, these are equal when the

individual is optimizing. Thus optimization requires

1
cfac= 1—+—pcz;i1(1 +Fe) AC (2.46)

Canceling the AC’s and multiplying both sides by €%, gives us

Cgt;rl - l+_h+_1, (2.47)
g, 1+
or
Corn 141 e
= . 2.48
Cie 1+p ( )

This condition and the budget constraint describe the individual’s behavior.

Expression (2.48) is analogous to equation (2.21) in the Ramsey model. It
implies that whether an individual’s consumption is increasing or decreas-
ing over time depends on whether the real rate of return is greater or less
than the discount rate. 6 again determines how much individuals’ consump-
tion varies in response to differences between r and p.
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The second way to solve the individual's maximization problem is to set
up the Lagrangian:

C1—9 1 C1—9
L=t 2t+1 _ 1
1—9+ T+p 1_6+/\|:AtWr <C1t+—1+rr+l C2t+1>] . (2.49)

The first-order conditions for C;; and (5,1 are

Cro=a, (2.50)
1 1
- O =
1+p 2+ 1+T’r+1/\ @51)
Substituting the first equation into the second yields
1 ) 1 )
5o = T G (2.52)

This can be rearranged to obtain (2.48). As before, this condition and the
budget constraint characterize utility-maximizing behavior.

We can use the Euler equation and the budget constraint to express Cy,
in terms of labor income and the real interest rate. Specifically, multiplying
both sides of (2.48) by C;; and substituting into the budget constraint gives

(1 + reyn) 1000

T Cr=Ame (2.53)

Cre+
This implies
_ 1+ po
T (L PO+ (1 )6V

. Equation.(Z..54) shows that the interest rate determines the fraction of
income the individual consumes in the first period. If we let s(r) denote the
fraction of income saved, (2.54) implies

(1 + r)t-0vo

Cue

AWe. (2.54)

SO = G o (L a7 (2.55)
We can therefore rewrite (2.54) as
Cre=[1 - s(rep)]Aowe (2.56)

Equation (2.55) implies that young individuals’ saving is increasing in r
if and only if (1 + r)1-9/¢ is increasing in r. The derivative of (1 + r)1-6/¢
with respect to ris [(1 — 8)/6](1 + r)2-29/8, Thus s is increasing in r if &
is less than 1, and decreasing if @ is greater than 1. Intuitively, a rise in r
has both an income and a substitution effect. The fact that the trade-off
between consumption in the two periods has become more favorable for
second-period consumption tends to increase saving (the substitution ef-
fect), but the fact that a given amount of saving yields more second-period
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consumption tends to decrease saving (the income effect). When individuals
are very willing to substitute consumption between the two periods to take
advantage of rate-of-return incentives (that is, when @ is low), the substitu-
tion effect dominates. When individuals have strong preferences for similar

levels of consumption in the two periods (that is, when @ is high), the income '

effect dominates. And in the special case of 8= 1 (logarithmic utility), the
two effects balance, and young individuals’ saving rate is independent of r.

2.10 The Dynamics of the Economy
The Equation of Motion of k

As in the infinite-horizon model, we can aggregate individuals’ behavior to
characterize the-dynamics of the economy. As described above, the capital
stock in period, t+ 1 is the amount saved by young individuals in period t.
Thus,

Kip1 = S(reg1) LeAswre (2.57)

Note that because saving in period ¢ depends on labor income that period
and on the return on capital that savers expect the next period, it is w in
period t and rin period t+1 that enter the expression for the capital stock
in period t+ 1.

Dividing both sides of (2.57) by Ley1Ars glves us an expression for
Ke41/(Ars1 Les1), capital per unit of effective labor:

1

ki1 = mms(rt+1)wt. (2.58)

We can then substitute for ry1 and w; to obtain

1

ke = mﬂf’(hﬂ))[f(h) — kef' (k) (2.59)

The Evolution of k

Equation (2.59) implicitly defines ki1 as afunction of k. (It defines k¢41 only
implicitly because k.1 appears on the right-hand side as well as the left-
hand side.) It therefore determines how k evolves over time given its initial
value. A value of k. such that ke1 = k. satisfies (2.59) is a balanced-growth-
path value of k: once k reaches that value, it remains there. We therefore
want to know whether there is a balanced-growth-path value (or values) of
k, and whether k converges to such a value if it does not begin at one.

t+1

ky

45°

Kk Kk ko k.
FIGURE 2.11 The dynamics of k

To answer these questions, we need to describe how k;.; depends on k..
Unfortunately, we can say relatively little about this for the general case
We therefore begin by considering the case of logarithmic utility and Cobb—.
Douglas production. With these assumptions, (2.59) takes a particularly sim-

plle fm;irn. We then briefly discuss what occurs when these assumptions are
relaxed.

Logarithmic Utility and Cobb-Douglas Production

When 6 is 1, the fraction of labor income saved is 1/(2 + p) (see equation
[2.5 5]?. And when production is Cobb-Douglas, f(k) is k* and w is (1 — c)k*.
Equation (2.59) therefore becomes

1 1

Kepr = 1
T Tl g 2+p

(1 - k= (2.60)
. Figure 2.11 shows k;;; as a function of k.. A point where the k,,; function
intersects the 45-degree line is a point where k,,; equals k.. In the case we
fire considering, k.1 equals k;at k; = 0; it rises above k; when k;is small; and
it then crosses the 45-degree line and remains below. There is thus a un,ique
balanc.ed-growth—path level of k (aside from k = 0), which is denoted k*.

X k* is globally stable: wherever k starts (other than at 0), it converges to
k*. Suppose, for example, that the initial value of k, ko, is greater than k*.
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ket —

Kbio Kew ke
FIGURE 2.12 The effects of a fall in the discount rate

Because k;.1 is less than k. when k. exceeds k*, ky is less than ko. And
because ko exceeds k* and ki1 18 increasing in ki, ki is larger than k*.
Thus k; is between k* and Ko: k moves partway toward k*. This process is
repeated each period, and so k converges smoothly to k*. A similar analysis
applies when ko is less than k*.
These dynamics are shown by the arrows in Figure 2.11. Given ko, the
‘height of the k¢4 function shows k; on the vertical axis. To find k2, we first
. need to find k; on the horizontal axis; to do this, we move across to the
45-degree line. The height of the k¢4, function at this point then shows k2,
and so on.

The properties of the economy once it has converged to its balanced
growth path are the same as those of the Solow and Ramsey economies on
their balanced growth paths: the saving rate is constant, output per worker
is growing at rate g, the capital-output ratio is constant, and so on.

To see how the economy responds to shocks, consider our usual example
of a fall in the discount rate, p, when the economy is initially on its balanced
growth path. The fall in the discount rate causes the young to save a greater
fraction of their labor income. Thus the k¢4, function shifts up. This is
depicted in Figure 2.12. The upward shift of the K¢y function increases
k*, the value of k on the balanced growth path. As the figure shows, k rises
monotonically from the old value of k* to the new one.

Thus the effects of a fall in the discount rate in the Diamond model in
the case we are considering are similar to its effects in the Ramsey-Cass-
Koopmans model, and to the effects of a rise in the saving rate in the Solow
model. The change shifts the paths over time of output and capital per
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worker permanently up, but it lead i
, s only to tempor: increases i
growth rates of these variables. o e I the

The Speed of Convergence

Once again, we may be interested in th iy itati

e again, we ma: e model’s quantitative as well as
(fquahﬁanve implications. In the special case we are considering, we can solve
or the ba}anced—growth—path values of k and y. Equation (2.60) gives k1
as a function of k. The economy is on its balanced growth path when these

two are equal. That is, k* is defined by

* 1 1

=G aargzept K" (2.61)
Solving this expression for k* yields
P I: 1— o 1/(1-o0)
1+n(l+9)2+p) ’ (2.62)
Since y equals k¥, this implies
y* _ |: 11— o/(1—o)
TrnaToeTp] (2.63)

This exp.ression shows how the model’s parameters affect output per unit
o;l effective labor on the balanced growth path. If we want to, we can choose
values for the parameters and obtain quantitative predictions about the
long-run effects of various developments.23

We can also find hoyv quickly the economy converges to the balanced
growth path. To do this, we again linearize around the balanced growth
gactlh. That is, we replace the equation of motion for k, (2.60), with a first-

rder approximation around k = k*. We know th :

also equals k*. Thus, atwhen s equals K ke

dke
dk;

Kept =~ K* + ( k =k*>(kt— K*). (2.64)

Let A denote dk;.1/dk; evaluated at k; = k*. Wi i initi

_ ¢ = k*. With this defini

rewrite (2.64) as k.1 — k* =~ A(k; — k*). Thisimplies o, we can
ke — k* ~ Al(kg — k*), (2.65)

where kg is the initial value of k.

3 In choosing parameter values, it is i
c s, it is important to keep in mind that individuals are
assumed to live for only two periods. Thus, for example, n should be thought of as population
growth not over a year, but over half a lifetime.
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The convergence to the balanced growth path is determined by A. If Ais
between 0 and 1, the system cOnverges smoothly. If A is between —~1 and O,
there are damped oscillations toward k*: k alternates between being greater
and less than k*, but each period it gets closer. If A is greater than 1, the
system explodes. Finally, if Ais less than —1, there are explosive oscillations.

To find A, we return to (2.60): ki1 = (1 —00k&/1(1 +nH1+ g2+ p)]. Thus,

dkes1
dk,

1-« *o—1

A=, = ST AT 90 A

= 1—0(
=T+ na+ 92+ o)

=

-« (&-1)/(1-0) (2.66)
[(1 +n( +g)2 + p)]

where the second line uses equation (2.62) to substitute for k*. Thatis, Ais
simply o, capital’s share.

_ Since o is between 0 and 1, this analysis implies that k converges smoothly
to k*. If « is one-third, for example, k moves two-thirds of the way toward
k* each period.?*

The rate of convergence in the Diamond model differs from that in the
Solow model (and in a discrete-time version of the Solow model—see Prob-
lem 2.14). The reason is that although the saving of the young is a constant
fraction of their income and their income is a constant fraction of total
income, the dissaving of the old is not a constart fraction of total income.
The dissaving of the old as a fraction of output is K;/F (K ALy, or ke/f (K.
“The fact that there are diminishing returns to capital implies that this ratio

"is increasing in k. Since this term enters negatively into saving, it follows

" that total saving as a fraction of output is a decreasing function of k. Thus
total saving as a fraction of output is above its balanced-growth-path value
when k < k*, and is below when k > k*. As a result, convergence is more
rapid than in the Solow model.

The General Case

Let us now relax the assumptions of logarithmic utility and Cobb-Douglas
production. It turns out that, despite the simplicity of the model, a wide
range of behaviors of the economy are possible. Rather than attempting a
comprehensive analysis, we simply discuss some of the more interesting
cases.

24 Recall, however, that each period in the model corresponds to half of a person’s
lifetime.
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t+1 / ke

KooKk ky
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kep1 L K _—
ki K K ko ky ke
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FIGURE 2.13 Various possibilities for the relationship between k; and k;;;

To understand the possibilities intuitively, it i
. , it is hel; i
equation of motion, (2.59), as Y clpful to rewrite the

1 o ) ke f(K
ko = gy g ke 2 g e

Equﬁtion (2.67) expresses capital per unit of effective labor in period t + 1
?sut e.pr(.)duct of four tgrms. From right to left, those four terms are the
;)1 oyvlng: output per unit of effective labor at ¢, the fraction of that output
;a;t is llc)zti;ld to labor, the fraction of that labor income that is saved, and the
o of the am i i i i
ratio ount of effective labor in period t to the amount in period
Figure 2.13 shows some possible forms fo: i
1 the relation between k,,; and
k; other than the well-behaved case shown in Figure 2.11. Panel (a)t;ilows

a case with muld ¥ ;
.a case with multiple values of k*. In the case shown, k} and k¥ are stable:

i]f*k' starts slightly away from one of these points, it converges to that level.
% is unstable (as is k = 0). If k starts slightly below k%, then k.., is less
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than k; each period, and so k converges to k¥. If k begins slightly above k3,
it converges to k3.

To understand the possibility o@lﬁm&l@w\fﬁ,’note that since
output per unit of capital is lower when kis higher (capital has a diminishing
marginal product), for there to be two k*’s the saving of the young as a
fraction of total output must be higher at the higher k*. When the fraction
of output going to labor and the fraction of labor income saved are constant,
the saving of the young is a constant fraction of total output, and so multiple
k*’s are not possible. This is what occurs with Cobb-Douglas production and
logarithmic utility. But if labor’s share is greater at higher levels of k (which
occurs if f(e) is more sharply curved than in the Cobb-Douglas case) or if
workers save a greater fraction of their income when the rate of return is
lower (which occurs if 6 > 1), or both, there may be more than one level of
k at which saving reproduces the existing capital stock.

Panel (b) shows a case in which Ke41 is always less than ki, and in which
k therefore converges to Zero regardless of its initial value. What is needed
for this to occur is for either labor’s share or the fraction of labor income
saved (or both) to approach zero as k approaches zero.

Panel (c) shows a case in which k converges 1o zero if its initial value
ig sufficiently low, but to a strictly positive level if its initial value is suffi-
ciently high. Specifically, if ko < k%, then k approaches zero; if ko > k¥, then
k converges to k3.

Finally, Panel (d) shows a case in @W@h determined
by ke whe’r__llkt/is_,_hetween,ka,and..kb,_there are three possible values of Kes1.
This can happen.if saving is a decreasing function of the interest rate. When
saving is decreasing in , saving is highif individuals expect a high value of
k41 and therefore expect v t0 be low, and is low when individuals expect
a low value of ke. If saving is sufficiently responsive to 7, and if 7 is suf-
ficiently responsive to k, there can be more than one value of k., that is
consistent with a given k. Thus the path of the economy is indeterminate:
equation (2.59) (or [2.67]) does not fully determine how k evolves over time

" given its initial value. This raises the possibility that self-fulfilling prophecies
and sunspots can affect the behavior of the economy and that the economy
can exhibit fluctuations even though there are no €x0genous disturbances.
Depending on precisely what is assumed, various dynamics are possible.?®

Thus assuming that there are overlapping generations rather than in-
finitely lived households has potentially important implications for the dy-
namics of the economy: for example, sustained growth may not be possible,
or it may depend on initial conditions.

At the same time, the model does no better than the Solow and Ramsey
models at answering our basic questions about growth. Because of the Inada
conditions, k.41 must be less than k, for k. sufficiently large. Specifically,

25 These issues are briefly discussed further in Section 6.7.

2.11 The Possibility of Dynamic Inefficiency 87

since the saving of the young cannot exceed the economy’

k¢;1 cannot be greater than f(k,)/[(1 + n)(1 + g)]. And becalsllsse tt?ltealmc;lrltp;;l,
product of capital approaches zero as k becomes large, this must evegntu-
ally be less than k.. The fact that k;y; is eventually less than k. implies
that uanunded growth of k is not possible. Thus, once again grrowth in
jche effectiveness of labor is the only potential source of long-l,'un owth
in ou‘_fput per worker. Because of the possibility of multiple k*’s thegrrnodel
does imply that otherwise identical economies can converge to di’fferent bal-
gﬁied g}'owth paths simply because of differences in their initial conditions.
: ,as in the Solgw and Ramsey models, we can account for quantitatively
arge differences in output per worker in this way only by positing immen:
differences in capital per worker and in rates of return. >

2.11 The Possibility of Dynamic
Inefficiency

The one major difference between the balanced growth paths of the Dia-
mond and Ramsey—Cass—Koopmans models involves welfare. We saw that
the equilibrium of the Ramsey-Cass-Koopmans model maximizes the wel-
fare of tl_le representative household. In the Diamond model, individuals
born at different times attain different levels of utility, and so t,he appropri-
ate. way to evaluate social welfare is not clear. If we specify welfare as solx)ne
weighted sum of the utilities of different generations, there is no reason to
expect.the decentralized equilibrium to maximize welfare, since the weight:

we :ss1gg t?ﬂ the different generations are arbitrary. , e

minimal criterion for efficiency, however, is ilibri

Pareto-efficient. It turns out that the equilibrium t(?fattlgl e])ie;rlllllélr?gl urrl::); ?
need not satisfy even this standard. In particular, the capital stock on tlfe
balanced growth path of the Diamond model may exceed the golden-Tul

level, so tha'F a permanent increase in consumption is possible. )

.To see this possibility as simply as possible, assume that utility is log- -

a}“lthnuc, production is Cobb-Douglas, and g is zero. With g = 0, e ug

tion (2.62) for the value of k on the balanced growth path simph?ies,toq ”

1 1 1/(1-o} !
K= (11—
[1 ThoT p(l tx)] . (2.68)

iTshus the marginal product of capital on the balanced growth path, ck**-1

\ «
fl(k*) = l——_tx(l +n)(2+ p). (2.69)

The golden-rule capital stock is defined by f*
V f'(kgr) = n. f(k*) can be eithe
more or less than f'(kgg). In particular, for o sufficiently small, f’'(k*) i:
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Total consumption per worker

X maintaining k at K* > kgg
@ reducing k to kg in period ¢y
FIGURE 2.l4l How reducing k to the golden-rule level affects the path of
consumption per worker

less than f(kgr)—the capital stock on the balanced growth path exceeds
-rule level. o _
theTioiiznwhy it is inefficient for k* to excegd kc;gz, imagine mtrodu}clmgtfl1
social planner into a Diamond economy that is on its balanced grov%rt pa j
with k* > kgg. If the planner does nothing to alt.er k., the amount 2 ou_tpu
per worker available each period for consumption is oqugt, f(k*), {)nuglls
the new investment needed to maintain k at k*, nk*. T%us is shom 3/ e_
crosses in Figure 2.14. Suppose instead, however, that in s_ome p;rflo s pte0
riod to, the planner allocates more resources to consumpnqn an ev(\;etrh >
saving than usual, so that capital per worker the ngxt period is kg, an ar
" thereafter he or she maintains k at Kgg- Under this plf.n, ths resourceskpe
worker available for consumption in period to are f(k ).+ (k* —kgr)—n GR:
In each subsequent period, the output per worker available fo;(- consumgl)S
tion is f(kgr) — nker. Since kgr maximizes fk)— nf, f(k(;*R) — nkgr ex’iee s
f(k*) — nk*. And since k* is greater than Ker, fk*) + (k* — kGR)_— n ijer
even larger than f(ker) — ke The path of total coqsumpu}c;n unt Jer
this policy is shown by the circles in Figure 2.14. A§ thg figure s qw;,than
policy makes more resources available for consumption in every perio "
the policy of maintaining k at k*. The planner can therefore allocate co. i
sumption between the young and the old each period to make every gener
atl?fllllgse t:}elz chfl.]jlibrium of the Diamond model can be .P.areto-mefﬁment.
This may seem puzzling: given that markets are qqmpennve and thfe;-ie.ari
no externalities, how can the usual result that equilibria are Pareto-efiicien

2.11 The Possibility of Dynamic Inefficiency 89

fail? The reason is that the standard result assumes not only competition
and an absence of externalities, but also a finite number of agents. Specif-
ically, the possibility of inefficiency in the Diamond model stems from the
fact that the infinity of generations gives the planner a means of providing
for the consumption of the old that is not available to the market. If individ-
uals in the market economy want to consume in old age, their only choice is
to hold capital, even if its rate of return is low. The planner, however, need
not have the consumption of the old determined by the capital stock and its
rate of return. Instead, he or she can divide the resources available for con-
sumption between the young and old in any manner. The planner can take,
for example, 1 unit of labor income from each young person and transfer it
to the old. Since there are 1+ n young people for each old person, this in-
creases the consumption of each old person by 1 + n units. The planner can
prevent this change from making anyone worse off by requiring the next
generation of young to do the same thing in the following period, and then
continuing this process every period. If the marginal product of capital is
less than n—that is, if the capital stock exceeds the golden-rule level—this
way of transferring resources between youth and old age is more efficient
than saving, and so the planner can improve on the decentralized allocation.
Because this type of inefficiency differs from conventional sources of
inefficiency, and because it stems from the intertemporal structure of the
economy, it is known as dynamic inefficiency.?8

Empirical Application: Are Modern Economies
Dynamically Efficient?

The Diamond model shows that it is possible for a decentralized economy
to accumulate capital beyond the golden-rule level, and thus to produce
an allocation that is Pareto-inefficient. Given that capital accumulation in
actual economies is not dictated by social planners, this raises the issue
of whether actual economies might be dynamically inefficient. If they were,
there would be important implications for public policy: the great concern
about low rates of saving would be entirely misplaced, and it would be easy
to increase both present and future consumption.

This issue is addressed by Abel, Mankiw, Summers, and Zeckhauser
(1989). They start by observing that at first glance, dynamic inefficiency ap-
pears to be a possibility for the United States and other major economies.
A balanced growth path is dynamically inefficient if the real rate of re-
turn, f(k*) - §, is less than the growth rate of the economy. A straight-
forward measure of the real rate of return is the real interest rate on short-
term government debt. Abel et al. report that in the United States over the

%6 problem 2.19 investigates the sources of dynamic inefficiency further.



90 Chapter 2 INFINITE-HORIZON AND OVERLAPPING-GENERATIONS

period 1926-1986, this interest rate averaged only a few tenths of a per-
cent, much less than the average growth rate of the economy. Simnilar find-
ings hold for other major industrialized countries. Thus the real interest
rate is less than the golden-rule level, suggesting that these econoniies have
overaccumulated capital.

As Abel et al. point out, however, there is a problem with this argument.
In a world of certainty, all interest rates must be equal; thus there is no
ambiguity in what is meant by “the” rate of return. But if there is uncertainty,
different assets can have different expected returns. Suppose, for example,
we assess dynamic efficiency by examining the marginal product of capital
net of depreciation instead of the return on a fairly safe asset. If capital
earns its marginal product, the net marginal product can be estimated as
the ratio of overall capital income minus total depreciation to the value
of the capital stock. For the United States, this ratio is about 10 percent,

‘which is much greater than the economy’s growth rate. Thus using this
approach, we would conclude that the U.S. economy is dynamically efficient.
Our simple theoretical model, in which the marginal product of capital and
the safe interest rate are the same, provides no guidance concerning which
of these contradictory conclusions is correct.

Abel et al. therefore tackle the issue of how to assess dynamic efficiency
in a world of uncertainty. Their principal theoretical result is that under
uncertainty, a sufficient condition for dynamic efficiency is that net capital
income exceed investment. For the balanced growth path of an economy
with certainty, this condition is the same as the usual comparison of the
real interest rate with the economy’s growth rate. In this case, net capital
income is the real interest rate times the stock of capital, and investment

" is the growth rate of the economy times the stock of capital. Thus capital
income exceeds investment if and only if the real interest rate exceeds the
economy’s growth rate. But Abel et al. show that under uncertainty these
two conditions are not equivalent, and that it is the comparison of capital

_income and investment that provides the correct way of judging whether

there is dynamic efficiency. Intuitively, a capital sector that is on net mak-
ing resources available by producing more output than it is using for new
investment is contributing to consumption, whereas one that is using more
in resources than it is producing is not.

Abel et al’s principal empirical result is that the condition for dynamic
efficiency seems to be satisfied in practice. They measure capital income as
national income minus employees’ compensation and the part of the income
of the self-employed that appears to represent labor income;?’ investment
is taken directly from the national income accounts. They find that for the
period 1929-1985, capital income consistently exceeds investment in the

[
27 They argue that adjusting these figures to account for land income and monopoly
rents does not change the basic results.
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FIGURE 2.15 The effects of a permanent increase in government purchases

are high, k gradually falls and r gradually increases. Once G returns to Gi,

k rises gradually back to its initial level.28

Problems

2.1. Consider N firms each with the constant-returns-to-scale production f/‘unctio(;l
. y = F(K,AL), or (using the intensive form) Y = ALf(k). Assume f(-)‘ :1 {

f”(_-) <0 ,Assume that all firms can hire labor at wage wA and rent capital a

cost r, and that all firms have the same value of A.

(@) Consider the problem of a firm trying to produce Y}mlts. of ougpg; act1
minimum cost. Show that the cost-minimizing level of kis uniquely de: ale
and is independent of Y, and that all firms therefore choose the same value
of k.

_minimizing firms equals the out-
that the total output of the N cost mmzmg ! tal

® f}lll_lfgv:hat a single firm with the same production function has if it uses all
the labor and capital used by the N firms.

28 The result that future values of G do not affect the currell;xt beilavio_rt ;]);;?1 g?;;lotrﬁz
i i ic utility. Without logaril s
depend on the assumption of logarithmic u )
S:\?i;‘g“z)tf thz current period’s young depends on the rate of return. as, well a:l t)lx;bzzf;e:a‘tia;(
labor income. But the rate of return is determined by the _next period’s capit: X
which is not affected by government purchases in that period.

2.2,

2.3.

2.4,

2.5.

2.6.
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The elasticity of substitution with constantrelative-risk-aversion utility.
Consider an individual who lives for two periods and whose utility is given
by equation (2.43). Let P, and P, denote the prices of consumption in the two
periods, and let W denote the value of the individual’s lifetime income; thus
the budget constraint is A,C; + .G = W.

(a) What are the individual’s utility-maximizing choices of C; and C;, given
P1, Pz, and W?

(b) The elasticity of substitution between consumption in the two periods is
=[P/ PNC1/ CB(C1/ C2)/3( P/ Bo), or —01n(C1/Co)/3In(Py/ Py). Show
that with the utility function (2.43), the elasticity of substitution between
C1 and G is 1/9

Suppose it is known in advance that at some time t the government will
confiscate half of whatever wealth each household holds at that time. Does
consumption change discontinuously at time t? If so, why (and what is
the condition relating consumption immediately before t, to consumption
immediately after)? If not, why not?

—
2

(b

=

Suppose it is known in advance that at f, the government will confiscate
from each household an amount of wealth equal to half of the wealth of
the average household at that time. Does consumption change discontinu-
ously at time #,? If so, why (and what is the condition relating consumption
immediately before t, to consumption immediately after)? If not, why not?

Assume that the instantaneous utility function u(C) in equation (2.1) is
In C. Consider the problem of a household maximizing (2.1) subject to (2.6).
Find an expression for C at each time as a function of initial wealth plus the
present value of labor income, the path of r(t), and the parameters of the utility
function.

Consider a household with utility given by (2.1)-(2.2). Assume that the real
interest rate is constant, and let W denote the household’s initial wealth plus
the present value of its lifetime labor income (the right-hand side of [2.6]). Find
the utility-maximizing path of C, given ¥, W, and the parameters of the utility
function.

The productivity slowdown and saving. Consider a Ramsey-Cass-Koopinans
economy thatis onits balanced growth path, and suppose there is a permanent
fall in g.

(a) How, if at all, does this affect the k = 0 curve?
(b) How, if at all, does this affect the ¢ = 0 curve?
(c) What happens to c at the time of the change?

(d) Find an expression for the impact of a marginal change in g on the fraction
of output that is saved on the balanced growth path. Can one tell whether
this expression is positive or negative?

(e) For the case where the production function is Cobb-Douglas, f(k) = k2,
rewrite your answer to part (d) in terms of p, n, g, 6, and o. (Hint: Use the
fact that f/(k*)=p + 0g.)



94

2.7.

2.8.

2.9.
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Describe how each of the following affects the ¢ = 0 and k = 0 curves in
Figure 2.5, and thus how they affect the balanced-growth-path values of ¢

and k:
(a) Arisein 6.
(b) A downward shift of the production function.

(c) A change in the rate of depreciation from the value of zero assumed in
the text to some positive level.

Derive an expression analogous to (2.39) for the case of a positive deprecia-
tion rate.

Capital taxation in the Ramsey-Cass-Koopmans model. Consider a Ramsey-
Cass-Koopmans economy that is on its balanced growth path. Suppose that
at some time, which we will call time 0, the government switches to a policy
of taxing investment income at rate T. Thus the real interest rate that house-
holds face is now given by r(t) = (1 -T) f(k(t)). Assume that the government
returns the revenue it collects from this tax through lump-sum transfers.
Finally, assume that this change in tax policy is unanticipated.

(@) How does the tax affect the ¢ = 0 locus? The k = 0 locus?

(b) How does the economy respond to the adoption of the tax at time 0?7 What
are the dynarmics after time 07

(¢) How do the values of c and k on the new balanced growth path compare
with their values on the old balanced growth path?

(d) (This is based on Barro, Mankiw, and Sala-i-Martin, 1995.) Suppose there
are many economies like this one. Workers’ preferences are the same in
each country, but the tax rates on investment income may vary across
countries. Assume that each country is on its balanced growth path.

(i) Show that the saving rate on the balanced growth path, (y* — c*)/¥*,
is decreasing in T.
(i) Do citizens inlow-T, high-k*, high-saving countries have any incentive
to invest in low-saving countries? Why or why not?
(e) Does your answer to part (¢) imply that a policy of subsidizing investment
(that is, making T < 0), and raising the revenue for this subsidy through
lump-sum taxes, increases welfare? Why or why not?

‘ (f) How, if at all, do the answers to parts (a) and (b} change if the government

2.10.

does not rebate the revenue from the tax but instead uses it to make
government purchases?
Using the phase diagram to analyze the impact of an anticipated change.
Consider the policy described in Problem 2.9, but suppose that instead of
announcing and implementing the tax at time 0, the government announces
at time O that at some later time, time i, investment income will begin to be
taxed at rate T.

(@) Draw the phase diagram showing the dynamics of c and k after time .
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(b) Can c¢ change discontinuously at time t;? Why or why not?
{c) Draw the phase diagram showing the dynamics of ¢ and k before t;.
(d) Inlight of your answers to parts (a), (b), and (¢), what must ¢ do at time 0?

(e) fiunrlnmarize your results by sketching the paths of ¢ and k as functions of
e.

2.11. Using the phase diagram to analyze the impact of unanticipated and antic-

;p'iag.ed temporary changes. Analyze the following two variations on Problem

{a) Atttim(fe 0, the government announces that it will tax investment income at
rate T from time 0 until some later date t;; th i i
; _ 1; thereafter investment in
will again be untaxed. ‘ come

(b) At time p, tl_le govgrnment announces that from time t; to some later
Flme to, it w111 tax investment income at rate T; before t; and after t,
investment income will not be taxed. ‘

212, The analysis of government policies in the Ramsey-Cass-Koopmans model
m.the text assumes that government purchases do not affect utility from
pnvate. consumption. The opposite extreme is that government purchases
and p'rl'vate consumption are perfect substitutes. Specifically, suppose that
the utility function (2.12) is modified to be ’

0 1-0

If the economy is' initially on its balanced growth path and if households’
preferences are given by U, what are the effects of a temporary increase in

gotvirnment purchases on the paths of consumption, capital, and the interest
rate?

2.13. Conside_r the Diamond model with logarithmic utility and Cobb-Douglas
p;(;(ductlon. Describe how each of the following affects k;.; as a function
of kg
(a) Arisein n.

(b) A downward shift of the pI‘OduCthIl function (tha f k) t the form
t
) ( 18, (k) takes 1y

(c) Arise in «.

2.14. A dlscre.te-time version of the Solow model Suppose Y; = F(K;, AL, with
F(e) pavmg constant returns to scale and the intensive form of the prodl_{ction
function satisfying the Inada conditions. Suppose also that A;,; = (1 + g)A
Less = (1 +nLy and Kyag = Ko+ sY; - 6K, ' ’

(a) Find an expression for k;,; as a function of k,.

(b) Sketch k;41 asa function of k. Does the economy have a balanced growth
path? If the initial level of k differs from the value on the balanced growth
path, does the economy converge to the balanced growth path?
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i i . it of effective labor on the
ind an expression for consumption per unit o
© E;llanced )gowth path as a function of the balanced-growth—path. v;'ﬂue
of k. What is the 1narginal product of capital, f'(k), when k ma)anll;?zes
consumption per unit of effective labor on the balanced growth path?

(d) Assume that the production function is Cobb-Douglas.

(i) What is k41 as a function of k;?
(i) What is k*, the value of k on the balanced growth path?
i i - in the text, linearize the
iii} Along the lines of equations (2.64)-(2.66), in ! s :
i exprgssion in subpart (i) around k. = k*, and find the rate of conver
gence of k to k*.

jation i i icroeconomic foundations for
21 [t::ep gﬂ?ﬁ:ﬁiﬁﬁ;ﬁﬁitﬁﬁ ;Iila?mn(;lrllg?ngdel capital depreciates at
rate &, so that re = f/(kd — . . y
(a) How, if at all, does this change in the model affect equation (2.59) giving
K:41 as a function of k¢? .
(b) In the special case of logarithmic utility, Cobb—l?ouglas %roducuon, i\}nﬂi
§ = 1, what is the equation for kes1 @S @ funct_lon of k_t, Compare :
with tile analogous expression for the discrete-time version of the Solow
model with & = 1 from part (a) of Problem 2.14.
2.16. Social security in the Diamond model. Consi(_igr a.Diamor.ld ec.onomy where
) gis zero, production is Cobb-Douglas, and utility is logarithmic. g
i i nt taxes each yo
(@) Pay.as yougo socialsecurly, SDBOS" e to pay beneis o old i
dividuals; thus each old person receives (1 +n)T.
(i) How, if at all, does this change affect equation (2.60) giving kr;1 as a
function of k:?
(i) How, if at all, does this change affect the balanced-growth-path value
of k? .
(1if) If the economy is initially on a balanced growth path that is dynami-

cally efficient, how does a marginal increase in T affec't t_h.e welfare og
current and future generations? What happens if the initial balance:

growth path is dynamicaily inefficient?
i i t taxes each young
funded social security. Suppose the governmen ' ung
® f)‘;]rlss(])n an amount T and uses the proceeds to purchase capital. Individ
uals born at ¢ therefore receive (1 + re+1)T when they are old.
(i) How, if at all, does this change affect equation (2.60) giving k41 as a
function of k?
(if) How, if at all, does this change affect the balanced-growth-path value
of k?
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2.17. The basic overlapping-generations model. (This follows Samuelson, 1958,
and Allais, 1947.) Suppose, as in the Diamond model, that L; two-period-lived
individuals are born in period t and that L; = (1 + n)L,.;. For simplicity, let
utility be logarithmic with no discounting: U; = In(Cyp) + In(Co 7).

The production side of the economy is simpler than in the Diamond
model. Each individual born at time t is endowed with A units of the econ-
omy's single good. The good can be either consumed or stored. Each unit
stored yields x > 0 units of the good in the following period.2®

Finally, assume that in the injtial period, period 0, in addition to the Lg
young individuals each endowed with A units of the good, there are [1/(1 +
n)] Lo individuals who are alive only in period 0. Each of these “old” individuals
is endowed with some amount Z of the good; their utility is simply their
consumption in the initial period, Czq.

(a) Describe the decentralized equilibrium of this economy. (Hint: Given the
overlapping-generations structure, will the members of any generation
engage in transactions with members of another generation?) -

(b) Consider paths where the fraction of agents’ endowments that is stored,
f, is constant over time. What is total consumption (that is, consump-
tion of all the young plus consumption of all the old) per person on such
a path as a function of f? If x < 1 + n, what value of f satisfying 0 <
f <1 maximizes consumption per person? Is the decentralized equilib-
rium Pareto-efficient in this case? If not, how can a social planner raise
welfare?

2.18. Stationary monetary equilibria in the Samuelson overlapping-generations
model. (Again this follows Samuelson, 1958.) Consider the setup described
in Problem 2.17. Assume that x < 1 + n. Suppose that the old individuals in
period 0, in addition to being endowed with Z units of the good, are each
endowed with M units of a storable, divisible commodity, which we will call
money. Money is not a source of utility.

(a) Consider an individual born at t. Suppose the price of the good in units
of money is P;int and Py4; in t+ 1. Thus the individual can sell units of
endowment for P, units of money and then use that money to buy P/ P41
units of the next generation’s endowment the following period. What is
the individual’s behavior as a function of P,/P;,?

(b) Show that there is an equilibrium with P,,; = P,/(1 + n) for all t > 0 and
no storage, and thus that the presence of “money” allows the economy to
reach the golden-rule level of storage.

(c) Show that there are also equilibria with P, = P;/x for all t > 0.

29 Note that this is the same as the Diamond economy with g =0, F(K;, AL} = AL+ xK,,
and & = 1. With this production function, since individuals supply 1 unit of labor when they
are young, an individual born in t obtains A units of the good. And each unit saved yields
1+r=1+0F(K,AL)/0K — 6=1+x— 1 = x units of second-period consumption.
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2.19.

2.20.
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(d) Finally, explain why Py = oo for all t (that is, money is worthless) is also
an equilibrium. Explain why this is the only equilibrium if the economy
ends at some date, as in Problem 2.19(b) below. (Hint: Reason backward
from the last period.)

The source of dymamic inefficiency. There are two ways m which the
Diamond and Samuelson models differ from textbook models. First,
markets are incomplete: because individuals cannot trade with individuals
who have not been born, some possible transactions are ruled out. Second,
because time goes on forever, there are an infinite number of agents. This
problem asks you to investigate which of these is the source of the possi-
bility of dynamic inefficiency. For simplicity, it focuses on the Samuelson
overlapping-generations model (see the previous two problems), again with
log utility and no discounting. To simplify further, it assumes n = 0 and
0<x<l1.

(a) Incomplete markets. Suppose we eliminate incomplete markets from the
model by allowing all agents to trade in a competitive market “before”
the beginning of time. That is, a Walrasian auctioneer calls out prices
Qo, Q1, Qz,...for the good at each date. Individuals can then make sales
and purchases at these prices given their endowments and their ability
to store. The budget constraint of an individual born at t is thus QCrie+
Qr11Cors1 = QlA— S)+ Q1xS:, where S (which must satisfy 0 < S; < A)
is the amount the individual stores.

(i) Suppose the auctioneer announces Qi1 = Qu/xforall t > 0. Show
that in this case individuals are indifferent concerning how much to
store, that there is a set of storage decisions such that markets clear
at every date, and that this equilibrium is the same as the equilibrium
described in part {a) of Problem 2.17.

(if) Suppose the auctioneer announces prices that fail to satisfy Qr+1=
Q./x at some date. Show that at the first date that does not satisfy
this condition the market for the good cannot clear, and thus that the
proposed price path cannot be an equilibrium.

(p) Infinite duration. Suppose that the economy ends at some date T. That
is, suppose the individuals born at T live only one period (and hence seek
to maximize Ci7), and that thereafter no individuals are born. Show that
the decentralized equilibrium is Pareto-efficient.

(c) Inlight of these answers, is it incomplete markets or infinite duration that
is the source of dynamic inefficiency?

Explosive paths in the Samuelson overlapping-generations model. (Black,
1974; Brock, 1975; Calvo, 1978a.) Consider the setup described in Problem
2.18. Assume thatx is zero, and assume that utility is constant-relative-risk-
aversion with @ < 1 rather than logarithmic. Finally, assume for simplicity
that n=0.

(a) What is the behavior of an individual born at t as a function of Py/Pia?
Show that the amount of his or her endowment that the individual sells
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for money is an increasi i
: : ing function of P;/P;;1 and appr
this ratio approaches zero. N pproaches zero as

(b) Suppose Py/P; < 1. How much of the good are the individuals born in

period 0 planning to buy in period 1 from the individuals born then? What

must P;/P; be for the indivi i i
amouml'? % e individuals born in period 1 to want to supply this

(c) Ltsraﬁ.ng t;ﬁs reasoping forward, what is the qualitative behavior of P,/P,
er time? Does this represent an equilibrium path for the economy? o

(d) Can there be an equilibrium path with Py/P, > 1?



