
Practical Dynamic Programming:
An Introduction

Associated programs
dpexample.m: deterministic
dpexample2.m: stochastic

Outline

1. Specific problem: stochastic model of
accumulation from a DP perspective

2. Value Function Iteration: An Introduction
3. Value Function Iteration: An Example
4. Value Function Iteration: Discretization
5. The curse of dimensionality
6. The importance of “initial conditions”
7. Adding uncertainty

1. Stochastic growth model
from a DP perspective

• Consider a model in which the production function is subject
to shocks to total factor productivity

• These productivity shocks are assumed to be governed by a
Markov process, so that

and additional restrictions are imposed so that productivity is
stationary (a common initial assumption but one that seems
counterfactual given Solow-style accounting).

()t t ty a f k=

1

()
() ()

t

t t

a
prob

ς
ς ς γ ς+ = =

Accumulation of capital

• Endogenous state evolution equation in the
sense of our earlier presentation of DP

• Control is consumption

1 (, ,)
()

t t t t t

t t t t t

k k g k a c
k a f k k cδ

+ = +
= + − −

Objective

• Discounted utility from consumption (with
infinite horizon as special case)

0
0

0
0

: (, ,)

: ()

T
t

t t t
t
T

t
t

t

General E u k x c

Specific E u c

β

β

=

=

∑

∑

Explicit horizon

• To allow consideration of iterative
schemes in theory and computation

• To allow for finite horizon economies
• Requires some additional notation in terms

of keeping track of time (lose time
invariance because optimal behavior
depends on “how long is left”)

2. Value Function Iteration

• We now describe an iterative method of
determining value functions for a series of
problems with increasing horizon

• This approach is a practical one
introduced by Bellman in his original work
on dynamic programming.

Review of Bellman’s core ideas
• Focused on finding “policy function” and “value

function” both of which depend on states
(endogenous and exogenous states).de

• Subdivided complicated intertemporal problems
into many “two period” problems, in which the
trade-off is between the present “now” and
“later”.

• Working principal was to find the optimal control
and state “now”, taking as given that latter
behavior would itself be optimal.

The Principle of Optimality

• “An optimal policy has the property that,
whatever the state and optimal first
decision may be, the remaining decisions
constitute an optimal policy with respect to
the state originating from the first
decisions”—Bellman (1957, pg. 83)

Following the principle,
• The natural maximization problem is

where the right hand side is the current
momentary objective (u) plus the consequences
(V) of for the discounted objective of behaving
optimally in the future given that there are h=T-t
periods to go (h is length of “horizon”).

1
1 1,

1

max{ () (, ,)}

. . (, (),)
t t

t t t tc k

t t t t t

u c EV k T t

s t k k g k a c

β ς

ς
+

+ +

+

+ −

= +

Noting that time does not enter in an essential way
other than through the horizon

• We can write this below as (with ‘ again meaning next
period)

• So then the Bellman equation is written as (with the
understanding that h=h’+1)

, '
max{ ()) (', ', ') | (,)}

. . ' (, (),)
c k
u c EV k h k

s t k k g k a c

β ς ς

ς

+

= +

, '
(, ,) max{ () (', ', ') | (,)}

. . ' (, (),)
c k

V k h u c EV k h k

s t k k g k a c

ς β ς ς

ς

= +

= +

After the maximization
• We know the optimal policy and can calculate

the associated value, so that there is now a
Bellman equation of the form

• Note that the policy function and the value
function both depend on the states and the
horizon.

• The Bellman equation provides a mapping
from one value function (indexed by h’=h+1)
to another (indexed by h)

(, ,) { ((, ,)))

((, (), (, ,)), ', ') | (,)}

V k h u c k h

EV k g k a c k h h k

ς ς

β ς ς ς ς

=

+ +

3. An example

• Suppose that the utility function is u(c) = log(c),
that the production function is Cobb-Douglas
with capital parameter α and there is complete
depreciation (δ=1). These assumptions allow us
to find the policy and value functions as loglinear
equations

• Then the accumulation equation is

' ()k a k cας= −

One period problem

• Suppose that “there is no tomorrow” so that
the value of future capital is zero and thus it
is optimal to choose k’=0.

• Then, the optimal policy and associated
value function are

(, ,1) ()
(, ,1) () log()

log () log

c k a k
v k u c c

a k

ας ς
ς

ς α

=
= =
= +

Two period problem
• Bellman Equation

• Optimal policy from Euler equation

, '(, , 2) max {log()

(log(') log(')}

. '

c kV k c

E a k

s t k ak cα

ς

β α

= +

+ +

= −

1
0

1
(, ,2) () '(, ,2) ()

1 1

c ak c

c k a k k k a k

α

α α

αβ

βας ς ς ς
βα βα

= −
−

= =
+ +

Under optimal policies

1(, , 2) {log(()) (log((')) |
1

log(())}
1

(log((')) | log(())

(1) log()

1log() log()
1 1

V k a k E a

a k

E a a

k

α

α

ς ς β ς ς
βα
βαβα ς
βα

ς ς βα ς

βα α

βαβα
βα βα

= +
+

+
+

= +

+ +

+ +
+ +

A candidate solution

, '

(, ,) log() ()

(, , 1) max {log() [log(') (')] | (,)}

. . ' ()

h h h

c k h h h

v k h k g

v k h c E k g k

s t k a kα

ς θ ς η

ς β θ ς η ς

ς

= + +

+ = + + +

=

Finding the optimal policy
and value function

1: 0

1(, , 1) ()
1

1(, , 1) {log(())
1

[log(()) (')]}
1

[(1) log()]
[(1) log(() (') |

1[log() log()]
1 1

h

h

h

h
h h h

h

h

h h

h
h h

h h

EE
c ak c

c k h a k

v k h a k

E a k g

k
a Eg

α

α

α

α

βθ

ς ς
βθ

ς ς
βθ

βθ
β θ ς ς η

βθ
α βθ

βθ ς β ς ς
βθ

βθ βη
βθ βθ

= −
−

⇒ + =
+

⇒ + =
+

+ + +
+

= +
+ + +

+ + +
+ +

Comments

• The more importance (value) is attached to
future capital, the smaller is consumption’s
share of output

• One value function which is loglinear in k’
generates another that is loglinear in k.

• A recursion governs the capital coefficient,
which can be used to show that it increases with
the horizon

1 [(1)]

[1 () ... ()]
h h

h

θ α βθ

α αβ αβ
+ = +

= + + +

Comments

• Other more complicated recursions govern
the other coefficients (these are harder to
solve, since the difference equations are
more complicated).

• Illustrates general idea of calculating a
sequence of value functions and
associated policy functions.

Infinite horizon problem

, '

(,) log() ()

(,) max {log() [log(') (')] | (,)}

. . ' ()

1 1: 0 ()
1()

c k

v k k g

v k c E k g k

s t k a k

EE c a k
c a k c

α

α
α

ς θ ς η

ς β θ ς η ς

ς

βθ ς
βθς

= + +

= + + +

=

= − ⇒ =
+−

Value function implication

(,) log() ()

: (,) (1) log()
(1) log(()) (') |

1log() log()
1 1

(1)
1

v k k g

BE v k k
a Eg

ς θ ς η

ς α βθ
βθ ς β ς ς

βθβθ βη
βθ βθ

αθ α βθ
αβ

= + +

= +
+ + +

+ + +
+ +

⇒ = + =
−

Comments
• Value function of infinite horizon is limit of finite

horizon functions as h goes to infinity.
• We can see this for capital coefficients using

standard formula for geometric sum (other
coefficients are more complicated)

• Example suggests that one strategy for
approximating the infinite horizon value function
is to construct the sequence of finite horizon
value functions (this would be very inefficient
here, though, because it is so easy to compute
the infinite horizon function)

Comments (contd)

• Such approximation strategies motivate the
study of the properties of the Bellman equation
as a mapping on a space of (value) functions.

• Economics of problem: distribution of uncertainty
foes not affect saving (accumulation) in this
setting for reasons related to Sandmo’s
discussion of offsetting substitution and income
effects of rate of return uncertainty.

4. Discretization
• Let’s suppose that there are only a finite set of

capital levels which can be chosen, rather that
treating the level of capital as a continuous
variable.

• Similarly, we assume that productivity can only
take on a finite set of values

• Let’s suppose that consumption is continuous
and, to simplify the discussion below, let’s think
of substituting in the accumulation constraint, so
that there is a reduced form objective (as in our
discussion of the calculus of variations)

• Discrete capital and productivity “grids”

• Reduced form objective

• Hence: we can form a (big) list of z numbers: utility
for all different k,a,k’ triplets

• Similarly, the value function is just a list of
numbers giving value for each discrete state.

1 2

1 2

:
:

m

n

k
a

κ κ κ
η η η

< <

< <

(, ',) (() (1) ')z k k a u af k k kδ= + − −

DP iterations under certainty

• Start with given value function v(k)
• In each state k, find the k’ value that

maximizes z(k,k’)+βEv(k’) and compute
the associated value
v(k)=max{z(k,k’)+βEv(k’) }

• Collecting up results across states
produces a new v(k)

• Continue until change in v is small.

Example

• Look at iterative scheme in practice using
simple MATLAB program

• Model parameters

1

1/(1 .06)
1() with =3

1
y=ak with a=1 and =1/3

=.1

u c c σ

α

β

σ
σ

α
δ

−

= +

=
−

Early iteration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-20

-15

-10

-5

0
Value Function Updating at Iteration 1

Capital (fraction of ss)

V
al

ue

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.2

0.4

0.6

0.8

1

Policy Function Updating at Iteration 1

Capital (fraction of ss)

K
pr

im
e

v
vnew

pol
polnew

Later iteration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-20

-15

-10

-5

0
Value Function Updating at Iteration 19

Capital (fraction of ss)

V
al

ue

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.2

0.4

0.6

0.8

1

Policy Function Updating at Iteration 19

Capital (fraction of ss)

K
pr

im
e

v
vnew

pol
polnew

Lessons: Specific and General
• Value function to converge more slowly than policy

function: welfare is more sensitive to horizon than
behavior.
– Has motivated work on “policy iteration” where one starts with an

initial policy (say, a linear approximation policy); evaluates the
value function; finds a new policy that maximizes z(k,k’)+βEv(k’)
and then iterates until the policy converged.

– Has motivated development of “acceleration algorithms”
Example: evaluate value under some feasible policy (say
constant saving rate policy) and then use this as the starting
point for value iteration

• Policy function looks pretty linear.
– Has comforted some in use of linear approximation methods
– Has motivated others to look for “peicewise linear” policy

functions.

5. The Curse of dimensionality
• We have studied a model with one state which can taken on N

different values.
• Our “brute force” optimization approach involves calculating z(k,k’)

at each k for each possible k’ and then picking the largest one.
Hence, we have to compute z(k,k’) a total of N*N times.

• If we have a “good” method of finding the optimal policy in at each
point k, such as using properties of the objective, then the problem
might only involve NM computations (with M<N being the smaller
number of steps in the maximization step).

• Suppose that there were two states, each of which can take on N
different values. We would have to find an optimal state evolution at
each of N*N points and a blind search would require evaluating z at
N*N points – all of the possible actions -- for each at each state. A
more sophisticated search would require (N*N*M), as we would be
doing M computations at each of N*N points in a state “grid”.

Curse
• Even if computation is maximially efficient (M=1,

so that one does only one evaluation of Z at
each point in a state grid), one can see that this
state grid gets “large” very fast: if there are j
states then there are Nj points in the grid: with
100 points for each state and 4 state variables,
one is looking at a grid of 108 of points.

• Discretization methods are not feasible for
complicated models with many states. Has
motivated study of many other computational
procedures for dynamic programming.

6. The importance
of initial conditions

• We started the example dynamic programs with a future v=0 and
with v(k,a,0)=u(af(k)+(1-δ)k) .

• Theorems in the literature on dynamic programming guarantee the
convergence of value function iteration – under specified conditions
on u,f,a – from any initial condition. In this sense, the initial condition
is irrelevant. Such theorems will be developed in Miao’s “Economic
Dynamics” course in the spring.

• However, the theorems indicate that for a large number of iterations,
results from any two starting points are (i) arbitrarily close to each
other and (ii) arbitrarily close to the solution for the infinite horizon
case.

• In a practical sense, initial conditions can be critical. Imagine that,
by accident or design, one started off with exactly the correct value
function for the infinite horizon case, but you did not know the policy
function. In this situation, there would only be one iteration, because
the infinite horizon Bellman equation means that the “new” v will be
equal to the “old” v.

7. Adding uncertainty

• Since we have discretized the state space,
it is also natural to discretize the shock
variable.

• The discretization is a Markov chain, with
fixed probabilities of making transitions
from one exogenous state to another.

Transition matrix for Markov chain
(elements are prob(a’|a)=πij)

.5.4 .1Now:
Low

.2.6.2Now:
Medium

.1.4.5Now:
High

Later:
Low

Later:
Medium

Later:
High

DP iterations with uncertainty
• At each grid point (k= κl ,a= ηi), the Bellman equation is

• DP iterations with uncertainty require calculating the
“expected value” as well as the prior computations
discussed above.

• With a Markov chain, this is just adding up value
functions after multiplying by future states.

• Grid for v now must depend on (k,a), which adds to
curse of dimensionality.

'
'

1
(, ,) max { (, , ') (',)}

J

l i k l i ij j
j

V h z k EV kκ η κ η β π η
=

= + ∑

Stochastic dynamic program

• Three value functions in graph: each of
three values of “a”

• Three policy functions in graph: each of
three values of “a”.

• No longer see “improvements” for all
three: just the middle “a” function to avoid
graphical clutter (it is the dashed line).

Early iteration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-20

-15

-10

-5

0
Value Function Updating at Iteration 1

Capital (fraction of ss)

V
al

ue

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.2

0.4

0.6

0.8

1

Policy Function Updating at Iteration 1

Capital (fraction of ss)

K
pr

im
e

v (a=1)
vnew

pol (a=1)
polnew

Later iteration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-20

-15

-10

-5

0
Value Function Updating at Iteration 19

Capital (fraction of ss)

V
al

ue

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.2

0.4

0.6

0.8

1

Policy Function Updating at Iteration 19

Capital (fraction of ss)

K
pr

im
e

v (a=1)
vnew

pol (a=1)
polnew

