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1. Stochastic growth model
from a DP perspective

• Consider a model in which the production function is subject 
to shocks to total factor productivity 

• These productivity shocks are assumed to be governed by a 
Markov process, so that 

and additional restrictions are imposed so that productivity is 
stationary (a common initial assumption but one that seems 
counterfactual given Solow-style accounting).
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Accumulation of capital

• Endogenous state evolution equation in the 
sense of our earlier presentation of DP

• Control is consumption
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Objective

• Discounted utility from consumption (with 
infinite horizon as special case)
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Explicit horizon 

• To allow consideration of iterative 
schemes in theory and computation

• To allow for finite horizon economies
• Requires some additional notation in terms 

of keeping track of time (lose time 
invariance because optimal behavior 
depends on “how long is left”)



2. Value Function Iteration

• We now describe an iterative method of 
determining value functions for a series of 
problems with increasing horizon

• This approach is a practical one 
introduced by Bellman in his original work 
on dynamic programming.



Review of Bellman’s core ideas
• Focused on finding “policy function” and “value 

function” both of which depend on states 
(endogenous and exogenous states).de

• Subdivided complicated intertemporal problems 
into many “two period” problems, in which the 
trade-off is between the present “now” and 
“later”.

• Working principal was to find the optimal control 
and state “now”, taking as given that latter 
behavior would itself be optimal.



The Principle of Optimality

• “An optimal policy has the property that, 
whatever the state and optimal first 
decision may be, the remaining decisions 
constitute an optimal policy with respect to 
the state originating from the first 
decisions”—Bellman (1957, pg. 83)



Following the principle, 
• The natural maximization problem is

where the right hand side is the current 
momentary objective (u) plus the consequences 
(V) of for the discounted objective of behaving 
optimally in the future given that there are h=T-t 
periods to go (h is length of “horizon”).
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Noting that time does not enter in an essential way 
other than through the horizon

• We can write this below as (with ‘ again meaning next 
period)

• So then the Bellman equation is written as (with the 
understanding that h=h’+1)
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After the maximization
• We know the optimal policy and can calculate 

the associated value, so that there is now a 
Bellman equation of the form

• Note that the policy function and the value 
function both depend on the states and the 
horizon. 

• The Bellman equation provides a mapping 
from one value function (indexed by h’=h+1) 
to another (indexed by h)
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3. An example

• Suppose that the utility function is u(c) = log(c), 
that the production function is Cobb-Douglas 
with capital parameter α and there is complete 
depreciation (δ=1). These assumptions allow us 
to find the policy and value functions as loglinear
equations

• Then the accumulation equation is 
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One period problem

• Suppose that “there is no tomorrow” so that 
the value of future capital is zero and thus it 
is optimal to choose k’=0.

• Then, the optimal policy and associated 
value function are
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Two period problem
• Bellman Equation

• Optimal policy from Euler equation
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Under optimal policies
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A candidate solution
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Finding the optimal policy 
and value function
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Comments

• The more importance (value) is attached to 
future capital, the smaller is consumption’s 
share of output

• One value function which is loglinear in k’
generates another that is loglinear in k.

• A recursion governs the capital coefficient, 
which can be used to show that it increases with 
the horizon
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Comments

• Other more complicated recursions govern 
the other coefficients (these are harder to 
solve, since the difference equations are 
more complicated).

• Illustrates general idea of calculating a 
sequence of value functions and 
associated policy functions.



Infinite horizon problem
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Value function implication
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Comments
• Value function of infinite horizon is limit of finite 

horizon functions as h goes to infinity. 
• We can see this for capital coefficients using 

standard formula for geometric sum (other 
coefficients are more complicated)

• Example suggests that one strategy for 
approximating the infinite horizon value function 
is to construct the sequence of finite horizon 
value functions (this would be very inefficient 
here, though, because it is so easy to compute 
the infinite horizon function)



Comments (contd)

• Such approximation strategies motivate the 
study of the properties of the Bellman equation 
as a mapping on a space of (value) functions.

• Economics of problem: distribution of uncertainty 
foes not affect saving (accumulation) in this 
setting for reasons related to Sandmo’s
discussion of offsetting substitution and income 
effects of rate of return uncertainty.



4. Discretization
• Let’s suppose that there are only a finite set of 

capital levels which can be chosen, rather that 
treating the level of capital as a continuous 
variable.

• Similarly, we assume that productivity can only 
take on a finite set of values

• Let’s suppose that consumption is continuous 
and, to simplify the discussion below, let’s think 
of substituting in the accumulation constraint, so 
that there is a reduced form objective (as in our 
discussion of the calculus of variations)



• Discrete capital and productivity “grids”

• Reduced form objective

• Hence: we can form a (big) list of z numbers: utility 
for all different k,a,k’ triplets

• Similarly, the value function is just a list of 
numbers giving value for each discrete state.
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DP iterations under certainty

• Start with given value function v(k)
• In each state k, find the k’ value that 

maximizes z(k,k’)+βEv(k’) and compute 
the associated value 
v(k)=max{z(k,k’)+βEv(k’) }

• Collecting up results across states  
produces a new v(k)

• Continue until change in v is small.



Example

• Look at iterative scheme in practice using 
simple MATLAB program

• Model parameters
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Early iteration
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Later iteration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-20

-15

-10

-5

0
Value Function Updating at Iteration 19

Capital (fraction of ss)

V
al

ue

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.2

0.4

0.6

0.8

1

Policy Function Updating at Iteration 19

Capital (fraction of ss)

K
pr

im
e

v
vnew

pol
polnew



Lessons: Specific and General
• Value function to converge more slowly than policy 

function: welfare is more sensitive to horizon than 
behavior.
– Has motivated work on “policy iteration” where one starts with an 

initial policy (say, a linear approximation policy); evaluates the 
value function; finds a new policy that maximizes z(k,k’)+βEv(k’) 
and then iterates until the policy converged.

– Has motivated development of “acceleration algorithms”
Example: evaluate value under some feasible policy (say 
constant saving rate policy) and then use this as the starting 
point for value iteration 

• Policy function looks pretty linear.
– Has comforted some in use of linear approximation methods
– Has motivated others to look for “peicewise linear” policy 

functions.



5. The Curse of dimensionality
• We have studied a model with one state which can taken on N 

different values. 
• Our “brute force” optimization approach involves calculating z(k,k’) 

at each k for each possible k’ and then picking the largest one. 
Hence, we have to compute z(k,k’) a total of N*N times. 

• If we have a “good” method of finding the optimal policy in at each 
point k, such as using properties of the objective, then the problem 
might only involve NM computations (with M<N being the smaller 
number of steps in the maximization step).

• Suppose that there were two states, each of which can take on N 
different values. We would have to find an optimal state evolution at 
each of N*N points and a blind search would require evaluating z at 
N*N points – all of the possible actions -- for each at each state. A 
more sophisticated search would require (N*N*M), as we would be 
doing M computations at each of N*N points in a state “grid”.



Curse
• Even if computation is maximially efficient (M=1, 

so that one does only one evaluation of Z at 
each point in a state grid), one can see that this 
state grid gets “large” very fast: if there are j 
states then there are Nj points in the grid: with 
100 points for each state and 4 state variables, 
one is looking at a grid of 108 of points. 

• Discretization methods are not feasible for 
complicated models with many states. Has 
motivated study of many other computational 
procedures for dynamic programming.



6. The importance
of initial conditions

• We started the example dynamic programs with a future v=0 and 
with v(k,a,0)=u(af(k)+(1-δ)k) . 

• Theorems in the literature on dynamic programming guarantee the 
convergence of value function iteration – under specified conditions 
on u,f,a – from any initial condition. In this sense, the initial condition 
is irrelevant.  Such theorems will be developed in Miao’s “Economic 
Dynamics” course in the spring.

• However, the theorems indicate that for a large number of iterations, 
results from any two starting points are (i) arbitrarily close to each 
other and (ii) arbitrarily close to the solution for the infinite horizon 
case. 

• In a practical sense, initial conditions can be critical.   Imagine that, 
by accident or design, one started off with exactly the correct value 
function for the infinite horizon case, but you did not know the policy 
function. In this situation, there would only be one iteration, because 
the infinite horizon Bellman equation means that the “new” v will be 
equal to the “old” v.



7. Adding uncertainty

• Since we have discretized the state space, 
it is also natural to discretize the shock 
variable. 

• The discretization is a Markov chain, with 
fixed probabilities of making transitions 
from one exogenous state to another.



Transition matrix for Markov chain
(elements are prob(a’|a)=πij)

.5.4 .1Now: 
Low

.2.6.2Now: 
Medium

.1.4.5Now:
High

Later:
Low

Later: 
Medium

Later:
High



DP iterations with uncertainty
• At each grid point (k= κl ,a= ηi), the Bellman equation is

• DP iterations with uncertainty require calculating the 
“expected value” as well as the prior computations 
discussed above.  

• With a Markov chain, this is just adding up value 
functions after multiplying by future states.

• Grid for v now must depend on (k,a), which adds to 
curse of dimensionality. 
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Stochastic dynamic program

• Three value functions in graph: each of 
three values of “a”

• Three policy functions in graph: each of 
three values of “a”.

• No longer see “improvements” for all 
three: just the middle “a” function to avoid 
graphical clutter (it is the dashed line).  



Early iteration
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Later iteration
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