Defining a function file: Exponential smoothing filter example

The programming problem associated with the exponential smoothing filter is
T T
. 2 2
min D (ye—y9) +A D ¢ —yla)
S ey =2

. . g .
where Yt is the value of the series at date t and Yt is the growth component
extracted by the filter. The first-order conditions for an interior solution to this
problem are:

0 =-2(y1 —y7) — 2A(y3 — y)

0=-20t—y7) = 2A[(Yg,s —¥2) — OF —¥i)]
foreach t€42,....T=1} and

0= —2(yr —y3) + 243 —y3).
or

—AYgq + A+ 20V - Ay, =Wt

These may be viewed as a matrix system
Y = MYY

with Y and Y? being column vectors of size T .

Y1 yg
y2 yg
Y= Yt Y9 = Ytg
Y11 yg—l
B yr] B y$ |

with

142 -2 0 -0 0
A (d+20) -4 0 0

0

The following function file constructs this matrix, taking in a vector Y and

A 1+210 A

-0 -4 1+2

creating a vector Y° , which is called "g" in the program.

esmf.m

% applies the "Exponential Smoothing" filter to time
series

% using a matrix inversion technique. The data is
assumed to be

% organized into a matrix "y" with the rows of y

% being the observations and the columns being the
series.

% The value of the smoothing parameter is the
second argument.

% The output is the filtered series g.

function g=esmf(y,lam)

% ESM filtering involves the solution of the
difference equation:

% y(t) = - lam*g(t+1)

+ (1+2*lam)*g(t) -lam*g(t-1)

% with

% y(1) = (1+lambda)*g(1) - lam*g(2)

% y(T) = (1+lambda)*g(T) - lam*g(T-1)

% If there are a smaller number of observations
than series, then

% there is most likely a mistake: convert the
vector/matrix of inputs:

oy = size(y);

ny = max(oy); % length of time series
if (oy(1)<oy(2))

Y=Y’

end

disp(‘Computing Exponential Smoothing Filtered
Time Series with Matrix Inversion’)
disp('Growth Component is Returned as g')

% Strategy: Structure difference equation as a
matrix equation:

%Mg=y

% and then invert M.

M = zeros(ny,ny);

d1l=ones(ny-1,1);

d1l=-d1*lam;

d2=ones(ny,1);

d2=d2*(1+2*lam);

d2(1)=1+lam;

d2(ny)=1+lam;

M = diag(d1,1)+diag(d2)+diag(dl,-1);
g = inv(M)*y;

% convert if necessary
if (oy(1)<oy(2))

9=9’;

end

This program makes use
of the built-in MATLAB
function diag, to build the
block diagonal matrix M.
diag(x) puts the vector x
on the main diagonal;
diag(z,1) puts the vector z
on the "subdiagonal”;
diag(x,-1) puts the vector
z on the "superdiagonal".
z must be one element
shorter than x, as in the
code.

