STUDIENZENTRUM GERZENSEE Doctoral Course 2010 Day 1 Study Problems for Macroeconomics

Objective of problem: We have discussed optimization over time for individual decision-makers and for a social planner. We now consider a revenue-maximizing government's optimal money creation decisions, when it is faced with a forward-looking demand for money. This revenue maximization differs in important ways from the others that we have faced, due to forward-looking constraints. In week 3 of the class, we will study recursive methods for optimal policy design in such settings, but now we begin with a simple and direct approach.

Problem #2: The Revenue from Money Creation. Suppose that a government seeks to maximize the revenue that it derives from inflation, within a model with purely flexible prices (P_t is the price level at date t). In real terms, the government's revenue at date t is

$$z_t = m_t - \frac{1}{\pi_t} m_{t-1}$$
 (1)

where π_t is the inflation rate – defined as $\pi_t = P_t/P_{t-1}$ and m_t is the amount of real balances held by agents in period t.¹

The demand for real money balances is given by

$$m_t = \beta f(\pi_{t+1}) \tag{2}$$

which is assumed to be positive, but declining in the inflation rate $(f(\pi) \ge 0$ for all $\pi \ge 0$ and $f_{\pi} < 0$). The parameter β satisfies $0 < \beta < 1$. In some of the analysis below, it is also assumed that the money demand function takes the particular functional form

$$m_t = \kappa \pi_{t+1}^{-\alpha} \tag{3}$$

with κ and α being positive parameters.

(a) What inflation rate maximizes steady-state rate revenue,

$$m(1-\frac{1}{\pi})\tag{4}$$

subject to the particular money demand function $m = \kappa \pi^{-\alpha}$? How does revenue-maximizing this inflation rate depend on κ and α ?

¹This revenue may be derived as follows. First, the nominal money stock in period t is M_t and the newly printed money in period t is $M_t - M_{t-1}$. The real value of this newly printed money is $(M_t - M_{t-1})/P_t$, with P_t being the price level. Hence, the real revenue is as specified in the body of the question, if $\pi_t = P_t/P_{t-1}$.

(b) Consider next a government that maximizes the present discounted value of its revenue,

$$\sum_{t=0}^{\infty} \beta^t z_t \tag{5}$$

and assume that the government can commit to a series of inflation rates at dates t = 0, 1, 2, ... Form a dynamic Lagrangian for the government's revenue maximization problem, treating the money demand function as an inquality of the form

$$m_t \le \beta f(\pi_{t+1}) \tag{6}$$

 $t = 0, 1, 2, \dots$ That is: assume that the government can pick a "tax base" for the inflation tax which is no larger than the real balances that individuals are willing to hold. Call the multiplier on this constraint ϕ_t .

(c) Find the first-order conditions for optimal choice of m_t , π_t , and ϕ_t for all dates t = 0, 1, 2, ...Record these as follows

 $\pi_0 \quad : \tag{7}$

$$\begin{array}{c} m_0 & : \\ \phi_0 & : \end{array} \tag{8}$$

for t > 0.

$$\pi_t$$
 : (10)
 m_t : (11)
 ϕ_t : (12)

(d) Using the economics of the problem and the first-order conditions, explain why the government has sharply different inflation incentives at date t=0 and date t > 0.

(e) Work out the stationary level of the revenue from money creation. How does the optimizing government's revenue compare to the answer from part (a)? Why?