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SOME RESULTS ON THE UNIQUENESS OF STEADY STATES 
IN MULTISECTOR MODELS OF OPTIMUM GROWTH 

WHEN FUTURE UTILITIES ARE DISCOUNTED* 

BY WILLIAM A. BROCK' 

1. INTRODUCTION 

IT IS WELL KNOWN that in multisector models of optimal growth that optimal 
paths converge to a unique steady state when future utilities are not discounted. 
See Gale [8], McKenzie [18], and Brock [3] for results of this type. Then 
Sutherland [32], in the case when future utilities are discounted, produced ex- 
amples of multiple steady states in Gale's [8] model. Thus the qualitative be- 
havior of optimal growth when future utilities are discounted may be quite 
different than the Ramsey case when future utilities are not discounted. Also 
Kurz [11] and Liviatan and Samuelson [13] have produced multipLe equilibria 
in the discounted case by introducing wealth effects and joint production effects 
respectively. 

What we shall do here is give conditions for several multisector models that 
give uniqueness of steady states. In the case of no joint production and one 
primary factor of production we use a nonsubstitution theorem to determine 
relative prices and the choice of technique independently of the utility function. 
We then assume normality of the utility function and show that there is at most 
one steady state for that case. 

We examine a model with no joint production, no primary factor and no de- 
preciation of capital. In this case we show that summability of the utility func- 
tion and a type of "normality" condition on each production function yields 
uniqueness of steady state. New techniques have to be invented to handle this 
case. The techniques may be independently interesting. 

A very general model that handles cases of joint production is examined in 
Section 3. All that is required here is that the steady state equations can be 
written in the form G(k, o) = 0 where p is the discount. It turns out that if 
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G(k, 0) = 0 is satisfied by only one k and if the derivative matrix aGlak is non- 
singular on the set M {k I G(k, p) = 0 and all k > 0} then there is only one 
steady state. This theorem captures2 most multisector models but the interpreta- 
tion of the condition that aGlak be nonsingular is not clear. 

In Section 2.3 we show that steady state equilibria in multisector models of 
optimum growth under discounting are special cases of static general equilibria 
when a tax is placed on capital services. This result holds in very general models 
and allows us to map out a strategy for a uniqueness of steady state theory along 
the lines of the static uniqueness of general equilibrium theory discussed in Arrow 
and Hahn [1]. 

2.1. UNIQUENESS OF STEADY STATE IN A SPECIAL CASE 

Consider the following model of optimal economic growth. 

Maximize e-l'u(c1, c2, .. ., cn)dt 
o 

s. t. ci + ki = F (kji ............ , kni)s . i = 19 29 ... , n 

(1) ki(O) =kio, i= 1,2, ... ,n 
n 

E k=j ki , i = 1, 2, . . . , n 
j=l 

where u, Fi, i = 1, 2, ... , n are concave, increasing, and twice continuously dif- 
ferentiable.3 We will assume that zero input of any capital good implies zero 
output for all sectors, and marginal utility of consumption of the i-th good is 
+ oo if the consumption level of the ith good is zero. Think of labor as being 
institutionally assigned to each sector. Thus we will assume that the Fi are not 
homogeneous of degree one. Let us agree not to worry about the optimum 
allocation of labor across sectors at this stage. We also assume that capital is 
infinitely durable and is shiftable at no cost across sectors. Furthermore assume 
that all steady states are interior. 

The interior steady states of problem (1) are described (after going through 
the usual Pontryagin's Maximal Principle [13] exercise) by 

( 2 ) ujFj~ = duj , i, j = 1, 29 ... ., n 

where ui = au/aci, F, = aF'/akji. Also 

(3 ci CiF(kjis .................. 9 kni)s . i = 1, 29 .... , n 

n 
4 E kij =ki,9 i = 1, 29 ... ., n. 

J=1 

Our task is: Find conditions that make economic sense and that imply (2)-(4) 

2 We require differentiability of the utility and production functions, of course. 
3 This assumption is much too strong for our purposes. Any assumption that yields interior 

steady states will do. 



UNIQUENESS OF STEADY STATES 537 

have at most one solution. The obvious thing to do is go after some kind of 
normality assumption on consumption and factor inputs in each sector. We will 
develop two sets of assumptions. Let us assume from the outset that u is sum- 
mable, i.e. u(c1, ... , cj) = EI vi(ci) where each vi is concave, increasing, 
vi'(0) + oo. Now let [Ft-] be the Hessian matrix of Fk. Assume that this is 
negative definite (it is negative semi-definite by concavity). We may now state 
assumption 1. 

ASSUMPTION 1. [Fk-] has a negative inverse k = 1, 2, ... , n. 

This is a very strong assumption. One can get by with much less, but a study 
of this assumption will motivate our weaker assumption. Let us develop some 
implications. 

Consider the problem 

(5 ) Maximize Fi(kl i ... , kni) 
n 

s. t. E kip.1 < I 
1=1 

i 

where (Pia, . .. , Pin) is a vector of prices and I is an income level. For any in- 
come level I the necessary conditions generated by (5) are 

(6 )Fyi = 2iPj , j = 1, 29 ... ., n 

where i is the derivative of the maximum with respect to I. Look upon this 
as a consumer s maximization problem in the theory of demand. Since F' is 
concave, i(I) is decreasing in I. Now put pij u1/ui, i = d then (6) becomes 
(2). This exercise allows us to make an extremely useful observation.4 Viz., 
given a vector of goods prices, and given a preassigned level of the marginal 
utility of income, 2, then there is only one solution (k1, . . . , kni) to (6). Thus 
we get a mapping from (Pil' . . Pin; i) to (k1i, . . ., kni) that solves (6). Sup- 
pose we increase pij, holding i fixed at the level d. What happens to (k1l, .... 
kni) and Fi(kli, .. . , kni) ? 

LEMMA 1. Under A1 an increase of one of the pij, say pi,, will decrease all of 
the kji, j - 1, 2, ... , n provided that 2 is held fixed at the level d. 

PROOF. Just differentiate (6) and use Assumption 1. Recall that i is held 
fixed at the level d. Doing this we obtain 

78 (Fj's)aksi_ de, 

4 Assume that Fi is strictly concave. Then the marginal utility of income is a decreasing 
function of income. A vector of positive prices generates an expansion path. Marginal utility 
of income falls on this path as income increases because Fi is strictly concave. Thus to each 
value of the marginal utility of income there is a unique income level, I. Given I and given a 
price vector there is just one (kli, k . ,k) that solves (5). This follows from strict concavity. 
Thus given i and pij there is just one solution to (6). 
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where el is the vector of zeroes in all places except the l-th which is unity. 
Inverting (FiS) gives the result. 

COROLLARY 1. Under the hypotheses of Lemma 1, ci decreases. 

PROOF. Obvious from the monotony of FP. 

Corollary 1 leads to the following question: When can we say that ci decreases 
when pi, "say" increases holding = d? I.e., when does an increase in price 
holding marginal utility of income constant lead to a reduction in utility? 
Things become more natural if we look at the "dual" problem. I.e., consider 

n 
(8) Min E pijkij 

1=1 

I.e. attin te ouput at. Finimum kot ntrdc i C arnemlile 
I.e., attain the output c at minimum cost. Introduce a Lagrange multiplier 
set L = E17t pijkji + ((F(k1,... , kni) - c) minimize to yield the necessary 
conditions 

( 9) pij = -rlFji j = 1, 2, .. ., IL 

Thus - 1/, plays the role of i in (5). Marginal cost = -r which increases as 
c increases. Write M(c, pi,, . .. , Pin) =- l. We may now state Assumption 2. 

ASSUMPTION 2. M(c, pil,.. ., Pin) increases if any component of (pil,.. , Pin) 
increase. 

This is a kind of "normality" assumption. It says that an increase in factor 
prices causes the marginal cost curve to rise. 

LEMMA 2. Let A2 hold. Let pi, "say" increase then ci decreases, provid3d 
marginal cost is held constant at 1/d. 

PROOF. By Assumption 2 the marginal cost curve must rise but M[c1,(pj, . . ., 
Pin)] = 1/6 therefore ci must fall. 

We may now prove our theorem. 

THEOREM: Let Assumption 2 hold. Let u be summable then there is at most 
one solution to equations (2)-(4). 

PROOF. We outline the method first. Consider the set of problems 

Fjl = O(Uj/Ui) 

( 1 0) ~~~~Fj2 = d(Uj/U2) 
(10)F2= 

Fjn- = (Uj1Un) . 

Put pi -u1/ui. Assume that there are two solutions, [kji], [kji]. We first show 
(by induction on n that there are two rows of (uj/ui) such that "say" row s 
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nondecreases and row t nonincreases. This then implies that c, nonincreases, ct 
nondecreases. Since u is summable, concave, us nondecreases, ut nonincreases. 
But utlus being the (s, t) element of row s nonincreases. This will lead to a 
contradiction provided that at least one element of row t decreases. This will 
obtain provided that (kji) # (kji). So we have the outline of the proof. 

Let us first establish the row property on the matrix [uj/ui]. 

LEMMA 3. Suppose (kji) # (kji) are two solutions to (2)-(4). Then there are 
rows s, t of [u1/u1] such that "say" uj/u < uj/us j = 1, 2,.. , n; uj/ut > u1j/ut, 

1, 2, . . . , n. Also uj/us # uij/ul for some j and uj/ut # uij/uit for some j. 

PROOF. For n = 2 the first half of the Lemma is trivial because 

[u1/u,] [;Ul/U2 iul] 

Put i = d. Suppose u2/ul = i!2/u1 then by (6) kll = kli, k2l = k2l. Thus cl - 

el by equation (3). Thus u= u- by summability of u. But ul = ul implies 
U2= u-2. Thus u/U2 = ul/ui2 which implies (kl2, k22) 2 (kl2, k22) a contradiction 
to (kji) # (kji). We could have obtained u1/u2 = u1/u-2 by using u2/ul = i!2/i- 
but this method won't generalize to arbitrary n. 

Suppose [uj/ui] has the row property for n - 1. We show it for n. Consider 
the matrix 

1 U u2/U1,. . .* Un/Ul 

Ul/U2 1 , 
* * * 

, UnjU2 

Ul/un P U21Un 9 

Look at the (n - 1) X (n - 1) submatrix 

[ 1 U3/U2, . . * , Un l/U2, Un/U2 

U2/U3, 1 , * * * , Un-1/U3, Un/U3 

U2fUn U3iUn, . . * , Un-I/Un, 1 

By induction row s nondecreases and row t nonincreases "say." There are two 
cases: (1) ul/us < ul/us, (2) ul/us > u-l/uls. Take care of case (1) first. There 
are two subcases (la): ul/ut ? all/ut, (lb) ul/ut > u-l/lt. If ul/u, < ul/u, then 
because each element, 1, of row t nonincreases for 1 > 2 the ratios must non- 
decrease. Thus ut/ul < utl/ul. Therefore, (ul/ut)(ut/ul) ? (u1l/ult)(u-t/ul). Thus 
ul/ul ? ul/ul for 1 = 2, 3, ... , n. I.e., each element ul/ul of row one nonincreases. 
Thus we have found a row that nonincreases. We claim that row s nondecreases. 
Now ull/us _ ul/ts because us/ul > iis/ul. The last holds because row one non- 

increases. The rest of row s nondecreases by hypothesis. Hence for case (la) we 
have shown that there are two rows, one nondecreasing the other nonincreasing. 
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Consider case (lb): u1/u, > al-/ti,. Here the t-th row nonincreases. By hypo- 
thesis row s nondecreases. Thus we are finished with case 1. 

Let us go to case 2: ui/u, > ui/us. We claim that row 1 nondecreases. To 
see this note that u,/u1 < u5/t1 and by induction hypothesis ul/u, _ u,/u, so that 
(U,/uj)(ui/u,) _ (us/ul)(ul/lis). I.e., ul/ul < ul/ul. Thus row one nondecreases 
and the claim is proved. 

Now u,/u1 _ ua/ul so that u1/ut ? u1/ul. I.e., the first element of row t non- 
increases. But by induction hypothesis all the other elements of row t nonin- 
creased. Thus row t nonincreases and we are finished with case 2. This ends the 
proof of the first part of Lemma 3. 

Now suppose that uj/us = j/us, j = 1, 2,... , n.5 Then cs = Cs. From this 
we have uj = Uj, j = 1, 2, . . . , n. Therefore uj/ui = ij/ui all i, j. 

Look at the row of problems (10). No row of prices uj/ui changes. Thus 
kji = kji all i, j, a contradiction to [kji] # [kji]. 

REMARK. The row property of the matrix [uj/ui] across steady states has 
nothing to do with summability of u. 

The proof of Lemma 3 is hard to follow. Actually it is easier if one develops 
an "algebra" of inequalities on the matrix [uj/ui] across steady states. We do 
this in the sequel. But let us first finish off the proof of the theorem. 

Armed with Lemma 3 we may say that there are two rows of [uj/ui] such that 
each element of s nondecreases and each element of t nonincreases. Furthermore 
at least one element of s increases and at least one element of t decreases. Thus 
Cs > es, Ct < et. Since u is summable us < u5, ut > u,. Thus ut/us > ua/us. I.e. 
element t of row s decreases, a contradiction to the fact that all elements of row 
s nondecrease. This ends the proof of the Theorem. 

Now let us build some understanding of the row property [uj/ui] across steady 
states. Not only will this be useful for understanding our proof, but also it 
should be useful for further workers in this area. We introduce an associated 
matrix [aij] where 

r 
+ if uj/ui < uj/uz 

aij = 0 if uj/ui = uj/ui 

t - if u1/u1 > uj1/ai. 

Introduce the operation o on the symbols aij by 

{ + if aij = +or 0, akl = + or 0 and at least one is +. 

0 if both ai, aki are equal to zero 
aijoakl - if aij = -or 0, akl 

= -or 0 and at least one is-. 

undefined otherwise. 

It is easy to show that aijoajk = aik when the operation o is defined. Also ai1 = 

5 This statement could use some argument. Use equation (6) with i = a and i = s to assert: 
uj/us = uIlus -psi implies kj5= kj5, i = 1,2, . . . ,n. But by (3) this implies that cs = es. 
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-aij. The meaning of -aij is -aji = +, 0, - when aji -, 0, + respec- 
tively. To discover relations among the symbols aij the reader should think of 
aij as j-i. Then aijoajk = (j -i) + (k-j) k - i = aik and -(j - i) = 
-aij=i-j=aji. Also aijo(-akl) j-i -(I-k)=k-i=aik. Use 
of this symbolism should allow the reader to systematically enumerate the 
possible [aij] matrices. In particular the proof of the first part of Lemma 3 (the 
row property on [aij]) is easier to follow. We discovered the proof, in the first 
place, by using the [aij] matrix together with its associated algebra. 

2.2 UNIQUENESS OF STEADY STATE IN THE GENERAL CASE OF EXPONENTIALLY 

GROWING LABOR FORCE, EXPONENTIALLY DECAYING CAPITAL, CONSTANT 

RETURNS TO SCALE PRODUCTION FUNCTIONS, AND NORMAL 

UTILITY FUNCTION 

In this case the model is 

Maximize | e-tu Cl C2 Cn )dt 

s. t. Ci + ki = Fi(Liq Kli, ... ., K,1i) -diKi, i = 19 29 ... ., n 
n 

( 1 ) E Kji _ Kj, j = 1, 2, ..., n 

n 
E Li < L 

L = Loegt 

Ki(O) = Kio 9 i = 1, 2, ... , n. 

Here the utility of society at time t is taken to be 

e-Ptu( Cl, C2, . . ., Cn 

where p can be taken to be the difference between the subjective rate of discount 
and the rate of population growth. We assume that p > 0. The objective is to 
maximize the discounted sum of utilities. Controls are total consumption C, 
of good i, allocation of capital good j over sectors i = 1, 2, . .. . n which is de- 
noted by kji and allocation of available labor to sector i = 1, 2, ... n which is 
denoted by Li. We will assume that u, F' are twice continuously differentiable, 
concave and increasing. The F1 are assumed to be homogeneous of degree 1. 
Putting (1) into per capita form we get 

Maximize e-Ptu(c1, c2, . . ., cn)dt 
( 

ci + k = F'(1i, kli, . . . i kni) -gki -diki; i = 1 2,...,n 
n 

(2 ),kji < kj, j = 1, 2, ...- ., n 
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n 

i=l 

ki(O)= kio, i = 1 2, ... ., n 

where lower case letters denote per capita quantities, e.g., kji = Kji/L. Set up 
the Hamiltonian 

n 

H = eptu(cl, . . . , c.) + qi[Fi - gki - diki- ci] 

+ i li( + j [kj - z kji. 

Apply the Maximum Principle [13] to H; assume that optimum kji > 0, li > 0 
all i, j so that no multipliers appear for the constraints k1 _ ?, li _ 0; listing 
the output of the Maximum Principle we get 

e 'O'Uk - qk = ?, qiFo' - , = 0 , 

qiF1j--i = 0, qi = -&H/ki = (g + di)qi- i . 

It is clear from the context what the range of the indices i, j, k is; so we drop 
specification of their ranges when the context is clear. Here Uk Iu/&c1, Fl= 
&Fi1/k11&kji, Foi =_ WiF/L, Fji- =F/ikji, etc. Put Pi-ui = et'qi. Then system 
(4) may be written 

Pi = (p + g + di)pi -pjFij, pj = uj 

5 ci + ki = Fi(li, kl, . . ., k,l) - (g + di)ki; Zkji < kj; 

Zli _ 1; piFo' = e-Pti, 

where * over a symbol denotes time derivative. Let us assume that for all steady 
states all capital is used and all labor is used i.e., Ei kij = kj, Ei li = 1 for all 
i, j. As is well known this can be obtained from more basic considerations on 
utility and technology-Inada [10] conditions, marginal utility of starvation - 
+00, etc. Let us agree just to spell out at each stage exactly what we need at 
each point of our argument. Not only does this save space, and avoids repeti- 
tion of the well known, but also it lays bare the basic structure of our argument. 

Equations (5) should look familiar to the reader. They can be viewed as 
equations determining the price path in a competitive economy with perfect 
capital markets and short run perfect foresight. To see this put Wi = pjFij, j = 
1, 2, .. , n; Wo = pjFoj, j = 1, 2, . . . , n. Interpret Wi as the rental rate for 
factor i, i = 0, 1, 2, .. . , n. Then equations (5) become 

Ps/pi + Wilpi-di = p + g, piFoi = WO, pj = u 

6) ci + ki= Fi(li, ki, . . . , kni) - (g + di)ki; kji < kj; 
n 
Zli 1. 

i=l 
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Equations (6) are easy to interpret. The first line just says that capital gains 
plus rent yield minus depreciation equals a common rate of return for all assets. 
Furthermore labor and capital must be allocated across industries so that mar- 
ginal value products (in utils) are equated. The reader will note that we are 
using the notation of Burmeister and Dobell as in their book [4]. We shall draw 
heavily from that book and from an article by Burmeister and Kuga [5] from this 
point on. Let us sketch our proof of uniqueness before we go into the details.6 

Look at equations (6). Set Pi = ? = ki, i = 1, 2, . . . , n. Notice that constant 
returns to scale and no joint production allow one to apply the nonsubstitution 
theorem (Burmeister and Dobell [4, (280)]) to determine the relative prices pj/pi 
and the choice of technique Kij/ Yj aij, Lj/ Yj- aoj. Here Y = Cj + Kj + djKj. 
This defines a consumption possibility frontier (CPF). It turns out that steady 
states are precisely those points where the income consumption curve generated 
by 

(7) Maximize u(c1, . . *, cn) 

C1 + C2q2 + * * * + Cnqn =, qj =p/pl = ujlu 

intersects the CPF. Let us go on to the theorems and proofs. 

Put aij = Kij/Yj, aoj = Lj/Yj, yj = Yj/L, kij = Kij/L, i, j = 1, 2, .. ., n. 

Then the following may be checked; where a = [aij], aO = [aoj], k = [kj], and 
y = [y4] 

( 8 ) ay = k, aoy- I 

Set p = k 0, Then the first line of equations (6) becomes 

(9) Wl/(di + p + g) =Pi i = 1,2,... ,n. 

This says that unit price of the i-th machine, pi, is equal to the present value of 
the stream of rentals where the discount is di + p + g. The aji in steady state 
are determined by 

n 

(10) infimum E Wjajl 1=0 

Fi(aoi, ali, . . ., a,3i) ? 1 

Notice that the optimum aii are homogeneous of degree zero in the vector W 
(W0, w1,... , Wn). Now EZYO Wjaji is unit cost of i. In equilibrium price 
must equal unit cost under constant returns. Thus from (9) we obtain (the 
infimum will be attained for W > 0, Here W > 0 means that all components 
are positive) 

6 We owe a good deal here to Mr. E. Sieper of the Australian National University. Our orig- 
inal proof was clumsy and needed stronger assumptions. Sieper weakened the assumptions 
and greatly simplified the proofs by pointing out the relation between equations (6) and classical 
nonsubstitution theorems. 
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n 

(11) Fi/(i- p + g) = E Wjaji, i 1,2 .. ., n. 
1=0 

Another way of establishing (11) is to notice that Euler's theorem on homo- 
geneous functions applied to F'(aoi,... , ani) = 1 yields 

n n 

EFj aji =. (Wj/pi) aji = 1i 
i=0 i~=0 

Thus pi Z= ,0 Wjaji which yields (11). Put wi = WiWW0, i = 1, 2,... ,n. 
Since aji is homogeneous of degree zero, aij(W) -aij(W/WO) = aij(w). Put 
CQ(W0, W1, . . ., Wn) equal to the solution of (10). Thus Ci is unit cost of i and 
it is homogeneous of degree 1 in W. Hence (11) becomes 

(12) Wi/(di + p + g) = Ci(W0,. . ., Wn), i = 1, 2, . . ., n. 

We are now ready to apply a version of the standard nonsubstitution theorem 
contained in Burmeister and Kuga [5]. We write down their assumption. 

ASSUMPTION 2.2(1). Labor is required, either directly or indirectly, in the 
production of every good. 

LEMMA. (Burmeister and Kuga [5, (165)]). If 2.2(1) holds then there is at 
most one vector of relative prices w that solves (12). Here w (Wi/ W0) i.e., 
only relative prices are unique. 

PROOF. See [5, (165)]. 

Since there is at most one set of equilibrium relative prices and since the ai1 
are homogeneous of degree zero therefore (10) implies that there is at most one 
technique used in equilibrium. Further note that the choice of technique and 
the relative prices do not depend on the utility function u. The only subjective 
parameter they depend upon is p. This independence of the choice of techni- 
que from the utility function u also turns up in the one sector model [4, (359)]. 
Let o, a be the choice of technique. From (6) we obtain 

(13) c = y- (g + )k = y- (g + )iy = [I- (g + )i]y 

where g + d is the diagonal matrix with g + di the element in the i-th row and 
i-th column, and I is the n X n identity matrix. Suppose for the moment that 
[I - (g + 6)d] has a positive inverse.7 Then y = [I - (g + )d]-I1c. Thus the 
labor constraint aoy = 1 gives us the CPF 

(14) 0o[I - (g + 4)0-1c = 1. 

Put b I = - (g + 3)a]-1. One may look upon this vector b as a vector of 
direct plus indirect labor requirements to produce the vector c. Thus relative 

7 Burmeister and Kuga [5] give conditions for this inverse to exist and to be positive. They 
include assuming that none of g + di are "too large." See [5] for details. We shall give dif- 
ferent conditions for positivity of the inverse in the sequel. 
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prices of the consumption goods should be given by the "congealed" labor 
vector b. But the discount p introduces a "distortion." To see this rewrite the 
price equals unit cost equations (11) using pi = Wi/(p + g + di) in the form 
(assuming all pi > 0). 

(15) 3j (p3/Wo) = aOJ + al/(p + g + 0)31 
+ . . . + anj(P + g + dn)1n j = 1, 2,..., n. 

In matrix form this becomes 

(16) 3 = dO + 3(p + g + Od 

where p + g + 6 is the diagonal matrix with p + g + di in the i-th row and 
i-th column. Inverting (if the inverse exists) we get 

(17) 3 = do(I-(p + g + 

Notice that this is equal to the b vector when p = 0. Thus p introduces a dis- 
tortion. We shall see later that steady states are solutions to a general equili- 
brium problem with distortions caused by a tax on capital. It is this distortion 
that generates nonuniqueness of steady states when p > 0. The following con- 
dition assures unique steady states. 

DEFINITION. The utility function u is normal if for all (P, ... ., Pn) ?> 0 
I > 0 the functions ci(q, I) increase in I for all i. Here the functions ci(p, I) 
solve: maximize u(c) s.t. p * c = I. The ci(p, I) are point to point maps because 
u is strictly concave. Here p > 0 means that all components are positive, and 
ci(p, I) are the demands given prices p and income L 

THEOREM. If the vector ao[I - (g + 6)a]-1 > 0 and u is normal then there 
exists at most one steady state. 

PROOF. Suppose there are two distinct steady states c # c. Now for some 
M, M; c, c must solve 

Maximize u(x1, ... , xn); maximize u(x1,.. . ., xn) 
s.t. 3x = M 3x = M 

respectively, where 3 solves (16). Now M # M otherwise c = c. Thus either 
M < M or M > M. Let us consider the case M < M. The other case is similar. 
If M < M then normality implies that c < c. Thus b> 0 implies 1 =bc < 
bc = 1, a contradiction. This ends the proof. 

It is interesting to note that the "national income," M, at a steady state, c, is 
M =c = do(I - (p + g + 6)a)-lc is exactly equal to 1 when p 0 O. Thus 
when p 0, c must solve maximize u(xl, ... , xn) s.t. 3x = 1 which immediately 
gives unique steady state. If u is not normal and p > 0 we may construct an 
example of multiple steady states as in the following diagram. 

The curve Oc is the income consumption curve determined by u when prices 
are s. The parallel lines are perpendicular to the price vector S. They describe 
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a family of budget lines. The line AB is the CPF. This diagram shows us how 
to go about constructing examples of multiple steady states and how normality 
of u rules out multiple steady states. The diagram is due to E. Sieper of the 
Australian National University. Since it is a fairly straightforward task to put 
together a function u that generates multiple steady states we leave it. 

We might remark that methods that depend on nonsubstitution theorems 
should allow generalization to pure consumption goods industries of Morishima 

B 

0 A 

FIGURE 1 

MULTIPLE STEADY STATES 

[20] type and nonjoint production of Mirrlees [19] type. Mirrlees' theorem 
seems to be the most general nonsubstitution theorem available. Any optimum 
growth model that generates steady state equation that satisfy his nonsubstitution 
theorem should allow one to assert (following our proof) that normality of u 
implies unique steady state. At any rate there should be some interesting gen- 
eralization possible along these lines. 

We might mention the following interesting fact pointed out by E. Burmeister. 
There is a relationship between uniqueness of steady states in multisector models 
of optimum growth under discounting and the definition of "capital deepening" 
and "nonparadoxical" behavior discussed in Burmeister and Dobell [4, (284- 
294)] and further investigated by Burmeister and Turnovsky [6]. To exposit 
this relation put r -- p + g. Let 2 = (c, p, k, 1) be a steady state solution of 
equations 2.2(6). Let 0(r) equal the set of all steady states with p + g r. 
is a point to set mapping. Look at u(c(r)). Suppose that it is possible to apply 
the implicit function theorem in a neighborhood of (c(r), r), for a particular 
steady state c(r) associated with r.8 Then 

8 This basically follows from an envelope theorem. Since ci = Fi(li,kli, . k,j) - (g + Di)kj 
therefore 

n n 

dci/dr= X F1i(dkji/dr) - (g + 1)( E dk1t/dr) . 
j=O t=1 

We set 1b = ko0. Put pi = au/ci. Then 
n n n s 

X pidci/dr = X X piFj'dkji/dr - E E (g + dj)pjdk1,/dr 
i-l i=l j=O i=l t=l 

(Continued on next page) 
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du(c(r)) u di (rg) u dki n au dki 
dr =i= ac- dr i=I aci dr i=1 Iaci dr 

Thus if the "value" of per capita capital increments, 

M 

Au dki 

i= aci dr 

is always negative for all r _ g, then it should be a theorem that steady states 
are unique for all r _ g. Thus the existence of paradoxical behavior of the well 
known type discussed in Burmeister and Dobell [4, (284-2P4)] is closely tied to 
inferiority on the demand side. We are exploring these relationships with 
Burmeister now. 

We have said nothing about the existence of a steady state. We have little 
new to add to this problem. However, in order to make this paper more self 
contained a few words will be said on the matter. 

One approach is to apply a version of the nonsubstitution theorem like that 
contained in Burmeister and Kuga [5] to obtain a vector of factor prices (W0, 
W1,... , J',,) that solves the price equals minimum cost equations (12). Bur- 
meister and Kuga need to assume that the p + g + a are "small enough" in 
order to get their existence result. The easiest way to see the need for an as- 
sumption like this is to consider the case when (12) is generated by a Leontief 
system (letting r7i = p + g + 6i) 

m 

(18) Wjlry? E Wjaji , i = 19 29 . . . , n. 
jO0 

Thus, letting W = (W1, ..., WO), = (r1, ... , r ) we have 

(19) W = W0ao[I -ra]-' . 

Hence, some restriction on the size of the r?j is needed to insure that [I - ria]-I 
exists and is nonnegative. 

After using the nonsubstitution theorem to produce (W0,...., Wj) and as- 
suming the usual irreducibility assumptions and necessity of labor assumptions 
to get (W0, . .. , W") > 0 (see [5]) we can put s = ao[I - ra]-' and solve for 
a steady state by finding a point c such that the income consumption curve gen- 
erated by: maximize u(c) s.t., 3c = M as M varies cuts the CPF: 

(Continued) 

E Wjdkjldr - E (g + dj)pj(dkj/dr). 
j=o j=l 

The latter follows from 
n 

E ko0= 1, 
j=1 

the definition of Wj, and ki, respectively. Now Wj = (p + di + g)pj in steady state. Thus 

1~~~~~~~ nn 

E (W - (g + Jj)pj)dkj/dr p E pidki/dr = p E au/lci dki/dr. 
j=l i=1 i=1 

The last equality follows from the definiton of pi. 
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ao[I- (g + 6)a]-' = 1 . 

There is another approach that is more in the tradition of multisectoral growth 
theory set by McKenzie [18] for example. We outline this approach below. In 
this approach if the marginal product of ki gets large as ki tends to zero then 
for our purposes one can get by with weaker assumptions on the (i than Bur- 
meister and Kuga [5] and still produce a positive steady state. 

Existence theorems have been established by Peleg and Ryder [22] and Suther- 
land [32]. Peleg and Ryder's theorem is the most useful for our purposes. We 
shall just sketch it. It deals with a much more general model. Let 

n 

T _ {(k, y) Iyj Fi(kOi . . . kni); E kjs < kj , j 0 1 ... I n; 1,2 ; 
s=1 

ko _ 1} where k-(k, * * * kn) 

T represents the set of all capital output combinations attainable with one unit 
of labor. Since the Fi are concave, continuous and there is only one unit of 
labor it follows that T is compact and convex. We say that T is (-productive 
if there is (kp yp) in T such that yp - 7kp > 0. If T were generated by a 
Leontief system a then (-productivity of T amounts to: There is kp, yp, ayp = kp 
such that yp - rayp > 0. But this implies that [I - (a]-1 exists and is non 
negative and vice versa. So (-productivity is a natural generalization of the 
usual conditions on Leontief models. If the marginal product of a factor become 
large as input of that factor tends to zero and this property holds for all factors 
then it is quite likely that (-productivity will hold. 

We say that (c, k, p, y) "is a solution if; (a) = y - (g + a)k, (b) u(c) - Pc ? 
u(c) - pc for all c _ 0 (c) k, y solves maximize {p(y - 7k) I (k, y) in T}. It is 
easy to see that a solution in this sense is a steady state and vice versa. (b) 
means that pi = au/aci when ci > 0. (c) amounts to choosing ki, kji so that 

n n 

(19) E [piFi(koi, . . . I k,l) - E Wsksi] 
i=l s=1 

is maximum subject to Z1=, koi < 1 where Ws-X7p5. But this defines a steady 
state for our growth problem when inequalities are allowed. 

Peleg and Ryder generate a solution by finding a fixed point of the point to 
set mapping h(p, (k, y)) = G(k, y)xf(p) which is the Cartesian product of the 
two sets G(k, y), f(p) which are defined by (set S = ?p0pi _ O, i = 1, 2,. .., n; 
ZI- pi = 1},c =y- (g+ a)k,d= b - (g+ a)a; (k,y), (a,b in T). 

G(k, y) p{ Ip is in S, pc < pd, for all d in A(c)} if c _ 0 

G(k, y) p{ Ip is in S, pc < qc, for all q in S} if c a 0 

f(p) {(k, y) in Tlp[y - 2k] ? p[b - ra] for all (a, b) in T} 

where 
A(c) = {dd ld 0, u (d) _ u(c)} . 

Peleg and Ryder show that h: S X T-? S X Tsatisfies the conditions of Kaku- 
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tani's fixed point theorem. Let p, k, y be a fixed point. Peleg and Ryder use (- 
productivity and the definition of G to show that pc > 0. Then the definition 
of G and pc > 0 imply that c solves: max u(c) s.t. pc < pc, c _ 0. They then 
use pc > to construct a real positive t such that u(c) - tpc _ u(c) - tpc for all 
c _ 0. Set p = tp. Since u is increasing, p > 0. Since the "income" pc > 0 
it is relatively harmless to assume that ? > 0 because C solves max u(c) s.t pc _ 
pc, c ?0. Thus if u is differentiable then c maximizes u(c) - pc implies that 
p = aulac(o). 

Now we would like to investigate conditions so that k > 0. Furthermore, 
when can the analysis of pp. 542-546 above be carried out starting from a Peleg- 
Ryder solution? Suppose some kj = 0. Then kji = 0 for all i = 1, 2, . .. , n. 
It is reasonable to assume that j is essential in at least one industry. I.e., there 
is i such that F' = 0 when kji = 0. We state this formally: 

ASSUMPTION 2.2(2). Every capital good is essential in at least one industry. 
I.e., for each j there is i such that F' = 0 if kji 0. 

Assumption 2.2(2) implies that k > 0. If not then kj = 0 so that some yi = 0 
which contradicts ? > 0. Let kji, ki be a solution to problem (19). By the 
Kuhn-Tucker theorem there is WV > 0 such that kji, ki solves 

(20) maximize Z [piFi(koi, ... , kn;i)- Wsksi] + Wo [I- f koi] 

over all nonnegative kji, ki, j = 0, 1, ... , n; i = 1, 2, ... n. This may be 
rewritten by rearrangment as 

n n- 

(21) maximize E p1F' -E Vksi + W0.i 
i=1 L= 

Let CQ(W0, W1, . ..., W,,) infimum {In=o ajiWjIFi(aoi, ... , ani) > 1}. Since 
Wo is a constant solving (21) amounts to maximizing the first term. Constant 
returns may be used in the usual way to write the term of (21) as 

n 

(22) max [Pi - Ci]Fi(ko0 ... , kni) 

over all kji _ 0. 
Because the maximum of (19) is finite we have pi < Ci provided that F' can 

be made arbitrarily large for arbitrary choice of (koi0, . . , kni)-which we as- 
sume. Furthermore pi 'IC Ci because yi > 0. Thus pi > Ci, i = 1, 2, ... , n. 
The infimum in the definition of Ci would be attained provided that Wo > 0, 
Wi>0,i= 1,2,...,n. Now W= p> 09,i = 1,2,...,n. Also Wo is the 
increase in the maximum of (19) when additional labor is added to the one unit 
available. Thus it is reasonable to assume that this is positive. 

ASSUMPTION 2.2(3). Wo > 0. 

Let aji be a set of input output coefficients that attain the infimum, Ci, for 
each i. Then pi = Ci implies 
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(23) Pi1aW0? Z"JPvAf, i= 1,2,,... , n. 
1=1 

In matrix form this becomes Llpon setting q P/ Wo 

q = do + qrla or qtI-(a] = do 

Now Assumption 2.2(1) implies ao > 0, and q > 0 by construction. Thus Gale 
[7, (296)]: [ - tI_ ]- exists and is nonnegative. Since g + 6i < p + g + 6i, 
i 1, 2, .. . , n, therefore, [I - (g + d),a]-1 exists and is nonnegative. Thus 
the CPF: ao[I - (g + 6)a]-lc=11 is well defined. Also Assumption 2.2(1) 
implies that b =_ oI- (g + 6)a]-1 > 0, s - -o IJI-] > 0. It is now easy to 
see that c is a point that solves max u(c) s.t. sc < M for some M where bc = 1. 

To summarize: Under Assumption 2.2(1)-(3) we may use Peleg and Ryder's 
existence method to prove existence of a steady state c, k, p, y such that pi = 
Ci = aji Wi Wi = (1p1, bc = 1, c solves max u(c) s.t. sc = M for some M 
and c > 0, k > 0, p > 0, y? 0. 

2.3. STEADY STATE EQUILIBRIA ARE GENERAL EQUILIBRIA WITH DISTORTIONS 

In this section we point out a relation between steady state analysis in multi- 
sector models and general equilibrium theory when there are distortions present. 
We will argue that this relation is useful in the sequel. 

To gain understanding look at the simple one sector problem 

Max e-Ptu(c)dt 

(1) s.t. c+k=f(k)- tIk 
k(O) ko. 

The steady state equations are 

(2 ) c + alk =y f(k) 

f'(k) - p-I 

Look at the following model of a competitive economy 

consumers: maximize u(c) 

(3) s. t. pc _ ? + (w-6 Ip)k + T 

firms: maximize pf(k) - wk - ppk. 

Let cd, kS solve the consumers' problem and kd solve the firms' problem. The 
consumer forms expectations on p, w, 7, T and then chooses cd, kS i.e., consump- 
tion demand and capital supply to maximize his welfare. T represents exogenous 
lump sum income to the consumer and 1T is lump sum income from profits. The 
consumer obtains instantaneous rent w for each unit of k but on the other hand 
maintenance cost 81P must be paid out. Obviously kS = so if wlp > J, kS = 0 
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if wlp < di and kS is any nonnegative number if w/p = 31. Thus capital supply 
is perfectly elastic. The firm demands kd to maximize profits. But an ad valorem 
tax p is levied on the factor k. The tax ppk is then given to the consumer. This 
tax causes a distortion and thus a resultant deadweight loss. We may now de- 
fine equilibrium. Normalize prices by setting p = 1. 

DEFINITION. An equilibrium distorted by p (a p-equilibrium for short) is a 
set of values ks, kd, CS, cd, T, iT, w such that ks, cd solves the consumers' problem 
and kd solves the firms' problem and 

3) kS = kd = k9y =f(k) = cd +1k, l f(k) - wk- pk 
p 

T = ppk. 

It is trivial to see that c, k is an equilibrium distorted by p if and only if c, k 
solves (2). To see this note that if c, k is an equilibrium distorted by p then 
f'(k) - p = w 1. The latter equation w/p = 61 follows from kS = kd d 

k < oo. Now in equilibrium f(k) = c + dlk from the budget constraint. Thus 
c, k solves (2). The other implication is equally trivial. Now let us apply this 
equivalence to the model with one primary factor in Section 2.2. 

DEFINITION. A p-equilibrium is a solution to the following general equili- 
brium problem. 

(a) consumer: maximize u(c1, c2, .. ., cC) 

s.t. EpPici = + wo1 + Zwiki (di +g)p1ki + T 

n n 
(b) firm: maximize p1F1(k0 i kli i ... , kni) - wjkj - p Ei pjkj 

1=:0 1=1 

s. t. Ekji <kj. j =O,1, 2 ... ,n 

n 

(c) T= p Epjkj. 
j=1 

Thus a p-equilibrium is a vector (ks, kd, yS, cd, T, j, p, w) such that cd, kS solves 

(a), kd solves (b), 
n 

yS = (F1 ... , Fn) ,ks = kd cd + (d + g)ks = ys, T = p 1 p -k.d 

Here the consumer has one unit of labor that receives wage wo. The other 
symbols are self explanatory. 

It is trivial to point out and prove the following theorem. 

THEOREM (Equivalence Theorem). A p-equilibrium is a steady state for the 
optimal growth problem of Section 2.2 when future utilities are discounted by p. 
Le., a p equilibrium solves equations (6) Section 2.1 in steady state. Furthermore 
a steady state solution to (6) is a p-equilibrium. 

Let us point out why we think that this equivalence is important. First, this 
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equivalence theorem will generalize to cases of joint production and many or no 
primary factors. Thus it may be applied to general growth models such as 
McKenzie [18] for example. Second, there is already a small but growing litera- 
ture on existence of general equilibrium with distortions. See Shoven and 
Whalley [27], [28], Shoven [26], and Sontheimer [29], [30]. Thus the equiva- 
lence theorem allows us to apply this literature to existence of steady states in 
optimal growth under discounting of future utilities. Third, we predict that a 
literature on uniqueness of distorted-equilibria will develop along the lines of 
the standard analysis of uniqueness of competitive equilibria exposited in Arrow 
and Hahn [1, (chapter 9)]. Once this has been done (if it hasn't already been 
done) we may read off theorems on uniqueness of steady states in very general 
models of optimum growth under discounting. The equivalence theorem shows 
that the non uniqueness problem under discounting is not much more mysterious 
than uniqueness of competitive equilibrium, and we think that it is fair to say 
that we have a good understanding of uniqueness of competitive equilibrium. 
Fourth we may be able to use some of the standard stability of competitive 
equilibrium results in Arrow and Hahn [1, (Chapter 1 1)] to study local stability 
of steady states but we are uncertain about the potential of use of the equiva- 
lence theorem in this direction. 

3.1. CONDITIONS FOR UNIQUENESS OF STEADY STATE INVOLVING THE 

NON SINGULARITY OF A CERTAIN JACOBIAN MATRIX 

We may develop an approach to uniqueness of steady states in analogy with 
the approach to uniqueness of general equilibrium involving the nonsingularity 
of a certain Jacobian matrix. See Arrow and Hahn [1, (236)] for example. 
The analogy between our method and theirs is a little forced but is worth men- 
tioning nonetheless. 

Look at problem (2) of Section 2.2. Any optimum program must satisfy 

Y =maximize F1(11, k1l, . .. , kn1) 

s. t. yi :5. F(li, k 1i, . .. ., kni) , i = 29 3, ... ., n 
n 

( 1 ) .Zkji : kj, j = 1, 2, ... , n 

n 

Ei ls :<- 1, yj =_ cj + kj + (dj + g) kj,9 j = 1, 2, ... ., n. 
s=1 

Thus we may write Yi = T[Y2, ... , Yn; kl, ... , kn] in the usual way of describ- 
ing problem (1) by a transformation function T(see [4, (285)]). In this way 
problem (2) of Section 2.2 may be rewritten as 

( 2 ) Maximize e-Ptu[ T(c2 + (g + 62)k2 + k2 . ... , 
Cn + (g + 6n)kn 
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Let e-PtF(k, k) be the integrand of (2). Then the Euler equations for the cal- 
culus of variations problem: maximize J'0 e-7PF(k, k)dt are 

d ( aF) aF + p aF, i = 1, 2, ..., n. 
d-t a-k i aki aki 

But 

aF au 

aF_ au aT aF aua L '9 + ] i =29 3, . .., n; 
ak, ac, ak, 'aki ac, aYi 

F a aT aT( + di) , i 29 3, ... n.9 
aki ac, ak, aYi 

The steady state equations boil down to 

(3 ) = P + g + -[P + g + i] +- = 0 
ak, ayi aki 

where given kI, . .. , kn, the vector c2, ... , cn is determined by 

(4) Maximize u[ T(C2 + (g + 62)k2,. .. , Cn + (g + an)k,; k, *... , kn) 
(C2 ** C n) 

- (g + dl)kl , C2 , . . .,9 Cn] . 

Let 2c = (c2,... , c). Let H(2c, k) = T(C2 + (g + 62)k2,... , Cn + (g + dn)kn; 
kl, . *. , kn) -(g + 1)kj. Let h(k) be the optimum 2c for (4). Consider the 
problem maximize u[H(2c, k), 2C] and note that it generates equation (3) for the 
no 2C, k discounting case p = 0. It can be shown that u[H(2c, k), 2C] is concave 
in its arguments. This follows directly from the definition of T, the concavity 
of Fi, i = 1, 2, . .. , n, and the concavity of u. Thus if u[H(2c, k), 2C] is strictly 
concave there will be only one maximum. Furthermore, setting all partial deri- 
vatives equal to zero yields it. The steady state equations (3), (4) can be written 
in the compact form 

(5 G)(k p) 09 . . . GA9 p) = O 

where 

Gj(k9 
P) = -[P + g + 61] +-, 

Gj(k9 
p) = aT [P + 9 + di] +aT T aaki 

i = 2, 3,... , n. 

The reader will note that the case p = 0 is the borderline Ramsey case studied 
by McKenzie [18], Gale [8] and Brock [3] in the context of discrete time models 

9 This follows from 0 = aF/aki + p aF0aki = au/aci[aT/aki + aT/ayl(g + di)] + p au/ac1 aT/ayi 
i = 2,3, . . . n. Note that the term au/ac, cancels. We are left with a Tlak, + aTlayi[p + g + 
0i] = O, i = 2, 3, . . . n. The expression aTlak, = p + g + di is obtained in a similar manner. 
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In [18], [8], [3], it was shown that optimum paths converge to a unique steady 
state for the nondiscounted case. Rockafellar [24] and Samuelson [25] have 
studied continuous time models for the case p = 0. In this section we shall treat 
the uniqueness question for p > 0. 

The reason that this is much more difficult than the uniqueness question for 
p = 0 is because equations (5) are generated by the concave programming 
problem maximize k u[H(2c, k), 2C] over 2C, k for the case p = 0 whereas equa- 
tions (5) for p > 0 are not generated by setting the partial derivatives of some 
function E(k) equal to zero. For if such E exists and E is continuously differ- 
entiable then a2E/1kiakj = a2E/Ikjaki. Thus aGi/akj = aGjl/ki must hold. The 
latter holds for p = 0 but not for p > 0. This is so because aE/aki = Gi for the 
case, p = 0. It may well be that one could find an "integrating" factor p(k) 
such that l/akl(@G1) = l/akj(,@G1) so that an E(k) could be found so that 
aE/akj = [Gi. But such a method cannot yield an E such that there is only 
one k such that aE/ak = 0 for all concave utility functions u because of the 
multiple steady state example of Section 2.2. 

Before we move on let us point out that the formulation (2) is very general 
and can handle many cases of joint production. Furthermore the class of pro- 
blems yielding steady state equations of the form (5) is so general that we can- 
not think of any problem that does not yield steady state equations of the form 
(5). 

Look at the Jacobian matrix aG/ak of (5). We shall assume that this is non- 
singular on {k/G(k, p) = 0. p ?0}.11 For the case p = 0 because G is the gra- 
dient of some E(k), aG/ak will be singular for a "measure zero" set of problems. 

10 Lionel McKenzie asked us if there might not be something in the economics of the problem 
that would make aG/ak "naturally" singular. This question is best dealt with by considering 
explicitly the maximization problem that generates the steady state when p = 0. 

This problem is 

(a) maximize u(FP(kol. k,l) - (g + dl)k1l . . . ,Fn(kOn. knn) - (g + dn)kn) 

s. t. ki < kj, j 0,1,2,. n. 
i=1 

Here k? = 1,kko = iI. 
If u is strictly concave and Fi are strictly concave (except on rays-recall that they are homo- 

geneous of degree 1) then one would expect that the maximum value V(kl, . .,k,) of the ob- 
jective in problem (a) would be strictly concave in kl,...,kn. Thus one would think that there 
is a good chance that the Hessian of Vwould be nonsingular. Since a V/aki aG/Oki one would 
think that there is hope for the truth of the conjecture that "most" strictly concave problems 
of the form (a) generate nonsingular Hessians for p = 0. 

It is easy to generate examples of problems (a) with a nonsingular Hessian at the optimum. 
The simplest is 

(b) maximize log [ko 13k1/3k1/ - dkl] + log [k13kI3k13 - 02] 

s. t. kol + ko2 = 1,kil + k12 = k1,k2l + k22 = k2. 

Since everything is symmetric 

k=k02 - k =k2-ki, k21 = k22 =-k2, k = k2k. 
2' 2 2 

(Continued on next page) 
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Thus for p = 0, nonsingularity of aG/ak seems relatively harmless. For p > 0 
it is a purely mathematical condition. We can only hope that most economically 
interpretable hypotheses will imply that aG/ak is nonsingular on the set of equi- 
libria. This turned out to be the case for uniqueness of general equilibrium (see 
Arrow and Hahn [1, (Chapter 9)], Pearce and Wise [21], Mas-Collel [15]). 
Because p steady states are general equilibria distorted by p in the sense of 
Section 2.3 it is quite likely that economically interpretable hypotheses will imply 
aG/ak is nonsingular on the set of steady states. Enough for the defense-let us 
get on with the theorem. 

THEOREM 1. Let the G1 of equatiomis (5) be defined on Q {(k, p)1k ? 0, 
p > 0}, be continuously differentiable on {(k, p) I (k, p) in Q, k > 0}. Assume that 
for all p _ 0 there is at least one k _ 0 such that G(k, p) = 0 and for all 
p _ 0 all solutions of G(k, p) = 0 are strictly positive. Furthermore assume for all 
p > 0 that aG/ak is nonsingular on {k I G(k, p) = 0, (k, p) in Q} and for p = 0 
assume that there is just one (k, 0) in Q such that G(k, 0) = 0. Then there is 
just one steady state for each p ? 0. 

Before we prove this let us outline the strategy. Look at the set Ml' 
{kIG(k, p) = 0}. When p = 0, the number of elements in Mp is one. Since G 
is continuously differentiable I aGlak I is a continuous function of k, p. Thus the 
determinant is nonzero in a neighborhood of (ko, -0) where Mo {ko}. There- 
fore there is a neighborhood of 0 such that there is only one solution of G(k, p) = 0 
for all p in this neighborhood. Let p _ sup bp I G(k, p) = 0 has only one solu- 
tion on [0, p)}. We show that p = oo. 

PROOF OF THE THEOREM. In order to rid ourselves of pathological cases we 
shall assume that U p1B Mp is bounded if the set B is closed and bounded, i.e., 
compact. This insures that steady state capital labor ratios cannot go off to in- 
finity at finite rates of discount."1 This can be obtained from the diminishing 
returns properties of the production functions. Now let us get on with the proof. 

(Continued) 

The objective reduces to 

(c) 2 log ((2)k213 - ek) 

Differentiating and setting the derivative equal to zero we get. 

(d) 
I 

k-(113) = d. 
3 

Thus k = (33)-3. It is easy to check that this is, indeed, the solution to (b). We leave to the 
reader the straightforward, but tedious, job of calculating the Hessian and evaluating it at 
k = (33)3. It is nonsingular. Thus our conjecture is not empty. 

It is beyond the scope of this paper to attempt a formal proof of our conjecture. However 
it is plausible, at least for the case p = 0. The strict concave utility function, and the labor 
constraint, Zl> ko1 = I tend to remove the "natural tendency for singularity" due to constant 
returns Fi. 

11 See [18, (357)] for a standard type of assumption that rids us of this problem. 
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We claim that there is a neighborhood [0, e0) of p = 0 such that p C [0, 60) 

implies G(k, p) = 0 has only one solution. By the implicit function theorem 
there is a neighborhood N of (ko, 0) in n + 1 dimensional space such that there 
is a function k(p) having the property that G(k(p), p) = 0 on N. Suppose there 
is no neighborhood [0, 60) of e = 0 such that p C [0, 60) implies there is only one 
kp such that G(kp, p) = 0. Then there is a sequence en -- 0 such that there are 
two solutions kn, kn of G(k, en) = 0. Since U Me is bounded the sequences 
{kJ}, {kn} lie in a bounded set. Hence a subsequence of one of these may be picked 
that converges to a limit point k that lies outside of the interior of N. The reader 
will recall that the equation G(k, p) = 0 has only one solution for (k, p) C N. 
Thus we have constructed a pair of solutions to G(k, 0) = 0. This is a contradic- 
tion to uniqueness of the solution for p 0 O. Thus a neighborhood [0, 60) exists 
such that Mp has only one element for p C [0, e0). Let p- = sup {p I Mp has only 
one element for p C [0, p)}. If p = oo we are finished. Suppose - < oo. Let 
6 > 0 then for p < -, Mp has only one element and for p C (p p- + 6) there is 
p10 such that Mpo has more than one element. Since aG(k, 1)/ak is non singular 
for k C Mp there is a neighborhood N of (k, -) such that on N there is a function 
k(p) such that G(k(p), p) = 0. By definition of p- we can choose e so small that 
(-6, p- + 6) is in the projection of N on the p axis. There is p10 C (p-, p + 6) 
such that Mpo has more than one element, and one of these element kAc is outside 
N by definition of N. Choose a subsequence E,, -+ 0, k l- k. Since ken is outside 
of N for each n the limit point k is outside the interior of N. Now G(k, p) - 0. 
Using the nonsingularity of aG/ak at (k, p) and the implicit function theorem 
we may choose a neighborhood M such that there is a function k(p) such that 
G(k(p), p) = 0 on M, and Mn N = 5. Now look at the projection of M, N on 
the p axis. We may select an open set 0, containing p such that for p C 0 both 
G(k(p), p) = 0, G(k(p), p) = 0 and k(p) = + k(p). Thus we have created two 
distinct solutions for p<p. This contradicts the definition of - as the "largest" 
p such that on [0, p) there is only one solution of G(k, p) = O.12 This ends the 
proof. 

The nonsingularity of aG/ak across the solution set of G(k, p) = 0 is an ob- 
scure assumption. It would be worthwhile to relate it to the assumptions of 
Section 2.2. Nonetheless it is worthwhile to know its implications at least. It 
may well turn out to be a weak assumption that may turn out to be implied by 
the assumption of Section 2.2 for example. 

12 At the risk of being pedantic it may be worthwhile to remark why this theorem "works." 
Basically the solution set and domain of definition must be such that the implicit function 
theorem may be applied. I.e., for each (k, p) such that G(k, p) 0 there must be an open neigh- 
borhood N of (k, p) such that Nis contained in the domain of definition of the mapping. The 
strict positivity of solutions k for each p > 0 ensures this. By use of the open neighborhood 
property of the domain and solution set we may use the implicit function theorem to assert that 
p = oo. There may be a question about the open neighborhood property at p 0. But this may 
be taken care of by extending G(k, p) to p < O, p small. Of course in this case the steady states 
may not be optimal for p < 0 but that doesn't harm us. 

Note too that the boundedness of U pEB Mp is essential. 
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4. SOME REMARKS ON THE MEANING OF ALL THIS 

We see the study of uniqueness and stability in models of the type analyzed 
in this paper as being interesting not only for optimal growth but also for laying 
the foundations for a serious general equilibrium theory over time with capital 
accumulation entering in a nontrivial way. One may look at the model of Sec- 
tion 2.1, for example, as the solution to an equilibrium problem where there is 
one consumer who spends his income from profits and rentals obtained from 
capital lent out to firms on consumption and capital accumulation. Let the firms 
be static profit maximizers. Let the consumer be a price taker who is in charge 
of capital accumulation. Equilibrium is a set of prices on consumption and 
rental rates on equipment such that markets clear at all moments of time. I.e., 
this is the perfect foresight case. See Brock [2] and Lucas and Prescott [14] for 
expositions on perfect foresight as an equilibrium concept. In the one consumer 
model the equilibrium sequence of prices, rents, consumptions and capitals is 
unique. But we may ask if it converges to a steady state as time passes. It 
certainly cannot converge to the same steady state independent of initial con- 
ditions if the steady state is not unique. Thus our problem arises as part of 
general equilibrium theory. 

If the steady state is not unique then "comparative statics" across parameter 
changes may be meaningless. One certainly is interested in the impact on the 
long run equilibrium consumnption, capital constellation due to a parameter 
change in a world of more than one or two goods. One could say that the uni- 
queness of steady state problems is just as basic for long run problems as uni- 
queness of competitive equilibrium is in the usual static models. It is reassuring 
that in the model studied in this paper, at least, that "normality" type assump- 
tions will give a unique steady state. 

More elaborate equilibrium models may be constructed. Our analysis, we 
hope, should be helpful in studying uniqueness of the long run equilibrium 
capital stock configuration in more sophisticated models. See Walter Heller's 
Ph.D. thesis [9] for work viewing growth theory as a branch of equilibrium 
theory and its possibilities of use in constructing a general equilibrium theory 
where capital accumulation over time is brought in an essential way. 

University of Chicago, U.S.A. 
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