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Abstract

In this paper, I show how to use the generalized Schur form to solve a system of linear
expectational di!erence equations (a multivariate linear rational expectations model).
The method is simple to understand and to use, and is applicable to a large class of
rational expectations models. The only hard part is taken care of by just two standard
algorithms, both of which are available as freeware on the Internet as part of LAPACK.
Like other matrix decomposition based methods, it is also very fast to execute. ( 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, I show how to use the complex generalized Schur form to solve
a system of linear expectational di!erence equations (a multivariate linear
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1The problem with the canonical form is that, unlike the Schur form, it is not continuous in the
entries of the matrices to be factorized. It is therefore numerically unstable. For that reason, King
and Watson (1995a) do not in fact recommend using the canonical form for calculations. An
alternative approach, based on the singular value decomposition, is presented in King and Watson
(1995b).

2The required LAPACK routines are xGEGS (which calculates the generalized Schur form) and
xTGSEN (which reorders it). The x should be replaced by a Z if the double precision complex
version is desired, a C for the single precision complex version, a D for the double precision real
version or an S for the single precision real version. LAPACK can be freely downloaded from
http://www.netlib.org/lapack. For documentation of these routines, see Ka> gstroK m and Poromaa
(1996a,b).

3Section 4 in Sims allows di!erent variables to have di!erent upper limits on their long-run
growth rates. Section 5 in Sims generalizes to continuous time.

rational expectations model). The approach is simple to understand and to use,
and is robust in the sense that it works well for almost any multivariate linear
rational expectations model that has a solution at all. It also has the advantage
of exploiting readily available state-of-the-art numerical algorithms to take care
of the main calculations.

The method advocated in this paper is a small but nevertheless signi"cant
improvement upon the available alternatives. The approach is closely related
especially to those of Sims (1996) and King and Watson (1995a,b). Like Sims'
approach (but unlike King and Watson's), the approach presented here is based
on the generalized Schur form or QZ decomposition of a matrix pencil. An
alternative, presented in King and Watson (1995a) is to use the canonical form
of a matrix pencil (see Gantmacher, 1959). Conceptually, the Schur form has the
advantage of treating in"nite and "nite unstable eigenvalues in a uni"ed way.
Moreover, it is universally agreed among numerical analysis specialists that the
Schur form is preferable from a computational point of view.1 This fact has led
to the development of readily available state-of-the-art algorithms for the
calculation and manipulation of the generalized Schur form. The methods
recommended in this paper are therefore very easy to implement and achieve
a high degree of computational e$ciency.2

By generalizing the assumption that certain variables are predetermined, the
approach here is slightly more general than that of King and Watson (1995a,b),
and can easily be extended to achieve the same level of generality as Sections 1}3
of Sims (1996).3 The di!erences in terms of generality are the following. Like
Blanchard and Kahn (1980), King and Watson (1995a,b) assume that certain
variables have an exogenously given initial value and zero one-step-ahead
prediction error. (These variables are called `predetermineda.) Sims' (1996) setup
implies the assumption that a given linear combination of variables has an
exogenously given one-step-ahead prediction error, whereas it emerges endo-
genously what linear combination of initial values has to be given exogenously
to pin down the solution. Meanwhile, in the present paper, I assume that certain
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4A caveat here is that the reordering algorithm for the real generalized Schur form is about half as
fast as that for the complex one. Nevertheless, this leaves us with roughly a doubling of the speed.

variables have an exogenously given initial value and an exogenously given (but
not necessarily zero) one-step-ahead prediction error.

Moreover, this paper attempts to improve upon the approach of Sims (1996)
in several ways. Firstly, it aspires to be conceptually more straightforward.
Generally speaking, the treatment follows that of Blanchard and Kahn (1980)
much more closely than that of Sims. Those familiar with their work should
therefore "nd it easier to follow the discussion of the present paper than that
of Sims.

In detail, the main di!erence lies in the method employed to pin down the
one-step-ahead prediction error of the endogenous variables. In Sims (1996), the
approach is as follows. First, the equation is written without expectational terms
but with an endogenous prediction error process. The system is then trans-
formed into a triangular one using the generalized Schur form, and the unstable
block of equations is isolated. This block is then solved forward, and the
endogenous prediction error process is solved for by imposing the informational
restriction that the solution must be adapted to the given "ltration. At this stage,
no extraneous assumptions (e.g. about what variables are predetermined) are
invoked; all information about the solution is given in the coe$cient matrices of
the di!erence equation itself.

By contrast, the approach in this paper follows very closely the one used in
Blanchard and Kahn (1980). No endogenous prediction error is introduced, and
the unstable block of the triangular system is solved forward without having to
solve for the prediction error separately. Instead, the endogenous prediction
error process is solved for when solving the stable block of equations and use is
then made of extraneous assumptions which generalize Blanchard and Kahn's
assumption of certain variables being predetermined.

Secondly, whereas Sims' solution is presented only in terms of an in"nite sum
of future values of a rather general driving process, I focus mainly on the case
where the driving process is (representable as) a VAR(1). In this case, the in"nite
sums can be eliminated by calculating the relevant geometric sum of matrices,
and I discuss e$cient ways of doing this.

Finally, I point out the usefulness of the real generalized Schur form, which is
about 4}5 times faster to calculate than the complex generalized Schur form.4

The methods I present are tailored towards circumstances in which there is
a unique stable solution. However, like Sims (1996) I also characterize the set of
stable solutions when this set has more than one element.

Other related papers include Binder and Pesaran (1994, 1996, 1997), Gilli and
Pauletto (1997), and Uhlig (1995). Binder and Pesaran (1997) and Gilli and
Pauletto (1997) transform the expectational di!erence equation into a large
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5Setting C"I involves no loss of generality, of course. But in many applications it is convenient
to leave the C matrix in.

6The fact that the equation is of "rst-order involves no loss of generality. Any kth order system
can be reduced to a "rst-order system. Because of the possible presence of expectations with respect
to information available at di!erent times, this reduction is not entirely trivial, but the problem has
been solved by Binder and Pesaran (1994). Their canonical form is of second order; see Appendix
A of the present paper for a discussion of how to reduce this to a "rst-order system.

sparse system of linear equations and then proceed to solve this sparse
linear system. This approach is conceptually straightforward, involves
only elementary matrix operations, and is probably the best one in a "nite-
horizon setting. However, some simple computational experiments suggest that
the Binder and Pesaran (1997) algorithm is about six times slower than the
method advocated in the present paper for a linearized version of the in"nite-
horizon stochastic growth model with standard parameter values (for details, see
Section 6.1).

Meanwhile, Binder and Pesaran (1994, 1996) and Uhlig (1995) use an undeter-
mined coe$cients approach and reduce the solution of the expectational di!er-
ence equation to the solution of a matrix quadratic equation. Apparently,
however, matrix quadratic equations seem ultimately to boil down to matrix
factorization problems. Uhlig (1995) demonstrates that a matrix quadratic
equation can be solved by solving a (generalized) eigenvalue/eigenvector prob-
lem. Presumably, the generalized Schur form could also be used; this would
probably be slightly preferable from a computational point of view. In any case,
the very fact that matrix quadratic equations boil down to matrix factorization
problems indicates that they constitute a detour and that we may as well use
methods based directly on matrix factorizations.

The paper is organized as follows. In Section 2, I de"ne the problem. Section 3
presents the generalized Schur form. Section 4 states the assumptions I make.
These include su$cient conditions for there to be a unique stable solution.
Section 5 uses the generalized Schur form to solve the problem. Section 6 dis-
cusses some applications. Section 7 concludes.

2. The problem

Throughout the paper, let (X,F,P) be an a priori given probability space, and
let F"MF

t
; t"0, 1,2N be a "ltration of F. Let z"Mz

t
; t"0, 1,2N be an

exogenously given n
z
-dimensional F-adapted stochastic process. Let A, B be

n]n matrices and let C be an n]n
z

matrix.5 Our goal is to solve, for an
n-dimensional process x, equations of the following form6

AE[x
t`1

DF
t
]"Bx

t
#Cz

t
, t"0, 1,2 . (2.1)
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7This is true in spite of the fact that the set of polynomials is a ring rather than a "eld.

These systems of course arise in many contexts. One rich set of examples comes
from the linearization of the individual optimization conditions and market
clearing conditions in a (possibly distorted) dynamic equilibrium model. Notice
that, unlike Blanchard and Kahn (1980), but like Sims (1996) and King and
Watson (1995a,b) I allow the matrix A to be singular. Roughly speaking, this
generalization allows static (intratemporal) equilibrium conditions to be in-
cluded among the dynamic relationships. Technically, these singularities show
up as zeroth-order equations in the triangularization of our system, re#ecting
that some equations in the original system state relationships among the
variables in x

t
with no reference to E[x

t`1
DF

t
].

The idea in this paper is to use the complex generalized Schur form in order to
reduce (2.1) into blocks of equations, separating the system into an unstable and
a stable block of equations. The stable solution is then found by solving the
unstable block forward and the stable block backward.

Throughout, our focus will be on the case when there is a unique stable
solution to our system of di!erence equations, although we shall also character-
ize the set of stable solutions when this set has more than one element. Also, we
shall mainly focus on the case where the exogenous driving process is a VAR(1),
but will state the solution in a more general case as well.

2.1. An existence condition

As pointed out in King and Watson (1995a), if there is no z3C such that
DAz!BDO0, then (2.1) has no solution for generic exogenous processes z. To
understand this, note that if the matrix polynomial Az!B is singular in this
sense, then its rows are linearly dependent, and hence there exists a row vector
polynomial a(z) such that a(z)T(Az!B)"0 identically in z.7 To apply this result
to our case, de"ne the forward shift operator as follows:

Fx
t
:"E[x

t`1
DF

t
]. (2.2)

Our expectational di!erence equation can then be written as

(AF!B)x
t
"Cz

t
. (2.3)

Now, suppose Az!B is singular. Then there exists a row vector forward shift
polynomial a(F) such that our equation implies that

a(F)TCz
t
"0, t"0, 1,2, (2.4)

which is false for generic matrices C and processes z.
We will see below that if Az!B is not singular (regular), then there does exist

a solution to (2.1), although not necessarily a stable one.
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8Eigenvalues with Dj
i
D"1 are problematic and will be ignored in this paper.

3. The generalized Schur form

As indicated above, the idea in this paper is to try to reduce (`uncouplea)
the system (2.1) into a (block) triangular system of equations, and then to solve
the system recursively in the sense that we "rst solve the second block, and then
the "rst using the solution for the second. Theorem (3.3) below implies that
such a reduction is always possible. The notation h

ij
will denote the element in

the ith row and jth column of any matrix H.

De,nition 3.1. Let P :CPCnCn be a matrix-valued function of a complex
variable (a matrix pencil). Then the set of its generalized eigenvalues j(P) is
de"ned via j(P)"Mz3C: DP(z)D"0N.

When P(z)"Az!B, we sometimes write j(A,B) for the set of generalized
eigenvalues. In this case, j3C is a generalized eigenvalue of P just in case there is
a nonzero vector x3Cn such that Bx"jAx.

De,nition 3.2. Let P(z) be a matrix pencil. Then P is said to be regular if there is
a z3C such that DP(z)DO0, i.e. if j(P)OC.

¹heorem 3.3 (the complex generalized Schur form). Let A and B be n]n matrices
of complex numbers such that P(z)"Az!B is a regular matrix pencil. Then there
exist unitary n]n matrices of complex numbers Q and Z such that

1. QAZ"S is upper triangular,
2. QBZ"¹ is upper triangular,
3. For each i, s

ii
and t

ii
are not both zero,

4. j(A,B)"G
t
ii

s
ii

: s
ii
O0H,

5. The pairs (s
ii
, t

ii
), i"1,2, n can be arranged in any order.

Proof. See Golub and van Loan (1996). h

Note that the set j(A,B) may have fewer than n elements, since if A is singular,
we may have s

ii
"0 for some i. Acknowledging the abuse of language, the

missing generalized eigenvalues will be called `in"nitea. Meanwhile, the "nite
generalized eigenvalues j

i
such that Dj

i
D'1 (and sometimes also those with

Dj
i
D"1) will be called "nite and unstable. The in"nite and "nite unstable

generalized eigenvalues will be called unstable. The remaining generalized
eigenvalues will be called stable.8 In order to avoid dealing with in"nite
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numbers, we will sometimes represent an eigenvalue by the pair (s
ii
, t

ii
) rather

than by their ratio.
The possibility that s

ii
and t

ii
are both zero for some i is ruled out by assuming

Az!B to be regular. We will see below that the case s
ii
"t

ii
"0 corresponds to

a row in a transformed version of (2.1) having the form w
t
"0 where w

t
is

exogenously given. See Section 5.2.
Notice that I have presented the complex generalized Schur form. If A and

B are real, one can alternatively calculate the real Schur form, for which S and
¹ are block upper triangular. This is always good enough when there is a unique
solution to the system. Especially for very large systems, the real Schur form is
faster to compute. However, the sorting of the eigenvalues in the real generalized
Schur form presents some (surmountable) di$culties. In the "rst place, the
complex generalized eigenvalues do not show up directly as pairs of diagonal
elements, but as generalized eigenvalues of pairs of 2]2 blocks in S and ¹.
Secondly, the sorting algorithm for the real generalized Schur form seems to be
only about half as fast as that for the complex generalized Schur form.

4. Assumptions

In this section we make some assumptions, and we will see that these
constitute su$cient conditions for there to be a unique stable solution. These
assumptions follow closely the assumptions of Blanchard and Kahn (1980) and
King and Watson (1995a,b). Conceptually, the relationship between the condi-
tions stated here and those stated in the survey by Binder and Pesaran (1994) is
also a very close one. Throughout this section, the matrices A, B, the process x,
etc. all refer to Eq. (2.1).

We begin by stating a few de"nitions. First, we need to de"ne stability.

De,nition 4.1. Let x be a stochastic process with values in Rn. We will call
x stable if there is an M such that

DDx
t
DD
.!9

4M (4.1)

for all t"0, 1,2, where DD ) DD
.!9

is de"ned via

DDxDD
.!9

"max
i

JE[Dx
i
D]. (4.2)

The intuitive meaning of stability is, of course, that the unconditionally
expected values of the moduli of the elements of x

t
do not blow up as t increases

beyond all bounds.
Next, we de"ne what is meant by a martingale di!erence and a white noise

process.
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De,nition 4.1. Let (X,F,P,F ) be a "ltered probability space. A vector process
n is called a (P,F )-martingale di!erence process if

1. n is adapted to F ,
2. E[m

t`1
DF

t
]"0 for each t"0, 1,2 .

De,nition 4.2. A (P,F )-martingale di!erence process e is called a (P,F )-white
noise process if there is a matrix R such that

E[e
t`1

eT
t`1

DF
t
]"R for each t"0, 1,2 . (4.3)

Note that a white noise process is stable, and that a martingale di!erence
process is stable if, for instance, it is uniformly bounded. Finally, we de"ne what
we mean by &predetermined' or &backward-looking'. The de"nition is a generaliz-
ation of that given in Blanchard and Kahn (1980).

De,nition 4.3. Let (X,F,P, F ) be a "ltered probability space. A process k is
called backward-looking if

1. The prediction error n de"ned via m
t`1

:"k
t`1

!E[k
t`1

DF
t
] is an

exogenous martingale di!erence process, and
2. k

0
3F

0
is exogenously given.

Notice that backward-lookingness is not strictly speaking a property of the
process x, but a property of the model to which x is a solution. Specifying what
variables in a system are backward-looking amounts to specifying what is
exogenously given in the model. Note also that, if m

t`1
,0, the de"nition here

reduces to that given in Blanchard and Kahn (1980). In this sense the de"nition
here is a generalization of theirs.

We now turn to the assumptions. The "rst one states that the exogenous
driving sequence is stable; this improves the prospects for the existence of
a stable solution for the endogenous process.

Assumption 4.1. The exogenous n
z
-dimensional process z is stable and adapted

to the given "ltration F .

Most of the time we will be specializing even further, and assume that z is
represented as a VAR(1) with mean zero, autocorrelation matrix U with eigen-
values strictly inside the unit circle, an exogenously given (P,F)-white noise
prediction error process e and exogenously given initial value z

0
.

Now, suppose some of the variables in x
t
, say the n

k
"rst ones, have an

exogenously given expectations error and initial value. To write this down
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formally, we partition x
t
according to

x
t
"C

k
t

nkC1d
t
D. (4.4)

We now assume that k
t
is &backward-looking' in the sense de"ned above, i.e. that

k
t
has an exogenous initial value and prediction error.

Assumption 4.2. k
0

is an exogenously given F
0
-measurable random variable

and

k
t`1

!E[k
t`1

DF
t
]"m

t`1
(4.5)

where n is an exogenous (P,F)-martingale di!erence process.

We now assume that the requirement of Theorem (3.3) is satis"ed so that the
problem is well formulated.

Assumption 4.3.

There exists a z3C such that DAz!BDO0. (4.6)

For a discussion of the meaning of this condition, see Section 2.1.
Moreover, to avoid the case where any solution is unstable we assume that

there are no unit roots, i.e. we make the following assumption.

Assumption 4.4.

There is no z3C with DzD"1 and DAz!BD"0. (4.7)

Now, let Q, Z, S, ¹ be the matrices whose existence is guaranteed by The-
orem (3.3). Let S and ¹ be arranged in such a way that the n

s
stable generalized

eigenvalues come "rst. By a stable generalized eigenvalue, we mean a pair (s
ii
, t

ii
)

with Ds
ii
D'Dt

ii
D. The remaining generalized eigenvalues are unstable. Note that

our no-unit-root assumption rules out the possibility Ds
ii
D"Dt

ii
D. Let n

u
"n!n

s
.

Partition the rows of Z conformably with the classi"cation of eigenvalues and
the columns conformably with the partition of x

t
in (4.4) so that, for example, the

upper left-hand block of Z is n
s
]n

k
. We write

Z"C
Z

11
Z

12
Z

21
Z

22
D. (4.8)

Assumption 4.5.

Z
11

is square and invertible. (4.9)
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9 If there should be more stable eigenvalues than there are backward-looking variables, one can
always convert forward-looking variables into backward-looking ones by "xing their initial value
and prediction error exogenously. More generally, an excess of stable eigenvalues gives us degrees of
freedom when pinning down a stable solution. For an ingenious use of these degrees of freedom, see
Farmer and Guo (1994).

10A subtlety here is if the n
u
]n

u
matrix R (see Section 6.2) is not invertible. Then the representa-

tion described in Anderson et al. (1997) is not feasible. But this is in fact not important, since the
representation presented in Section 6 has the same generalized eigenvalues as theirs plus an
additional n

u
in"nite eigenvalues corresponding to the n

u
non-predetermined control variables u

t
.

Note that Assumption (4.5) implies that n
s
"n

k
. This means that there are as

many &predetermined' variables (variables with exogenously given initial value
and prediction error) as there are stable eigenvalues.9 For a more detailed
discussion of this condition, see Section 5.3.1.

The question may arise how likely it is that n
s
"n

k
in a typical application. In

fact, it is very likely. If our system of equations is derived from a linear-quadratic
dynamic optimization problem of the form presented in Section 6.2, we are
guaranteed, unless some eigenvalues have unit modulus, that n

s
"n

k
. The

problem can then be transformed into an equivalent one for which the optimal-
ity conditions are such that the relevant matrix pencil is symplectic so that the
generalized eigenvalues appear in reciprocal pairs.10 See Anderson et al. (1997),
pp. 187}189.

¹heorem 4.1. Under the above assumptions, there is, for each given k
0

and
n
k
-dimensional (P,F )-white noise process e, an almost surely (P) unique stable

process x satisfying (2.1).

Proof. See the construction of the solution below. h

5. Using the generalized Schur form

5.1. Triangularizing the system

Our "rst step is to "nd an upper triangular system of expectational di!erence
equations in the auxiliary variables y

t
de"ned via

y
t
:"ZHx

t
. (5.1)

In order to expose the unstable and stable blocks, we partition y
t
conformably

with that of ZH so that

y
t
"C

s
t

u
t
D, (5.2)
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where s
t
is n

s
]1 and u

t
is n

u
]1. Now, premultiply our system by Q. (Since Q is

invertible, this leads to an equivalent system.) We get

SE[y
t`1

DF
t
]"¹y

t
#QCz

t
, (5.3)

where S and ¹ are upper triangular. The partitioned version is

C
S
11

S
12

0 S
22
DECC

s
t`1

u
t`1
DKFtD"C

¹
11

¹
12

0 ¹
22
DC

s
t

u
t
D#C

Q
1

Q
2
DCz

t
. (5.4)

Note that S
11

and ¹
22

are invertible by construction. Note also that for the
above representation, we do not really need that S and ¹ are upper triangular;
what we need is upper block triangularity. This is why the real generalized Schur
form is su$cient; all the 2]2 blocks on the diagonal of S and ¹ correspond to
complex conjugate pairs of eigenvalues. Since these eigenvalues have the same
absolute value, they never appear on opposite sides of the partition.

The treatment below operates under the assumption that z is non-trivial. Of
course, when z is a VAR(1), endogenous and exogenous variables can be
consolidated and a new system be constructed with z

t
,0. This simpli"es the

analytical expressions considerably, but typically slows down the numerical
calculations by requiring the Schur factorization to be performed on bigger
matrices.

5.2. Solving the triangular system

5.2.1. Solving for u
t

Since the generalized eigenvalues of the matrix pencil S
22

z!¹
22

are all
unstable, the unique stable solution for u

t
is found by solving &forward,' and we

"nd that

u
t
"!¹~1

22

=
+
k/0

[¹~1
22

S
22

]kQ
2
CE[z

t`k
DF

t
]. (5.5)

Notice that this result is independent of whether there are any singularities in
S
22

, corresponding to singularities in the A matrix, noting the mathematical
convention that F0"I for any square matrix F, including the zero matrix.

When z is a stationary VAR process with autocorrelation matrix U, Eq. (5.5)
implies that

u
t
"Mz

t
, (5.6)

where

vecM"[(UT?S
22

)!I
nz
?¹

22
]~1vec[Q

2
C]. (5.7)

For a derivation of this result, see Appendix B. When n
u
is very large, however,

this is not the best formula to use for calculations. It is more e$cient then to
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proceed recursively, following King and Watson (1995b). The method works as
follows. Consider the second block of (5.4). We have the equation

S
22

E[u
t`1

DF
t
]"¹

22
u
t
#Q

2
Cz

t
, (5.8)

where the important thing for our purposes is that S
22

and ¹
22

are upper
triangular. To solve for u

t
in terms of z

t
, we proceed line by line, where each line

i has the structure

nu
+

j/i`1

s
ij
E[u

j,t`1
DF

t
]#s

ii
E[u

i,t`1
DF

t
]"t

ii
u
i,t
#

nu
+

j/i`1

t
ij
u
j,t
#gT

i
z
t
, (5.9)

where s
ij

is the row i, column j element of S
22

, t
ij

is the row i, column j element of
¹

22
, and gT

i
is the ith row of Q

2
C. Now, suppose we have solved for elements

n
u
, n

u
!1,2, i#1 of u

t
and want to solve for the ith element. That is, we have

solved for the last n
u
!i lines mT

j
of M and seek the ith row mT

i
. Consolidating

the known terms, we get

s
ii
E[u

i,t`1
DF

t
]"t

ii
u
i,t
#rT

i
z
t
, (5.10)

where

rT
i
"

nu
+

j/i`1

(t
ij
mT

j
!s

ij
mT

j
U)#gT

i
. (5.11)

Notice that if it were to happen that s
ii
"t

ii
"0, we would be in deep trouble,

since it implies that rT
i
z
t
"0. However, this possibility is ruled out by Assump-

tion 4.3. Indeed, by construction Ds
ii
/t
ii
D(1 for the values of i pertaining to the

unstable (lower) block of equations that we are considering in this section, so the
unique stable solution is

u
i,t
"!

1

t
ii

=
+
k/0
A
s
ii

t
ii
B

k
rT
i
E[z

t`k
DF

t
]"!

1

t
ii

=
+
k/0
A
s
ii

t
ii
B

k
rT
i
Ukz

t
. (5.12)

It follows that

u
i,t
"rT

i
[s

ii
U!t

ii
I
nz
]~1z

t
(5.13)

so that mT
i
"rT

i
[s

ii
U!t

ii
I
nz
]~1. Notice that, using this procedure, the calcu-

lation of M requires inverting an n
z
]n

z
matrix n

u
times whereas the formula

(5.7) involves inverting an n
z
n
u
]n

z
n
u

matrix once. Hence when n
u

is large, it
takes much less time to do the former than the latter.

5.2.2. Solving for s
t

In the preceding section we solved for u
t
in terms of expectations of z

t
. This

means that we can treat u
t
and its expectations as given from now on. By the "rst
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block of (5.4),

S
11

E[s
t`1

DF
t
]#S

12
E[u

t`1
DF

t
]"¹

11
s
t
#¹

12
u
t
#Q

1
Cz

t
. (5.14)

Reshu%ing a bit, this becomes

E[s
t`1

DF
t
]"S~1

11
¹

11
s
t
#S~1

11
¹

12
u
t
!S~1

11
S
12

E[u
t`1

DF
t
]#S~1

11
Q

1
Cz

t
.

(5.15)

Since S~1
11

¹
11

is a stable matrix by construction, we cannot use the stability
requirement to "x the undetermined initial value and expectations error. Instead
it is time to use our assumption of an exogenously given expectations error.
Recalling the de"nition of y

t
, we have

k
t`1

"[Z
11

Z
12

]C
s
t`1

u
t`1
D. (5.16)

Hence

Z
11

(s
t`1

!E[[s
t`1

]DF
t
])#Z

12
(u

t`1
!E[u

t`1
DF

t
])"m

t`1
. (5.17)

We now invoke Assumption 4.5 which says that Z
11

is invertible, and proceed
to "nd the unique solution. (See Section (5.3.1) for a discussion of what this
Assumption means.) Since Z

11
is invertible, Eqs. (5.6), (5.15), and (5.17) taken

together recursively de"ne the unique solution for s
t
given s

0
and the exogenous

process e. In particular, we have

s
t`1

"S~1
11

¹
11

s
t
#S~1

11
[¹

12
M!S

12
MU#Q

1
C]z

t

!Z~1
11

Z
12

Me
t`1

#Z~1
11

m
t`1

. (5.18)

All that remains, then, is to "nd s
0

in terms of k
0

and z
0

(which are given). It is
not hard to con"rm that

s
0
"Z~1

11
[k

0
!Z

12
Mz

0
]. (5.19)

Having solved for the full vector y
t
, it is easy to invert the transformation to

"nd x
t
.

5.3. Eliminating the auxiliary process y
t

If we want to avoid having to deal with the auxiliary process y
t
, we can use the

relationship x
t
"Zy

t
to "nd a recursive representation for x

t
with no reference

to y
t
. The result is the following.

¹heorem 5.1. Under the assumptions made in Section 4, the unique solution to (2.1)
can be written as

d
t
"Z

21
Z~1

11
k
t
#Nz

t
, (5.20)
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and

k
t`1

"Z
11

S~1
11

¹
11

Z~1
11

k
t
#¸z

t
#m

t`1
, (5.21)

where

N"(Z
22

!Z
21

Z~1
11

Z
12

)M (5.22)

and

¸"!Z
11

S~1
11

¹
11

Z~1
11

Z
12

M#Z
11

S~1
11

[¹
12

M!S
12

MU#Q
1
C]

#Z
12

MU. (5.23)

Proof. Partition the Hermitian transpose of Z, ZH, via

ZH"C
ZH

11
ZH

12
ZH

21
ZH

22
D.

By the de"nition of the auxiliary variables, we have

ZH
21

k
t
#ZH

22
d
t
"u

t
. (5.24)

But since u
t
"Mz

t
, this is equivalent to (5.20). To see this, we substitute (5.20)

into (5.24). We get

[ZH
21
#ZH

22
Z

21
Z~1

11
]k

t
#ZH

22
(Z

22
!Z

21
Z~1

11
Z

12
)Mz

t
"Mz

t
,

and of course we want to show that this is an identity, i.e. that

ZH
21
#ZH

22
Z

21
Z~1

11
"0, (5.25)

and that

ZH
22

(Z
22
!Z

21
Z~1

11
Z

12
)"I

nu
. (5.26)

But since Z
11

is invertible, (5.25) is equivalent to

ZH
21

Z
11
#ZH

22
Z

21
"0, (5.27)

and this follows from the fact that ZHZ"I. For the same reason, ZH
22

Z
22

"

I
nu
!ZH

21
Z

12
, so the left-hand side of (5.26) becomes

I
nu
!ZH

21
Z

12
#ZH

21
Z

11
Z~1

11
Z

12
"I

nu
. (5.28)

The expression for k
t`1

, (5.21), is proved in a similar fashion. h

5.3.1. Non-existence and indeterminacy
We begin this section with a discussion of the meaning of Assumption 4.5. We

have already noted that it implies (but is of course not implied by) n
k
"n

s
which

means that there are just as many &backward-looking' variables as there are
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stable eigenvalues. From an intuitive point of view, this makes sense. In the
deterministic case, there is an n-dimensional set of solutions. A unique solution
should be pinned down by imposing n linear restrictions. The requirement of
stability imposes as many linear restrictions as there are unstable eigenvalues
* n

u
. The given initial values of the &backward-looking' variables impose

another n
k
linear restrictions. Thus, it would seem that if n

u
#n

k
"n (which is

equivalent to n
k
"n

s
), there should be a unique solution. The question therefore

arises if there are any interesting cases where n
k
"n

s
but nevertheless Z

11
is

singular so that there is no stable solution. A deterministic example (taken from
King and Watson (1995b) illustrates the point using the ordinary (non-general-
ized) Schur form.

C
x
1,t`1

x
2,t`1

D"C
2 0

0 1
2
DC

x
1,t

x
2,t
D, (5.29)

where x
1,0

is given exogenously. Here the sorted Schur form (with the eigen-
values in order of descending modulus) of the coe$cient matrix is

C
2 0

0 1
2
D"C

0 !1

1 0DC
1
2

0

0 2DC
0 1

!1 0D (5.30)

so that although n
s
"n

k
, what corresponds to Z

11
is zero. In this case, there is no

stable solution. To see why, consider the transformed system

C
s
t`1

u
t`1
D"C

1
2

0

0 2DC
s
t

u
t
D. (5.31)

To solve this uniquely, we need a value for s
0
. But since Z

11
is singular, we

cannot translate the given value x
1,0

into the required value s
0
. An intuitive

description of what is going on is that the unstable eigenvalue cannot be
transferred from the predetermined variable to the non-predetermined variable.

A subtlety in this context is that the generalized Schur form is not unique even
if a particular ordering of the eigenvalues is imposed. It is therefore an open
question whether there might be two generalized Schur forms of the same matrix
pencil, one with Z

11
invertible and the other with Z

11
singular. A reasonable

conjecture is that this cannot happen, but apparently there is no known proof
of this.

In the case we just considered, there was no stable solution because Z
11

had
short rank; its column space was not rich enough to house a value of s

0
that

would satisfy

Z
12

Mz
0
#Z

11
s
0
"k

0
. (5.32)

Alternatively, we might have rank (Z
11

)5n
k
, in which case there will be

a non-empty set of stable solutions, and the set of permissible initial values
s
0

and prediction error l
t`1

"s
t`1

!E[s
t`1

DF
t
] are fully characterized by
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11To replicate this result, set a"0.33, b"1.031@4, p"2, d"0.025, h"0.36, u"0.95. The
results are not particularly sensitive to parameter values, except that if p"1, the decision rule is
computed much faster; it then takes only about 0.008 s. Using the same parameter values as above,
the Bowden method in Binder and Pesaran (1997) takes about 0.16 s. If p is increased further, the
di!erence between the two methods increases as the algorithm of Binder and Pesaran (1997)
becomes slower due to the increase in the required forecasting horizon and the method advocated
here actually becomes faster.

(5.32) and (5.17) together with the requirement that m is a stable (P,F) -
martingale di!erence process.

6. Examples

6.1. A simple RBC model

An example of this approach in action is the following. Suppose a representa-
tive agent solves

max
c|F

EC
=
+
t/0

bt[ca
t
(1!h

t
)1~a]1~pD

s.t. G
k
t`1

"z
t
kh
t
h1~h
t

#(1!d)k
t
,

k
0

given,

k stable,

(6.1)

where ln z
t
is an exogenous AR(1) process with mean 0, autocorrelation u and

expectations error e. Note that the no-Ponzi-game condition has been replaced
by the stronger (but in practice equivalent) condition that k be stable. F is the
"ltration generated by the exogenous random variables k

0
, z

0
, and the process e.

Note that when the equilibrium conditions of this model are (log-)linearized, we
get a singular A matrix since h

t
is, loosely speaking, an &intratemporal' choice

variable.
Having found the steady state (how long this takes depends strongly on the

initial guess) and linearized the equilibrium conditions (which takes no more
than two hundredths of a second using numerical derivatives), "nding the linear
decision rule for this model typically takes about 0.025 s using Matlab on a PC
with a Pentium 166 MHz processor.11

6.2. Linear-quadratic problems

Since it is such a popular class of examples, it is interesting to see how
the method presented in this paper applies to the case of a (single-agent)
linear-quadratic dynamic optimization problem.
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12 It is not entirely clear whether the approach of Amman and Neudecker (1997) requires R to be
non-singular. What the authors say is that `Normally, . . . [R is] assumed to be . . . positive de"nitea.
However, the authors omit to state whether they themselves need this assumption. In any case, it
should be conceded that the level of generality achieved here is more a matter of conceptual neatness
than of economic relevance. The point is that the invertibility of R is irrelevant to the existence of
a solution; therefore a good solution algorithm should not require it to be invertible.

Apparently van Dooren (1981) was the "rst to note the usefulness of the
generalized Schur form in solving linear-quadratic control problems, and the
approach here is similar to his. Meanwhile, Anderson et al. (1997), pp. 194}200
also discuss various algorithms for solving linear-quadratic optimization prob-
lems. By dropping the requirement that the R matrix (see below) be invertible,
the approach presented here is slightly more general than any of these
methods.12

With the usual "ltered probability space (X,F,P,F) in the background, our
problem is

max
u|F

G
1

2
E

=
+
t/0

bt[xT
t

uT
t
]C

Q =

=T R DC
x
t

u
t
DH

s.t. G
x
t`1

"Ax
t
#Bu

t
#Cm

t`1
,

x
0

given,

x stable,

(6.2)

where n"Mm
t
; t"0, 1,2N is an exogenous (P,F)-white noise process. Suppose

the matrix [ Q =
=T R ] is symmetric and negative semide"nite so that the "rst-order

conditions (together with the transversality condition) are su$cient for an
optimum. Note that if x and u are F-adapted (which of course we require them
to be), then x has the exogenously given expectations error Cn. Introducing j

t
as

the current shadow value of the constraint x
t
"Ax

t~1
#Bu

t~1
#Cm

t
and

taking the "rst-order conditions for a maximum, we get

C
0 !bBT 0

0 bAT 0

0 0 I
nx
D CE CC

u
t`1

j
t`1

x
t`1
D K FtD D"C

R 0 =T

!= I
nx

!Q

B 0 A D C
u
t

j
t

x
t
D , (6.3)

and this is of course exactly the format we want, recalling that we also need to
know x

0
and that x

t`1
!E[x

t`1
DF

t
]"Cm

t`1
. With the notation above, the

&forward-looking' variables are d
t
"[u

tj
t

] and the &backward-looking' variables
are k

t
"x

t
.

P. Klein / Journal of Economic Dynamics & Control 24 (2000) 1405}1423 1421



7. Conclusion

The approach presented in this paper aspires to be somewhat easier to grasp
and apply than Sims (1996). By exploiting standard algorithms, it has the
advantage over King and Watson (1995a,b) in that it achieves state-of-the-art
computational e$ciency. Moreover, it avoids the detour of solving the matrix
quadratic equations derived in Uhlig (1995) and Binder and Pesaran (1994,
1996). Also, it seems to be somewhat faster for in"nite-horizon problems than
the approach of Binder and Pesaran (1997). All in all, it might be useful to many
applied macroeconomists (and others) who want to learn a general method of
solving a multivariate linear rational expectations model quickly.

Appendix A. The Binder}Pesaran canonical form

Binder and Pesaran (1994) show how to reduce a linear system of expecta-
tional di!erence equations with arbitrary leads and lags (and expectations taken
with respect to information available at di!erent times) to the following canoni-
cal form.

x
t
"Ax

t~1
#BE[x

t`1
DF

t
]#z

t
, (A.1)

where x
~1

(but not x
0
) is given and x

t
is assumed to be adapted to SF

t
T. Apart

from this adaptedness requirement, no prediction errors are given exogenously.
This Binder}Pesaran canonical form can easily be reduced to the canonical form
(2.1) by de"ning

x8
t
"C

x
t

x
t~1
D. (A.2)

Let n
x

be the dimension of x
t
. Then the last n

x
rows of x8

t
have an exogenously

given initial value (equal to x
~1

) and exogenously given prediction error (equal
to zero) because of the adaptedness requirement.

Having de"ned x8
t
, the reduced system becomes

C
B 0

0 IDE[x8
t`1

DF
t
]"C

I !A

I 0Dx8 t#C
!z

t
0D (A.3)

with the last n
x

elements of x8
t
being &backward-looking'.

Appendix B. Geometric sums of matrices

In this Section I derive a formula for the geometric sums of matrices.
De"ne

S"
=
+
k/0

UkAWk, (B.1)
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where we assume that lim
k?=

UkAWk"0. It follows from Eq. (B.1) that

S!USW"A. (B.2)

To solve for S, we invoke the matrix identity vec(ABC)"[CT?A] vec(B).
We get

vec(S)!(WT?U)vec(S)"vec A. (B.3)

If [I!WT?U] is invertible, we may conclude that

vec(S)"[I!WT?U]~1vec A. (B.4)
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