



### A. Core Ideas

- 1. Recursive Forward Solution
- 2. Law of Iterated Expectations
- 3. Restrictions on Forcing Processes
- 4. Limiting Conditions
- 5. Fundamental v. nonfundamental solutions
- 6. Stable v. unstable roots
- 7. Predetermined v. nonpredetermined variables

3

8. Sargent's procedure: unwind stable roots forward

**Basic Example** • Stock price as discounted sum of expected future dividends • Let  $p_t$  be the (ex dividend) stock price and  $d_t$  be dividends per share. • Basic approach to stock valuation  $p_t = \sum_{j=1}^{\infty} \beta^j E_t d_{t+j}$  with  $\beta = \frac{1}{1+r}$ • Intuitive reference model, although sometimes criticized for details and in applications









# 3. Restrictions on Forcing Processes

 One issue in moving to infinite horizon: first part of price (the sum) above is well defined so long as dividends don't grow too fast, i.e.,

$$E_t d_{t+j} \le h_t \gamma^j$$
 with  $\beta \gamma < 1$ 

• Under this condition,

$$\lim_{J \to \infty} \sum_{j=1}^{J} \beta^{j} E_{t} d_{t+j} \le \frac{\beta \gamma}{1 - \beta \gamma} h_{t} < \infty$$

9

# 4. Limiting conditions

- For the stock price to match the basic prediction, the second term must be zero in limit.
- · For a finite stock price, there must be some limit
- · The conventional assumption is that

$$\lim_{J\to\infty}\beta^J E_t p_{t+J} = 0$$

• This is sometimes an implication (value of stock must be bounded at any point in time would do it, for example).











- Stock price difference equation has unstable root
- Write as

 $E_t p_{t+1} = (1+r)[p_t + E_t d_{t+1}]$ 

• Root is (1+r)>1 if r>0.

Stable root example

· Capital accumulation difference equation

 $k_{t+1} = (1-\delta)k_t + i_t$ 

Backward recursive solution

$$k_{t+1} = (1-\delta)^{t} k_0 + \sum_{i=0}^{t} (1-\delta)^{j} i_{t-j}$$

• Could well be part of RE model

16



# <section-header><list-item><list-item><list-item><list-item><list-item><list-item>







21

### Transformed system of interest

- Can be based on eigenvectors: WP=Pµ
- T=inv(P) and V=inv(P)
- · Then we have

$$E_{t}Y_{t+1} = WY_{t} + \Psi_{0}X_{t} + \Psi_{1}E_{t}X_{t+1}$$

$$P^{-1}E_{t}Y_{t+1} = P^{-1}WPP^{-1}Y_{t} + P^{-1}\Psi_{0}X_{t} + P^{-1}\Psi_{1}E_{t}X_{t+1}$$

$$E_{t}Y_{t+1}^{*} = JY_{t}^{*} + \Psi_{0}^{*}X_{t} + \Psi_{1}^{*}E_{t}X_{t+1}$$

with J block diagonal 
$$J = \begin{bmatrix} J_u & 0 \\ 0 & J_s \end{bmatrix}$$









# Forward solution

• Comes from rewriting as

$$u_t = (J_u)^{-1} E_t u_{t+1} - (J_u)^{-1} \Psi_{0u}^* X_t - (J_u)^{-1} \Psi_{1u}^* E_t X_{t+1}$$

Takes the form

$$u_t = -\sum_{h=0}^{\infty} [J_u^{-1}]^{h+1} E_t \{ \Psi_{0u}^* X_{t+h} + \Psi_{1u}^* E_t X_{t+h+1} \}$$

 Suppresses unstable dynamics (any other initial condition for u implies explosive bubbles arising from these)































# New elements

· Infinite eigenvalue canonical variables

$$NE_t i_{t+1} = i_t + C_{0i}^* X_t + C_{1i}^* E_t X_{t+1}$$
  
$$\Rightarrow i_t = -\sum_{h=0}^l N^h E_t \{ C_{0i}^* X_{t+h} + C_{1i}^* E_t X_{t+h+1} \}$$

 There is a finite forward sum because raising N to the power ℓ+1 times produces a matrix of zeros (ℓ is ≤ the number of rows of N)









• Use the reverse transform, the solution for the stable variables, and the solution for the U variables (unstable and infinite cvs)

$$K_{t+1} = R_{KU}E_{t}U_{t+1} + R_{Ks}E_{t}S_{t+1}$$
  

$$= R_{KU}E_{t}U_{t+1} + R_{Ks}[J_{s}S_{t} + C_{0s}^{*}X_{t} + C_{1s}^{*}E_{t}X_{t+1}]$$
  

$$= R_{KU}E_{t}U_{t+1} + R_{Ks}[J_{s}(V_{s\Lambda}\Lambda_{t} + V_{sK}K_{t})]$$
  

$$+ R_{Ks}[C_{0s}^{*}X_{t} + C_{1s}^{*}E_{t}X_{t+1}]$$
  

$$= R_{KU}E_{t}U_{t+1}$$
  

$$+ R_{Ks}[J_{s}(V_{s\Lambda}V_{U\Lambda}^{-1}[U_{t} - V_{UK}K_{t}] + V_{sK}K_{t})]$$
  

$$+ R_{Ks}[C_{0s}^{*}X_{t} + C_{1s}^{*}E_{t}X_{t+1}]$$







### Casting this model in First-Order Form

 Defining w<sub>t</sub> =E<sub>t-1</sub>y<sub>t</sub>, we can write this model in the standard form as

$$\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} E_t \begin{bmatrix} y_{t+1} \\ w_{t+1} \end{bmatrix} = \begin{bmatrix} -1 & \theta \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_t \\ w_t \end{bmatrix} + \begin{bmatrix} \phi \\ 0 \end{bmatrix} x_t$$

where the first equation is the model above and the second is  $w_{t+1} = E_t y_{t+1}$ .

• Note that |A|=0 and |B|=0

























- Approaches based on numerically desirable versions (called QZ) of the TV transformations described
  - Klein (JEDC)
  - Sims (Computational Economics, 2003)
- Approaches based on finding a subsytem or otherwise reducing the dimension of problem
  - AIM (Anderson and Moore at FRBG)
  - King/Watson (Computational Economics, 2003)
  - Sargent and coauthors

| Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>A. Core Ideas <ul> <li>Recursive forward solution for nonpredetermined variables</li> <li>Recursive forward solution for predetermined variables</li> <li>Unwinding unstable roots forward</li> </ul> </li> <li>B. Nonsingular Systems Theory <ul> <li>Unique stable solution requires: number of predetermined = number of unstable</li> </ul> </li> <li>C. Singular Systems Theory <ul> <li>Solvability:  Az-B  nonzero plus counting rule</li> </ul> </li> <li>D. A Singular Systems Example <ul> <li>Solvability condition interpreted</li> </ul> </li> <li>E. Computation <ul> <li>With state space driving process, solution to model occurs in state space form</li> <li>States are predetermined variables (the past) and driving variables (the present and future x's)</li> </ul> </li> </ul> |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64 |