CHAPTER XI

LINEAR STOCHASTIC DIFFERENCE
EQUATIONS

1. INTRODUCTION

Nonrandom difference equations of low order can generate “cycles,” but
not of the kind ordinarily thought to characterize economic variables. For
example, we have seen that second-order difference equations can generate
cycles of constant periodicity that are damped, explosive, or, in the very special
case where the amplitude = 1, of constant amplitude. But the “cycles” in
economic variables seem neither damped nor explosive, and they do not have a
constant period from one cycle to the next; e.g., some recessions last one year,
some last for one and a half years. The “business cycle” is the tendency of certain
economic variables to possess persistent cycles of approximately constant
amplitude and somewhat irregular periodicity from one “cycle” to the other.
The distinguishing characteristic of “the” business cycle is the apparent
tendency of a number of important aggregate economic variables to move
together, with timing relationships among the variables that tend to remain
the same from one expansion—recession cycle to another. The National Bureau
of Economic Research has inspected masses of data that indicate the presence
of a business cycle of average length of about three years from peak to peak in
many important economic aggregates for the U.S. The Bureau has also docu-
mented the tendency for the timing relationships among variables to remain
somewhat the same from cycle to cycle.

Figure 1 displays data on six time series for the postwar U.S.: real GNP,
the unemployment rate, the Baa bond rate, the percentage rate of change in the
real money supply, the inflation rate in the GNP deflator, real output (GNP)
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per man-hour, and an estimate of the straight time real wage.! The graphs
labeled “log of estimated spectrum” are included for later reference. The “busi-
ness cycle” shows up in the irregular, cumulative movements in real GNP,
unemployment, and output per man-hour. There are recessions in 1954, 1958,
1960, 1970, and 19741975, these being characterized by reductions in real GNP
and substantial increases in the unemployment rate. Notice that output per
man-hour is markedly “procyclical,” i.e., its variation over the business cycle
roughly matches that of GNP. This pattern would not be predicted by a straight-
forward application of the law of diminishing returns since the employment
capital ratio itself is procyclical. In Chapter XVI we shall study one possible
explanation of the paradoxical cyclical behavior of output per man-hour.
Notice that the “cycles” in these variables are irregular in length and do not
“look like” those generated by low-order nonstochastic difference equations.
As we have seen, low-order nonstochastic linear difference equations do not
generate data that look as irregular as do the graphs of economic data just
illustrated. However, high-order nonstochastic difference equations can generate
data that look like economic data. For example, if y, is governed by a non-
stochastic nth-order homogeneous difference equation, its solution can be written

n

Y = Z ajljt 1)

i=1

! The data are from the NBER’s Troll data bank. The data are for the civilian nonagricultural
unemployment rate; real GNP; Moody’s Baa rate, not seasonally adjusted; inflation rate in the
GNP price deflator; the real money supply measured as currency plus demand deposits (M1)
divided by the GNP price deflator; output per man-hour measured by real GNP divided by (em-
ployment on nonagricultural payrolls, private and government, multiplied by average weekly
hours in manufacturing); the real wage measured as average straight time hourly earnings in
manufacturing, not seasonally adjusted, divided by the GNP deflator. The spectral densities are
for the period 19481-19761V.
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where the A; are the roots of the characteristic equation and the a; are chosen
to satisfy » initial conditions. By making n large enough, any sample of data can
be modeled arbitrarily well with the nonstochastic equation (1). However, this
device of using high-order nonrandom difference equations is generally regarded
as an unpromising one for two reasons. First, to get a model that is capable of
generating time series that resemble economic data well, the order of the
difference equation must be made quite large, so that the model is not parsimon-
ious in terms of its parametrization. Second, strictly speaking, the model (1)
implies that once the appropriate equation is fit, perfect predictions of the future
of y can be made. Most economists believe that predictions will always be subject
to error, so that it seems advisable to adopt a model that recognizes this con-
dition.

While low-order nonrandom linear difference equations do not provide an
adequate model for explaining the cycles in economic data, low-order stochastic
or random difference equations do. In effect, if the initial conditions of low-order
deterministic linear difference equations are subjected to repeated random
shocks of a certain kind, there emerges the possibility of recurring, somewhat
irregular cycles of the kind seemingly infesting economic data. This is an import-
ant idea that is really the foundation of macroeconometric models, an idea that
was introduced into economics by Slutsky (1937) and Frisch (1933). In addition
to underlying the Slutsky-Frisch framework for business cycle analysis, linear
stochastic difference equations provide the foundations for two important recent
developments in macroeconomics: Sims’s method of studying the exogeneity or
“causal” structure among sets of time series, and the construction of stochastic
rational expectations models of the kind pioneered by Muth and Lucas. This
chapter describes the elements of linear stochastic difference equations and some
of their applications in economics.?

2. PRELIMINARY CONCEPTS

A stochastic process is a collection of random variables, a collection indexed
by a variable ¢. In our work we shall regard ¢ as time and will require ¢ to be an
integer, so that we shall be working in discrete time. Thus, the stochastic
process y, is a collection of random variables. .. y_;, Yo, Y1, V2, - - . » there being
one random variable for each point in time ¢ belonging to the set T, which in our
case is the set of integers. Alternatively, on each “drawing,” we draw an entire
sequence {y} _ .- We are interested in the probability distribution of such
sequences. A single drawing of a sequence {y,} is called a realization of the
stochastic process y;.

We shall characterize the probability law governing the collection of random
variables that make up the stochastic process by the list of means of y, and by

2 The reader is assumed to be familiar with complex variables. The chapter on complex variables
in Allen (1960) is a good reference.
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the covariances between y’s at different points in time. (For a stochastic process
that obeys the normal probability law, these parameters completely characterize
the probability distribution. Even where y is not normal, the first and second
moments contain much useful information, enough information to characterize
the linear structure of the process.) In particular, we have that the mean of the
process y, is

Ey, =, teT,

where E is the mathematical expectation operator. The covariances are given
by

E[(Yr - lul)(ys - ,us)] = Oy5-

A stochastic process is said to be wide-sense stationary (or covariance
stationary or second-order stationary) if 4, is independent of ¢ and if o, ; depends
only ont — s. We shall henceforth deal with such stationary processes. The first
and second moments of a stationary process are summarized by the mean u and
the covariogram c(t) defined by

E[(y, = )(ys — ] = 00,5 = EL — Dpi-c — W] = 04,0 = (7)
where © =t — 5. The covariogram is easily verified to be symmetric, ie.,
c(z) = ¢(—1), and to obey ¢(0) > |c(z)| for all 7, this inequality being an im-
plication of the Schwarz inequality.

To find further restrictions on the covariogram let x, be a covariance
stationary stochastic process with mean zero and covariogram ¢(t). Consider
forming a weighted sum of x’s at different dates

n
y=2 ajXe;
j=1

where the a; are fixed real numbers and t,, .. ., , are integers. We must require
that the random variable y have nonnegative variance, so that

n

n n
2 __ —
Ey? = E( a;x,, Y, akx,k) =Y Y ajaEx, X,
i=1 k=1 i

n
F e
n n
=Y Y aaclt—t) =0
S1e=t

This last inequality is required to hold for any n, any list of a;, and any selection
of (t1, 2, . . ., t,). A sequence c(t) that satisfies this condition is said to be “non-
negative definite.” The condition that ¢(z) be nonnegative definite is a necessary
and sufficient condition for a sequence ¢(z) to be the covariogram of a well-
defined stochastic process.®

3 The condition turns out to be equivalent with the condition that the spectral density of x
be nonnegative, a condition which also in effect stems from the requirement that the variance of
every linear combination of x’s at different points in time be nonnegative.
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A basic building block is the serially uncorrelated random process &,, which
satisfies:

E@E)=0 for all 1,
E@?) =02 forallt, : )
E(g,e,.) =0 all t and all s # 0.

This process is (wide-sense) stationary, each variate being uncorrelated with it-
self lagged s = +£1, +2, ... times, and is said to be serially uncorrelated. The
process is also often referred to as “white noise.” As we shall see, such a white-
noise process can be viewed as the basic building block for a large class of
stationary stochastic processes.

To illustrate how the white-noise process &, can be used to build up more
complicated processes, consider the random process y,

Ve = lzobjgz—j = B(L)e, (©)]
j=

where B(L) = Y %.q b;L’, and where we assume ) 7~ b < 00, a requirement
needed to assure that the variance of y is finite. We assume that the ¢ process is
“white” and thus satisfies properties (2). Equation (3) says that the y process is a
one-sided moving sum of a white-noise process &.

We seek the covariogram of the y process, i.e., we seek the values of ¢ (k) =
E(y,y,_,) for all k. It will be convenient to obtain the covariance generating
Sfunction g,(z), which is defined by

0D = S o k) @

=0

The coefficient on z* in (4) is the kth lagged covariance c,(k).
First notice that taking mathematical expectations on both sides of (3) gives

E(y)=Y b;E(s,_)=0  foralls
j=0 .

It therefore follows that

Cy(k) = E{(y: — Ev)(Vi—x — Eyi=1)} = Ep:yi—1 for all k.
Since the {¢,} process is serially uncorrelated, it follows that
Eyiyi—r = E( > bjet—j’h x bhgt—k—.h) = UeZ. Y bibi
J=— @ =—o J=—w©

since only for j = k + h(or h = j — k) is Es,_ ;&,_,_, nonzero and equal to o2
We have permitted the j and / indexes to run over negative values, though in our
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case b; = 0 for j < 0. (The formula is correct even if b; # O for j < 0.) The co-
variance generating function is then

© ©

gD =023 Y bbj=02Y 3 bibjz~

k=-w j=-w j==—w k=
Letting h = j — k so that k = j — h, we have
[-+] «© «© 0
g2 =02 Y Y b t=062 Y bz Y byzh
j=—wh=—w j=- h=—o
The last equation gives the convenient expression
9,(2) = 0.*B(z")B(z2) %
where B(z™!) = Y2 _., b;z7, Blz)= Y2 _,b;z. Equation (5) gives the co-
variance generating function g,(z) in terms of the b; and the variance o,% of the
white noise &.
To take an example that illustrates the usefulness of (5), consider the first-
order process

1 L
Ve=Ap1 + & or  y = (T“_TL)ﬁz =i;0113x—i, Al <1, (6)

where, as always, ¢ is a white-noise process with variance g,2. We have

1 I 2,2
Bly=7— B@=q-g=1+4+427+.
1
ft ) Y, -1 2,-2
B(z )_1—,12‘1 1+Az7  + %272 +
(Thus, B(z) is found by replacing L in B(L) by z.) So applying (5) we have

1 1
9,(z) = 0. (‘1"_'7:2“:?) (1——12) )

From our experience with difference equations we know that the expression (7)
can be written as a sum

kio?  kyo2z71t
11—z 1=z} ®
where k, and k, are certain constants. To find out what the constants must be,
notice that (8) implies

9(2) = 6k (1 4+ Az + 222 + - ) + 0.2ky(z71 + Az72 £ 22273 40,
so that ¢,(0) = k;0,7 and ¢,(1) = 0,24k, = 06,%k, = ¢,(—1). By direct compu-
tation using (6) we note that

g,(z) =

2 _ W iz 2 o’
Ey, =i;01 Ee? = =z

[-o3 o
Eyy,_y =EY Mg, ;Y 2 g =EY AV 12, =021) A2 =
i=0 i=1 i=1 i=1

Ao?
1— A%
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So for (8) to be correct, we require that

1 A
“ioe ko

With these values of k; and k,, we can verify directly that

052[1/(1 ) . z i - lz))] — 52 1 1 Az [(1 —Az7Y) + Az7t — /12]

ky

1— Az 1—2z7t (1 —Az)(1 —Az™Y)
I R
TP - A1 =AYy

so that (7) and (8) are equivalent.
Expression (8) is the more convenient of the two expressions since it yields
quite directly

1 1 Azt
—_ 2
A =0 [1 P ——lz“]

= azzl—-l—ﬁ[{l FAz+ A2+ b+ A2+ A2 A L

Thus, we have that for the first-order Markov process (6)

cy(k) = o’ Al k=0,+1,+2,....
¥ 1 Az > s Ly L&

The covariance declines geometrically with increases in |k|. We require [4] < 1
in order that the y process have a finite variance. '

To get this result more directly write the stochastic difference equation
V: = Ay, + &, then multiply y, by y,—, k > 0, to obtain

VeVeoi = Wi 1Vei + EVi-to

Taking expected values on both sides and noting that Egy,_, = O gives the
famous Yule—Walker equation

E(y:Ye-1) = AB(r-1Ye-1) or cy(k) = /lcy(k -1, k>0,
which implies the solution
e, (k) = X, (0), k>0.

From the symmetry of covariograms, it then follows that ¢, (k) = A*¢(0) for
all k. Notice that the covariogram obeys the solution of the nonrandom part
of the difference equation with initial condition c,(0).
As a second example, consider the second-order process
1 1

- i 1 A 9
Ve (1—11L>(1—}.2L)8” Ay + Al <1, Ay # 4, &)
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where ¢, is white noise with variance ¢,2. Multiply both sides of (9) by (1 — 4, L)
(1 — A,L)to get

Ve=ty-1+ Y2+ & (10)
wheret; = 1; + A, and t, = —2;4,. Multiply (10) by y,_, for k > 0 to get

YVi-x = tiVi—1Vi-k T L2Vi-2 Vit T & Vi
Since E¢, y,_, = 0, we have

E(y:yi-) = LEGi-19i-0) + 2 EGr-2yi-1)y k>0,
which shows that ¢ (k) obeys the difference equation (the Yule-Walker equation)
cy(k) = ticlk — 1) + ty¢(k — 2). (1)

So the covariogram of a second- (nth-) order process obeys the solution to the
deterministic second- (nth-) order difference equation examined above. In
particular, corresponding to (11) we consider the polynomial

1—tk— 1,k =0, (12)

which has roots 1/4, and 1/4,. (We know that 1 — t,k — t,k equals (1 — A,k)
(1 — A, k), with roots 1/4, and 1/1,.) Alternatively, multiply (12) by k=2 to
obtain

k2 =tk —1,=0, x*—t;x—t, =0 where x=k"! (13)

Notice that the roots of (13) are the reciprocals of the roots of (12), so 4, and
A, are the roots of (13).
The solution to the deterministic difference equation (11) is, as we have seen,

e(k) = A¥zo + A5z, k=0, 14)

where z, and z, are certain constants chosen to make ¢,(0) and ¢,(1) equal the
proper quantities. If the roots A, and A, are complex, we know from our work
with deterministic difference equations and from the symmetry of covariograms
that

e,(k) = 2pr* cos(wk) or . (k) = ¢,(0)r* cos(wk) (15)

where 1; = re’® and 1, = re”*. According to (15), the covariogram displays
damped (we require r < 1) oscillations with angular frequency w. A complete
cycle occurs as wk goes from zero (k = 0) to 2z (k = 2n/w, if that is possible).
The restrictions on ¢, and ¢, needed to deliver complex roots and so an oscillatory
covariogram can be read directly from Figure 1 of Chapter IX.

Figure 2b displays realizations of second-order processes for values of ¢;
and t,, values for which the roots are complex. Notice the tendency of these
series to cycle, but with a periodicity that is somewhat variable from cycle to
cycle.
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The foregoing suggests one tentative definition of a cycle in a single series:
a series may be said to possess a “cycle” if its covariogram is characterized by
(damped) oscillations. The typical “length” of the cycle can be measured by
27/, where w is the angular frequency associated with the damped oscillations
in the covariogram (e.g., see (15)). To be labeled a business cycle the cycle
should exceed a year in Jength. (Cycles of one year in length are termed seasonals.)
We advance this only as a tentative definition of a cycle, and put off for a while
discussing its adequacy.

3. THE CROSS COVARIOGRAM

Suppose we have two wide-sense stationary stochastic processes y, and x,.
The processes are said to be jointly wide-sense stationary if the cross covariance
E(y, — Ey)(x,~ — Ex,_;) depends only on k and not on ¢. The cross covario-
gram is the list of these covariances viewed as a function of k. We denote it

ny(k) = E(y; — Ey)(x;—x — Ex;_p)-

Now suppose that y, and x, can be expressed as (perhaps two-sided) distributed

lags of a single white-noise process &,:
¥, = B(L)g,, x, = D(L)g,

where

B(L) = Y% - byl D(L) = Y2 - dsL, 32— b < 0, 32 df* < o0,

Since Eg, = 0, we have

cyx(k) = Eytxt—k = E_ z bjst—jh Z dhsx—h—k
J=—w =—w

62 Y bid;y.

j=-o
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The cross-covariance generating function g,.(z) is defined by

©

gyx(z) = Z ny(k)zk-

k=-—o

In the present case, we have
gyulz) = Gtzk—iw j=§:wbi d;p 2%
letting h = j — k so that k = j — h, we have
gyx(z)—azz Zbd;,z"’ Zsz’Zdhz"

j=—wh=— h=—o
= JSZB(z)D(z_ b, (16)

This is a counterpart to Equation (5), and includes it as a special case.
Now suppose that we have the more general system

¥ = A(L)e, + B(L)u,, x, = C(L)e, + D(L)uy, an

where ¢, and u, are two mutually uncorrelated (at all lags) white-noise processes
with variances .2 and o,2 respectively, and Eu¢,_, = 0 for all k. By carrying
out calculations analogous to those just completed, it is possible to express the
cross-covariance generating function between y and x as

9,x(2) = 62 A()C"Y) + 6,2 B@)D(z™ ). (18)

As it turns out, (17) is a very general representation for a bivariate stochastic
process, including a large class of such processes.*
We define c,,(k) and g, (z) symmetrically. In particular, we define

ny(k) = E(x, — Ex)(¥i~x — Eyi_) = cyx(_k)'
We define g,,(z) by

@) = 3 = 3 cplilz™

k=—-c0 h=—ow

II

" The particular system (17) implies that
guf2) = 6. A(z~)C(2) + 0,>Bz” )D(2).

4. A MATHEMATICAL DIGRESSION ON FOURIER TRANSFORMS
AND z TRANSFORMS?®

The following theorem provides the foundation for the z transform, Fourier
transform, and “lag operator” methods that we use repeatedly in these pages.

4 Namely, all jointly wide-sense stationary, indeterministic processes.
5 This section can be omitted on first reading.
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The theorem, which we shall not prove,® is a version of the Riesz-Fischer
theorem.

Theorem (Riesz-Fischer): Let {c,};2 -, be a sequence 6f complex numbers for
which Y% _  |c,|* < co. Then there exists a complex-value function f(w)
defined for real w’s belonging to the interval [ — =, n], such that

@
flwy= 3 cje i (19)
j=—ow
where the infinite series converges in the “mean square” sense that '

3 n

2. cie” = f(w)

j=-n

lim

n—+o v —n

dw—

The function f(w) is called the Fourier transform of the ¢, and satisfies

f | f(w)?dw < o

where the integral is a Lebesque integral (i.e, “f belongs to L,[~mx, =]”).
Given f(w), the ¢, can be “recovered” from the inversion formula

= 1 " +iwk
=5 f_n f(w)e dow. (20)
Finally, the function f(w) and the ¢, satisfy Parseval’s relation
1 14 o
_— 2 = |2
3] | f@Pdo e

This completes the statement of the theorem.

Consider the space of all doubly infinite sequences {x,};% _, such that
Y o Ix|* < o0, ie., the space of square summable sequences. We denote
this space l,(—o0, o). It is a linear space in the sense that it possesses the
following two properties (among others)’:

(i) Let « be a scalar and let {x,} belong to I,(— oo, c0). Then {ax,} belongs
10 Ip(— 00, 00), i.€., Y 5% _ o Jox, |* < 0.

(ii) Let {x,} and {y,} both belong to I,(— 0, o). Then {x, + y,} belongs
10 Iy(— 00, 00), 1.6, 5% — o 1% + Y4l < 0.

Now consider the space L,[ =, n] consisting of all functions f(w) for which
el f(@)? dw < o0, ie., the space of “square Lebesque integrable functions”

 For a proof of the Riesz-Fischer theorem, see Apostol (1974, Chapter 11).
7 For a statement of the defining properties of linear spaces, see Naylor and Sell (1971).
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on [—=, n]. We denote this space L,[ —=, 7]. This space is a linear space in the
sense that it possesses the two properties (among some others):

(a) Let o be a scalar and let f(w) belong to L,[ — =, n]. Then af (@) belongs
to L[ —m, 7, ie., |* . |of (@)]* dw < oo.

(b) Let f(w) and g(w) both belong to L,[ —x, z]. Then f(w) + g(w) belongs
to L[—m, w, ie, .| f(@) + g(w)|* do < .

The spaces [,(— o0, o) and L,[ —=, n] are each metric spaces in the sense

that each one possesses a well-defined metric or distance function. In particular,
on [,(— o0, o0) the real-valued function

© 1/2
dy(x, y) = [ Z [ ~ Yklz}

k=—0
measures the distance between the two sequences {x,} and {y,}. The function
d,(-, ) is defined for all {x;} and {y,} in [,(— o0, c0) and is a “natural” measure
of distance (it satisfies a triangle inequality d(x, y) < d(x, z) + d(z, y) for all
sequences X, y, and z in ;). On L,[ —=, ] the real-valued function
12

1 L] 1
N

is a metric® that measures the “distance” between two functions f(w) and g(w).
The metric D,(-, -) is defined for all f(w) and g(w) belonging to L,[ —=, x].

Now consider the mapping from I,(— co, ) to L,[ —=, n] defined by the
Fourier transform

flw) = i ce 9k, wel[—=w,wl (19)

k=—o

We also have the inverse mapping
6=p [ re@ereio,  j=0 £t 42 0)

Now a converse of the Riesz-Fischer theorem is also true: let f(w) belong to
L,[—7, 7). Then there exists a sequence {¢,} such that Y |¢|*> < o and

f@= 3 ceiot

k=—w
where

1 .
=35 f_ f(@)e** doo

8 We adopt the usual convention that if /' = g except on a set of Lebesque measure zero, we
agree to say that the functions f and g are equal. On this convention D,(f, g) is a metric. See Naylor
and Sell (1971) for more details.
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and where the infinite sum converges in the mean square sense. This converse
theorem assures us that the mapping of [,(— o0, o) into L,[ —=, ] defined by
(19) is onto. It is also one-to-one. The usefulness of the mapping (19) stems from
the fact that it is an isometric isomorphism from [,(— o0, o0) to L,{ —=, =]; ie.,
it is a one-to-one and onto transformation of points in [,(— o0, co0) into points in
L,[ —=, =] that preserves both linear structure (i.e., it is an isomorphism) and
distance between “points” (i.e., it is an isometric mapping). That is, let {x;}, {y.}
belong to I,(— oo, o0), let « be a scalar, and let

@ o0
xw)= Y xe ™ pw)= Y pe
k=—w k=—o0
Then we have (as can be verified directly)
@ ©
@)+ yw) =Y (x+yJe ¥, ax(w)= ), oxe K
k=~w k=—
So “the Fourier transform of a sum of two sequences is the sum of their Fourier
transforms” and “the Fourier transform of {ox,} is o times the Fourier transform
of {x,}.” This means that (19) is an isomorphism. We also have

1 T 2 1/2 0 2 1/2
3| 0 - sor ol = § )

k=—c

or
D,(x(w), y(@)) = dy(x, ),

so that (19) is an isometric mapping.

The Fourier transformation (19) puts square summable sequences {x,} into
one-to-one correspondence with square integrable functions f(w) on [—=, ©].
The transformation preserves linear structure and a measure of distance, as we
have seen. The benefit from using the transformation is that operations that are
complicated in one space are sometimes the counterparts of simple operations
in another space. In particular, consider the convolution of two sequences
{x.} and {y,} defined to be the new sequence

© @
{Y*xk}l?;—-ao = { Z ysxk—s}
s=—

k=—o

The Fourier transform of (y * x), is given by

el 0 @ . =)

Z Z ysxk—se_iwk = Z yse—iws z xk—se_iw(k_S) = y(w)x(w)
k=—o0 s=—c0 s=—a k=—-w

where (@) = Y2 _, e, x() = Y _ , x,e” " Thus the Fourier trans-

form of the convolution of {x,} with {y,} is the product of the Fourier transforms

of {x;} and {y,}. The complicated convolution operation corresponds simply to

multiplication of Fourier transforms.
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All transform techniques exploit properties like the preceding one. The aim
is to transform a problem from one space where it appears complicated to
another isometrically isomorphic space where the operations are simpler,
then to transform back to the original space using the inversion mapping such
as (20) after the calculations have been performed.

By making the change of variable z = ¢/ in the Riesz—Fischer theorem, we
obtain the following corollary which underlies our z-transform methods.

Corollary: Let {c,)%_, be a sequence of complex numbers for which
Y _ o lcal? < 0. Then there exists a complex valued function g(z) with domain
in the complex plane such that

iD= 3 o

j=-w

where the infinite series converges in the mean square sense that
n . 2 dz
Y ¢zl —g(z)} —=0

j=-n z

where I' denotes the unit circle and the above integral is a contour integral. The

function g(z) is defined at least on the unit circle in the complex plane and
satisfies

lim
n—c vI

1 ,dz
52 1o 7‘ <w.

The function g(z) is called the z transform of the sequence {c;}. The ¢, can be
recovered from g(z) by ¢, = (2mi)™* J g(z)z"* ' dz. This completes the
corollary.

So long as we restrict ourselves to sequences satisfying Y. |¢,|* < co, the
theorem and the corollary guarantee that the “z transforms” and Fourier
transforms that we shall manipulate are well defined. The z transform in effect
maps the sequence {c,} into a complex-valued function defined on the unit
circle in the complex plane. The Fourier transform maps the sequence {c,} into
a complex-valued function defined on the real line over the interval [ —m, n].

Notice that the complex-valued functions &, j =0, +1, +2, ... are an
orthogonal set on the interval [ —zn, #]. That is, for n # m, we have

i J.n eiwne—iwm dCU — _1_ Jq‘ eia)(n-—m) dCD — [eiw(n—m)]n:
2n)_, 2 ) _. 2mi(n — m) -
1

= ein(n—m) _e—in(n—m)
27ni(n — m)[ 1

1
=———-=sina(n —m) =0

n — m)

since sin t(n — m) = 0 for n — m an integer.
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For the most part, the Riesz-Fischer theorem and its corollary are sufficient
for our needs. Below we shall briefly touch on a deterministic process for which
the condition Y |¢,|* < oo is violated (where the ¢, depict the covariogram) so
that the theorem will not suffice to define the Fourier transform of the ¢,. It
turns out that there is still a sense in which the Fourier transform of such “ill-
behaved” {c,} sequences is defined, as we shall see.

5. THE SPECTRUM

An alternative representation of the covariance generating function of y is
the spectrum of the y process. Recall the covariance generating function of y
defined in (4),

©

9,2 = . PN (L @

=-w

For the process y, = B(L)g,, we have seen that
9,(2) = B(z)B(z" o, 2.

If we evaluate (4) at the value z = ™™, we have
o
ge” ) =Y cfk)e ", —A<W<T @1
k=-w

Viewed as a function of angular frequency o, g,(e ™) is called the spectrum of
. The spectrum is the Fourier transform of the covariogram.

As we would expect from the inversion formula (20), the spectrum is itself
a kind of covariance generating function. Given an expression for g(e” ) it is
easy to recover the covariances c,(k) from the inversion formula (20). To moti-
vate the inversion formula, we multiply (21) by e** and integrate with respect
to w from —m to n: :

Y (et R doy = Y k) f ERCELY N

~n k==~ k=—o

f gy(e—iw)eiwh do =
(22)
Now for h = k, we have

f =0 doy = f ldo = 27

For h # k, we have

7

f R oy = f cos w(h — k)dw + if

sin w(h — k) dw

= —sinow(h — k)%, + icosw(h — k)=, =0.
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Therefore, (22) becomes
J g,e” )" dw = 2nc(h).

Thus multiplying the spectrum by " and integrating from —= to = gives the
hth lagged covariance times 2x. In particular, notice that for h = 0, we have

fﬂ g,(e™ ™) do = 2mc,(0),

so that the area under the spectrum from — = to © equals 27 times the variance
of y. This fact motivates the interpretation of the spectrum as a device for de-
composing the variance of a series by frequency. The portion of the variance
of the series occurring between any two frequencies is given by the area under the
spectrum between those two frequencies.

Notice that from (21) we have

o

g€ = T oke™

=—o

— cy(o) + icy(k)(eiwk + e—iwk)
k=1

= ¢,(0) + 2 i ¢ (k) cos wk. 23)
k=1

According to (23) the spectrum is real-valued at each frequency and is obtained
by multiplying the covariogram of y by a cosine function of the frequency in
question. Notice also that since cos x = cos —x, it follows from (23) that

gy(e) = g)(e™™),

so that the spectrum is symmetric about @ = 0.

Since cos(w + 2nk) = cos(w), k =0, 1, +2, ..., it follows that the spec-
trum is a periodic function of w with period 2x. Therefore, we can confine our
attention to the interval [ — =, z], or even [0, ] by virtue of the symmetry of the
spectrum about w = 0.

We now derive a fundamental formula linking the spectrum of one covariance
stationary process y, to the spectrum of another covariance stationary process
x,. We suppose that both {x,} and {y,} have zero mean and consider the pro-
jection equation

V= ’ > bix,;+ e =BL)x +¢

j==w»
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where Ea,xf_ i= 0 for all j. Here B(L)x, is the projection of y, on the entire x
process, as is implied by the orthogonality principle. We then have that

yth—j=< Z bsxz—s)( Z brxt—j—r>

=—c0 =—-0

o0 o
+ ( 3 bsx,_s)a,_j + ( Y b,x,_j_,)a, + &8
S= — 0 F= =0

Taking expected values of both sides and applying the orthogonality coﬁ-
ditions gives ;

GD=EGy)= 3 3 bbeli+r—9)+ el

$§=—wr=-~w

The spectrum of y is defined as

0

gy(e— ia)) — Z Cy(k)e— iwk

k=—o0
=X X 3 bbaktr—ge™rge). (4
Define the index h = k + r — s, so that k = b — r + 5. Notice that
e—iwk = e—iw(h—r+s) — e—iwhe—iwseiwr. (25)

Substituting (25) into (24) gives

gy(e—iw) — Z b'eiwr Z bse—iws Z cx(h)e—iwh + gg(e—iw)
r=—o s=-w h=—cw
= B(e“)Ble™")g.{e ™) + gile ™)
or

ge™") = | Ble ") Pg.le™) + gle™ ™). (26)

This .is an important formula that shows how the spectrum of the “input” x is
multiplied by the nonnegative real number | B(e ") |* in composing the spectrum
of y.

For_mula (26) can be used to analyze the effects of “filtering,” in which we
start with a covariance stationary random process x, and define a new process

¥ = B(L)x,, @n

so that formula (26) applies with g,(e ~**) = 0. We shall illustrate the usefulness
of this formula in several contexts. To begin, formula (27) motivates the inter-
pretation of the spectrum as decomposing the variance of y by frequency. Thus,
suppose we could choose B(e™*) so that

_ 1 for wela,bJu[-b, —al, O0<a<b<m
B oy k4 2 >
™) {0 otherwise. @9




236 XI. LINEAR STOCHASTIC DIFFERENCE EQUATIONS

Thus, we are choosing a “filter,” i.e., a set of b;, that takes a random process x,
and transforms it into a random process y, according to (27). A filter obeying (28)
shuts off all of the spectral power for frequencies not in the region [a, b] or
[—b, —a]. To determine a set of b; that satisfies (28), we use the “inversion”
formula seen earlier,

n L 1 (7%, L[
b;= %L Ble™ e dw = i;f_be‘“’dw + Ej;e"‘”dw

1% . - 1
=Ef(e“’” + e N dw =EJ 2 cos wj dw )
b

a

11 . wi
= ——<8In
njs J

= l (w), for all integers j. 29)
T J
Note that b; = b_;. With the b; chosen in this way, the y process defined by
Ve = % bixi-;
J=—w

has all of its variance occurring in the frequency bands w € [a,b],w € [—b, —a].
The variance of y is given by
1 " - iw d — 1 - — iy d 1 g —io d
o[ oo =5 [ oo + 5 a0

In this sense g.(¢~*) gives a decomposition of the variance of x by frequency,
the variance occurting over a given frequency band being found by integrating
the spectrum over that band and dividing by 2n. We have already seen that by
integrating the spectrum from —= to @ we obtain the variance of x times 27. As
we shall show presently, the decomposition of the variance of x by frequency
that is reflected in the spectrum is one in which components at different fre-
quencies can be regarded as orthogonal. More precisely, two components
formed by applying two filters like (28) that let through power over disjoint
frequency bands are mutually orthogonal at all lags.

Incidentally, the preceding calculations can be used to prove that the
spectrum is always nonnegative. This can be done by proceeding by contra-
diction. Suppose that the spectrum g,(e~*) is negative over a small band. Then
choose a filter that shuts off all variance outside of this band. The result is to
produce a new random process that has a negative variance, a contradiction.
So the spectrum must be nonnegative.

Let us examine the spectra of some simple processes. First consider the
white-noise process y, = &, & white so that ¢,(0) = 6.2, c,(h) = Ofor h # 0.

5. THE SPECTRUM 237

For this process, the covariance generating function is simply g(z) = ¢.%,
so that the spectrum is

gle ) =02, —r<o <

The spectrum is flat, and equals ¢, at each frequency. Notice that
f gle Y dw = 2ne?,
-

as expected. So a white noise has a flat spectrum, indicating that all frequencies
between —7 and = are equally important in accounting for its variance.
Next consider the first-order process

¥ = B(L)g, = -l<i<l

1
T

For this process the covariance generating function is

1 1
gy(z) = (1 — AZ)(il — lz_l)a'az.

Therefore, the spectrum is

—iw 1 1 2 1

3 - _ B 2

9™ (1 - Ae""’)(l - Ae"")”° [~ o™t 2%
_ 1
“T-Zicosw + A2

2

Notice that

dg,(e™™) _

T —(1 — 2Acos @ + A%)~2(21sin w)a,>.

The first term in parenthesis is positive. Since sin @ > 0 for 0 < w < =, the
second term is negative on (0, 7) if A < 0 and positive on (0, #) if 1 > 0. There-
for, if A > 0, the spectrum decreases on (0, #) as w increases; if 2 < 0, the
spectrum increases on (0, ) as w increases. Thus, if 4 > 0, low frequencies
(ie., low values of w) are relatively important in composing the variance of @,
while if 2 < 0, high frequencies are the more important. It is easy to verify that
the higher in absolute value is A, the steeper is the spectrum. Notice that the

- first-order process can have a peak in its spectrum only at @ = 0 or = +m.

A peak at @ = 7 corresponds to a periodicity of 2n/w = 2n/n = 2 periods. A
peak at @ = O corresponds to a cycle with “infinite” periodicity, which is un-
observable and hence not a cycle at all.

With quarterly data a business cycle corresponds to a peak in the spectrum
at a periodicity of about 12 quarters. A first-order process is capable of having
a peak only at two quarters or at “infinite” quarters, and so is not capable of
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rationalizing a business cycle in the sense of a peak in the spectrum at about
twelve quarters. As we saw above, a first-order process cannot possess a covario-
gram with a periodicity other than two periods, and so with quarterly data
cannot rationalize a business cycle in the sense of an oscillatory covariogram.
A second-order process can have a peak in its spectrum inside the interval
(0, =). Consider the second-order process
1
WET L

¢, white noise. For this process, the covariance generating function is

— 1 1 0_2
9 = 1—rz—t,22 )\l —tyz7t — 1,272 ¢

Therefore, the spectrum of the process is

—iw) — I 1 0.2
gyle T\ e - e\ - re® = 7))

2

dt
T+ 47+ 17 F (ot — 1) + €7 — t(e7 0 + 27)

052 o 2

TT+ 6,2+ 132 — 2t,(1 — t;)cos @ — 2t cos 2w = w)

Differentiating with respect to w, we have
—iw
d—g&f-ie—) = — o h(w)"22t,(1 — t;) sin © + 4t sin 2w)
w

= —0,2h(w)” 42 sin w)[t,(1 — t,) + 4t, cos w]).

We know that h(w)? > 0. For the above derivative to be zero at a  belonging
to (0, m), we must have the term in brackets equal to zero:

—t,(1 -t
ty1 —t,) +dt,cos0=0 or cosw= ;(4{——2—), (30)
2
so that
=1 —t,(1 - t) 31
w = Cos <__—_4t2 . 31
Equation (31) can be satisfied only if
(1 -1t
—_— <1 32
1 4t, 32
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since |cos x| < 1 for all x. By inspecting the second derivative of g,(e~*) with
respect to , it can be verified that at the @ given by (31) there is a peak in the
spectrum if £, < 0 and a trough if t, > 0. Condition (32) is slightly more re-
strictive than the condition that the roots of the deterministic difference equation
be complex so that the covariogram displays oscillations. Let us write (32) as

—1 < —t;(1 — ty)/dt, < 1. (33)
The boundaries of the region (33) are
—t;(1 — ;) = 4t, (34)
and
—ty(1 — 1) = —4t,. (35

The points (t,, ¢,) = (0, 0) appear on both boundaries, while the point (¢, t,) =
(2, — 1) appears on (34) and (¢4, £,) = (—2, — 1) appears on (35). Differentiating
(34) implicitly with respect to t; gives

dty/dt; = (t; — 1)/ — t;)
so that along (34)

dta | __1
dtl t1=t2=0 4
and
dt
=2 = -1
dty jy=2,=—1

Differentiating (35) with respect to ¢, gives
diyfdt; = (1 — 1)/(4 + t1)
so that along (35)

dt
dt,

_Ldy

=2, =1
t1=t2=0 4 dtl

t1=—2,tp=—1

Such calculations show that the boundaries of region (34) are as depicted in
Figure 3. To be in region (33) with ¢, < 1 (a requirement of covariance station-
arity) implies that the roots of the difference equation are complex. However,
complex roots do not imply that (33) is satisfied. Consequently, the conditions for
an oscillatory covariogram are not quite equivalent with those for a spectral
peak.

To illustrate the ability of low-order stochastic difference equations to
generate “realistic” data, Figures 2a and 2b show simulations of first- and
second-order stochastic difference equations, while Figure 2¢ shows the solution
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FIGURE 3 (Source: G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, p. 229,
San Francisco: Holden-Day, 1969.)

of the deterministic part of the same second-order difference equation with
initial conditions y, = y; = 1. Notice that even the first-order stochastic
difference equation

»=09y., +¢&,

¢, a serially uncorrelated random term, appears to generate roughly alternating
periods of boom and bust. This illustrates how stochastic difference equations
can generate processes that “look like” they have business cycles even if their
spectra do not have peaks on (0, 7) and even if their covariograms do not
oscillate.

6. THE CROSS SPECTRUM

An alternative representation of the cross covariogram is provided by the
cross spectrum. Recall that the cross-covariance generating function between
the jointly stationary processes y and x is defined by

o) = S o0

=—0w
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If we evaluate g,.(z) at the value z = e~ we have the cross spectrum

©

. . ik
gyx(e m)) = Z cyx(k)e o
k=—-w
Viewed as a function of angular frequency w, g,,(e ~ ) is called the cross spectrum
yx p
between y and x.
The cross spectrum is of course a cross-covariance generating function.
Given an expression for g,(e '), it is possible to recover the cross covariances
from the inversion formula

1 o
o) = 52 | gulem ) do

The validity of this inversion formula can be checked by following calculations
analogous to those used to verify the inversion formula for the spectrum.

Unlike the spectrum, the cross spectrum is in general a complex quantity at
each frequency, this being a consequence of the fact that c,.(k) is in general not
symmetric (c,,(k) does not in general equal ¢, (—k)). In place of the symmetry
property we have the readily verified property

Guy(e7) = gyule ™) = g,ule™™) (36)
where the bar denotes complex conjugation and
Iule®) = 3 cqk)erie
k

=—c0

and c,,(k) = Ex,y,—s. Notice that c,(k) = ¢,(—k).
Suppose that the stationary stochastic process y, is related to the stochastic
processes x, and g, by

Vo= Y hxejte 37
J=—

where E¢, = Ex, = 0, and Eg,x,_, = 0 for all 5, an orthogonality condition that
characterizes ) h;x,_; as the projection of y, on the space spanned by
{Xemons-r-»Xgs -+ > X110} Then we have already seen that the spectrum of y
satisfies

g5{e™™) = [h(e™ ) Pgu(e™) + 6.e™)

where

hle™™)y = ) hje™l
j=—0
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To find the cross spectrum between y and x; first use (37) to calculate the kth
lagged covariance as

EyXe = 3 BEX %0, )= Y hiclk—j).

j=—w j=-w
Thus the cross covariogram between y and x is the convolution of the sequence

{h;} with the sequence ¢,(j). From the convolution property we immediately
have

gyle™') = he™)gLe™")

since the Fourier transform of a convolution of two sequences is the product of
the Fourier transforms of the two sequences. That is, taking Fourier transforms
of each side (i.e., multiplying by ¢~ *** and summing over k) gives

©

Z ny(k)e—iwk = i i hij(k _j)e—iwk.

k=—-c je—~wk=—w
Noting that ™% = ¢~ #¢*-Dp=i0J the above can be written as
. x ] ® .
gule™) = Y hem Y o (k — jem i
Jj=—w k=-w

or
9367 ) = he™)g. (e ). (38)
ES
Notice that the covariance between y and x can be recovered from the inversion
formula

1 r ; .
enl) = 5 [ He™ g (e e do

Further, notice that given g,.(e ™) and g,(e~*®), the k, can be recovered from

by = 1r Meiw" do.
2n ) gx(e™*)
Where estimators of g,,(e”*) and g,(e™ ") are used in the above equation, the
resulting estimator of the #, is known as Hannan’s inefficient estimator.
As an example, suppose that the jointly covariance stationary process
(y, x) has covariance generating functions

1 1
9:(2) = aﬁ( — 0'92)< — 0_92_1), 9,(2) = 0,21 — 0.8z)(1 — 0.8z~ 1)

9,:(2) = a,(1 — 0.82)(1 + 0.5z™1).
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Notice that this is equivalent with -
. 1 o’
g:(e™) =0 ( — 09e~ )1 — 09¢*™) ~ 181 — 1.8cosw
g,e™™) = 6,%(1.64 — 1.6 cos w)
Gyl ™) = 6,(0.6 — 0.8¢ 7 + 0.5¢").

Let us now use formula (38) to calculate the coefficient generating function
h(z) in the projection of y, on the entire x process. Using z instead of ¢™*,
formula (38) becomes

h(z) = g,(2)/g:(2).
For our example this gives
9,:42)/9(2) = (0,/02)1 — 0.82)(1 + 0.5z7")(1 — 0927 )(1 — 0.92).
The reader can easily multiply this polynomial in z and verify that &; = 0 for
|i| > 2 and that h; # 0 for j = —2, —1,0, 1, 2. Notice that, as in general, h(z) is
“two-sided,” having nonzero coefficiénts on negative powers of z.

Now let us calculate the coefficients in the projection of x, on the entire y
process:

0
Xt = Z Sive—j + u

j=-ao
Eu,y,—; = 0 for all j. Applying formula (38), exchanging the roles of y and x,
gives :
F(@ = g2(2)/g,(2) = 9,2~ Vg,(2).
In our example this gives

0, (1 —0827)(1 +052) 0. (1 +052)
I@ = T =081 =082 02— 082)

1t is readily verified that f; = 0 for j < 0, so that () is “one-sided on the past
and present.”

We shall shortly study the conditions under which the projection of y on
x or of x on y are “one-sided” or “two-sided.”

Equation (16) can be generalized as follows. Let

yie=Bi(L)x;,  yau = By(l)x (39

where x, is a covariance stationary process and B;(L) and B,(L) are the lag
generating functions for square summable lag distributions. Then

Gyiyale™™) = By(e™)By(e* )gule™™). (40)
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We invite the reader to verify this formula by using (39) to calculate Ey,,y,,_;,
multiplying by e~***, and summing over k. The derivation mimics the derivation
of Equation (16) above.®

We now use formula (40) to show that the spectrum reflects a decomposition
of x, into processes that are orthogonal across frequencies. Thus let

1 = By(L)x,, Ya: = By(L)x,
where B;(L) and B,(L) are chosen to satisfy

iy _ )L wel[—b, —a] v [a,b],
B = {0» w¢[—b, ~a] U [, b];

wel—d, —c] u [c, 4],
w¢[—d, —c]u e d]

To find the individual distributed lag coefficients, Equation (29) can be used.
Equation (40) evaluated at z = ¢~* implies

Fyiyl€™ ) = By(e™)B,(e*)g.(e™ ™).

If[—b, —a] U [a, b] does not intersect the set of frequencies [ —d, —c¢] U [o, d],
then B,(e~*)B,(¢') = 0 for all w, so that Fy1y.(€” ") = 0. This in turn implies
that y; and y, are processes that are orthogonal (uncorrelated) at all lags, as can
be verified directly from the inversion formula. In this sense the spectrum
gx(e” ™) decomposes the variance of x into a set of mutually orthogonal pro-
cesses across frequencies.

The cross spectrum is a complex quantity that is usually characterized by
real numbers in various ways. One characterization is in terms of its real and
imaginary parts

. 1,
Bye™) = {0

gyx(e_iw) = CO(CU) + lqu(w)

where co(w) s called the cospectrum and qu(w) is called the quadrature spectrum.
A more usual representation is the polar one

yxle™") = H(w)e™™ @1

O(w) = tan™! l:qu(co)].

co(w)

where

rHw) = /co(w)? + qu(w)?,

The phase statistic gives the lead of y over x at frequency w, while the “gain”
r(w) tells how the amplitude in x is multiplied in contributing to the amplitude
of y at frequency w. Another interesting number is the coherence

coh() = |g,.(e™*)1*/g.Le™*)g,(e~"),

° Alternatively, write x, in terms of its moving average representation x, = c(L)n, where g‘(z)
o c(z)c(z™"). Then apply (16) to the system y, = By(LIALIN,, vz = By(L)e(Ly,.

6. THE CROSS SPECTRUM 245

which, being essentially the ratio of a covariance squared to the product of two
variances, is analogous to an R? statistic. It indicates the proportion of the vari-
ance in one series at frequency w that is accounted for by variation in the other
series.

Notice that from (38) and from the fact that the spectrum g,(e ™) is real,
the phase of the cross spectrum equals the phase of h(e™™) =Y hye™",
which is the Fourier transform of the h;. That is, writing (38) and (41), we have

H@)"® = g,.(e™) = he™")g (™)
or
r(a_’)iw &0,
g:(e™™)

which shows that the phase of g,.(e ™) equals the phase of h(e™ ). For con-
venience, represent h(e™*?) in polar form

h(e™i) =

h(e™™) = s(w)e™®

where s(w) = r(w)/g(e™ ™).

The following provides a heuristic device for interpreting f(w). Suppose we
consider as an input into the system (37) an x series consisting of a pure cosine
wave of frequency w:

X, = 2¢08 wt = &'t + 7,

For this input path, suppressing the disturbance &,, (37) becomes
— Zh_[eiw(x—j) + e—iw(x—-j)] _ eiMZh-e_iwj + e—iwrzh_eﬁmj_

But ) hje™* = s(w)e® and Y h;e*', being the complex conjugate of
> hje™, equals s(w)e ™ *). Therefore, we have

V= eitots(w)eiﬂ(w) + e—iwts(w)e—il)(w) — s(w)[ei(wx+9(w)) + e—i(wr+0(w))]

= s(w)2 cos(wt + B(w)).

Therefore, the response of (37) to an input in the form of a cosine wave of
frequency w is a cosine wave at the same frequency with amplitude multiplied
by s(w) and phase shifted by 6(w). The input cosine wave is at its peak at ¢ = 0,
while the output is at its peak at wt + 8(w) = 0 or t = — 6(w)/w units of time.
Thus, for 8(w) > 0, the output leads the input by — 6(w)/w units of time (where
we adopt the usual convention that 6(w) is constrained to be between —= and
+ 7, a convention needed to make the arctangent function single-valued).
While useful, the preceding interpretation of the phase has to be used cau-
tiously. The reason is that the stochastic difference equations that we have been
studying generate random processes with spectral power distributed across a
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continuum of frequencies between —= and +=. It is really only over a non-
negligible band of frequencies that there occurs a positive contribution to
variance. Thus, for such processes, there really do not occur input processes that
are pure cosines, though this situation could be approached if the spectral
density did display a very sharp peak at a given frequency. Processes with
positive spectral power at a single given frequency do exist, and realizations of
these processes do consist of (sums of) sine and cosine waves. But such processes
are not generated by the stochastic difference equations that we are studying.
(See pp. 260-262.)

1t is interesting to note the following two facts about h(e ~*®). First, from the
definition of h(e ')

he™) = ¥ hye™,
) _

we note that h(e™ ™) evaluated at w = 0 is the sum of the lag weights, i.e.,
he ) =3 h;.
Notice that since
Y hje™ ™ =% hicoswj — iy h;sin wj
and that since sin 0 = 0, we have that
e ) = s(0) = Y h;.

Since h(e™*) is real at zero frequency, the phase statistic 6(w) is zero at zero
frequency, provided ) h; 5 0:

B(w) = tan"'[ - h;sin wj/y h;cos wjl,  6(0) = tan~'[0] = 0. (42)

Next, it is possible to show that the derivative of the phase statistic with
respect to w evaluated at @ = 0 equals minus the mean lag. Recall that

A apry = LM
dx T+ utdx
Applying this to (42) gives
1
1+ [ hysin wj/y h;cos wf]?
—Y hjcoswjy hjcoswj — Y hjsinwj Y k;sin wj
(2 h;c0s wj)?

B(w) =

X

Evaluating 6'(w) at w = 0 gives

00) = = h;j/> ;.
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(Here we have used the facts that cos 0 = 1, sin 0 = 0.) The right-hand side of
this equation is minus the “mean lag” of the lag distribution formied by the h’s,
a statistic often reported in econometric studies involving estimates of distributed
lags.

7. A DIGRESSION ON LEADING INDICATORS

For years, the National Bureau of Economic Research (NBER) has em-
ployed a number of heuristic techniques designed to isolate “leading indicators”
of business cycle movements, presumably as an aid in the early recognition and
prediction of cyclical movements.!® To translate into our vocabulary, essen-
tially a good leading indicator displays a sizable phase lead at the low business
cycle frequencies over some important “coincident” measures of the cycle,
such as unemployment or GNP (as well as a large coherence with those coin-
cident measures—so that the phase lead is not only large on average but is
regular in its occurrence). While searching for leading indicators is perhaps an
important thing to do in terms of categorizing data, it is important to recognize
that a series y, that displays a sizable phase lead over another series x, at the most
important business cycle frequencies does not necessarily help in predicting x,
any better than can be done by using past x’s alone to predict x. We illustrate
this fact with two examples.

First suppose we have the system governed by

X, = Ax_q +u, <1, Ve=hox; + hyx,_ + & (43)
where Eu, = Eg, = Eu,e,_, =0 for all ¢ and s, and where both u and ¢ are
serially uncorrelated. The cross spectrum between y and x is given by

gyl ™) = (ho + hye”“)g.le™™) = (ho + hy cos © — iy sin W)g,(e™™)
= r(@)e"g.(e™)

where

‘—h;sinw ]

= 2 s 2 — -1 TH I
r(w) \/(ho + hy cos w)* + (hy sin w)?, 0(w) = tan [ ho t h,cos®

Now by suitably choosing k, and h,, at a given frequency 8(w) can be set arbi-
trarily in the interval (—m, n). This is in spite of the fact that the model (43)
implies that y, is of no use in terms of predicting x,, for x, is governed by a pure
“autoregression,” and depends only on itself lagged and the unpredictable
random term u,. Thus, even if y, leads x, at the low business cycle frequencies,
it is of no use in predicting x,.

To specialize this example somewhat, suppose we have

X =A% _y + Up, Vo= (X, — x—1) + &,

10 L eading indicators are published in Business Conditions Digest, published by the Depart-
ment of Commerce.
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where as before u and & are mutually orthogonal (at all lags) white-noise pro-
cesses. Calculating h(e ™), we have

h(e—iw) - 1 - e—iw _— e—-ia)/l(eiwlz — e—iwlZ)
= e/ sin(w/2) = 2~ 2™ sin(ew/2)
= 2™ =012} sin(en/2)
For 0 < @ < =, the phase angle is positive, implying that the output y leads x
at all frequencies between zero and . In spite of the fact that y leads at all of

these frequency components, y is of no use in predicting x once lagged x’s are
taken into account.

As our second example, consider the system

L
Ye = Z hjxr—j+61s yr='1yr—1 +u
j=-w
where we assume Eg, x; = O for all ¢, s, Eu, = 0, and , is a white-noise stationary
process. We further assume that

hj=h_; foral jx=1.
The cross spectrum between y and x is calculated to be
Gysle™) = {ho + hy (€™ + €7 + hy(e¥ + e7*) + - Jg (™)

= (ho + 2 hjcos a)j)g,(e"“")
ji=1

which is real for all co. Therefore, the phase shift 8(w) = 0 for all w, so that y and
x are perfectly in phase at all frequencies. Despite this, by using a theorem due
to Sims (see pp. 277-287) it is possible to show that even given the past of x, past
y does help predict present and future x’s. This is a consequence of the lag
distribution of the h; being two-sided and of Sims’s theorem 2, which we will
describe in detail presently.

Taken together, these two examples illustrate the fact that displaying a
phase lead is neither a necessary nor a sufficient condition for one series to be of
use in predicting another.

8. ANALYSIS OF SOME FILTERS: THE SLUTSKY EFFECT AND
KUZNETS’ TRANSFORMATIONS

Relation (26) can be used to show the famous “Slutsky eflect” (1937).
Slutsky considered the effects of starting with a white noise ¢, taking a two-period
moving sum n times, and then taking first differences m times. That is, Slutsky
considered forming the series .

Z,=Q0+L)\1+L)y---(14+ L), =01+ L)s,
and
»=Q0-L(1-L)y---1—L)Z,=01—-LyZ, = (1 + Lyl — Ly",. (44)
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Applying (26) to (44); we have
gle™™) = (1 + )l + e7)'(1 — €Y1 — e )5,
=[(1 + €)1 + e )1 — e” ™KL ~ *)]"a.?
=[2 4 (€ + e )[2 — (¢ + e~ )62

= g,.22"[1 + cos w]2"[1 — cos w]™ 45)
Consider first the special case where m = n. Then (45) becomes
gyle™ ™) = ¢ 24"[1 — cos® 0]" = ¢,24"[sin* w]". (46)

On (0, ), the spectrum of y has a peak at w = 7/2 since there sin @ = 1. Notice
that since sin @ < 1, (45) implies that as n becomes large, the peak in the
spectrum of y at 7/2 becomes sharp. In the limit, as n — co, the spectrum of y
becomes a “spike” at m/2, which means that y behaves like a cosine of angular
frequency n/2.

Similar behavior results for fixed m/n as n becomes large where m # n.
Consider (45) and set dg,(e”*)/dw equal to zero in order to locate the peak in
the spectrum:

dgy/dw = ¢,22"*"{n[1 — cos @]"[1 + cos ]~ *(—sin w)
+ m(l — cos w)™ (sin w)[1 + cos w]"}
= ¢,22™"" sin w{(1 — cos w)"~}(1 + cos w)""!
-[m(1 + cos w) — n(1 — cos w)]}.

This expression can equal zero on (0, m) only if the expression in brackets equals
zero:

m(l + cos w) — n(l — cos w) =0,
which implies

Cos W =

1 — (m/n) 1 - (m/n))
1+ (m/n) 1 + (m/n)

which tells us the frequency at which the spectrum of y attains a peak. For
fixed m/n, the spectrum of y approaches a spike as n — oo, This means that as
n — 0, y tends to behave-more and more like a cosine of angular frequency
cos™ (1 — m/n)/(1 + m/n)).

What Slutsky showed, then, is that by 'successively summing and then
successively differencing a serially uncorrelated or “white-noise” process
&, a series with “cycles” is obtained.

Another use of (26) is in the analysis of transformations that have been applied
to data. An example is Howrey’s (1968) analysis of the transformations used by
Kuznets. Data constructed by Kuznets have been inspected to verify the exist-
ence of “long swings,” long cycles in economic activity of around twenty years.
RBefore analysis, however, Kuznets subjected the data to two transformations.

or w=cos"‘<
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First, he took a five-year moving average:
Z,=4L 2+ L'+ 1 + L+ L¥]X, = AL)X,.

Then he took the centered first difference of the (nonoverlapping) five-year
moving average:

V=25 —Z,_s=[L"% - L%]1Z, = B(L)Z,.
So we have that the y’s are related to the X’s by
y=3L7° -~ L[L72+ L ' +1 + L + L)X, = A(L)B(L)X,.
The spectrum of y is related to the spectrum of X by

gyle™ ™) = A(e™*)A(e*)B(e”)B(e™)g (e ™). 47)
We have
) 1 2 ] w2 _ pmiw3
Ale™ @) = = —iwj _ Z _
€™)=5 Le 5 1-e®
Thus,

(%)Z(ein — e—iw3)(e—iw2 _ eiw3)
(1 — e )1 - &)
_ (%)2(2 — (eimS + e—in))

A(e— iw)A(eim) =

2 — (eiw + e—im)
_ ®22(1 ~ cos 5w) B )21 — cos 5w)
" 20 -cosw)  1-—cosw

Next, we have B(e™ ™) = (e**5 — ¢~7%%), 50 that
B(“)B(e™™) = (% — e™ %) (g™ — %)
= (2 — (10 4 ¢7#10)) = (1 — cos 10w).
So it follows from (26) that
B2 — cos Sw)2
(1 — cos w)

where G(w) = 2[($)*(1 — cos Sw)(1 ~ cos 10w)/(1 — cos w)]. The term G(w)
is graphed in Figure 4. It has zeros at values where cos 5w = 1 and where
cos 10w = 1. The first condition occurs on [0, 7] where

gle™™) = (1 — cos 10w)g(e™™) = G(w)g.le™*).

5w =0, 2%, 4n, w=0, I, {n
The condition cos 10w = 1 on [0, =] where
1000 = 0, 27, 4n, 6%, 87, 10 or @ =0, in, Ix, ix, ¢n, ©.

So G(w) has zeros at w = 0, ix, %=, 3, n, and =
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From the graph of G(w), it follows that even if X, is a white noise, a y series
generated by applying Kuznets’ transformations will have a large peak at a low
frequency, and hence will seem to be characterized by “long swings.” These long
swings are clearly a statistical artifact; i.e., they are something induced in the data
by the transformation applied and not really a characteristic of the economic
system. With annual data, the biggest peak in Figure 4 corresponds to a cycle of
about 203 years which is close to the 20-year cycle found by Kuznets. Howrey’s
observations naturally raise questions about the authenticity of the long swings
identified by studying the data used by Kuznets.

9. A SMALL KIT OF h(e™™)s

In order to provide some feel for the effects of various commonly used filters
Figure 5 reports the amplitude and phase of h(e™") for various h(L) lag dis-
tributions.
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We have already calculated that for i(L) = 1 — L,
h(e™i) = 22 =912 5in(w/2),

as the graphs confirm.
For h(L) = 1 + L, it is straightforward to calculate

h(e—iw) — 1 + e—iu) — e—im/2(6+im/2 + e—iw/Z) — 2e—iw/2 COS(CO/Z),

which again agrees with our graphs.

Notice that for k(L) = (1 — t,L — t,L*) ™1, we have chosen (¢, t,) in the
regions of peaked spectra of our Figure 3. Notice that as required, h(e™*) is
characterized by peaks. (See Figure 3.)

10. ALTERNATIVE DEFINITIONS OF THE BUSINESS CYCLE

We have already encountered two definitions of a cycle in a single series that
is governed by a stochastic difference equation. According to the first definition,
a variable possesses a cycle of a given frequency if its covariogram displays

damped oscillations of that frequency, which is equivalent with the condition that -

the nonstochastic part of the difference equation has a pair of complex roots
with argument ( in the polar form of the root re®®) equal to the frequency in
question. A single series is said to contain a business cycle if the cycle in question
has periodicity of from about two to four years (NBER minor cycles) or about
eight years (NBER major cycles).

A second definition of a cycle in a single series is the occurrence of a peak in
the spectral density of a series. As we have seen, this definition is not equivalent
with the previous one, but usually leads to a definition of the cycle close to the
first one.

It is probably correct however that neither one of these definitions is what
underlies the concept of the business cycle that most experts have in mind. In fact,
most economic aggregates have spectral densities that do not display pro-
nounced peaks at the range of frequencies associated with the business cycle.
The peaks that do occur in this band of frequencies tend to be wide and of modest
height. The dominant feature of the spectrum of most economic time series is that
it generally decreases drastically as frequency increases, with most of the power
in the low frequency, high periodicity bands. This shape was dubbed by Granger
(1966) the “typical spectral shape” of an economic variable and is illustrated by
the logarithms of the spectral densities of real GNP, the unemployment rate, the
real wage, the Baa rate, and output per man-hour in Figure 1. The generally
downward sweeping spectrum is characteristic of a covariogram that is domi-
nated by high, positive, low-order serial correlation. Notice that the inflation
rate and- change in the real money supply do not display the typical spectral
shape, a characteristic that might have been anticipated from our study-of the
effects of applying the first difference filter 1 — L. All of the series except the
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unemployment rate, which has been seasonally adjusted, display spectral peaks
in the vicinity of four and two quarters, which is symptomatic of a seasonal
pattern of serial correlation. “Seasonal adjustment” is a process of operating
on a series with a filter #(L) that is designed to diminish the seasonal frequencies
near four and two quarters, while leaving the remaining frequencies as un-
affected as possible. Notice how this procedure has “succeeded” for the un-
employment rate and produced dips in the spectrum near four and two quarters.
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Notice how-real GNP has no spectral peak in the business cycle range, while
output per man-hour and the unemployment rate have only very modest peaks,
this despite the fact that the sample paths of all three reflect “the business cycle.”
As mentioned earlier, the fact that a spectrum does not display a peak at the
business cycle frequencies should not be taken to mean that the series did not
experience any-fluctuations associated with the business cycle. On the contrary,
as Figure 2a indjcated, a series could very well seem to move in sympathy with
general ‘business.conditions, say as identified by the NBER, and yet have no
spectral peak on the open interval (0, ). This example cautions the reader against
interpreting the lack of a peak in the spectrum at the business cycle frequencies
as indicating the absence of any business cycle in the series.

What the preeeding example does indicate is that our two preceding tenta-
tive possible definitions of the business cycle are deficient. The following defi-
nition seems to capture what experts refer to as the business cycle: the business
cycle is the phenomenon of a number of important economic aggregates (such as
GNP, unemployment, and layoffs) being characterized by high pairwise co-
herences at the low business cycle frequencies, the same frequencies at which
most aggregates have. most of their spectral power if they have “typical”
spectral shapes. This definition captures the notion of the business cycle as being
a condition symptomizing the common movements of a set of aggregates.
Figure 6 reports estimated coherences for the six variables graphed in Figure 1
over the period 19481-1976IV. Notice the high pairwise. coherences among the
unemployment rate, real GNP, and output per man-hour at the low business
cycle frequencies.

11. REPRESENTATION THEORY

So far we have generally started with a white noise ¢, as a building block and
considered constructing a stochastic process x, via a transformation

x, = B(L)g,.

In this section we reverse this procedure and start by assuming that we have a
covariance stationary process x, with covariogram c(z). We then show that
associated with every such process {x,} is a white-noise process {g,} that is its
fundamental building.block. One purpose of this construction'is to-convey the
sense in which the models we have been studying are quite general ones for co-
variance stationary processes.

Suppose that we have a covariance stationary stochastic process x, with co-
variogram ¢(t) and mean zero. We think of forming a sequence of linear least
squares projections. of x, against a sequence of expanding sets of past x’s,
{x!—lﬁ Xe—25000s xt—n}:

n
2= Z a"x,_ 1= Plx|%i_1,..., Xt nl or- X =%"+ ¢
i=1
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where Eg/x,.; =0 for i=1, ..., n by the orthogonality principle. These
orthogonality conditions uniquely determine the projection £ = Y 7_; a/x, ;.
The population covariogram ¢(z) contains all of the information necessary
to calculate the a;" from the least squares normal equations.®!

As n is increased toward infinity, it is possible to show that the sequence of
projections {£,"} converges to a random variable £, in the “mean square”
sense that!2

lim E(®, — 2,%)? = 0.

This means that for any é > 0, we can find an N(J) such that
E® —-2™2 <6

for all m > N(9), so that in the mean square sense, we can approximate arbi-
trarily well the projection on the space spanned by the infinite set of lagged x’s
with the projection of x, on a suitable finite set of lagged x’s.'® We write the pro-
jection of x, on the space spanned by the infinite set (x,_, x,-5,...) as

Re = PLx:| X~ 15 Xt-25- - -]
and have the decomposition of x, as
X = Pxlx— 1, Xpo2,-- 1 + & (48)

where ¢, is a least squares residual that obeys the orthogonality condition
Egx,_; = 0 for all i > 1. In mean square ¢, is the limit as n — oo of ¢, i.e.,
lim,_ ., E(s, — &")* = 0.

We can now state an important decomposition theorem due to Wold.!*

Theorem: Let {x,} be any covariance stationary stochastic process with
Ex, = 0. Then it can be written as

.
X, = zdjat—j + 7,
i=0

where do = 1 and where Y 2, d;* < o0,.Eg? = ¢ 2 0, Eg,e, = Ofor t # s (so
that {e,} is serially uncorrelated), E¢, =0 and E#,&, =0 for all ¢ and s (so that

1 The g,” will be unique only if there are no linear dependencies across the x,_;. The projection
of x, on the space spanned by {x,_,......, X,~,} is-unique even without.that condition.

2 Tt is ‘not necessarily true-that the sequence of 4/ settles down nicely as n — co, only that
successive £, get closer to each otherand to £, as n — co.

13 For a proof, see Anderson (1971, p. 419).

1% See Wold (1938). The proof given here parallels that given by Anderson (1971). The reader
familiar with Hilbert spaces is urged to read Anderson at this point.
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{g} and {n} are processes that are orthogonal at all lags); and {4,} is a process
that can be predicted arbitrarily well by a linear function of only past values of
Xy, 1.€., 7, is linearly deterministic. Furthermore, &, = x, — P[x,|%,_1, X;_2,.+.].
Proof: We let ¢, be the same ¢, as appears in (48), so that

& =X — P[xxlxx——b Xpm25-0e]

So ¢, is the error or “innovation” in predicting x, from its own past. Now
g, is orthogonal to {x, _;, X, 5, ...}, by the orthogonality principle. But ¢,_, is a
linear combination of past x’s:

o5 = Xgog — P[X g|Xpsmts- . J

Therefore Eg,¢,_, = Ofor all r and s. So we have proved that {g,} is a serially un-
correlated process.

Now think of projecting x, against a sequence of sets spanned by
(&5 815 - - - » &) foOr successively larger m’s. The typical projection of x, on
such a set is .

m
2" =) djti-;
i=0
where, since the ¢,_ ; are mutually orthogonal, the d; are given by
d; = (Ex,&,_j)/6%, o = Eg?.
Notice that since &, = x, — P[x,|X,—1, X,;~5, .- -] and since Eg,x,_; = 0 for all
i > 1,wehave E¢,> = Ex,¢,. Thus, we have d, = Ex,¢,/Ee,® = 1.Since the g’s are

orthogonal, the d; do not depend on m. Now calculate the variance of the
prediction error, which is

m 2 m m
E<x, -3 djs,_j) =Ex? -2 Y d;Ex,&_; + E(Zdjza,z_,-)
j=0 i=0 Jj=0
— Ex?— 262% Ex,&_;\* N Jzi Ex,&_;\*
' jso\ o? © s\ o

m
= Ex,z ad 0'2 Zdjz > 0,
i=0

where the last inequality follows because the variance of the prediction error
cannot be negative. Since Ex,? < oo, from the last inequality it follows that for
all m

m
62y d? < Ex?
j=0
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sothat }2.,d;* < o.Itfollows that Y%, d;e, _ ;is well defined, i.e., it converges
in the mean square sense.!*
Now define the process 7, by

@
Ne =X, — Z djg— ;.
j=0

Notice that for s < t we have

2
Ene, = Ex,;e, — EY dje e, ; = Ex,e; — d,_  Ee?
i=o

= Ex,g; — Ex,g, = 0.

In addition En, ¢, = Oforalls > ¢ because ¢, is orthogonal to all x’s dated earlier
than s and by construction 7, is in the space spanned by x’s dated ¢ and earlier.
Thus {r,} is orthogonal to {¢,} at all lags and leads. That is, the entire {e} process
is orthogonal to the entire {5} process.

Because 7, is orthogonal to ¢, 5, must lie in the space spanned by
{X,—1,%,_, ...} since square summable'® linear combinations of {x,_ ;, x,_,, ...}
form the space of all random variables orthogonal to ¢,.” This implies that 5, can
be predicted perfectly from lagged x’s. More precisely, project #, = x, —
Y2 0d;8,—; against {x,_y, X5, ...} to get

<D
P[”t’xt—-b'-'] = P[xxlxt—-ls--'] - Zdjat—j
j=1

since P[g/[x,_y,...] =0 and since P[e,_y|x,.,,...] = &, for k > 1. Sub-
tracting the above equation from the definition of #, gives

M — Pl g, =(x, — Px%,—q,..]) — dot, =0
since the one-step-ahead prediction error for x, is dy &,. Thus, N = P lx;—1,...],

so that 5, can be predicted arbitrarily well (in the mean squared error sense) from
past x’s alone. More generally, we have

o
P %oy Ximm 1 -] = Plxg|xpep, . ] ~ Ydej
i=k

'* That is, the sequence of ™., d,,_; is a Cauchy sequence. In articular, for n > m,
i = q p

m n 2 n
E(Z digj— Y, dj"w‘) =E< ) di2812+j)
Jj=0 j=0

j=m+1

"
=o? ¥ dA
J=me1
Since Y24 d; < 0o, it follows that we can choose an m big enough to drive 62 ¥, , 4,2 arbi-
J i g 4 g
trarily close to zero.
!¢ Those linear combinations Y2, f;x,- ; for which 2., £ < <0, so that the variance of the
sum is finite. '
'7 This is an implication of the orthogonality principle. See Anderson (1971).
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Subtracting this from the definition of #, gives

k=1
7, — Plndxi—, .. 1 = (%, — P[x;[%eop, . D) — Zodjs,_j =0
=

since Y ¥24 d,¢,_ ;isthe k-step-ahead prediction error in predicting x, from its own
past. Thus, we have proved that #, is (linearly) deterministic in the sense that it
can be predicted arbitrarily well (in the mean squared error sense) arbitrarily far
into the future from past x’s only. This completes the proof of Wold’s theorem.

The #, process is termed the (linearly) deterministic part of x, while
Z}‘;o d;e,_; is termed the (linearly) indeterministic part. The reason for the
adverb linearly is that the decomposition has been obtained by using linear
projections.

Wold’s theorem is important for us because it provides an explanation of the
sense in which stochastic difference equations provide a general model for the
indeterministic part of any univariate stationary stochastic process, and also
the sense in which there exists a white-noise process ¢, that is the building
block for the indeterministic part of x,. Not surprisingly, the construction of the
theorem can be extended to multivariate stochastic processes for which a
corresponding orthogonal decomposition exists in which the deterministic
and indeterministic parts are vectors.

As a particular example of a process that conforms to the representation
given in Wold’s decomposition theorem, consider the process

o0 n
X, = Y. djt—; + 3 (a;cos At + b; sin A;f)
j=0 i=1

where ¢, is a covariance stationary, serially uncorrelated process with mean zero
and variance ¢,%; Y 7.0 d;* < 00; a; and b; are random variables orthogonal
to the entire & process and satisfying Ea; = Eb; = Ea;b; = Ofor all i, j, Ea;a; =
Eb;b; = O for all i # j, and Ea;” = Eb;*> = ¢;%; the A, are fixed numbers in the
interval [ —m, n]. The process Y -, {a; cos ;¢ + b;sin A;t) is deterministic, is
orthogonal to the process ). d;¢,; at all lags, and is easily deduced”® to have
covariogram given by Y r—, ;% cos 4;7. As we have seen, the covariogram of

8 For example, let x(t) = a cos A, + b sin it where Eq = Eab = Eb = 0, Ea® = Eb® = o2,
Then
Ex(t,)x(ty) = E{a® cos A1, cos At, + ab(cos At cos At, + sin At, sin At,)
+ b? sin Aty sin At,}
= o*{cos At, cos AL, + sin At sin At,).
Since cos(x — ) = cos & cos § + sin « sin B, we have
Ex(t)x(t)) = 62 cos M(t; —t,) or  Ex()x(t — T) = 62 cos AT.

These calculations can easily be extended to prove the assertion made in the text.
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¥ %0 d;e,; has generating function ¢, d(z)d(z ). The spectral density of the
deterministic part turns out to be not well defined as an ordinary function.
This can be seen by noting that the ordinary Fourier transform of the covario-
gram 62 cos A;T is

© 0 it —ilt
i e +e i
0% Y cosdreT =g2 Y} (——)e d

T==00 T~ 2

2 © ei(l-w)t+e—i(l+w)t
= 3 (—F—).

T= -0

Notice that the first term can be written

=~

<« =) @
Y, EATO =1 4 Y (e T = 1 12 cos(A — w)r.
=1 =1

The series Y 2, cos(1 — w)t is not a convergent series, so the spectrum of the
deterministic part of our process is not well defined by the usual Fourier
transformation.

However, it happens that there is a sense in which the spectrum of the
deterministic part does exist, namely in the sense of a generalized function or
“distribution.” In particular, let (w) be the delta generalized function which has
“infinite height and unit mass™ at w = 0 and is zero everywhere else. That is,
(w) is defined by

f " )@ do = 40,

which must hold for all “test functions” g(w) that are continuous at w = 0.
Then the spectral density of a process with covariogram ¢? cos At is defined as

f(w) = 2r(3626(w — A) + $625(w + A)).
With the spectral density so defined, notice that the inversion formula holds, i.e.,

0 2 00 o
c(r) = % f_ f(@)e dw = % (J_ 8w — e dw + f ) 8w + Ae'r dco)

eilt + e—ih
= 0'2 e

3 ) = ¢%cos At.

Then the spectral density of the deterministic part of our process is

3 o (5(w — 1) M+ A',-)),
=1 2 2
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so the spectral density function of the deterministic part is zero except for the
singular points w = +4;,i =1, ..., n, at which the spectrum has mass ¢,%/2.
The spectral density thus has “spikes™ at the points @ = +4;.1°

12. LINEAR LEAST SQUARES PREDICTION??

It is common in economics to assume that x, is purely (linearly) indeterminis-
tic, which means that , = 0 for all ¢, or else that #, has been removed.?! Wold’s
theorem says that any indeterministic covariance stationary stochastic process
x, has the moving average representation

g
= d;g_;
i=o
or

x, =d(L),, d(lL)= id LI 49)
=0

where {¢,} is the sequence of one-step-ahead linear least squares forecasting
errors (innovations) in predicting x, as a linear function of {x,_, x,_3, ...},
i€, & = x, — P[x;|x,_q, X,—3, .. .]. (As we have seen, it is natural to normalize
d(L)so thatd, = 1,in which case 2 = Eg,? is the variance of the one-step-ahead
prediction error.)

Now suppose that d(L) has an inverse that is one-sided in nonnegative
powers of L. Where d(L) = Y ", d;L’, a necessary and sufficient condition for
d(L) to have such a one-sided inverse is that the roots p of Y 1 d;p/ = 0 all
lie outside the unit circle, i.e., all have absolute values exceeding unity. An inverse
a(L) = d(L)™* of d(L) satisfies a(L)d(L) = d(L)a(L) = I where I is the identity
lag operator I = 1 + OL + OL? + ---. Operating on both sides of (49) with
a(L) = d(L)™* gives

alL)x, =&, a(l)=a;~ i a;Li (50)
j=1

or
AoXe = X1 + A X5 + - + &

Since d,, is unity, it turns out that a, is unity also. Equation (50) is termed the
autoregressive representation for x,. While every linearly indeterministic co-

19 There are essentially two ways in which a process can be deterministic. One is if its spectral
density consists entirely of a number of “spikes” or delta functions. A second way is if its spectral
density, even though having no spikes, is zero on some interval of w’s of positive length, or is “too
close™ to zero over such an interval. Heuristically, this second possible way of being deterministic
is suggested by the Kolmogorov formula for the one-step-ahead prediction error variance ¢,? =
exp[(27)~ " f*., In g(e™*) dw] where g(e~') is the spectral density. See Whittle (1963, p. 26).

20 A key reference on the subject of this section is Whittle (1963).

21 For example, by suitable detrending and seasonal adjustment.

i
i
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variance stationary process has a moving average representation, not all of them
have an autoregressive representation. Still, those that do have both a moving
average and an autoregressive representation constitute a very wide class, and
we shall henceforth assume that we are dealing with a member of this class.22

We now derive some formulas due to Wiener and Kolmogorov for linear
least squares predictors. Let P,_;x, be the linear least squares projection of X,
on the space spanned by {x,_;, x,_;,,...}, ie,

Pojx = P[x,[x,_j, Xymjts -]

Now project both sides of (49) against {x,_;, x,_,, ...} to get

@ <0
P_x, = Zdet—lal—j = Zdj&',—j,
j=0 j=1

which follows since P,_, ¢, = 0, because ¢, is orthogonal to lagged x’s; and since
P, 1&_j=c¢._;for all j > 1, because &,_; is in the space spanned by {x,_;,
X—2,...}. We write the above equation as

Py_yx, = (d(L)/L) &4
where (). means “ignore negative powers of L, ie, (0% _,, b L), =

Y2 o h;L’. Now assuming that x, has an autoregressive representation, we can
write &,_, = a(L)x,_; = d(L)~x,_,. Substituting this into the above equation

gives
d(L 1
Pyx = (%)Jr mxx—p (51)

which is a compact formula for the one-step-ahead linear least squares forecast
of x, based on its own past.

To get a formula for the general k-step-ahead linear least squares forecast,
project both sides of (49) against {x,.,, X,_x_1, ...} to get

P _yx, = Zdjgt—j = (L)LY, &y
i=k

d(L 1
Pryr, = (%)@xk (52)

which generalizes formula (51). Equation (52) is the Wiener-Kolmogorov
formula for k-step-ahead linear least squares predictions.

22 We remarked earlier that in general the sequence of the a " in

n
Plx % g ois Xpmnd = Z aj"xt—j
i=1
does not converge as n — co. However, under the roots condition given in the text, the a;" do con-
verge. In particular, they converge to the a; of Equation (50), so that lim,., a” = a; for all
J=42....
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A. Some Examples?®

First-Order Markov: Consider the first-order autoregressive process (1 - AL)x,
= ¢, & white noise, |1] < 1, & = x, — P[x;|%X,~1,...]; we can write x, =
(1/(1 — AL))e,. We have

P_yx,=[L7'1 + AL + A2L2 + -+ )],.(1 — AL)x,_,

= (A + BL+ )1 — ALyx,

A
= ()t - e = e
More generally,
Py_yx = [L_k(l + AL +--)]4+(1 — AL)X,_;‘ = Akx!—k‘
Thus we have
Pixyp = }'kxt'

First-Order Moving Average: Suppose x, = (1 + L), ¢ white, |f] <1,
g = x, — P[x,|%,~1,...]- Then we have

1 B
P_yx, = [L7Y1 + /”—JL(m)xx—p Pyx, = -lj_—ﬁ—th—r

We also have that for k > 2,

1
P yx = [L71 + 5L)]+<m>xz—1 =0,

which can also be seen directly by projecting on {x,_y, X;~-y, - - .} both sides
of x, = (1 + BL),.

First-Order Moving Average, Autoregressive: Suppose we have

X = (1 + aL)e,, & white, la|<1, |Bl<1,

1-pL
& =% — PDalx_1,...]

We then have .
L' + aL 1— 8L
P_ix, = ( ( = )) ( )xx—l
+

a-pn ) \T+a
Lt a 1 - BL
- (1 Iy BL)+(1 ¥ aL)x“‘
B+a\/l-BL _fa+p
P_yx, = (ﬂz)(m)xt—b Poyx, = {—1 ¥ aL}Xz—x,

23 In these examples we continue to assume that Ex, = Eg, = 0. Modifying the formulas to
account for a nonzero mean of x, is trivial and involves adding constant terms to the formulas.

13. DERIVING A MOVING AVERAGE REPRESENTATION 265

which expresses the forecast of X, as a geometric distributed lag of past x’s. The
first-order mixed moving average, autoregressive model for x, thus provides a
rationalization for the familiar “adaptive expectations” model. As we let
B — 1 (from below, in order to assure that the roots condition | 8] < 1 is met),
P,_,x, approaches

Pr_yxy = {(1 + a)/(1 + al)}x,_,,
which with a < 0 is equivalent with Cagan (1956) adaptive expectations scheme
Pt—lxt = {(1 - '1)/(1 - AL)}xt—b

with @ = — 4. Notice that as § — 1 (from below), we approach the situation in

which (1 — L)x, = (1 + aL)e,, so that the first difference of x, follows a first- .

order moving average. The parameter ¢ must be negative in order that A > 0.
For the general case in which k > 1, we have

Peyx, = (L"‘(l + aL)) <1 - BL)XH‘

i—pL ) \T¥aL

(L aL ™\ 1 pr
"ot 1+aL>"""

_( g aﬂ"“)(l—ﬁL)x _B+a
= t—k = T T

-t o\ ra { +aL)
We can write this alternatively as

Ptxt+k = (ﬁk—l(ﬁ + a)/(l + aL))x,.
Notice that as § — 1 (from below) we approach the situation in which
Pixppr = (1 + a)/(1 + aL))x,,

so that the same forecast is made for all horizons k = 1. In this sense there is a
well-defined concept of “permanent x.” This was first pointed out in the eco-
nomics literature by Muth (1960), who showed that the hypothesis of rational
expectations in conjunction with the model for income (1 = L)x, = (1 + aL)e,
provides a rationalization both for the concept of permanent income and the
geometric distributed lag formula that Friedman had earlier used to estimate
permanent income in empirical work.

Xg—p-

13. DERIVING A MOVING AVERAGE REPRESENTATION

The univariate prediction formulas given above assume that one has in
hand a moving average representation for the covariance stationary, zero
mean process {x,}. Often, all that one has is the covariogram c(t) of x from which
the appropriate moving average representation must be calculated. To illustrate
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one method of finding the moving average coefficients, suppose Fhat c(7) is
simply zero for |7| > 1, so that only ¢(0) and ¢(1) are nonzero. 1t is apparent
that x, then has a first-order moving average representation

X, = dot, + di&r_y (53)

where d, and d, are to be determined, and ¢, is required to be a whit.e-noise
process of errors in predicting x, from its own past. As we shall see, this lat'ter
condition must be imposed in order to determine the d’s. For a process obeying
(53) with {g,} being a white noise with variance 0,2, it is straightforward to
calculate

) = (do® + diM)o?,  c(l) = (dody)o’. (54)

Given the known values of ¢(0) and ¢(1) that characterize the x process, these
are two (nonlinear) equations that can be solved for d, and d,, given an assumed
value for ¢,2. The equations are graphed for fixed ¢, and ¢(1) > 0 in Figure 7.
In general, the two equations determine two pairs of solutions, one pair con-
sistingofdy = a > f =d,andd, = a > f = d,, where x and ff are the positive
scalars depicted in Figure 7; the second pair is the reflection of the ﬁrs.t pair in
the negative quadrant. As ¢,” varies, the solutions for dy and d, vary in a way
easily determined from the graphs. We can forget about tht? sqlutlons in the
negative quadrant since our discussion of Wold’s theorem indicates that we
wa..c to choosed, = 1.(We are free to normalize by choosing g% so thatd, = 1.)
Which of the two solutions with d, > 0 should be chosen? The answer comes

didy = el 3

8 ==

1
o+ d2=L clo}

4 + dg? =%, o)

ed-s

dgd, = u(x),—:,

FIGURE 7
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from the condition that the derived &, process has to have a convergent series
representation in terms of current and lagged x’s. Suppose, for example, that we
choose the solution for which d; > d,. We have

X =dot& + dy&,_; or & = (1/do)x, — (d,/do)e, -4, (55)

so that ¢, cannot be expressed as a convergent series of lagged x’s. That is, the
backward solution of the above equation

1 e —dl)"
6:— —_— x_.
Pl

is not convergent because | —d,/d,| > 1. The forward solution of the difference
equation (54) is “stable” if d; > d,,. That is, as we saw earlier, we can write

fo 1 [ /apL
T de+ di L T \T T @yapn S

1 2 do)j—l
& = — — Xy ;
't dl j§1 (d1 t+j

which if |dy| < |d, | expresses ¢, as a convergent (square summable) series of
Juture x’s. Thus, if d; > d,,, the associated &, does not lie in the space spanned by
current and lagged x’s. However, if d, > d;, the associated ¢, process does lie
in the space spanned by current and lagged x’s,2* which is the condition that
will always result in choosing the correct roots of (54). The general principle is
this: in selecting among the sequences {dg, dy, d,, ...} that solve the equations
that are the general counterparts of (54), choose the representation in which
dyo.” is maximal. This selection is the unique one that makes d, ¢, the one-step-
ahead error in predicting x, linearly from its own past; the &, with this property
are said to be the fundamental white-noise process for x,. Ordinarily, we normal-
ize by choosing o,% so that do = 1. In this case ¢, equals the one-step-ahead
prediction error for x,.

As a practical matter, solving equations of the form (54) can be very tedious
because they are highly nonlinear. A method of achieving an approximation to
the moving average representation is to use c(z) to calculate an autoregressive
representation of some order n, i.e., to use the c(z)’s to fill out the elements of the
least squares normal equations required to compute the g;" in

s0 that

n
X = Z ai"x,__l» +g"
i=1

2+ By an appropriate limiting argument it can be shown that & lies in that space even if do = d,.
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where Eg"x,_; =0 for i =1, ..., n. Then an approximation to the moving
average lag operator d(L) can be taken as

(L) = (1 - Z a,."Li> o

By making n large enough, an arbitrarily good approximation®® to d(L) can be
obtained.

14. THE CHAIN RULE OF FORECASTING

The law of iterated projections implies a recursion relationship that is
sometimes very useful in a forecasting context. The relationship is known as
Wold’s “chain, rule of forecasting.” It shows how projections P,x, ., for all
k > 2 can be calculated from knowledge of the form of P,x, . ; alone.2®

Suppose that {x,} is a linearly indeterministic covariance stationary sto-
chastic process for which

-4
Pixyy = Z hsz—j,
j=0

It follows that
ProiXane1 = hoXepr + hiXppoy + -0+ Xy + M1 Xe—g + -0

Projecting both sides of this equation on (x,, x,_,, ...) gives, via the law of
iterated projections,

o
Poxisrer = hoPiXpwn + BPiXpugoy + o+ o PiXpy + Y, hwiXei. (56)
i=o

This recursion relationship is the “chain rule of forecasting™ which shows how
to build up projections of x, arbitrarily far into the future from knowledge of
the formula for the one-step-ahead projection alone.

To take an example, suppose that {x,} is a first-order Markov process so that

Pixiyy = A, Al < 1.
From application of (56) it follows that P,x,,; = #x,,j > 1.

15. SOME APPLICATIONS TO RATIONAL EXPECTATIONS MODELS

Let us return to the example.of Cagan’s portfolio balance schedule, only now
we assume that m, is a covariance stationary stochastic process and the log of
the price level now expected for next period is the linear least squares projection
of p,+, on information available at time . We then have the difference equation

m, — p,= aPp,yy — 0p,, a<0 (57)
25 Arbitrarily good in the sense that the variance of the {g"} process can be made as close as

desired to the variance of {g,} by making n large enough.
26 Interesting applications of the chain rule of forecasting occur in Shiller (1972).

15. SOME APPLICATIONS TO RATIONAL EXPECTATIONS MODELS 269

where P,p, . is the linear least squares forecast of p, , ; given information avail-
able at time t. Projecting the above equation on information available at time

t — 1 gives
Pioymy = oP,_;psy + (1 — 0)P,_yp,
or

4, 11— 1
(B L p )Pt—lpt=&Pt—1mt

where BP,_;x,.;= P, 1% 5oy and B7'P,_x,,; = Pio X4 ;4. Operating

on'both sides of the above equation with B gives

a—1 1
(1 T T B)Pt—lpt = &Px—xmx—-l-

As before, since « < 0 and (« — 1)/« > 1, we should solve this equation in the
forward direction. Proceeding exactly as with our earlier calculations, we
obtain the solution

P 1 i o j_j 1 2 o \/
SRV — j;) ] B Pr—1mx=mj;0 -1 P_ymy g,

which is identical with our earlier solution with {x,} being replaced by P,_ , {x,}
everywhere.

It is natural to guess and can be verified directly that a solution to the
stochastic difference equation (57) is then®’

1 2 a
b= Z (—_a - 1) P,m,+j.

L —ai

Now suppose that m, has the moving average representation

@
me=y d;g_;
j=0

where ) % d;* < <o and & is fundamental for m. Then we have, applying (52),

C1oa e VL)
pt_l—“j;<><°‘_1)[f~j]+8t

_ 1 dL) [ «o diLy{ o \*
_l—a[d(L)+T<l—a)+L_2<l—oc> +m:|+8'

_ L[ (Y]
T l—a|lS\l—a) L/ +Zi—(f)m"

%7 In this and the following example we set “ transient terms™ of the form cA to zero because we
are interested in obtaining solutions that are covariance stationary processes.
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which expresses the stochastic process for p, as a function of the exogenous
stochastic process for m,.

Let us now consider the supply—demand example of Chapter IX where x, is
now a covariance stationary, indeterministic random process with mean zero
and moving average representation x, = d(L)s,. Our system is naturally
modified to become

C, = —Pp, ' >0
Y, = yP- 1D + x4, y>0
I, = (P,pes1 — D) >0
Y=C+1I1—-1_,,
where Y, is production, C, demand for consumption, and I, holdings of inven-
tories. Substituting the first three equations into the fourth gives
(O + DP_yp, + (@ + B)p, = aPypryy + 0Py — X, (58)
Taking projections of both sides against information available at time ¢t — 1
gives
aPi_pivy — (v + B+ 20)P_ip, + «Py_1p g = P_ix
or
(B! — ¢ + B)P_yp, = 0" 'P,_yx,
where B™'P,_,z, = P,_,z,+,, BP,_,z, = P,..,z,..,, and where ¢ = ((8 + y)/a)
+ 2 > 0. Multiplying by B gives
(1 - ¢B+ B)P,_,p,=0"'P,_x,_,
(1 —A"'BY(1 — AB)P,_p, =« P, x,_; (59)
where [4| < 1 satisfies 4 + 27! = ¢. To ensure covariance stationarity of the

solution, we shall insist that all lag distributions be square summable. Operating
on both sides of (59) with the forward inverse of (1 — 2™ !B) gives

— Ao~
(1 - AB)Pr—J.Pt = 1— B! Pt—lxx
or

APy 1%

-2
Pip = Apy = o

NG

i

This solution for P,_,p, suggests that the solution for p, that makes p, depend
only on current and lagged information is

A&,
pe=Ap_y — p Z”szﬁb (60)
i=0
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That (60) is a solution can be verified by direct substitution into (58). We can
eliminate P, X, ; by using the Wiener-Kolmogorov formula to get

A& dL) L
Pe— Api-1 = (" &igol[ I ]+) (L) Xe

T PO e
b= lT =T, am ™

This is the solution to the stochastic difference equation (58) which expresses
p: as a function of current and lagged x’s and p’s, and which gives a covariance
stationary process for p,.

16. VECTOR STOCHASTIC DIFFERENCE EQUATIONS

Let x, be an (n x 1)-vector wide-sense stationary stochastic process that is
governed by the matrix difference equation

C(L)x, = ¢, (61)
where ¢, is now an n x 1 vector of white noises with means of zero and con-
temporaneous covariance matrix Eeée = V, an n x n matrix. We assume
Esg_ = 0,,, for all s # 0. In (61), C(L) is an n x n matrix of (finite order)
polynomials in the lag operator L:

CiL) Cip(L) -+ Ci(L)
C(L) = >
CnI(L) e Cnn(L)
where each C(L) is a finite order polynomial in the lag operator.

We assume that the matrix C(L) has an inverse under convolution c(Ly-!
= B(L); C(L)™ ! is defined as the matrix that satisfies

CL)'CL) = Lyyn

where I, is the n x n identity matrix. If it exists, C(L)"! can be found as
follows. Evaluate the matrix z transform C(z) at z = e ~** to get C(e™®). Then
invert C(e™™), frequency by frequency, to get C(e~*)~!. Finally, the matrix
coefficients C(L)™! = B(L) = }.;_, B;L/, B; being an n x n mairix, can be
found from the inversion formula

P
B;= Ef_ Cle™™) e do,

where by integrating a matrix we mean to denote element-by-element integra-
tion.

The solution of (61) is found by premultiplying (61) by B(L) to obtain
X, = B(L)g,. (62)
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The vector stochastic -difference equation :C(L)x, = ¢, is said to be an
autoregressive representation for the vector process x,. The solution x, =
B(L)e, is said to be a vector moving average representation for the process x,.
The cross-spectral density matrix of the n x 1 x, process (which has the cross
spectrum between the ith and jth components of x in the (i, j)th position) is
given by

guxle™®) = Ble™™)VB(e* Y (63)

where the prime denotes transposition. Formula (63) is analogous to the
unjvariate equation (5), and can be derived by comparable methods.

Equation (63)is a very compact formula for calculating the cross spectra.of
then x 1 x, process as a function of the fundamental parameters, the covariance
matrix V and the coefficients in C(L) (or B(L)). Equation (61) is quite a general
representation and is flexible enough to incorporate -exogenous variables and
serially correlated noises.

In Equation (61) a variable x;, is said to be exogenous if C;{L) = 0 for all j
not equal to i. This means that the row of Equation (61) corresponding to x,
becomes C;(L)x;, = &, so that x;, is governed by only its own past interacting
with the random shock ;. In this sense the evolution of x;, is not affected by
interactions with other variables in x,. This is not to say however that x;, is
uncorrelated with other components of x, since ¢; can ‘be correlated contem-,
poraneously with other s (i.e., ¥ need not be diagonal). The definition of-
exogeneity given here turns-out to-be precisely the one used by econometricians
in a time series context (see Section 18).

Serially correlated errors can be incorporated by suitably redefining the
errors as components of x,, and then modeling them as exogenous processes
that affect but are not affected by other components of x,.

A. A Compact Notation

It is always possible to write an mth-order difference equation in terms of a
vector first-order system. For example, consider the bivariate system

X041 = 01Xy F o+ CpXy o1 F O X2+
+ Uy X2, i—me1 T &1yt

(64)

Xoe1 = BiXp, e+ o F BuXpiome1 F Bus1Xa e+ 00
+ BomXz,t-me1 + €2,041

where (g;,,+1, £2,0+1) are two serially uncorrelated white-noise processes.
Equations (64).can be written as

Xy = AX + 84 (65)
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where
[o; o, O Oy Ol
1 0.--0 0 0
aolo o100 0
Bi B2t Bu Busi <o+ Bam] < (m + Dthrow
0 0 0 1 0--- 0
[0 0 0 o -..01 OJ

1 (m + Dth column

- i
€1,041
Xie41 | 0
X1, 0
_ | *t0-m+2 0
Xir1 = 3 &4y =
X2,141 £,:+1] « (m + 1)th row
X2,t 0
: 0
| X2,1-m+2]
| 0 |

The solution of the vector difference equation (65) can be written
Xepe = AX@ + et + 1)+ Aet +1— D+ -+ A et + 1), (66)

Since Ee(t + 1)x(t) = Ozpy 2, for all T > 1, multiplying the solution (66)
through by x(t)' and taking expected values gives the matrix Yule-Walker
equation

Exeyox/ = AExx/, 121, of  CD)=AC0), t>1, (67

where C,(t) = Ex(t + ©)x(t)". As before, we have the result that the covariogram

(this time the matrix covariogram) obeys the deterministic part of the difference

equation with initial conditions given by the lagged covariances that are in
C,(0).

Using the compact notation (§5), it is straightforward to show that the
cross-spectral density matrix Qe ') of the vector x process is given by

Qe™) = (€I — A)™'V(Ie ™ — 4 (69)

wher.e V = Eg,¢, and where it is assumed that the process is stationary, which
requires that the eigenvalues of 4 have absolute values less than unity.
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Assuming that the eigenvalues of A are distinct, it is possible to represent A
in the form A = PAP~! where the columns of P are the eigenvectors of 4 while
A is the diagonal matrix whose diagonal entries are the eigenvalues of A. Then

we have
A° = PA'P7Y,
so that the solution (68) can be written
C.(r) = PA'P7C,(0).

This expression shows how the eigenvalues of A govern the behavior of the
solution. It also illustrates how increasing the number of variables in the system
or increasing the number of lags in any particular equation increases the order
of the A matrix, and thereby contributes to the potential for generating compli-
cated covariograms. Reference to this point can be used to show, for example,
that while a one-variable, first-order difference equation cannot deliver a
covariogram with damped oscillations of period greater than two periods (the
periodicity if the single root is negative), a multivariate, first-order (i.e., single-
lag) system can have complex roots and may therefore generate oscillatory
covariograms.

Formula (63) or (68) has been used to summarize and analyze the stochastic
properties of linear macroeconometric models. For interesting examples of
such work, the reader is referred to articles by Chow and Levitan (1969) and by

Howrey (1971).

B. Optimal Prediction: Compact Notation

Using the fact that &, in (65) is a serially uncorrelated vector process, it is
straightforward to deduce from (66) that the projection of x, ., against x, is
given by

Plx4:lx] = A, (69)

This is a compact formula for linear least squares predictors of a vector governed
by a finite order stochastic difference equation.

Assumning that the eigenvalues of A are distinct so that 4 = PAP~ ! where A
is the diagonal matrix whose diagonal entries are the eigenvalues of 4, we can
write

Plx,scl%] = PAP ™ 'x,. (70)

As an example illustrating the use of this formula, return to the portfolio balance
example (57), which leads to a solution for the price level of the form

1 © a
D= 1 _ajz <—'—1 _a)PgmH-j

=0
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where m, is the log of the money supply. S
o Mok oo, y supply. Suppose that m, follows the second-

m = o+ oym_y + wym_, +

where P,_,{, = 0. Define

my, @W; W, W (:1
Xy ={m_y}, A=11 0 0], &=10{,
1 0 0 1 0

sothatx, = Ax,_; + &, Let ¢ be the row v
= AX;_ . ector (1,0,0,...,0),so thatm, =
Then substituting (70) into the solution for D, gives ) T

_ 12 o
) (r) ePNP™ I,

_ 1 1 _
A P[l — (a/(1 — a))ﬂi:,iip i

Where the matrix in brackets is diagonal and has A = (¢/(1 — a))A)~* as the
f{th element. "gle above derivation assumes that max; | (o/(1 — a))A;] l< 1, which
Is guaranteed® if max;|4;| < 1. The above formula is a compact representation

of the solution for p,. Notice that p, d
. p, depends on as many la,
the Markov process for m. t Y legs ofmas the order of

17. OPTIMAL FILTERING FORMULA

It Is convenient to have a formula for the projection of a random variable
y: against current and past values of a covariance stationary, indeterministic
randqm process ;. We assume that y, and x, have means of zero and are jointly
covariance stationary, indeterministic processes. That is, we seek the /. that
characterize the one-sided projection !

V= j;() hixeo; + u, (71)

where Ex _Ju = 0 for all j=> 0. First, suppose that x, has the OV verage
t t = "
pp t moving ave; 8

X =d(L)e, dL)= Y d,L’
i=0

8 Nonstationarity of {m, } in the form of max S eaves the proposed solution vali
y Al>1 11 the d solut d
p » . < 141 il P!
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where {¢,} is a serially uncorrelated process of innovations in x, ie., £ is funda-
mental for x. As an intermediate step,2® think of projecting y, on current and
past €'s:

Ve = Z ¢j£t—j + u, (72)
i=0

where Eu,¢,_; = 0 for all j > 0. We assume that x, has both a moving average
and an autoregressive representation, so that it is easy to see that {x,, x,~,...}
and {e,, &, ...} span the same space. For this reason, », in (71) equals %, in
(72). Since the ¢’s form an orthogonal process, we have that the ¢; are the simple
least squares coefficients

¢j = Ey,&,_j/ES,Z = E}"xsr—j/o-2
where ¢ = Eg,2. Thus we can write

L= oL BL) = o[ 73)
ji=0

where [ ], again means “ignore negative powers of L” and g,,(L) is the cross-
covariance generating function

gye(L) = Z E(y: St—k)Lk'
k=-—ow

We can relate g, (L) to the cross-covariance generating function g,,(L) as
follows:

9,2) = kZ(Eytx,-k)Z"
= ; (Ey, d(L)e,_)7*
= ;(Ey,(dos,_k +diggey + N
=d, ;(E%ﬁz—k)l" +d, ;(Ey,s,_k_l)z" + d, ;(Ey,s,_k_z)z" + -

= dogy::(z) + dlz_lgys(z) + dzz_zgys(z) + e
= d(z™ g,.(2)-
Thus we have g,,(z) = g,,(z)/d(z ™). Substituting this into (73), we obtain

1 (g, L
-5 (28 .

?° This is the method that Kolmogorov used to derive the formula we are after. See Whittle
(1963, p. 42).
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So we have

d(L™Y)
1 {g,4L t
-3 (5). ar e ™
so that in (71) we have
_ 1 {g,.(L) 1
h(L) = pe (m>+ a0 (75)

A classic application of this formula is due to Muth (1960). Suppose that
income evolves according to x, = y, + ¢, where y, = py,_, + u, |lpl <1, and
where u, and ¢, are mutually orthogonal at all lags and serially uncorrelated.
Here x, is measured income, while y, is “systematic” or permanent income. The
consumer only “sees” x,, X,,, ... and desires to estimate systematic income Vi
by a linear function of x,, x,_,, .... The consumer is assumed to know all the
relevant moments. This problem can be solved quickly using formula (75), and
the reader is invited to do so. A more tedious method of solution is adopted in
Chapter XII.

18. THE RELATIONSHIP BETWEEN WIENER-GRANGER CAUSALITY
AND ECONOMETRIC EXOGENEITY

We now study the conditions under which the projection of y, on the entire x
process equals the projection of y, on only current and all past x’s, ie., the
condition under which

9yx(2)/9:(2) = [9,x(2)/d(z™ 1)1 (1/d(2)07)

where g,(z) = 0% d(z) d(z™*). Sims (1972a) proved the important result that
these two projections are equal if and only if lagged y’s fail linearly to help
predict x, given lagged x’s. We shall first prove Sims’s result in a different way
than he did. The method is in the spirit of Wiener’s derivation of the Wiener—
Kolmogorov prediction formula and has certain advantages when it comes to
working Exercises 6-13.

We consider a jointly covariance stationary stochastic process {y,, x,}, with
Ex, = Ey, = 0 and with covariance generating functions g,(z), 9y(2), 9,x(2). We
assume that x possesses an autoregressive representation and that both y and x
are linearly indeterministic. We now consider the projection of x, on past values
of x and past values of y:

@ @
X=X+ Yoyt u 76)
i=1 =
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where the least squares residual u, obeys the orthogonality conditions Eu,x,_,=
Eu,y,_.=0forz = 1,2,.... Solving (76) for u, permits the orthogonality con-
ditions to assume the form of the normal equations

E{(x, -y hixe_; — Y vjy,_j)x,_.,} =0, t=12,...
j=1

=1
E{(x, - Y hix_;— Zvjy,_j)y,_,} =0, t=1,2,....
=1 =1

These equations can be written

el = Shes =D+ L vels =) )
o) = S henle =D + Y oiele =) 78)

which are required to hold only for positive integers © = 1, 2, .... Multiplying
both sides of (77) and (78) by z* and summing over all 7, we get the following
equation in terms of the z transforms

gx(2) + m(2) = h(2)g.(2) + W(2)g,(2), (79
gxy(z) + n(z) = h(z)gxy(z) + U(Z)gy(z)’ (80)

where m(z) and n(z) are each unknown series in nonpositive powers of z only.
That m(z) and n(z) are series in nonpositive powers of z is equivalent with
Equations (77) and (78) holding only for t > 1. Equations (79) and (80) are the
normal equations for h(z) and v(z).

Following Wiener, Granger (1969) has proposed the terminology that “y
causes x” whenever v(z) # 0. That is, y is said to cause x if, given all past values
of x, past values of y help to predict x. The conditions under which v(z) does or
does not equal zero turn out to be of substantial interest to econometricians and
macroeconomists, which is the reason that this concept of causality is an inter-
esting one to study.

Consider the projection of y, on the entire x process,

Ve = ) Z bsz—j + &
j=—w )
where Eg,x,_.; = 0 for all j. Under what conditions will the lag distribution {b;}
be one-sided on the past and present, so that b; = 0, for j < 0? From formula
(38) we have that

b(z) = 9,:(2)/gx(2)- @81y
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Suppose that x, has the Wold moving average representation
0
x, = d(L)y,, =% — Px|%-y,...1 z dj2 < 0.
j=o

Then

9:(2) = 0,7 d(z) d(z™). (82)
We have.assumed that x possesses an autoregressive representation so that
[d(z)]~! is one-sided and square summable in nonnegative powers of z. Now

it is always possible uniquely to factor the cross-covariance generating function
as

9y(2) = a2)p(z™") (83)

where both a(z) and ¢(z) are one-sided in nonnegative powers of z.3° Sub-
stituting (83) and (82) into (81) gives

b(z) = a(z)p(z™N/o,? d(z) d(z™").
Evidently, b(z) is one-sided in nonnegative powers of z if and only if ¢(z™1) =
kd(z™"), where k is a constant3! Under this condition (81) becomes b(z)
= ka(z)/o,* d(z). We shall assume that a(z) has an inverse that is one-sided in

nonnegative powers of z.
We can now prove the following important theorem due to Sims.

Theorem: v(z) = 0 if and only if 5(z) is one-sided in nonnegative powers of z.

Proof : Suppose that b(z) is one-sided in nonnegative powers of z. Then we know
that g,.(2) = ka(z) d(z~'). We must show that (79) and (80) are satisfied with
v(z) = 0. Now if v(z) = 0, then (79) becomes
0,2 d(2) diz™Y) + m(z) = h(z)o,? d(z) d(z™ ).
Dividing both sides by z gives
524D me) o)
z z z

o, d(z)d(z"")

where m(z)/z is now a series in strictly negative powers of z. Dividing both sides
by o,” d(z™*) gives
d(z) m(z) h(z)
“z  olzd(z ) Tz 4@
30 This can be proved by using the method of Whittle (1963, p. 26).

) 3! From the optimum filtering formula (74) we have that the z transform [(2) of the coefficients
f; in the projection of y on current and past x’s is given by

g -1
- 2[5 5

+ Gy
Evidently, f(z) = b(z) if and only if ¢(z" 1) = kd(z™ ).
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The term m(z)/z d(z~!) involves only negative powers of z, while the term
h(z) d(z)/z involves only nonnegative powers of z. Therefore, we have

d h(z) @] 1 _
[—(Z-Z—)]+ =72d(z) or Z[TL = e (84)

ichisj iener— he foregoing is Wiener’s
which is just the Wiener—Kolmogorov formula. In fact, t n ;
derivation of that formula. Now if »(z) = 0 and g,,(z) = ka(z) d(z™ "), Equation
(80) becomes

ka(z™Y) d(z) + n(z) = h(2ka(z™*) d(z).
This can be rewritten as

do)  _n@) _hE) (85)
z zka(z™ 1) z
in, si “Hi i i f z, the solution
Again, since n(z)/zka(z ™ !) involves only strictly negative powers of z, : :
ofg this equation is the Wiener-Kolmogorov formula (52_). Therefore, if b(z) is
one-sided in nonnegative powers of z, the normal equations (79) and (80) are
both satisfied with v(z) = 0 and

h(z) = 2[d(2)/z] . d(z)~".
Now suppose that the normal equations (79) and (80) are satisfied with
v(z) = 0. Then Equation (80) becomes

1
@az™) + n(z) = z[@] 15D

Dividing both sides by za(z™1!) gives

40, n@) [d(z>] $G) )

z ) [z |, d@

where n(z)/za(z ™ !) involves only negative powers of z. Since the right-'hand side
involves only nonnegative powers of z, applying [ ], leaves the right-hand
side unaltered, so that (86) implies

d(2)[$(2)/z]+ = [d(2)/z] $(2).

This equation can be satisfied only if ¢(z) = k d(z), where k is a constant. This
completes the proof.

In words, Sims’s theorem asserts that the projection qf y on the ?ntire.x
process equals the projection of y on current and past x’s if and only if y fails
to Granger cause x (i.., y fails to help predict x).

18. WIENER-GRANGER CAUSALITY AND ECONOMETRIC EXOGENEITY 281

Example: Suppose that
9:(2) = (1 + 04z)(1 + 04z™1), 95z) = (1 — 02z)(1 — 0.2z™Y),

(1-02z2)
) = T—ggpr
The projection of y on the entire x process has coefficient generating function

Fy<(2) _ 1—-02z
9:z) (1= 09271 + 04z)(1 + 0.4z~ 1y’

which has nonzero coefficients on negative powers of z (expand the polynomial
in z by partial fractions to verify this). Therefore y Granger causes (helps
predict) x. The projection of x on the entire Y process has the coefficient generat-

ing function
92) _ gulz™h) _ 102,71
93 g0 ~ (1- 0921 - 0221 =022
1
(1 —092)(1 — 022’

which involves only nonnegative powers of z. Therefore x fails to Granger
cause y (i.e., given lagged y’s, x fails to help predict y).

To gain additional perspective on Sims’s theorem, we now undertake to
indicate the proof that Sims gave. We do this not only because the theorem is
very important, but because his proof provides useful practice in projection
arguments and useful insights into the nature of bivariate Wold representations.

Let [5] be a bivariate, jointly covariance stationary stochastic process.
Suppose that [3] is a strictly linearly indeterministic process with mean zero.
Under these conditions, the bivariate version of Wold’s theorem states that there
exists a moving average representation of the (x,, y,) process

[x,] _ [c“(L) c”(L)][et]

' L) (L) |,

where ¢V(L) = Z,?;o ¢fL* are square summable polynomials in the lag operator
L that are one-sided in nonnegative powers of L; g and u, are serially uncorre-
lated processes with Eu,s, = 0 for all 4, s; Eg® = 0.2, Eu? = 0,2; and where
the one-step-ahead prediction errors are given by

— Al1 12
Xy — P[xtlxr—l:-~-aYz—1a~--] =Co & + co%uy,

—_ 21 22
Ve — P[ytlxt—l""5yt—l""] =08 + ¢ uy,
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i.e.,, e and u are “jointly fundamental for x and y.”32 Wold’s theorem establishes
the sense in which a vector moving average is a general representation for an
indeterministic covariance stationary vector process. The theorem can be
proved by pursuing the same kind of projection arguments used in proving the
univariate version of the theorem. Below, we shall show how to construct a
Wold representation from knowledge of the covariograms of x and y and their
Cross covariogram.

We now make the further assumption that the (x,, y,) process has an auto-
regressive representation. In particular, think of constructing a sequence of

pleeCt’lODS
| xt:' F n‘ X1 l .. F ,,l xt—n:l | Ayt ’ (87)
t Vi—1 Vi—n ayl

where F", ..., F," are 2 x 2 matrices of least squares coefficients and we have
the orthogonality conditions

Xe—j | u _— 00
E[yr-j][a’“ ol = [0 0]

forj=1,..., n. We assume that as n — oo, the F," converge to F; for each j.
This is the assumption that (x,, y,) possesses an autoregressive representation
and is stronger than the conditions required for (x,, y,) to have a vector moving
average representation. We can write the autoregressive representation for

(xh yt) as
x| _ Xi—j Ay
[,V::I B j;Fj[ t—i:’ * Iia,.,]
= F(1) x“‘] + [Z‘] F(L) = iFij“
=1

t—1 'yt

where the random variables (a,, a,) obey the least squares orthogonality

conditions
X¢-j _|0 0
E [yt—j] [axt ayt] - [0 O:I

for all j > 1. The random variables (a,,, a,,) are the one-step-ahead errors in
predicting (x,, y,) from all past values of x and y.
Now consider obtaining the following representation for the (x,, y,) process:

A(L)B‘:] = [j:' or (Ao — AL — A,L2-. )[’y‘] = [ZJ (88)

32 The statement “{s,} and {u,} are jointly fandamental for {x,, y,}” means that the one-step-
ahead errors in forecasting (y,, x,) from past x’s and y’s are linear combinations of &, and u,.
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where A;is a 2 x 2 matrix for each j, where A, is chosen to be lower triangular
and [3t] are pairwise orthogonal processes (at all lags) that are serially un-
correlated. Can we be sure that such a representation can be arrived at, in
particular one with 4, being lower triangular and ¢ and u being orthogonal
processes? The answer is in general yes,3® as the following argument suggests.
Think of projecting x, against all lagged x’s and lagged y’s. This gives the first
row of A(L) and gives a least squares residual process ¢, that is by construction
orthogonal to all lagged y’s and all lagged x’s. Next project y, against current
and lagged x’s and all lagged y’s. This gives the second row of A(L) and delivers
a disturbance process u, that is by construction orthogonal to current and
lagged x’s and lagged y’s. This procedure produces an 4, that is lower triangular
as required. Further, notice that since ¢, is orthogonal to all lagged x’s and Vs
and since the representation (88) that we have achieved permits lagged ¢’s and
u’s to be expressed as linear combinations of lagged x’s and V’s, it follows that g,
is orthogonal to lagged u’s and ¢'s. A similar argument shows that u, is ortho-
gonal to lagged u’s and ¢'s. Finally, since by construction u, is orthogonal to
current and lagged x’s and lagged y’s and since ¢, is by definition a linear com-
bination of current and lagged x’s and lagged y’s, it follows that u, and ¢, are
orthogonal contemporaneously.

To check that he understands this construction, the reader is invited to
verify that it would also be possible to choose 4, to be upper triangular with a
new and generally different error process [#] that satisfies the same conditions
on second moments that the [¥] process satisfies.

To get (88) in a form that is useful for studying prediction problems, pre-
multiply (88) by 45! to get3*

coanfz]- ]

33 We have remarked earlier that the vector moving average representation of a vector process
z, in terms of the vector noise n,, z, = C(L)n,;, where the components of n, are white noises that are
mutually orthogonal at all lags, is a very general representation. An autoregressive representation
for z, can be obtained by inverting the preceding equation to get A(L)z, = n, where A(L) = C(L)~ 1,
which is to say A(e™*) = C(e~*)~! for each w between — and 7. The autoregressive representa-
tion exists provided that C(e™ ') is invertible at each frequency between — = and . This condition
is a restriction but is one that can usually be assumed in applied work. (For an example of a
C(e™'®) that violates the condition, consider the univariate example Cle™™) = [ — e~*“—the
transform of the first difference operator 1 — L—which equals zero at & = 0 and so is not invertible
there.)

34 Notice that (89) is identical with (87) for n = 0, so that we must have F; = 4,7 !4,

()= ()

Qy u,

Notice that (ay, a,,) are by the orthogonality conditions serially uncorrelated and uncorrelated
with one another at all nonzero lags.
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[x'] = AFHAL + A, L% + --~][x'] + Agl[g‘]
Vi Ve U,

= A(;IH(L)L’:'] + Agl[z'] (89)

T

or

where H(L) = A;L + A,L* + ---. The linear least squares prediction of the
[3:] process based on all lagged x’s and all lagged y’s (call it P,_,[¥]) from (89)

is then
X, X, X,
P_ |7 = AgtHW)| ' = FQLL ™!
l[yf:l o ( )[yt] @ [yt]

since by construction P,_[:] = 0. The one-step-ahead prediction errors in
predicting the [] process are given by

&,
A
° I:“r]

Thus x prediction errors and y prediction errors are contemporaneously cor-
related so long as 4, is not diagonal. Notice that since 4 is lower triangular, so
is Ag!, so that ¢, is the one-step-ahead prediction error in predicting x from
past x’s and y’s which is what should be expected given the way the ¢, process
was constructed above.

If A5 LA(L) is lower triangular (i.e., the matrix coefficient is lower triangular
for each power of L), then given lagged x’s, lagged y’s do not help predict current
x. That is, if A5 *4(L) is lower triangular, and, therefore, so is A5 *H(L), then
P,_,x,involves only lagged x’s, lagged y’s all bearing zero regression coefficients.
In the language of Wiener and Granger, y is said to cause x if given past x’s, past
y's help predict current x. Thus, the lower triangularity of A5 1 A(L) is equivalent
with y’s failing to cause x, in the Wiener—Granger sense.

Given that Ay ! is lower triangular, we now claim the following: 44 'A(L)
is lower triangular if and only if A(Z)™! is lower triangular. To show this,
suppose first that 45 *A(L) is lower triangular. Then note

A(L) "' = A(L) 4,45
But we know that A(L)~!4,, being the inverse of Ag ' A(L), is lower triangular,

asis 45 *. Noting that the product of two lower triangular matrices is also lower
triangular then proves that A(L)™! is lower triangular.33

35 To make the argument in terms or ordinary matrices, write A(e™*)™* = A(e™ ™)~ 4, Ay~
and note that A(e™**)"' A4, is the inverse of the lower triangular matrix Ay '4(e”™) at each fre-
quency and so is lower triangular. It follows that A(e™™)" ! is lower triangular (at each frequency)
being the product of two lower triangular matrices. It then follows that

4,7 = (1/2m) =, Ae™ ) i dgy

is lower triangular forj =0,1,2,....
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Now suppose that A(L)~! is lower triangular. Since A, is lower triangular,
it follows that A5 ' A(L) is lower triangular. So we have proved that 45 *A(L) is
lower triangular if and only if A(L)™! is lower triangular.

This establishes that if Ay *A(L) is lower triangular, then (88) can be “in-
verted” to yield the vector moving average representation

HRA

where A(L)™' = C(L) = Co + C{L + C,L? + ---, C; being a 2 x 2 matrix,
and where C(L)is lower triangular. Recall the extensive orthogonality conditions
satisfied by & and u: the ¢ and u processes are orthogonal at all lags, even con-
temporaneously.*® Conversely, suppose that a moving average representation
of the lower triangular form (90) exists with ¢, and u, being serially uncorrelated
processes with Egu; = 0 for all t and s. Then assuming that C(L)~! exists and
equals A(L) gives a representation

wrli-[] « wfl-(]
Ye U Y u,

where A(L) is lower triangular and one-sided on the present and past. It follows
then that y fails to Granger cause x.
We have now proved Sims’s important theorem 1 which states:

Let (x,, y,) be a jointly covariance stationary, strictly indeterministic
process with mean zero. Then {y,} fails to Granger cause {x,} if and only if
there exists a vector moving average representation

x| [t 0 X
: L) (L) ||w
36 Assuming that things have been normalized so that & and u have unit variances, the spectral
density matrix of the (x, y) process satisfying (90) is, as we have seen,

S(e™) = Cle™*)IC(e™ ™y

where the prime now denotes both complex conjugation and transposition. Now let U bea 2 x 2
unitary matrix, i.e, a 2 x 2 matrix satisfying UU’ = U'U = I where here the prime again denotes
complex conjugation and transposition. Then note that S(e™*) can also be represented

Se™") = Cle™™)UIU'Cle™) = [Cle™“)UN[Ce*)UT
= D(e™*)ID(e” "y

where D(e™ ") = C(e™*")U. Thus, we have produced a new moving average representation, one
with contemporaneously orthogonal disturbances. This proves that a moving average representa-
tion is unique only up to muitiplication by a unitary matrix. Notice that multiplication of C(e™)
by U will, in general, destroy the lower triangularity of C(e~™) if C originally has this property.
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where ¢, and u, are serjally uncorrelated processes with means zero and
Ee,u; = 0 for all ¢ and s, and where the one-step-ahead prediction errors
(xr - P[xtlxt—l,- oY1 ]) and (yt - P[y,lx,_l, [EEES /S TR -])areeaCh
linear combinations of & and u, (Sims, 1972a).

We are now in a position to state a second theorem of Sims that characterizes
the relationship between the concept of strict econometric exogeneity and
Granger’s concept of causality. Sims’s theorem is this:

y: can be expressed as a distributed lag of current and past x’s (with no
future x’s) with a disturbance process that is orthogonal to past, present,
and future x’s if and only if y does not Granger cause x (Sims, 1972a).

The condition that y can be expressed as a one-sided distributed lag of x with
disturbance process that is orthogonal at all lags to the x process is known as
the strict econometric exogeneity of x with respect to y. In applied work it is
important to test for this condition since it is required if various estimators are
to have good properties. It is interesting that engineers have long called a
relationship in which y is a one-sided (on the present and past) distributed lag
of x a “causal” relationship, and that this long-standing use of the word cause
should happen to coincide with the failure of y to cause x in the Wiener-
Granger sense.

First we prove that y’s not Granger causing x implies that y can be expressed
as a one-sided distributed lag of x with a disturbance process orthogonal to x
at all lags. The lack of Granger causality from y to x is equivalent with AGTA(L)
being lower triangular. As we have seen, this implies that C(L) in (90) is lower
triangular, so that

x, = C*'(L)e,, ©n
Y = CZI(L)Et + CZZ(L)uu 92

where all polynomials in L involve only nonnegative powers of L. Inverting
(91) and substituting into (92) gives®’

ye= CHDCHL) "%, + C**(L)u,

which expresses y; as a one-sided distributed lag of x (no negative powers of
L enter) with a disturbance process u, that is orthogonal to ¢, and therefore to
X, at all lags. This proves half of the theorem.

To prove the other half, one would start with a one-sided lag distribution
and a moving average representation for x,

Yo = KL)x, + 1n,, %, = a(L)e,,

37 In assuming that (x,, y,) has an autoregressive representation we have in effect assumed that
C'!(L) has an inverse that is one-sided in nonnegative powers of L.
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where by hypothesis # is orthogonal to x and therefore to ¢ at all lags. Then by
finding the moving average representation for #,, say #, = m(L)u, where
Eue; =0 for all ¢, 5, one gets the lower triangular vector moving average
representation

Ve = h(L)a(L)s, + m(L)u,, x, = a(L)s,

x| &
[y,] - C(L)[“J

where C(L) is lower triangular. Assuming that C(L)™! exists then gives

_i| X _ | &
cw x]_ [“t]

where C(L)~ ! is lower triangular and say equal to A(L). Multiplying the above
equation, which is in the form of (90), through by Ag !, which is also lower

triangular then gives
X, €
Ag AL ']:A*‘[‘]
o A( )[.Vz oy

U — 45" 4L — 454, L% — -] xt] - Ao_l[ftt]'
t

1

or

or

The lower triangularity of the matrices on the left and the orthogonality prop-
erties of ¢ and u establish that in this system y does not Granger cause x, i.., y
does not help predict x given lagged x’s. This proves the other half of Sims’s
theorem 2. :

19. SIMS’S APPLICATION TO MONEY AND INCOME

Economists at the Federal Reserve Bank of St. Louis (Andersen and Jordan,
1968) have computed estimates of one-sided distributed lag regressions of (the
log of) nominal income (y,) against (the log of) money (m,):

Ve = Z hjmt—j + s 93)
i=o

where En,m,_; = 0for j =0, 1,2, .... Those economists recommend that the
h; be taken seriously and be regarded as depicting the response of nominal
income to exogenous impulses in the money supply. However, Keynesian
economists have tended not to regard the h; as good estimates of the response
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pattern (or “dynamic multipliers™) of nominal income to money. Their argu-
ment has two parts. First, in the kind of macroeconometric model the Keynesians
have in mind, even were it true that money had been made to behave exogen-
ously with respect to nominal income, the “final form” for money income has
many additional right-hand-side variables not included in (93), e.g.,

-] @
V= Zvjm,_j-i- ijz,_j+8, (94)
i=0 i=0
where z, is a vector of stochastic processes including government tax and ex-
penditures parameters and w; is a vector conformable to z,; the error term &,
is a stationary stochastic process that obeys the orthogonality conditions
Eem,_;=Eez,_j=0forj=0, +1, +2,....

The strong condition that & must be orthogonal to m and z at all leads and
lags is the requirement that m and z be “strictly econometrically exogenous with
respect to y” in relation (94). These orthogonality conditions characterize
(94) as a “final form” relationship. In (94) the v; are the dynamic money multi-
pliers and depict the average response of y, to a unit impulse in m, holding
constant the z’s. Applying the law of iterated projections to (94), we obtain

@0 oo
Ply|me,m_y,...]= Z v;my-; + Z wy Plz,_y|my, M_y,...].
j=0 k=0

Let PLz,_i|me, me_y, ... ] = Y20 og;m, ;. Then we have3®

o0 @ @
PD/tlmn mi_1,. ] = Z v+ Z Wy Zakjmz—j
<o k=0 j=0

or

Ve = Z (Uj + ) Wk“kj)mr—j + 1, ©5)

i=0 k=0
where by the orthogonality principle we have En,m,_; = 0,j = 0,1,2,.... Now
(95) is identical with (93), so that the population h; of (93) obey

[ee]
h;=v; + kzowkockj.

Therefore, the &; in general do not equal the money multipliers, the v;. The h;
are “mongrel” coefficients that do not indicate the typical average response of y
to exogenous inpulses in m, everything else, namely the z’s, being held constant.
For this reason, Keynesians would argue, estimating Equation (93) is not a
good way of estimating the dynamic multipliers, the v;.

38 This is a version of H. Theil’s “omitted variable theorem.” See Theil (1971, pp. 548-550).
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Now project both sides of (94) against the entire sequence {m, }2 _, to get

= Zohjmt—j + 2w Y Pgme+ & 96)
i= k=0

j=-x

where E{,m,_; = 0 for all j and

w0
P(Zx—k|{mr—j}?;—eo) = Z PrjMu—j
=—w

=
where 7,; is a vector of coefficients. We can write (96) as

P(ytl{mz-,-}}';-m) = ._Z djmt—j

J
where

h; + Z Wi Vi izo,
e k=0

I o
Z Wi Vkjs j<ao.
k=0

In general, so long as the processes m, and z, are correlated (as we had to assume
to make the argument that the St. Louis k; are mongrel parameters), the y, ;and
therefore the d; will not vanish for some j < 0. That is because in general future
m’s will help explain current and past z,.>® Therefore, so long as the w, are not
zero in the final form (94), i.e., so long as the z’s appear in the final form for y,,
the projection of y, on current and lagged m’s is predicted to be two-sided. For
this reason, a test of the null hypothesis that the projection of y, on the entire
{m} process is one-sided (i.e., it equals the projection of y, on current and past
m’s alone) can be regarded as testing the null hypothesis that the w, in (94) are
zeros. But remember that the contention that the w, are not zero is what under-
lies the Keynesian objection against interpreting the St. Louis equation’s h; as
estimates of the dynamic money multipliers. So computing the two-sided
projection

Ye= Y &m_;+ 4, 97
j=—w

where Efj,m,_; = 0 for all j, and testing the null hypothesis that §; = 0 for all
J < 0 provides a means of testing the null hypothesis that the St. Louis equation

is “properly specified”—i.e., that it is appropriate to set the w, equal to zero.
Using post-World War II U.S. data, Sims estimated (97) and implemented
the preceding test. He found that he could not reject with high confidence the
hypothesis that future m’s bear zero coefficients in (97). In general, if the Keynes-
ian objection to the St. Louis equation were correct, in large enough samples

3 Unless m, is strictly exogenous with respect to the vector z, or, equivalently, the vector z
does not Granger cause m,.
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one would expect to reject the hypothesis tested by Sims. Sims’s particular
statistical results have provoked much controversy. Since his tests are subject to
the usual kinds of type I and type II statistical errors, there is some room for
disagreement about how far his results go in confirming using the St. Louis
equation to estimate money multipliers. Nevertheless, it should be recognized
how much of a contribution Sims made in providing a formal statistical setting
in which one could in principle subject to statistical testing the Keynesian claims
made against the St. Louis approach. Before Sims’s work, those claims were
entirely a priori and, though they had been made repeatedly, had never been
subjected to any empirical tests.

As it happens, the test implemented by Sims is also useful in discriminating
against another hypothesis which has often been advanced to argue that the
St. Louis equation (93) is not a legitimate final form (i.e., does not have a dis-
turbance that obeys the requirement that it be orthogonal to past, present, and
future m’s). The argument is that the money supply fails to be exogenous in (93)
because the monetary authority has set m via some sort of feedback rule on
lagged y’s. For example, it is often asserted that the Federal Reserve “leans
against the wind,” increasing m faster in a recession, more slowly in a boom. If
the Fed behaved this way, it could mean that the projection (93) of y on m partly
reflects this feedback from past y to m as well as the effect of m on y. Furthermore,
such behavior by the Fed would in general lead us to expect the projection of y
on the entire m process to differ from the projection of y on current and past
m’s, so that the #, in (93) would not obey the restrictions En,m,_, = 0 for all s;
i.e., (93) would not be a final form.

Now Sims’s theorems assure us that if the projection of y, on {m,_ AR, ls
one-sided on the present and past (as Sims was unable to reject), then there
exists a representation (i.e., a model consistent with the data) of the form

m = C“(L)S,, ye=d(Lym, + CZZ(L)ut
where Eu, e, = Oforallt,s,and d(L), C**(L), C**(L) are one-sided on the present
and past. This representation is one in which there is no feedback from y to m.
Thus, Sims’s results are consistent with (but do not necessarily imply) the view
that there was no systematic feedback from y to m in the sample period he
studied.

Sims’s work on money and income was important because it provided a
valid framework for testing empirically some often-stated objections to inter-
preting St. Louis regressions as final form equations.

20. MULTIVARIATE PREDICTION FORMULAS

Continue to assume that (x,, y,) is a jointly covariance stationary, strictly
indeterministic process with a moving average representation

Xe| iy c*Wfe _ &
[ ] = [c“@) c”@] H = C(L’[ut]
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where Eg,u, = Ofor all ¢, s, {e,, u,} are jointly fundamental for (x,, y,), and where
C(L)™* exists and is one-sided and convergent in nonnegative powers of L, so
that (x,, y,) has an autoregressive representation

-]« -]
B3 Y, ¢ Uy

where A(L) = C(L)~'. Paralleling our calculations in the univariate case, it is
easy to deduce that the projection of (x,.;, y,+1) against {x;, X, 1, ..., ¥,
Ve—1, -3, callit P[54, is

e+ 1

xer] _ (Cm) [&] _ (cw %
?l- (). L]- () o]

More generally, we have

P,[x‘“] = (C(f)) A(L)[x‘]
Vi L/, Ve

These results extend in a natural way to n-dimensional stochastic processes.
In particular, the n-variate version of Wold’s theorem implies that if {y,} is an
n-dimensional, jointly covariance stationary, strictly indeterministic stochastic
process with mean zero, it has a moving average representation

Ve = C(L)e, (98)

where C(L) = Co + C,L + ---, C; being an n x n matrix and the C; being
“square summable,” where ¢, is an (n x 1)-vector stochastic process, where the
component g are serially uncorrelated and mutually orthogonal (at all lags),
Eg;e; = 0 for all t, s where i # j; and the s, are “jointly fundamental for y,,”
Le,foreachi,y;, — (Pyi|yi-1>¥:-2,. . )isalinear combination ofg;,j = L,...,n.
For the process (98), we have the prediction formula

Ex)’x+j = [C(L)/Lj]+ &

where E(x) = Ex|y,, y,-y, - ... Where C(L)™! exists, so that y, has a vector
autoregressive representation, then we also have the formula

,Etyt+j = [C(L)/Lj]+ C(L)“y,-

To take an example, let R, be the rate of n-period bonds, and assume that
(R, Ry,) has moving average representation

Ry = a(L)e, + B(LYw;, n>1, Ry = p(L)e + (L), (99)
where all lag operators are one-sided on the present and past, and

Ry — PioyRy = 098, + Bouy, Ry — P yRyy = 708 + Spusy.
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The rational expectations theory of the term structure asserts*®

1
R, = ; [er + PRyjyy + - + PtRll""'—l]

[ @ + 112 V(L) T z(%)l]

+Haw + @ bt 32

11 —-—L7" 1ijl1—-L"
R, = " [[ﬁ]?(fa)]fz + W [[ﬁ]‘xmluv (100)

Thus, comparing (99) with (100), it is seen that the rational expectations theory
of the term structure imposes the following restrictions across the equations of
the moving average representation of the (R,,, Ry,) process:

e e ) KL CER =

These restrictions embody the content of the theory and are refutable.

or

EXERCISES

1. (Sims’s approximation error formula) Let (y,, x,) be jointly covariance stationary with means
of zero. Let the projection of y, on the x process be

®
Y blxi.

2w

Suppose a researcher fits by least squares

Z bi'xej + 1,
==

where u, is a disturbance and {b;'} is a constrained parametrization so that b;' cannot equal b,°
for all j. Some examples of commonly encountered constrained parametrizations are:

(i) truncation: b;' = 0 for | j| > m, m a fixed positive integer;

(i) polynomial approximation: b;' = oy + &,j + + -+ + «,j", m a fixed positive integer, «;
free:

(iif) Pascal lag distributions (Solow)

biL) = =Ly

where r is a fixed positive integer and |4| < 1.

40 Assuming that information used to forecast R, is confined to current and past R,, and
R, alone.
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Derive Sims’s formula, which asserts that in population, least squares picks b;' to minimize

Jm [6%e™) — ble™ ") |25 (e~ ") duw.

Hints: (a) Write y, as

Eg,x,_; = 0 for all j. Then show that

@ 2
E(y,— Y b,-‘x,_j) = E(z?)

j=-w

where

Y B0 = bx; + .
i=—w

(b) Apply formula (26) to calculate the spectrum of z,. (c) Apply formula (20) to calculate the variance
of z, (see Sims, 1972b).

2. (*Optimal” seasonal adjustment via signal extraction) Suppose that an analyst is interested
in estimating x, but only observes X, = x, + u, where Ex,u, = 0 for all ¢ and s, and where X, and
u, are both covariance stationary stochastic processes with means of zero and known (to the analyst)
covariance generating functions g.(z) and g,(z) respectively; g,(e”*) > 0 for all , but has most of
its power concentrated at seasonal frequencies. The analyst estimates x, by the projection

the projection of the unknown x, on the X, process.

A. Derive a formula for the #; (use (38)).

B. Prove that gi(e™) < g.(e™*) for all w. :

C. Prove that if g.(e ™) is relatively smooth across the seasonal and nonseasonal frequencies,
then since g,(e” ) has big peaks at the seasonal frequencies, it follows that gs(e™ ") will have sub-
stantial dips at the seasonal frequencies.

3. Let x, be any covariance stationary stochastic process with Ex, = 0.
A. Prove that there exists a representation

@
X, = chu,,,j + 6,
i=0

where ¢y = 1,3 ¢/ < o0, Eu,® 2 0, Eu,u, = Ofor ¢ # s and Ef,u, = 0 for all £ and s; 0, is a process
that can be predicted arbitrarily well by a linear function of only future values of x; and
U =X, — Plx| %00y Xpaz,. ]

B. Prove that ¢; = d; where d; is the object in Wold’s theorem.

C. Does u, = ¢ where ¢, is the object in Wold’s theorem? Does Eu,2 = Eg,2?

D. Does 8, = 5, where . is the object in Wold’s theorem?

4. Consider the “explosive™ first-order Markov process y, = Ayt e, t=12,...,A>1,
where ¢, is white noise with mean zero and variance ,2, and y, is given.
A. Prove that for each realization (g,, &, .. .,) the y, process has the representation

Y= 210 + U

1
1-A"'L
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where u, is a white noise. Find formulas for 7, and u, in terms of the & process, 4, and y,. (Hint:
solve the difference equation forward and impose the initial condition.)
B. Is the u, process “fundamental” for y,?
5. Consider the univariate first-order mixed moving average, autoregressive process
z, = Az,_; + a, — Ba,_, where a, is a fundamental white noise forzand 0 < f < 1,0 <A < L.
A. Write the process in the form (65). (Hint: try x, = (z,,a) and g, = (a,,_ a).) ]
B. Use formula (70) to derive a formula for P[z,..]z,,2,-,,...]. Verify that this answer
agrees with the result of applying the Wiener-Kolmogorov formula (52).
6. For the processes below, determine whether x Granger causes y ahd whether y Granger causes x.
A.

1 1
1-09z1—-09271

,x(2) = 6,(1 — 0.82)(1 + 0.527 ).

g{2) = a2 g4(2) = ¢, (1 — 0.82)(1 — 0.8z7 "),

B.

1 1
g:(2) = o2 (1 +0992)(1 +099z7"), g 2) = U"z(l o T 0.322) (1 e 0'32_2),

g5x(2) = 6,(1 + 0.22)(1 + 0.99z7").

1
RSV AN N R A A
9= ‘\i—or/\1=07-1) % 1= 082/\] — 082
- o =ew) (r=7)
92 = ol 5 \T 0771

7. Consider the simple Keynesian macroeconomic model
@ @
o= ybY_;+¢, YbP<ow, ¢+l =Y, (*)
j=0 j=0

where ¢,, Y;, and I, are consumption, GNP, and investment, respectively, all measured as deviations
from their means. Here ¢, is a stationary disturbance process that satisfies Eg, - I, = Eg, = 0 for all
t and s and I, is a stationary stochastic process. Assume that (1 — b(L)) has a one-sided, square
summable inverse in nonnegative powers of L.

A. Determine whether Y Granger causes I.

B. Determine whether ¢ Granger causes Y and whether Y Granger causes c. (Hint: solve for
¢, and Y, each as “reduced form” functions of I and ¢, then apply formula (18) to calculate the cross
spectrum and use formula (38) to investigate Granger causality.)

C. Is the consumption function () a projection (regression) equation?

8. Consider a (y, x) process that has a Wold moving averadge representation

yi = a(L)e, + ka(Lys,,  x, = c(L)e,

where k is a constant, a(L) and c(L) are each one-sided on the past and present and square summable,
Eu, = Eg, = Eu,e, = 0 for all ¢ and s, and where ¢, and u, are jointly fundamental for y and x.
Finally, assume that both a(L) and ¢(L) are invertible, i.e., have square-summable inverses that
are one-sided in nonnegative powers of L.

A. Determine whether y Granger causes x and whether x Granger causes y.

B. Find the coefficient generating function for the projection of y on the entire x process.
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C. Find the coefficient generating function for the projection of x on the entire ¥ process.

D. Obtain a different Wold moving average representation for the (y, x) process. (Hint: choose
one white noise process as 1, = ¢, + ku,, and choose the other as 7,,, the error in the projection of
& on & + ku, & = plku, + &) + 1, where r,, is a least squares disturbance.)

9. Consider Lucas’s aggregate supply curve
Ye=yp — PolQ D+ Ay 1, 0<[A[ <L >0 )

where y is the log of real GNP, p the log of the price level, and u, a stationary random disturbance
process. Suppose that p, follows the Markov process

= LW+ ®
i=1 :

where P[e,|Q, ] = 0. Here Q,_, is an information set including at least lagged y's and lagged p’s.
A. Suppose that Pu,|Q,_, = 0, so that 4, is serially uncorrelated. Prove that p fails to Granger
cause y. (In fact, this can be proved where p follows any arbitrary stationary stochastic process
and is not dependent on p following (1).)
B. Now assume (1) and suppose that u, is serially correlated, and in particular that

y=pu_ +§&, O<l|pl<i
where P[£,[Q,_ ] = 0. Prove that p Granger causes y by calculating
POyl Ye-1s YVemzsvves Peoss Prmzs e o]

10. Suppose that y, fails to Granger cause x, where both y and x are seasonally unadjusted processes.
Suppose that an investigator studies seasonally adjusted processes y,* and x,? (see Sims, 1974):

v =fLy,  x* =gl

where f(L) and g(L) are each finite-order two-sided, symmetric ( fi = f-j,9; = g-;)seasonal adjust-
ment filters chosen so that y,' and x,* have less power at the seasonal frequencies than do v, and
X, respectively. Assume that y,* and x,* are strictly linearly indeterministic, as are y, and X

Prove that if f(L) # g(L), then y in general Granger causes x,* (Hint: first calculate the
coefficient generating function for the projection of y, on the x process, then calculate the coefficient
generating function for the projection of y,* on the x* process.)

11. A recent paper claims that permanent income Y, theoretically follows a “random walk,”
i.e., it obeys ’

P Y1 =Y, (*)

where P, Y, .y = PY,,,]Q and Q, > Y,,. Suppose we define Y, as
®
Vu=(1-P3 FPY.; O0<f<l I3
j=o

Assume that Q, > Q,_,50Q,_,>-...

A. Is (*) in general an implication of (+)? (Hint: apply the law of iterated projections.)

B. Can you restrict the {Y;} stochastic process so that (*) is an implication of (1) in a special
case?

12. In a recent article, a macroeconomist reported a regression of the log of the price level (p,) on
current and past values of the log of the money supply (m,):

©
p=a+ ) hm_j+6&  Egm_;=0 for j=0 ™)
j=o0
Eeg, =0
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where &, is a random disturbance. He found that the h; were nonzero for many j’s. He concluded
that prices are “too sticky” to be explained by an equilibrium model. According to this economist,
“classical” macroeconomics implies that iy = 1 and h; = 0 forj # 0.

Now consider the following classical macroeconomic model:

m, — p, = a(P,p,.; — p) + y, + u, (portfolio balance schedule)

¥, = constant (extreme classical full-employment assumption). Here < 0, and u, is a stationary
random process obeying

Eum,=0 foralle,s, Eu, = 0.
The money suppiy is exogenous and has moving average representation
®
m, =d(L)e,, e =m — Pmim_\,m_q,..., and Y d < oo,
j=0

Derive a formula giving the h(L) = Y 2.0 b;L7 in (%) as a function of a and d(L). Is the macro-
economist correct in his interpretation of the implications of classical theory?

13. Let the portfolio balance schedule be Cagan’s
te— X =(Pyxpey — Poyx)d + (*)
where p, is the rate of growth of the money supply, x, is the rate of inflation, and #, satisfies
P,_n, =0, where P[y]= P{y|tt, tty—ts-c-s Xss X—y5---) in which y is any random variable.
(Equation (*) is just the first difference of Equation (57) in the text.)
A. Prove that a solution of (*) is

Pxss=—— ¥ ( - )f-lp,um-. )
1—a S\l -0 !

B. Suppose that {x,, ) has the bivariate vector moving average, autoregressive representation

(-0 D))
t 1—24 A \py Qo — Adze—y
where a,, = x, — P,_1X,, a2, = #t, — P,_ 4y, |A] < 1, and ay, and a,, have finite variances and non-

zero covariance. Prove that Cagan’s formula for the expected rate of inflation ,,

11
I T

is implied by the hypothesis of rational expectations, i.e., by Equation ().

C. Prove that y fails to Granger cause x.

D. Calculate the coefficients in the projection of g, — x, on the x, process. Is this projection
equation the same as Cagan’s equation

#e—x = [l = DA = AL)](X - L)x, + &, ®

where &, is random? If not, use your formula for the projection equation to determine the biases
that would emerge from mistakenly regarding Cagan’s (§) as a projection equation.
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