
Optimal Savings under Uncertainty1 
I. INTRODUCTION 

There has been extensive discussion in the literature of optimal savings behaviour 
under certainty in the context of infinite time horizon. To our knowledge the extension 
of the results under certainty to a situation of uncertainty has been attempted by Mirrlees 
[1] and Phelps [2]. Mirrlees considers a one-commodity neoclassical model 'with two 
factors of production, labour and capital; constant returns to scale in production; 
exponential labour force growth, and Harrod-neutral technical change. Uncertainty is 
introduced in the model form of a Wiener process over time for the logarithm of the 
Harrod-neutral technical change. The maximand is the expected value of the integral of 
discounted future per capita utilities. Mirrlees establishes a set of conditions characterizing 
an optimal consumption policy as a function of capital stock per unit of labour and the 
level of technology. These conditions correspond to the Euler equations and the trans- 
versality condition characterizing the optimal accumulation path under certainty. For 
the case of a constant (but negative) elasticity utility function and a Cobb-Douglas 
production function, Mirrlees shows that optimal savings can increase with increasing 
uncertainty, at least for some set of values of the capital-labour ratio and the level of tech- 
nology. Phelps considers a pure capital model where an individual at any moment of 
time has the option of either consuming his wealth and current wage income or investing 
part of it. The return to investment is uncertain but the probability distribution of returns 
is assumed to be independently and identically distributed over time. The objective is 
again to maximize the expected value of the sum of discounted future utility over a finite 
horizon. Phelps takes the limit, as the horizon extends to infinity, of the finite-horizon 
optimal policy and discusses the behaviour of the limit policy as the " riskiness " of return 
to capital increases. The utility function is one for which the elasticity of marginal 
utility is constant. It is shown that the limit policy results in lower (higher) consumption 
for any given level of wealth as riskiness increases if the elasticity of marginal utility exceeds 
(falls short of) unity in absolute value. In the in-between case of unitary elasticity, con- 
sumption policy is invariant with respect to riskiness. Phelps somehow feels the last 
result to be " odd"". 

Our purpose is first to re-examine a slightly simplified version of Phelps's model (we 
assume wage income to be zero) in the context of an infinite horizon, and to derive a set 
of sufficient conditions characterizing an optimal policy provided one exists. These 
conditions will be derived on the assumption of a strictly concave utility function, a class 
which includes, but is wider than, the class of constant elasticity utility functions. Second, 
we show that the limit policy obtained by Phelps is indeed the optimal policy for an infinite 
horizon for the class of constant elasticity utility functions. The set of sufficient conditions 
we derive is quite similar to the set derived by Mirrlees for his more general (and hence 
complicated) continuous time model. We believe that our derivation is of independent 
interest in that it yields all the Mirrlees-Phelps results in a considerably more simple 
and intuitively appealing way, though our model is not as rich as Mirrlees' because of its 
omission of diminishing returns to capital. In the last section we extend our model to 
include dynamic portfolio choice and discuss some possible implications about portfolio 
choice of change of the risk parameters of one of the assets. 

1 The authors are grateful to Professor K. J. Arrow for his valuable comments. 
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II. THE MODEL AND SOME GENERAL RESULTS 

Consider the following model: At each period t, an individual (or a planner) has the 
option of either consuming all his wealth, kt, or " investing" part of it. Denoting con- 
sumption by ct, investment will then be (k - ce). This investment will result in his wealth 
in the next period, k,+1, becoming (k, - c,)r,. We shall assume that r, is a non-negative 
independently and identically distributed random variable over time with the distribution 
function F. The planner has an instantaneous utility function, u(ct). This function is 
assumed to be strictly concave and non-decreasing. The objective is to maximize 

-t = 

subject to a set of stochastic constraints 

kt+i= (kt-ct)rt, with ko given, ... (2) 
and the non-negativity constraints 

kt ? ct > 0. ... (3) 
In (1), E denotes the expected value operator, the expectation being over the joint 

distribution of the random variables c1, t = 0, 1, 2, .... The parameter fi is the discount 
factor. However, as (1) is not necessarily convergent let us introduce the following 
definitions: 

Definition 1. A feasible policyf(k, t) is said to overtake another feasible consumption 
policy g(k, t), if, starting from the same k0, the policies f and g yield (stochastic) consump- 

T 
tion paths ct and ct that satisfy E E Pt{u(c) - u(|) > 0 for all T> some To. 

Definition 2. A feasible consumption policyf(k, t) is said to be optimal if it overtakes 
all other feasible consumption policies. 

Proceeding somewhat informally, we shall first discuss a special case when 

max E fltU(ct) 

exists. 
It is clear that in an optimal solution the consumption at any t will depend only on 

the wealth kt at that t. First, given that rt is independently and identically distributed over 
time with a known distribution function F, information on the past realizations of rt 
has no bearing on its future behaviour. Second, given a constant discount factor P., 
calendar time is irrelevant for the determination of optimal consumption. Thus, we can 
restrict our search for the optimal solution to the class " consumption policies ". By a 
consumption policy we shall mean a function of wealth k, denoted by f(k). Thus, con- 
sumption will equal f(k) at any time t if the wealth at time t equals k. 

Let us define V(ko) as the expected value of the sum of discounted utilities attainable 
from an initial wealth ko, and following a policyf(k). In other words, 

where 
c t = f(k t),9 t = 0, 1,9 2, ........... ... (5) 

and 
kt+i = [kt-f(kt)]rt. 

It is clear that we can rewrite V(ko) as: 

V(ko) = u(c0) + /EV[(ko - co)rO]. .. (7) 
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Iff(k) is an optimal policy, then initial consumption co = f(ko) must be such as to maximize 
u(c) +J3EV[(ko - c)r] over 0 < c < ko. That is, for an optimal policy, 

V(ko)= max [u(c)+J3EV[(ko-c)ro]]. ...(8) 
0 < c < ko 

We shall assume that the maximum occurs at a c in the open interval (O, ko). A 
sufficient condition for this is that u'(0) = oo. Proceeding informally, let us differentiate 
the right-hand side of (8) with respect to c and equate the derivative to zero and get 

u'(c)-f3E[ro V'{(ko-c)rO}] = 0 
or 

u'(c) = f3E[ro V'{(ko-c)ro}]. (9) 

Let c = f(ko) be the solution to (9). Then, substituting this in (7), we get 

V[ko] = u[f(ko)] + JEV[{ko -f(ko)}ro]. ... (10) 

Let us differentiate both sides of (10) with respect to ko: 

V'(ko) = f'(ko)u'{f(ko)} +'lE[ro{l-f'(ko)}V'[{ko-f(ko)}ro]]. ... (11) 

Using (9), we can rewrite (11) as follows: 

V'(ko) = u'{f(ko)} ... (12) 

or, alternatively, 
u'[f(ko)] = fE{rou'[f [{ko -f(ko)}ro]]}. . . (13) 

Equations (12) and (13) are easily interpreted. Equation (12) says that the marginal 
worth of initial wealth equals the marginal utility of initial consumption if the consumption 
policy is optimal. The reason for this equality is the following: Given an extra unit of 
initial wealth, one can always be assured of getting at least the marginal utility of initial 
consumption by allotting all of the extra wealth to consumption at period zero. By saving 
part of it, the wealth of the next period can be changed, but the extent of change is a 
random variable since ro is uncertain. But in an optimal policy, the expected gain in future 
utility by saving equals the loss in utility in period zero because of saving. Thus, the 
act of saving at the margin cannot increase expected welfare. Equation (13) restates (12) 
by eliminating the function V(ko). It will be easily recognized as the myopic rule in inter- 
temporal utility maximization. It says that the marginal utility of initial consumption 
equals the expected value of the product of the discounted marginal utility of next period's 
consumption and the gross rate of return ro to saving. This is so because (i) [ko -f(ko)]ro 
is the wealth in period 1 if the rate of return happened to be ro; (ii) f[{ko -f(ko)}ro] is 
the consumption in period 1 since the consumption policy is f(k). A moment's reflection 
will suggest that (13) is in fact the functional equation which has the optimal consumption 
policy f(k) as its solution. This is seen from the fact that, given our assumptions about 
the stochastic process relating to r, and the constancy of the discount factor, the con- 
sumption policy is stationary. Thus, we can drop the subscript zero from ko and ro and 
rewrite (13) as the following fundamental equation: 

u'[ f(k)] = fiE[ru'{f{{k-f(k)}r}}]. .. .(14) 

Remark. Equation (12) implies that optimal policy, when it exists, is unique. This 
follows from the concavity of u (and hence the monotonicity of u'). 

The above informal discussion suggests that (14) is a necessary condition for a policy 
to be optimal. But is it also sufficient? This question is answered in the following 
theorem: 

1 Note that the implicit assumptions involved in this operation are (a) V(ko) is differentiable, and (b) 
the differential and expected value operators can be interchanged. 
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Theorem 1. Let f(k) be a feasible policy which satisfies the following conditions: 

(a) u'[f(k)] = f3 J ru'[f {{k-f(k) }r}]dF; 

(b) E[f3tu'{f(kt)}kt] -*O as t-* oo. 

Then f(k) is the optimal policy. 

Proof. Let ct denote the consumption associated with the policy f(k), starting from 
a wealth level k at time zero. Let tt denote the consumption associated with an alternative 
policy, say g(k, t), starting from the same wealth level. We shall prove that f is optimal, 
that is, f overtakes g: 

_T-1 

E [ ft{1u(ct)-u(tt)} > 0 for all T> some To. ... (15) 

By concavity of U: 

E E flt{u(c) - u(ct)}] E [E tu(ct)(ct -t)]. . . .(16) 
-t= O -t= O 

By definition, kt = [kt_1-c,_ 1]rt_ and kt=[kt_-ltt_jrt_j. Note that the same 
rt_1 appears both in kt and kt. The reason is that ct and tt are the consumption paths 
associated with the same realization {rt}, t = 0, 1, 2, ... of the random variable r. Hence, 
we can assert (ignoring sets of probability zero corresponding to values of r equal to zero), 

(kt-kt) = (kt-, _1_ (C-lct _ ) 
rt- 

or 

Ct- l- tt- l = (kt- 1- tl)-kt- 1) -. (k7) 
rt-1 

Hence, 
T-1 T-1 I 

flptu'(ct)(ct-Ct) _E fltu'(ct)t (kt -kt) - -(kt + 1 -kt + 1) 
t 0 t= 0 rt0 

=E t_1 (kt [flrt u'(ct)-u'(ct 1)]1 _Tl (CT-1) (kT-kT) 
t=lI rt_ I rT-1 

T-1 (k -i ) T_ 1__ T____ 

_ S ,B [flrt-Iu (ct)-t()(ct- )]_ kT, ...(18) 
t= rt-, rT-1 

since kt > 0, u' 0 ?, fl>O rT-l>O 

kT -klcl klfkl.Tu,k 
Now T = kT-l-CT-l= kT-1-f(kT-j Thus, depends only on kT-l. Also, 

rT-l rT-1 

U'[CT 1= E[{PrT_ lU'(CT)}I kT-1, where the expectation operator relates to the distribu- 
tion of rT- 1 The reason is CT 1 = f(kT- 1) and CT = f(kT), andf by assumption satisfies 
the functional equation (12) above. Hqnce, 

E {fT 
u'(cTT ) 

k} T E {i3T1 _kT E{fJrTl1u'(cT) .k.T1 (19) 

where the first expectation operator relates to the distribution of kT1 over all possible 

realizations of {rj}, t = 0, ..., T-2. From the fact that T depends only on kTl1, 
rT-1 
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we can write 1 

E { UT1 U(CT - ) kT =E 3T1 kT f,rT-1u'(CT) 
rT-1 rT-1 

= E[TU P'(CT)kT]. ... (20) 

But by hypothesis, E{pTU'(CT)kT} +0 as T +o. Similarly, 
k 

depends only on k,_ 

and k,- . Hence, 

E [kt- k {flr_ 1u'(c,)-u'(ct- D)}] = E [-kt- . E{,Br,_ u'(c)-u '(ct+ )j kt. i}]. 

But 
E{flrt -u'(ct)-u'(ct -1)I kt.- 1} = 0, 

since 
U(ct- 1) = E{lrt_ ju'(ct)j kt-1}. 

Hence, 

E [kt t {frt_iu,'(ct)-u'(ct_)}]=- 0. .(21) 
r, I 

Hence, for large T, 
T-1- 

E flt{u(ct)-u(0t)} > 0. 
t = 0 

Thus, f is the optimal policy. 

Remark. The special case of E E ftu(ct)} finite-for all k will be satisfied if 
t = Q 

f,Er< 1, and either u(c) is bounded below or there exists some policy for which 

E [ fltu(c )] 

is finite. 

Proof. Suppose u(c) is bounded below, say u(c) > u for all c. Then 

E [Y fltu(c)1 > E [ ftu 1 

Further, 

E [ fltu(c)1 _ U [E z /tC] 

by concavity of u. Feasibility requires that 0 ? ct kt. Hence, 
00 00 

, fltct _ Y ftkt. 
o 0 

1 Consider a bivariate density function F(x, y). Let G(y) be the marginal density of y and H(x, y) 
be the conditional density of x, given y. In other words, 

f F(x, y)dx G(y) and H(x, y) = G(y)) 
Consider the expected value of p(x, y) . q(y): 

Efp(x, y)q(y)} = Sf p(x, y)q(y)F(x, y)dxdy 
= f q(y)G(y)dy f p(x, y)H(x, y)dx 
= J q(y)E{p(x, Y) I y}G(y)dy 
= E[q(y)E{p(x, y)l y}]. 

In our example, kT-1 (or k,t-, kti-) corresponds to y and rT-1 to x. q(y) can be identified with kT/rTl 
(or (ks- fk)/r,.-i) and p(x, y) can be identified with Plu'(ct)r,_i or fu'(c,)r, _- u'(ct_ ). 
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Now k, < k, where k, is the wealth at time t if c, = 0 for all t. It is clear that 
t- 1 

k =ko H r-. 
r= 0 

This leads to 

E [f tct _ E [, ftktJ 

_E Lftkt = E [ftko I rj. 
_o _ _o = o 

But r. is independently and identically distributed over time. Hence, 
_ _ 00 

E E ]tct < E ? (Er)t. 
o o 

If 0<,fEr< 1, the sum on the right-hand side is finite. Thus, E [ tu(ct)] is bounded 

above, implying that it is finite for all k. If u(c) is not bounded below, the lower bound 

for E [ fItu(ct)] is provided by the policy for which this sum is assumed to be finite. 

Theorem 2. If an optimum policy exists, then the associated welfare function V(k) is 
non-decreasing in k, and concave. 

Proof. The result V(k) is non-decreasing in k follows from our earlier result (12) 
that V'(k) = u'{f(k)} 2 0. 

We now show that V[)kl +(1 -A)k2] ? )ZV(kl)+( -A)V(k2) for any kl, k2>0 
and 0 < <. < Consider any realization {rt} of. r. Let kit, cit denote the wealth and con- 
sumption paths resulting from an initial wealth ki and following the optimal policy, given 
the realization {rt}. From feasibility of the optimal policy we know kit > cit > 0. Now 
suppose the initial wealth is tk, + (1 - A)k2. Then, for the same realization {rt}, 

Acj t + (1 -)k2 t 

is a feasible consumption path, and the associated wealth path will be Akt + (1 -)k2t. 
Hence, the welfare V[Ak1 + (1- A)k2] attainable by following the optimal policy f has to 
be greater than or equal to the welfare associated with the consumption path 

-AC 1t + (1 - C2 t 
In other words, 

V[kj + (1 -,)k2 > E Y BtU{,iC1t (1-i)*2t1 ... (22) 
Lt = ] 

But by concavity of u, the right-hand side of (22) is greater than or equal to 

E [0 E t{C(ct) + (1-)U(C2t) 

Hence, 

V[Ak, +(1 -A)k2] > E { E tu(c,t)} +(1-A)E Y E tU(C2t)} 
t= 0 t=0 J 

= AV(kl) + (1-A)V(k2). ... (23) 

Corollary 1. The optimal policy f(k) is an increasing function of k. 
Proof. We know V'(k) = u'[f(k)] by (12). Differentiating both sides with respect 

to k once again, 
V"(k) = u"[f(k)]f'(k). ...(24) 

By concavity of V and u, V" < 0, u" < 0. Hence, (24) implies f '(k) > 0. 
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III. AN EXAMPLE 

Let us now consider the case of a constant elasticity utility function. That is, 

1 1-a 

where oc>0. Mirrlees considered the case where oc > 1. Following Phelps 1 we include the 
cases oc = 1, when u(c) = log c, and ci< 1 as well. 

Given u(c)= cl-, u'(c) = c-a. Substituting this in our fundamental function 
1-oc 

equation (14), we get 

[f(k)]-a-,E[r[f {{k-f(k)jrj]-x]. ...(25) 
Let us consider a policyf(k) = Ak; i.e. consumption is a constant proportion of wealth. 
Such a policy will be feasible if and only if 0<). < 1. Substituting for f(k) in (25), we get: 

il -'k PE {E{) -'(l- ))-k 
or 

(I -)a _PE(rl-a ...(26) 
If fE(r'- ) is positive and less than unity, we obtain a ) which will yield a feasible policy. 
Our assumption that r > 0 will ensure the positivity of E(r'- ). We shall assume now 
that fE(r'- ) <1 so that we get a feasible policy. Let us apply our Theorem 1 to check 
the optimality of this solution. To do this, we have to verify condition (B), and show 
the finiteness of the supremum. First let us take condition (B). If the policyf(k) = Ak 
is adopted, 

kt = [kt -ct]rt = (1--A)kt-lrt-1. ...(27) 

Iterating (27), we can easily write 
t- 1 

kt = (1-A)tko Hl r. ...(28) 
r= 0 

Now, 
u'[f(kt)] = [f(kt)]- = 1i-ak-a. .. .(29) 

Thus, 
flktu'[f(kt)] = tA -a(kt-o 

t- 1 
= - _e(l -A)k H -afl r -a. 

r= 0 
Hence, 

E[f3tktu'{f(kt)}] = ltAl-=(1 - )t(L -a E [1 r ja. .E..(30) 
r = o 

But by the assumption that rt is independently and identically distributed over time, (30) 
can be written as 

E[f3tktu'{f(kt)}] = fltZ-)e(_ -)l )kl -a[E(rl -a)]t. ...(31) 

Using (26) we can simplify (31) and obtain 

E[I3tktu'{f(kt)}] = k1-a-a(1-L)t. . . .(32) 

But ) is positive and less than unity. Hence, from (32) we can conclude that 

lim E[I3tktu'{f(kt)}] = 0. 
t- fo 

1 Phelps's utility function was of the form u(c)=f+1 c'-M. 
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This verifies condition (B). Applying Theorem 1, we getf(k) = Ak as the optimal policy. 
It is easy to check V(k) for this optimal policy. 

V(k) = E { 
' 

uitu(ct)} = E [EPO {' kl-L}] 
t = t =0 I -a 

= ~ E E fitk] 
-OC t = O 

A,1-a a) t-1 = flE E t(1_cx)t(l-a)kl-a _l R_ -a 
= t= R ) 

i_ 
1-a _ 

--1)t(1 \) = 

o kl[Zk 

E 

f1oc)t]=)k R<c 

a 
-1 _x t = O 0 

Al - a _0 

Al -a _0 

Al1-a _0 _ -al 

1-o Ex t1c 1-o 

Let us now examine the influence of uncertainty on the policy f(k). From (26) it is 
obvious that if cx = 1, i.e., u(c) = log c, then uncertainty has no influence on the optimal 
policy. The optimal policy in this case is A = 1 -f,. This result can be intuitively seen 
as follows: We know that if u(c) = log c and r = r> 0 with probability one, the optimal 
consumption policy is still A = 1 -f, and it does not depend on P. If certain knowledge of 
F does not influence optimal policy, it stands to reason that uncertainty about r will have 
no impact on optimal policy either. 

Suppose now cx # 1. In order to sharpen our discussion, let us make specific assump- 
tions about the distribution of r. For instance, let log r be distributed normally with 
mean ,u and variance U2 . Then it is easy to verify that: 

(i) E(r) -e 

(ii) var r - e(2p + a2 )[ea2 1], and 

(iii) E(rl- X) = el"1-x 1-X2f/ 

If we denote by r the expected value of r, then 

(iv) var r = r2[ea2_ 1], and 

(v) E(rl-') = Tle-x(l 

Substituting the expression for E(rl'-) in (26), we get: 

(1)LA = fif(l-a)e(l-a)a2/2 ...(33) 
For O<L< 1, we must have fi(r) 1 -e -2(l-)/2<I . Let us assume this.' We can visualize 
the situation of increasing uncertainty about r as one in which T remains constant, while 

1 Surprisingly, this condition is identical to the existence condition nu - v - n(n? 1)l+ r> 0 of Mirrlees. 
This is seen if we recognize that our discount factor ,B can be identified with his e (r-v), his n with our (a -1), 
his (a -f) with our t, and his ,B with our o-2/2. Then our feasibility condition is: 

fErl - I < 1 is equivalent to e< 1r;v)0,-O(-n) + fin2< 
that is, r-v+(x-fl)n-fln2>O or r- v + np- Pn(n+ 1) > O. 
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var r increases. This means that a increases in such a way that ,t + U2/2 is constant, thereby 
keeping r constant. Returning now to (33), we observe that as a increases while f remains 
constant, i will increase if c <1, and decrease if c> 1. Thus, the proportion of wealth 
consumed (in the optimal policy) increases with increasing uncertainty if cx < 1 and decreases 
with uncertainty if cx> 1. Our result for cx> 1 is thus consistent with those of Mirrlees. 

Remark. Suppose 0< cx<1. From (33) it follows that the condition for the existence 
of an optimal policy is the case of a certain return y is fif'-'< 1. If the return is uncertain 
but has mean f, this condition is f' B-ae-a(l2-a)22 < 1. It may happen that if a is large, 
the condition for existence may hold if there is uncertainty, while it is violated for the 
corresponding certainty case. 

For the sake of variety let us consider the following distribution for r: 

r = + f + me with probability 1/(2n + 1), 

where e is a positive constant and m = 0, + 1, ? 2, ..., + n. Assume also r - ne > 0. Then 
E(r) = r, var r = s2n(n + 1)/6. Substituting in (26), we get 

n 

(1 _Ayx=#, E [r +mE]l -"12n+l1. 
m= O 

Let us assume the feasibility condition is satisfied. Keep r constant and increase s, i.e., 
increase uncertainty. It is easily seen that i increases with e if c <1 and decreases as s 
increases if oc> 1. 

IV. PORTFOLIO SELECTION 

One of the more interesting areas for further research is the portfolio selection problem. 
The problem assumes simple form in the case of the constant elasticity utility function, 
in which case it is not hard to prove that the portfolio policy is independent of the amount 
of capital accumulated. 

Assume the existence of two assets, one with a rate of return r1, the other with rate 
of return r2 . r1 and r2 are random variables with known joint distribution. Let 3 be the 
proportion invested in the first asset, and (1-3) in the second asset, 0 < 3 < 1. Equation 
(26) for determination of the optimal consumption policy assumes the form: 

(I _ A)X a ,BE[br, + (1- 6)r2]l- ... .(34) 
and 

V(k) =,.1-.. (35) 

Our aim is to maximize V(k) by the proper choice of portfolio 3. Differentiating V with 
respect to 3, 

aV _v -- -A oc .. .(36) 
06 ,A aRb i 06 

If c > 1, V< 0, and hence -v > 0. If c <1, V> 0, and hence o, < 0. 

In order to maximize V by suitable choice of 3, we should maximize A if oc> 1 and 
minimize A if oc < 1. 

Now 

- 1-c.c E(r,-r)[6r, + (I - )r2l ... 3 
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a 2A I 1-cx ) 
<52 = f3t ? IE(r1 - r2)2[3r1 +(1- 5)r2] al 

(1 _)2 f -A E(r1 - r2)[3r1 +(1 -3)r2] 

-( I f E(r1 -r2)2[3r1 +(1 -3)r2]'a-1 

+ (1 _)3 _ 1l2{E(r1-r2)[3r1 + (1-3)r2] -,12. ...(38) 
-t 2( _A 

a 1 

Since br1 + (1- )r2 is a non-negative random variable and 0< AL< 1 for all 3 in 0 _ 3 < 1, 

3> 0, it follows that - <0 if cx > 1, and > O if 0 < cx < 1. Let us take cx > 1 first. If a32 a32 
OA I ~~-cx- ai |= 1 cc(1 1 E(r - r2)r1 > 0, then A is maximized at 3 = 1. If 

a 1a' - -(1I -cx) E(r1-r2)rj <0 

then A is maximized at = 0. If 
OA 

= _ 1 E(r1 -r2)r2- ?0, then 2 is maxi- 

mized at 3 = 0. If >0 and <0, the A is maximized at -0<3<1 when 

A 
=0. 

For the case cx<1, the results are: If 
OA 

< 0, then A is minimized at 3 = 1. 

If- > | , then A is minimized at 3 = 0. If > 0, and < <0, then A is 

minimized at 0<3< 1 when = 0. 

In order to examine the behaviour of the optimal value of the portfolio variable 3 
with respect to changes in the parameters of the distribution of r1 and r2, let us consider 
an example where log r1 and log r2 are independently and normally distributed with 
parameters (u1, a 2) and (u2, u2). To simplify discussion further, let us consider the 
extreme case when the entire portfolio is invested in asset 1. We saw above that this can 
happen only if E(r1 - r2)rj- > 0. Given the assumptions on r1 and r2, this condition 
reduces to: 

iie-at > r2 where r, = E(rj) and F2 = E(r2). 

(A necessary condition for this is il > F2). 

Another way of looking at this condition is to interpret e-""I as a "risk " discount factor. 
Thus, if even after discounting for risk the mean return of the first asset with larger mean 
exceeds the mean return of the other asset, naturally the entire portfolio will be invested 
in this asset. This condition also shows that if a, is increased sufficiently while keeping 
r, constant (this is the same as increasing var (rl) keeping the mean constant), the discounted 
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mean return of this asset could be made to fall below the mean return of the other asset 
resulting in some part of the portfolio being invested in the second asset. It is our belief 
that this is in general true. That is, if the variance of the return on one of the assets is 
increased while keeping its mean constant, the optimal proportion invested in this asset 
will go down. 

The Hebrew University, Jerusalem D. LEVHARI 
Indian Statistical Institute T. N. SRINIVASAN 
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