CHAPTER 2

Analysis of Linear.
Deterministic Systems

Dynamic economics is concerned with the evolution of economic variables
through time, that is, with the determination of the time paths or time
functions of economic variables. It is well known that static economics is
concerned with the determination of economic variables without specifying
when their values will materialize. The foundation of a large body of static
economic theory is the assumption that individual economic units maxi-
mize something. The individual consumer is assumed to maximize utility,
and a static demand theory of the consumer is derived. The individual firm
is assumed to maximize profit, and a static theory of the behavior of the
firm is derived. The basis of many of the dynamic economic theories today
is less rigorous.

Quite often a dynamic theory is obtained by introducing certain time
delays into an otherwise static theory. The pattern of time delays is not
necessarily derived from an assumption that certain individuals maximize
something over time, although the static theory forming the basis of
dynamics may be derived from a maximizing assumption. One example is
the set of two equations that explains the cobweb phenomena in agricul-
tural economics. A static linear demand equation relates the quantity
demanded negatively to the price of the commodity of the same period. A
dynamic linear supply equation relates the quantity supplied positively to
the price of the commodity in the last period. By solving these two
equations, assuming that quantities demanded and supplied are equal, we
get an equation relating price at period ¢ to the price at z—1. In this
dynamic model the static theory of demand and supply is modified by
introducing a time delay in the supply equation. We can find many
examples in macroeconomics in which time delays are introduced into the
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20 ANALYSIS OF LINEAR DETERMINISTIC SYSTEMS

relations between consumption and income, between investment expendi--

tures and investment plans (the latter possibly based on certain theory of
maximizing behavior), and between demand for money and income.
Whether the time delays themselves should a/ways be justified by a theory
of maximizing behavior over time, is a methodological, and somewhat
philosophical, question that is not discussed in this book.

From the practical point of view we have dynamic macroeconomic
models that are built from a combination of theory (of whatever kind) and
statistical measurement, and these econometric models deserve to be
studied by the methods of dynamics described. Furthermore, we introduce
methods of optimization over time for the purpose of improving the
dynamic performance of an economy—methods that will be useful for
those theorists who wish to derive dynamic economic theories from op-
timization over time and presumably under uncertainty. There is no need
to entertain the question whether the basis of static economics under
certainty, namely maximizing behavior, should always be extended to the
study of dynamic behavior over time under uncertainty. Possibly, or
possibly not, maximizing behavior is a better approximation to human
situations in which time and uncertainty are less relevant.

In this chapter we shall study dynamic models in the form of systems of
linear difference equations. Linearity is assumed because of simplicity and
because the most important concepts of dynamics can be understood via a
linear model. Methods of linear dynamics can also be extended and
modified for nonlinear systems, as in Chapter 6. Difference equations,
rather than differential equations, are studied mainly because most existing
macroeconometric models are in this form, and it would be difficult to
‘cover the broad subject matter of this book by using both discrete-time
and continuous-time models. The additional investment in mathematical
skills to deal with models in continuous time, especially for the stochastic
case, may not be worthwhile for most applied economists. Readers in-
terested in the techniques of analysis and control of continuous-time
systems may refer to Astrom (1970).

We confine ourselves to deterministic systems in this chapter. Solutions
to systems of difference equations are provided and characterized. The
solution to a univariate, first-order system is introduced first and then
generalized to the multivariate, high-order case by matrix algebra. Proper-
ties of the solution are characterized and examined. Methods and concepts
developed in this chapter will be useful for the study of dynamic properties
of systems of stochastic difference equations in the next two chapters. This
chapter may require several class periods to cover if the readers have no
prior knowledge of linear difference equations. Readers who feel the need
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for some economic applications of linear dynamic models may consult
Baumol (1970) or Kenkel (1974) or read Sections 5.1, 5.2, and 5.3 at this
point.

2.1 HOMOGENEOUS LINEAR DIFFERENCE
EQUATION OF FIRST ORDER

To understand how an economic variable may evolve through time con-
sider the simplest model of a first-order linear difference equation

W=, ¢y

It is first order because, in the determination of y,, only y,_, is used. If y,_
is required, the equation is said to be of order m. In general, an equation is
of order m if m is the largest difference in subscripts occurring in the
equation. Equation 1 is also homogeneous because only lagged values of the
endogenous variables are used, and no exogenous variables or constant or
other given functions of time are present in the equation. The model (1)
determines y, simply by applying a factor a to its value of the last period.
Given an initial value of the variable, say y, at time O, the solution to (1)
can be simply stated by repeated substitutions for the lagged variables on
the right-hand side:

y=ay,_,=a'y,_,=aY, ()]

The solution yga‘, which is a function of time, can be easily
characterized. First, whether it is explosive or damped depends on whether
the absolute value of a is greater than or smaller than 1. It is a constant if a
is exactly. 1. Second, whether it oscillates or not depends on whether a is
negative or positive. If a is positive, the solution is a monotone function of
time; if a is negative, the solution oscillates between successive time
periods. Of course, the two characteristics can be combined. A solution
may oscillate and be explosive if a is negative and has absolute value
greater than 1; for example, if @ equals — 1.10. Thus the absolute value and
the sign of a characterize the solution of (1).

2.2 HIGHER ORDER AND MULTIVARIATE
HOMOGENEOUS LINEAR SYSTEMS

If a difference equation is of higher order, it is convenient for the purpose
of analysis to rewrite it as a first-order system of many variables. Thus the
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equation
=ayy,atayy, ., (3
can be rewritten as
Y = & & Ye—1 | @
Yi-1 1 0 Yi-2

This system explains a vector of two endogenous variables y, and y,_,. If
the equation is of order m, a vector of ,,¥,_1,+.»¥;— .+ Will be used in the
system. The resulting system will be of first order like Equation 4 because
we can denote the vector (y,,y,_,) by z, and the matrix on the right of (4)
by A; then (4) can be written as z,= Az,_, which is precisely in the same
form as (1).

The same method of transforming a system into first order can be
applied to a multivariate system of difference equations of higher order.
Let y, be a column vector of p endogenous variables that satisfy the
mth-order difference equation :

=AYt Ay ot Y A %)

where 4,,...,4,, are p X p matrices of real coefficients. Equation 5 can be
rewritten as

Yy Al A2 Am Vi1
Vi1 i 1 0 e 0 Yiz |, (6)
Yiem+1 0 0 10 Viem

The first p components of (6) recaptures Equation 5. The remaining
components of (6) are identities that explain the newly introduced endo-
genous variables y,_,...,¥,_m+1- In a more compact form (6) can be
rewritten as

Vi=Ay,_, )]

where y, is redefined to represent the left-hand vector of the original
equation (6) without the use of a new symbol and A stands for the
right-hand matrix of (6). Difference equations in the form of (7) will be
studied.
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Analogous to (2), the solution to.(7) can be obtained as
y,=A7)1,_2=A’jz,_k=A')10, (8)

where the product A-A is written as A% and so on. Given the initial value
of the vector y,, successive values of y,(¢=1,2,...) can be calculated by
using A 'y, The solution in this form is not very informative, however. It
would be desirable to characterize the time paths 4%, to ascertain whether
they will be explosive or damped and whether they will ‘oscillate or
fluctuate in some way.

2.3 CHARACTERIZATION OF THE SOLUTION TO A
HOMOGENEOUS LINEAR SYSTEM

One useful approach to characterizing the solution (8) of a homogeneous
linear system of difference equations is to decompose it into the solutions
of many first-order univariate equations in the form of (1). This can be
done by utilizing the characteristic roots and characteristic vectors (also
called eigenvalues and eigenvectors) of the matrix A. A characteristic root of
A is a scalar A that satisfies

|4 —AI|=0, 9)

where the two vertical bars denote the determinant of the matrix inside
and I is an identity matrix of order p. As an example, consider a 2X2
matrix 4 =(a;) in which g; are elements. Equation 9 becomes

(a“ alz)_(k 0)=
a, ay 0 A

=N —(a;; + ap)h + ayay— a;5a,, =0. ’ (10)

[A—A|= a;—A  ap

a2 ap—A

The two roots, say A, and A,, of (10) are the characteristic roots or
eigenvalues of the 2X2 matrix 4=(g;). In general, Equation 9 is a
polynomial equation of degree p in A. It is called the characteristic equation
of the pXp matrix 4. Therefore the matrix 4 has p characteristic roots
which can be found by solving a polynomial equation of degree p. Thus
the computation of characteristic roots is equivalent to the solution of
polynomial equations. The computational aspects of finding characteristic
roots are not pursued in this book. Numerous computational algorithms
for finding these roots and vectors and computer programs to implement
them are readily available.
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With each characteristic root A; there is associated a right characteristic
vector b,. A right characteristic vector b of a matrix 4 is a p X 1 vector that
satisfies the equation

Ab=Mb, (11)

where A is some scalar. In other words, the characteristic vector b has the
property that, when premultiplied by the matrix 4 or when subject to the
linear transformation 4, it remains a scalar multiple of itself. Equation 11
is equivalent to

(4-A)b=0 (12)

and Equation 12 is satisfied, for b not equal to a zero vector, if and only if
the ‘matrix (4 —Al) is singular, that is, if and only if the characteristic
equation (9) is satisfied. The solution to (9) is the set of characteristic roots
Aj,...,\,. For each A, a characteristic vector b, is defined by equation (12),
that is,

(A —N1)b,=0. (13)

Note that the vector b; is defined only up to a factor of proportionality; if
b, satisfies (13), so will 25, for instance. For the purpose ~¢ computing the
vector b; which corresponds to a real root A, we may arvitrarily set its first
element b; equal to 1 and solve the resulting equations from (13) for the
remaining unknowns b,,,...,b,. These equations will be a set of (p—1)
nonhomogeneous linear equations in these (p—1) unknowns. Another
convention, frequently applied in computer programs, normalizes the ele-
ments of b, so that the sum of their squares is unity.

It will be useful to combine the p equations relating the characteristic
roots A; and vectors b;(i=1,...,p) into one system of p vector equations;
Ab,=A\b,, Ab,=A,b,, and so on, can be combined as

A 0
A(b,,...,bp)=(}\lb,,...,}\Pbp)=(bl,...,bp) . . (14
0 A,
Denoting by B the matrix (by,...,b,), whose columns are the characteristic

vectors of A, and by D, the diagonal matrix which consists of the
corresponding characteristic roots, we can write (14) as

AB=BD,. (15)
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To simplify the analysis, we assume that all the characteristic roots of 4
are distinct and ignore the case of multiple roots. (The seriousness of th?s
assumption for practical purposes is discussed in Chapter 5.) Und.er this
assumption B is known to be nonsingular. Postmultiplying both sides of
(15) by B ™! gives
A=BD,B™". (16)
Writing the matrix 4 in this form (16) is useful for the study Of. the
solution 4 'y, of the difference equations (7) because 4 ‘ can also be written

in a convenient form. Note that 42=(BD, B ~')(BD,B ~")=BD}B "', and
similarly that

A'=BD{B7], a7

where Dy is simply a diagonal matrix that has A/ as its ith diagonal
element. The solution (8), rewritten as

y,=BD{B" Yy, (18)

consists of functions of the characteristic roots of A. To write out the
functions explicitly, let B=(b;) be a 3X3 matrix and let the if j element
of B! be denoted by b¥. Expanding (18) in scalar variables gives

Y biA b byM || Bty I+ bl

ya |=) ba BN bads By 1o+ b p0+ b3

Y3 Lb“}\l‘ byphs  byhs bsl}’lo‘*’)’nyzo'*b”)’zo

by ZigM + biazaghs + Biszaghs

=| buzi +buzahi+ byzis |0 (19)
b3z M+ bypZaghs + bizzaohs

where z is defined as
Zg=bY 10+ b+ bV (20)
that is, as a linear combination of y,q, 50, 2nd s, using b7, b2, and b” as

weights. Written in scalar form, the solution y;, is thus a linear combination
of Af, Aj, and Aj.
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24 CHARACTERIZATION OF THE SOLUTION
USING CANONICAL VARIABLES

Because, by (19), the solution of each y, is a linear combination of A/ and
the solution of a univariate first-order equation z,=A;z; ,_, is also propor-
tional to A/, we can think of y, as a linear combination of a set of new
variables z;,. Equation 20 suggests that a set of canonical variables z,, can be

defined as
Zil=bi].Yll+bi6)21+'.v‘ +bipyp1a (i=1""7p)' (21)

The p canonical variables are linear combinations of the p original
variables and vice persa. In vector form their relationship is given by

z=B7Y, or y=Bz,. (22)

Because of this relationship, the solution of one set of variables can be
obtained as a linear combination of the solution of the other. Given the
solutions for zy,,..., o> which are easy to obtain and interpret, the solution
for y,, is simply their linear combination, using the jth row of B as weights.
Canonical variables are useful not only for deriving a solution for ¥, but
also for treating an explosive system of difference equations which other-
wise can hardly be characterized. We turn to the latter subject in Sections
6.1, 6.2, and 6.3.

To find the solution for z, we rewrite the system (7) in terms of the
canonical variables, using (16) and the definition (22):

=B~ Yy,=B YBD\B"'Y,_,=Dyz,_,. (23)
Each canonical variable z, satisfies the difference equation
2, =Nz, (24)
Its solution is z, = z;A/. The solution for y, is therefore
V=021 A )+ bp(2603) + ... + B, (2,00). (25)

Equation 25 agrees with the result of (19). Because the initial condition is
often given in terms of y;;, we need to calculate z,, from y;, by using (22) or
(20). -

To summarize, by defining the canonical variables z, as linear combina-
tions B ~! of y, and observing that the solution of z,, is simply z\! we find
that the solution for y, is a linear combination of the above solutions,
using the jth row of B as weights. Accordingly, the solution for y, is a
linear combination of the roots of 4, each raised to a power ¢.

i
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2.5 THE CASE OF COMPLEX ROOTS

The behavior of the solution can be quite interesting if some roots are
complex. Complex numbers arise from solutions to polynomial equations
such as x>+4=0 and x®>— x+2=0. They will be required to express the
solution of Equation 10 if (a,,+ a5,)’ —4(ay,a,—ap,a,)) is negative. A
complex number A takes the form

A=a+ bi, (26)

where i=V —1 and a and b are real numbers. It has two parts, the real
part @ and. the imaginary part bi. By using a two-dimensional diagram to
represent the real part along the horizontal axis and the imaginary part
along the vertical axis 'we can represent A by the point (a,b), as in Figure
2.1. The absolute value (also termed the modulus) of A is the length of the
vector (a,b) or the distance of the point (a,b) from the origin.

N=Va$5 . @7)

Let 8 denote the angle between the line from the origin to the point (a,b)

Imaginary
axis

. b,
A= /a2+b2 (a,b)

Real
axis

Figure 2.1 Diagrammatic representation of a complex number.
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and the horizontal axis. By definition
a=|\cos#;  b=|A|sinf. ‘ (28)
Using (28), we can rewrite the complex number (26) as
A=|A|(cosf+ising) =|A|e®. 29)
The second equality sign is due to the identity
e®=cosf+isinf. (30)

This identity can be made convincing, if not proved, by expanding the
functions e”, cos#, and sin@ in Taylor series and matching the terms on
both sides of (30). (See Problem 3.) Thus a complex number A can be
represented by the real and imaginary parts @ and b or by the absolute
value |A| and the angle 4, as in (29).

When complex roots of a matrix 4 of real umbers occur, they appear
as pairs of conjugate numbers. The conjugate of the complex number A, as
defined by (26), is a — bi, or equivalently

[Al(cos§—isin@)=|Aje 7.

1t is denoted by A. The conjugate of A is A itself; A and A form a pair of
conjugate complex numbers. Because the characteristic roots of A are the
roots of a polynomial equation with real coefficients, they come in conju-
gate pairs when they are complex. This can be seen by factoring the
polynomial equation (9) into

(>\_>\1)()‘_}‘2)' o 0"‘}3,)=0»

where A is the unknown and A}, Ay,...,A, are the roots. If A; is complex,
there must be another root, say A,, such that the product

A-AD)A-A) == (A AN,

will have real coefficients (A, +A,) and AA,, since the coefficients of the
polynomial are real to begin with. These real coefficients imply that A, and
A, are a pair of conjugate complex roots, as the reader may wish to verify
in Problem 9 of this chapter.

In the solution to the system of difference equations, as given by (19), let
A, and A, be a pair of conjugate complex roots, A; being real. The
contribution of the first two roots to the solution for y;, is

byyzigh |+ bipzphg=cp A+ ephg. (31
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If this contribution is to be real, the coefficients ¢|; and ¢, must be
conjugate complex. The argument for this proposition is left to the reader
as Problem 10 in this chapter. Let A, and A, be, respectively, re” and re =%,
r being the absolute value |A,|=|A,]. Let ¢;, and ¢, be, respectively, s,e™:

and s,e”¥". The contribution of the first two roots to y,, is then
i+ oA =5, F I 45 pleTith+ED
=2s,r' cos(y, + 6¢), (32)
where the second equality sign is due to the identity

e*+e " *=cosx+isinx+ cosx—isinx
=2cosx. (33)

It has been shown that when there is a pair of complex roots of the
matrix A their contribution to the solution for each variable y, can be
written as a cosine function of time 7, multiplied by a factor r*. If the
absolute value r of the roots is larger than 1, the cosine function will be
magnified through time; if r is less than 1, the cosine function will be
damped. If r is exactly 1, there will be no magnifying or damping effect.
To obtain the entire solution for y,, if there are more than two roots, this
contribution will have to be added to the linear combination of the
remaining roots raised to power z. The latter may involve a real root, such
as c,;A4 for yy, in (19). It may also involve another pair of complex roots.
The solution would then be the sum of two magnified or damped cosine
functions.

2.6 A NOTE ON COSINE FUNCTIONS

Because the solution to a system of linear difference equations may require
a cosine function of time, it may be useful to review some properties of this
function. The function cosd¢ takes the same value 1 when 8t=0,27,4x,6m,
etc., that is, when t=0,27/8,47 /8,67 /8, etc. In fact, it takes an identical
value for 8r=k,2n+k,4w+k, etc,, for any constant k, that is, when
t=k/0,27/0+k/0,4n/0+k/0, etc. Because the function repeats itself

every 27/0 time units, where § is measured in radians, it is called a

periodic function, and the length of the cycle or the period of cosft is 2w /8
time units. This means that for each time unit the function will repeat itself
0/27 times, /27 being a fraction in most cases; #/2x is called the
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frequency of the function cosft because it shows how frequently the
function repeats itself per unit time. Frequency is the reciprocal of the
length of the cycle.

The amplitude of the function scos8 which is s shows the magnitude of
the cyclical movements. The function may also be subject to a time shift,
as given by cos(f + ). Although cosé¢ starts with the value 1 at =0, the
function cos(6t+y) takes the value 1 at 1= —1y /8. Thus cos(#: + ) leads
cosfr by /8 time units, or cosft lags behind cos(fr+y) by /8 time
units; /0 is the phase shift in number of time units for the function
cos(0 + ) and indicates a lead compared with cosét if ¢ is positive, a lag
if ¥ is negative. Note that the absolute value of Y should be smaller than =.
By convention, we do not say that cos(¢+ 1.57) leads cost by 1.57 time
units but rather that cos(z—.57) lags behind cost by .57 time units.

To apply these concepts to the contribution (32) of a pair of complex
roots re.and re=" to the solution of y,,we note that this contribution is
made up of a cosine function with cycle length equal to 2« /@ time units or

: frequency equal to 6 /27 per unit time. Its amplitude is a multiple of r* that
increases with 7 if the absolute value r of the roots is greater than 1 and
decreases with ¢ if the absolute value of r is smaller than 1. The phase Y, of
the function cos(8+y,) will depend on the initial conditions, discussed in
the following section.

2.7 NUMERICAL EVALUATION OF THE SOLUTION

The solution of a homogeneous system of linear difference: equations
y.=Ay,_, for the ith component of y, has been found to be,

2 byzrohi= 2 Abs (34)

where A, is the kth root of the p X p matrix 4, b, is the ith element of the
right characteristic vector b, corresponding to the root A,, and z,, is the
"initial value of the kth canonical variable which satisfies the univariate
first-order difference equation z,=MA,z,,_,. The solution y, will be
damped if all the roots A, (k=1,...,p) are smaller than 1 in absolute value.
It will be explosive if any root A, (with nonzero coefficient ¢ ) is- larger
than.1 in absolute value. There will be oscillations if some roots are
negative or complex. A negative root gives rise to a component with two
periods between successive peaks. A pair of complex roots gives rise to a
component with 2« /8 periods between peaks, 6 being the angle (in
radians) of the complex roots re® and re—%. If all the roots are real and
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positive, there can be some fluctuations in the linear combination (34) of
the positive functions A/ if the coefficients ¢, are partly positive and partly
negative. But the fluctuations can hardly be prolonged because the be-
havior of the solution will eventually be dominated by the largest root as ¢
increases. The behavior of the solution.is thus mainly.characterized by the
characteristic roots of 4 as stated.

To compute the solution numerically three methods can be mentioned.
The first is direct computation by using the equation y,=A4y,_, succes-
sively, assuming that y, is known. This method requires repeated mau:ix
multiplications. The second method employs the canonical variables dis-
cussed in Section 2.4. It is more complicated than the first, but it permits
the decomposition of the solution into components of the form ¢, Af (k
=1,...,p). For practical purposes the user needs only an efficient computer
program to find the characteristic roots A, and the corresponding right
characteristic vectors b, of the real matrix 4. The program should also
provide B~'. He will then have all b, and z,,=2b 4,0 to compute the
coefficients ¢, used in the linear combination for the solution.

In the third method the solution is obtained in the form of (34) by
finding the roots A, without going through the calculation of the
characteristic vectors. By using this form, together with the initial vales of
Y, directly, we can evaluate the coefficients ¢,. Consider the case of a 2X2
matrix A for illustrative purpose. The solution for y,, is ¢, )A{+ ¢ ;AJ. Given
two values of y,,, say y,o and y,;, we will have two equations,

eyt =)
AentAen=yn,

for the two unknown ¢,; and c,. If A, and A, are conjugate complex, being,
say, a+ bi and a — bi, we can solve for the unknowns by letting ¢,,=c+di
and ¢, = ¢ —di and substituting into the above equations.

ctdi+c—di=y,
(a+ bi)(c+ di)+(a—bi)(c—di)=y,,
or

ac — bd+ (ad+ be)i+ ac— bd—(ad+ bc)i=y,.

The solution is ¢=y,,/2 and d=(ay,q—y,,)/2b. Similarly, if therev are p
roots, p initial values of y, can be used to determine the p coefficients
Citre v 3Cipr
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2.8- A NUMERICAL EXAMPLE INVOLVING COMPLEX ROOTS

This section provides a numerical example of a first-order system of two
dlffe_rence equations with a pair of complex roots:

Yu | _ 1 1 Yi,e-1

(35)
Vo ~1.62 —.80 || y,,—;
The characteristic equation is
(1-A)(~.80—A)+1.62=A— 20A+0.82=0,
The characteristic roots are

A=.14.9i=.906¢"% and A,=.1— .9i= 906e 1460

To find the solution y,=A4%,=BD{B 'y, we apply the second method
mentioned in Section 2.7 by finding the right characteristic vectors of A4.

Denote the elements of the characterlstlc vector b, corresponding to A
by «,+ B,i and a,+ B,i; b, cannot be a real vector. If it were real, Ab,
would also be real and could not be equal to Ah, which would be
complex. Writing out the equation for b,, we have

: Dol atbii | o (1 9p| @t B
—1.62  —.80 || a,+p,i ay+ By

or
() +ay) +( B+ Br)i=(1a;~0.98,) +(9a, +.18)i
(- 1.62a, — 80a,) + (— 1628, — 80B,)i = (1ay— 9B;) + (0.9a, +.18,),

implying four homogeneous linear equations in ay, ay, B, and By:

09, + a, + 098, : =0
0.9a, - 098, - B8, =0
1.62a; + 9a, - 98, =0

Sa, + 1628, + 9B, =0.
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These equations are not linearly independent because they have come from

(A=A I)b,=0, and (4 — A1) is singular. Note that .9 times the sum of the

first and second equations gives the third equation; .9 times the difference

of the second and first equations gives the fourth equation. Because a

characteristic vector is determined only up to a factor of proportionality,

we let a,=1 and B,=0 and solve the first two equations to get 8, =1 and
=—1.8.

Similarly, we can find a complex characteristic vector which corresponds
to the root A,=.1—.9i. Its two elements are 1—i and — 1.8, respectively.
This vector is the complex conjugate of the vector associated with the first
root A, =.1+9i, which means that each element is the complex conjugate
of the .corresponding. element of the latter vector. In general, the
characteristic vectors corresponding to a pair of conjugate complex roots are
conjugate complex, which can be shown by doing Problem 14 of this
chapter. Thus the matrix B which consists of the right characteristic
vectors in our example is

1+i 1—-i
-18 -138

B=

To find the inverse of B we use the identity B ~!B=I. Denoting the first
row of B ' by (v, +8,i, v,+ 8,i), we have

1= 8,4 (v, +8))i— 1.8y,— 188,i=1,
Y+ 8,4+ (—v,+8,)i —1.8y,—~1.88,i=0,

which implies four linear equations in the unknowns vy, v,, 8, and 8,:

7, — 18y, —§; =1,
v, +6, —1.88, =0,
v, —18y, +3, - =0,
— +8, —1.88, =0.

The solution is v, =0, y,= -3.67, 8'1 =—.5and §,= —3.67 1. Similarly, we
can obtain the second row of B ~! to yield the result

—-5i —3671-36""
Si —3.671+3.67!

B-l=
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Note that the two rows of B ~!are conjugate complex.
Let the initial condition be y,,=2.0 and y,,=3.6. The initial condition
for the canonical variables will then be

2o || -5 —367'-3674% || 20| _| —1-2i
P S5i —3671+367% || 3.6 —142i

The solution for y,= BDjz, is therefore

Yu 1+i 1—i
Yu -18 -18

(—1-20)A!
(— 1420

- (1=3DA{+(1+3i)A;
(1.8+3.6)A{ +(1.8—3.6)A;

3.162e = 12499061 460%) 1 3,162¢124% (906 1460’
4.025¢"17(.906¢14) + 4,025 1% (906 ¢~ 1 4697)’

_| 6:324(.906)' cos(1.460¢ ~ 1.249)
L 8.050(.906)" cos(1.460¢ + 1.107)

Each time series is a damped cosine function with a cycle length equal to
27/1.460, or 4.30 time units, the damping factor being (.906). The first
series has smaller amplitudes than the second. It has a lag of 1.249/1.460,
or .855 time units, compared with the damped cosine function (.906)" X
cos(1.460¢). The second series has a lead of 1.107 /1.460, or 758 time units
compared with the same. The first series thus lags behind the second by
1.613 time units.

In this chapter the solution to a homogeneous system of linear difference
equations has been obtained and characterized in terms of the
characteristic roots of the coefficient matrix 4 or of the solutions to the

*Nwﬂﬁ
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difference equations for the canonical variables. If the system is not
homogeneous or if there are exogenous variables w, affecting y, by Bw,, our
solution A4, will have to be added to the cumulative effect

Bw,+ ABw,_+ -+ + 4" 'Bw,

of these exogenous variables. In the special case in which w, consists only
of the dummy variable equal to 1 B will be a column vector. In any case
the study of the solution to the homogeneous system is useful because it
forms a part of the general solution to a nonhomogeneous system to which
the effect of exogenous forces can be added. Before we consider the
exogenous variables and the way to manipulate some of them to achieve
desired policy objectives it is important to consider the combined effect of
the random disturbance

Ut Au,_+-+ A7y

on the solution. This is the subject of the next two chapters:

Readers interested in pursuing the subject of nonstochastic difference
equations may consult Goldberg (1958), Samuelson (1948), part II. and
Mathematical Appendix B, and Allen (1959). More elementary treatment
with economic applications can be found in Baumol (1970) and Kenkel
(1974).

PROBLEMS

1. Find the characteristic roots and the right characteristic vectors of the matrix:

4=|3 -1
2 2
2. Obtain the solution to the following syétem of difference’ equations in terms of the
relevant characteristic roots:

Yu=P1-1" V2010
Yu=21-1+ Wy

Assuming that y,o=0 and y,5=1, graph the solution for y;,, #=1,2,...,5. Plot the solution for
Yo £=1,2,...,5.

3. Prove the identity (30) by Taylor series expansions of its components.

4. Under what conditions will the second-order difference. equation (3) be explosive or
damped and oscillatory? State your conditions in terms of the coefficients 4, and a,.

5. Construct a numerical example of the second-order difference equation (3) whose
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solution is explosive and oscillatory. Construct an example whose solution is damped and
oscillatory. Plot these solutions. Vary the initial conditions for these solutions and comment
on the differences in the results.

6. Write out the characteristic equation of a 3X3 matrix 4 =(a;). Provide a numerical
example and obtain the characteristic roots and associated right characteristic vectors.

7. Provide a multiplier-accelerator model that can be transformed into a second-order
difference equation. Insert reasonable values for the parameters in the light of your know-
ledge of the economy of the United States. (If you are interested, you may actually estimate
the values of the parameters by using some real data by whatever econometric method you
deem appropriate.) Graph the solution by using initial conditions from actual data of the
most recent periods. Discuss the nature of the solution. You may wish to consult Samuelson
(1939) or Baumol (1970} for this problem.

8. Interpret the solution to Problem 2, 5, or 7 in terms of the canonical variables.

9. Let A,=a+bi and Ay=c+di, with 0. Show that A, and A, are conjugate complex if
both A; +A, and A A, are real.

10. Let A, and A, be, respectively, a+ bi and a— bi, with b+0. If the linear combination
¢ A{+c M is real for 1=1,2,..., show that ¢, and ¢, must be conjugate complex. Hint. Let
¢ =fi+g,i and ¢;=f,+g,i. Show that f,=f, and g, = — g, if this linear combination is real
for t=0,1,2,....

11.  Let national income y, be composed only of consumption y,, and investment y,,. Let
these components satisfy, respectively, the following consumption and investment functions:

Yu=a (P +y2)+ b1y
Yau=a( Y1 +y2)+byya, 1

where all the coefficients a; and b, are positive and the sum a,+a, of the marginal
propensities is less than unity. Find the reduced form equations. Show that the roots of the
system are real and positive and therefore that the system cannot have prolonged fluctua-
tions. [A generalization of this proposition to the multivariate case can be found in Chow
(1968).]

12. Let the investment function of the model of Problem 11 be changed to

Yu=ay,—¥i-1)+byys .y

the consumption function remaining the same as before. Construct a numerical example of
this system which will give rise to a pair of complex roots. Graph your solution for five
periods, using the most recent available data for consumption and investment (including
government) expenditures as initial values.

13. By adding a new variable rewrite the nonhomogeneous system of difference equations
y,=Ay,_,+ b as a homogeneous system. Obtain the solution of the nonhomogeneous system
from the solution of the homogeneous system.

14. Show that the (right) characteristic vectors corresponding to a pair of conjugate complex
roots a+ bi and a— bi are conjugate complex. Hint. Follow the development in Section 2.8.
Let the first characteristic vector be a+ i, where a and B are real vectors. Write out the
equation 4 (a+ Bi)=(a+ bi)(a + Bi). Do the same for the second characteristic vector y+ &i.
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15. Find the solution to the system

Yu =[1 -1.62 ] V-1

Yu I — 80 f[ ¥y

by using the canonical variables, given the initial condition y,y=3.6 and y;,=6.0.

16. Find the solution to the system given by (35), using the third method deseribed in
Section 2.7, namely the initial conditions y,o=2.0 and y,=3.6, directly without finding B or
going through the canonical variables.




CHAPTER 3

Analysis of Linear
Stochastic Systems:
Time Domain

3.1 INTRODUCTION

In this chapter and the following we incorporate random disturbances as a
part of the explanation of economic fluctuations and a part of dynamic
economics. The importance of random disturbances in dynamic economics
can hardly be exaggerated. All econometric models of the real world are
built with explicit recognition of stochastic disturbances. It is therefore
essential to incorporate this element into the theory of dynamic macro-
economics.

"As early as the 1930s the Norwegian economist Ragnar Frisch empha-
sized the importance of random disturbances in the theory of business
cycles. Partly for his contributions to stochastic dynamic economics, Frisch
won the first Nobel Prize in Economic Science in 1969. The prize was
shared by the Dutch economist Jan Tinbergen, who did pioneering work in
econometrics and quantitative economic policy, the subject of Part 2 of
this book. We quote from Frisch’s classical paper [1933, pp. 197 and
202203}

The examples we have discussed...show that when an [de-

terministic] economic system gives rise to oscillations, these will

most frequently be damped. But in reality the cycles... are

generally not damped. How can the maintenance of the swings

be explained?... One way which I believe is particularly fruitful

and promising is to study what would become of the solution of
38
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a determinate dynamic system if it were exposed to a stream of
erratic shocks....

Thus, by connecting the two ideas: (1) the continuous solution
of a determinate dynamic system and (2) the discontinuous
shocks intervening and supplying the energy that may maintain
the swings—we get a theoretical setup which seems to furnish a
rational interpretation of those movements which we have been
accustomed to see in our statistical time data.

In the late 1950s, Irma Adelman and Frank Adelman (1959) used
computer simulations to study the dynamic properties of the time series
generated from an econometric model constructed by Klein and Gold-
berger (1955) and compared them with the properties of the economic time
series actually observed in the United States and characterized by the work
of the National Bureau of Economic Research. The method of computer
simulations in economics is to solve the system of econometric equations
for the values of the endogenous variables, given the values of the ex-
ogenous variables and random disturbances. If the random disturbances
are excluded, it is called a nonstochastic simulation; otherwise, a stochastic
simulation. The study by the Adelmans concluded that, without introduc-
ing random disturbances into the computer simulations, it was not possible
to reproduce the dynamic characteristics of the economy by using the
Klein-Goldberger model. With the random disturbances incorporated, the
time series generated by the model looked remarkably similar to those
actually observed from the viewpoint of measurements such as the mean
time interval from peak to peak and trough to trougn. In this chapter
methods are provided to deduce some of these dynamic characteristics
from a system of linear stochastic difference equations analytically rather
than by computer simulations.

What are some of the dynamic characteristics of a stochastic time series
that should be examined? A stochastic time series is a random function of
time; that is, given time ¢, the time seriés is a random variable and the
distribution of this random variable has time as a parameter. One impor-
tant property is the mean, defined as a function of time, of each time series
generated by a system of stochastic difference equations. It provides
information on the trend of each series. The degree of variation around the
mean should also be interesting. It may be measured by the standard
deviation. Some measure of the length of the cycle may also be desirable.
It could be the mean time interval from peak to peak or from trough to
trough or the mean time interval when the time series crosses the trend, but
there are other possible measures. We might wish to examine the correla-
tions between successive time-series values. If the correlation between y,




40 ANALYSIS OF LINEAR STOCHASTIC SYSTEM: TIME DOMAIN

and y,_, is high and positive, the time series may be considered slow
moving or smooth; if the correlation is high and negative, the time series
must oscillate. Besides their individual characteristics, we shall study the
dynamic relations between time series. Does one time series grow faster
than another? Does it fluctuate more than another? Is it made up of
shorter cycles than another? Does it tend to lead or lag another or do the
two tend to move up and down with approximately the same timing?
These are some of the questions to be answered in this and the following
chapter.

In this chapter we first study the simple case of a univariate first-order
linear stochastic difference equation. Such an equation results from adding
a random disturbance , to the right-hand side of the difference equation
y,=ay,_,+b. Several useful concepts are defined. The discussion is
generalized to a multivariate system of higher order linear difference
equations. Canonical variables are also introduced to help characterize the
solution, as in Chapter 2. Several dynamic characteristics concerning
individual time series and the relations between them will be studied.

3.2 FIRST-ORDER LINEAR STOCHASTIC DIFFERENCE EQUATION

A simple example of a stochastic difference equation is

y=ay,_+b+u, 1)

where y, is a scalar and , is, for any integer ¢, a random variable with
mean 0 and variance v; it is statistically independent of u, for ¢ 5. This
model is not only simple but useful. In many applications of economic
forecasting we may, as a crude approximation, predict the value of a
variable by a linear function of its own value of the last period. The
predictions from this model will almost always contain an error. The error,
hopefully, is captured by the random variable »,. Of course, we can make
the model more complicated by introducing more lagged variables, y,_,,
¥,_3 and so on, and by specifying a more complicated random structure
for u, but it is useful to consider the simplest case first. Besides being
called a first-order linear stochastic difference equation, the model in (1) is
also called a first-order autoregression or a first-order autoregressive process,
for obvious reasons.

Going from a nonstochastic difference equation to a stochastic
difference equation like (1), we would need different concepts for the
solution. It is clear that the solution is no longer a deterministic function of
time and the equation no longer specifies the time path of y, exactly. It
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does, however, give the probability distribution of the solution y, for each
time . A time series y,, being a stochastic function of time, is specified if we
know the joint probability distribution of any subset of the random
variables, say (y|,...,¥), in the same way that a scalar random variable y
is specified if we know its probability distribution. Rather than dealing
with all the parameters of the joint distribution of any subset of y, that are
of interest, we choose to concentrate on the means, the variances, and the
covariances. 1f the joint distribution of any subset of y, is multivariate
normal, it is well known that these parameters are sufficient to determine
the distribution completely. It is easy to see from Equation 2 that if «, are
normal the joint distribution of y, y,,...,y, (for any k), given y,, is
multivariate normal as a consequence of the theorem that linear combina-
tions of normal random variables are jointly normal. In this case the
means, variances, and covariances contain all the information required.
Even if u, are not normal, these parameters still contain much useful
information that we exploit in our study of the properties of the time series.

To derive the mean of y,, given y,, we may first express y, as a function
of y, and the past u’s by successive substitutions for the lagged'y’s on the
right-hand side of (1):

yy=b+ab+ah+ - +a " b+aytutau_+--- +a 'y

=b(1 —a)_l(l —a)+ayetu+au_+--- +a' "'y (2)

(provided a# 1; otherwise bt + y, replaces the sum of the first two items on
the last line). Taking expectations on both sides of (2), we have

By, =7,=b(1—a)"(1-a")+al, ®)

because the expectation of each # is 0. Alternatively, we could have
obtained the mean Ey,=j, by taking expectations on both sides of (1) to
yield

y=ay,_,+b C))

and then solving the nonstochastic difference equation (4). Note that
Fo=Eyy=yo, for y, is treated as a given constant. Equation 3 or 4 shows
that the mean function of the time series satisfying the stochastic
difference equation (1)-is identical with the solution to the nonstochastic
difference equation y,=ay,_,+ b, ignoring the random disturbances.

To find the variance of y, and covariances between y, and y,_, we can
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use (2) and subtract the mean y, from both sides:
V—FEyi=utau,_tatu_,t o +at T, (5)
where y* denotes the deviation of y, from its mean. Similarly, we can
express y¥ , as a weighted sum of #,_,, %_,_,,..., and u,. Taking the

expectation of the product y}y* , and noting Eu,u;=0 for i#j, we get the
covariance

y(t,k)=Ey¥y*r =E(u+au_+ - +a' " luy)
X (ty_ g aty_y_ + o +al"E )
= E(abu?  + a** il @l ot e+ akt R kD2
=vak(l+a2+a*+ - +a%* D)
=o(1-a)" (1= a2~ D)a*, ©
The variance of y, is a special case of (6) when k=0. Expression 6 is called

the. autocovariance function y(t,k) of the time series y,, for it shows the
covariance between y, and its own value lagged k periods.

3.3 COVARIANCE STATIONARY TIME SERIES AND
ITS AUTOCOVARIANCE FUNCTION

If the coefficient a in (1) is smaller than 1 in absolute value, the mean
function (3) and the autocovariance function (6) will, as ¢ increases,
approach, respectively, the limits

lim5,=5=b(1—a)”, ™
Jim y(t,k) =y, =0(1-a?)"'a*. ®)

In (7) and (8) we have dropped ¢ as a subscript or argument in the mean
and autocovariance functions because they are constant through time
when ¢ is sufficiently large.

A time series is called weakly stationary if its mean and autocovariance
function are independent of time. A time series is stationary if the joint
distribution of any subset of observations of the series remains unchanged
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when the same constant is added to the time subscript of each observation.
Stationarity implies weak stationarity. A time series is said to be at a steady
state or in equilibrium if and only if it is stationary. This definition
contrasts with the deterministic case in which steady state means unchang-
ing values of the observations themselves. For a stochastic time series the
steady state means unchanging probability distributions. A time series is
covariance stationary if its autocovariance function is constant through
time. The autocovariance, of course, is still a function of the time lag &
between y, and y,_,. If the model (1) is modified by changing the intercept
b into a function b, of time, the mean function will be

yy=b+ab,_j+---+a' b, +aly,

which may not approach a limit as ¢ increases, but the time series will still
have a constant covariance function around its mean.

Let us examine the autocovariance function ¥y, given by (8) for the
covariance stationary case. For k=0, y,=10(1—a?~! is the variance of the
time series. It is a measure of the dispersion of the time series around its
mean and can be used to provide interval prediction for the time series.
The variance v, is larger, the larger the variance v of the random distur-
bance u,; in fact, vy, is proportional to v. The factor of proportionality
(1—a®~" depends on the coefficient a of the stochastic difference equa-
tion (1); it is larger, the larger the dbsolute value of a (which should not
exceed 1 for the time series to remain covariance stationary). This re-
lationship is reasonable because the larger the coefficient a, the more the
past variations in the time series will be carried over to the present; if a is
0, the only variations in y, are from u, for y, will be identical with the
random series u, itself.

If a is positive and large, say it equals .9, the covariance between y, and
its lagged value y,_; will be large, being .9 of the variance of y,. The
covariance between y, and y,_, will be (.9)° of the variance; it decreases
with the lag k at a slow rate; that is, although the covariance between y,
and y,_, weakens as the time interval between the two observations
increases, it weakens only slowly and retains substantial degrees of associa-
tion between the observations at different times.

It is sometimes useful to speak of the correlation or correlation
coefficient, rather than the covariance, between y, and y,_, in order to free
the measure of association from the choice of units of measurement. The-
correlation is defined as the ratio of the covariance to the product of the
standard deviations of the two variables. In the case of equal standard
deviations it is the ratio of the covariance to the variance of either variable.
Thus the autocorrelation function of a time series is the ratio. of its
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autovariance function to its variance. For the model in (1), in the
covariahce-stationary case, the autocorrelation function is

Yi k
=-—=q", 9
Pr o ()

If a equals .9, the correlation coefficient between y, and y,_, is (.9)%; it
remains substantial for observations several time units apart. This means
that the time series does not change rapidly from period to period. It tends
to behave like a time path with long or slow-moving cycles. The meaning
of this statement is clarified in Chapter 4.

If the coefficient a in (1) is small, say equals .05, the time series behaves
like a random series. If & is very small, y, is almost equal to the random
disturbance #,. From. the viewpoint of the autocorrelation function y, and
»,_y have a correlation coefficient of only .05, and y, and y,_, have a
correlation coefficient of only .0025.

If the coefficient a is negative but large in absolute value, say equals
—.9, successive values of ywill tend to be highly negatively correlated, the
correlation coefficient between y, and y,_, being —.9. The time series is
certainly not random through time but rather shows a cycle of about two
time units in length. It tends to go up in one period and down in the next.
The movement is just opposite to that of the case in which a=.9. The time
series- now fluctuates rapidly with high frequencies rather than moving
slowly. It reveals short cycles rather than long cycles. This example also
suggests the important idea that fluctuations in the autocovariance function
can give indications to fluctuations in the time series itself.

34* EXPECTED TIMES BETWEEN MEAN CROSSINGS AND
BETWEEN MAXIMA

Because the autocovariance function provides information on the cyclical
characteristics of a time series, it can be used to calculate certain measures
of ‘the average length of the cyclical movements. These measures are
important because they can be used to compare the dynamic characteris-
tics- of a model with these calculated directly from economic time-series
data for the purpose of checking the validity of the model. There are
several ways. to measure the mean length of the cycles of a stochastic. time
series. Two of these measures-are discussed in this section. The first is the
mean time interval when the time series crosses its mean function. The
second is the mean time interval between successive maxima. It is certainly
possible for the time series to have several maxima before crossing the
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mean function so that the first measure may be expected to be greater than
the second for the mean cycle length. Our discussion is confined to
stationary time series. Only the results, not the proofs, of this section are
required for the remainder of this book.

To obtain the expected time between successive down-crossings of the
mean, that is, between crossings from an above-trend value to a below-
trend value, we can find the probability at any discrete time point that the
time series will change from an above-trend value to a below-trend value.
If the probability is .2 per period for a time series to experience a
downward movement crossing the trend, it will take an average of 1/.2 or
5 periods to have a down-crossing. Thus the mean time for a down-
crossing is the reciprocal of the probability of a down-crossing per period.
To calculate the probability it is convenient to assume a 0 mean for the
time series. Thus, instead of studying the time series of Equation 1, whose
mean is b(1 —a)~! in the stationary case, we shall study the deviations y}
from mean which satisfies the equation y*=ay* |+u, and has a mean
equal to 0. We have subtracted the mean from the time series and study
the probability of down-crossing of 0 for the resulting series. The time
series is assumed to be normal.

Let p, be the autocorrelation function of a stationary time series which is
normally distributed with O mean. In a normal time series with a constant
mean. covariance stationarity implies that the joint distribution of any
subset of observations remains the same through time. The reason is that
the mean and the autocovariance function specify the joint distribution
completely. If the- distribution of successive observations is invariant
through time, we can consider any two successive observations, say, y, and
¥,, and find the probability that y, is positive and y, is negative, using the
bivariate normal distribution of y; and y,.

P(y,>0,y,<0)= (Z'rr I—p,) f fexp [2(1—p )]—l

X(yf—Zplyly2+y%)}dyldy2. (10

In equation 10 the variance of the time series is assumed to be 1. By
changing the variables we can easily check that the double integral in (10)
equals the integral for the general case in which the variance v, is not 1. To
argue verbally, if the original time series has a variance y, not equal to 1,
we divide by the standard deviation or change the unit of measurement to
achieve a variance of 1. This should not affect the probability of 0 down-
crossing. ‘

To integrate the rlght hand side of (10) w1th respect to y, we complete
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the square for the exponent

2 .
Yi=20, 3172+ 3= (01—p1y2) +y3—piy} (11)

and rewrite the integral

fowem{—[2(1—pf)]_'(yn-p.yz)z}dyn

. — a2 *© —~ 1,2
Vi—pi f—p.yz/mﬂp( 32%)dz (12)

by changing the variable y, to the standard normal deviate z=

=01 y)/V1—p?, with &y, = 1—p? dz. Substitution of (i1) and (12)
into (10) gives

Lo _1(y24 2
P(y1>0,¥2<0)— 2,” f—oof‘Pl)’z/\/l——Tfexp[ 2(y2+z )]dZd)’z (13)

Thus the desired result is the probability that the first random variable

(whose value is denoted by z) will be larger than —p,/ V1—p? times the
second random variable and that the second variable will be negative,
given that the two variables are standard or unit normal and statistically
independent. .

If z is measured along the horizontal axis and y, along the vertical axis
of a two-dimensional diagram, as in Figure 3.1, this event is represented by
the set of points in the shaded area between the horizontal axis and the
line z= —p,(1—p}H~ %-yz. The probability of this event is simply the ratio
of the shaded area to the total area because, the two normal random
variables being independent, the equal-probability contour lines are circles
of different radii from the origin in Figure 3.1. In other words, the ratio of
the angle § (measured in radians) between the horizontal axis and the line

z=—p(1 —p,z)'%y2 to 2« will give the probability of down-crossing the

mean. The angle 6 is calculated by tanf=p; (1 —p?t. By trigonometry it
also satisfies cosf=p,. Therefore the probability of down-crossing the
mean at any time unit is cos™!p,/2m, and the expected time interval
between down-crossings of the mean for a stationary normal time series is
2w /cos ~'p; time units, where p, is the autocorrelation between y, and y,_,.
This expected time is obviously the same as the expected time for an
up-crossing from a value below the mean to a value above because an
up-crossing must be preceded by a down-crossing and vice versa.
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Figure 3.1 Probability of mean crossing.

Using the above formula, we find that a time series that obeys a
first-order stochastic difference equation with coefficient .9 will take on the
average, 13.93 time units between successive down-crossings. A coefficient
of .8 would reduce the expected time between down-crossings to 9.76 time
units.

A second measure of average cycle length is the expected time between
relative maxima. A relative maximum occurs when the time series increases
in the preceding period but decreases in the current period; that is, when
».>y,_,and y, >y, . As before, we shall find the probability of this event,
by assuming a multivariate normal distribution for the stationary time
series with 0 mean, unit variance, and autocorrelation function p,. If we
define z; =y, —y, and z,=y, —y,, the required probability is that of z;, >0
and z,>0. First, the joint probability distribution of z, and z, must be
derived. Being linear combinations of the normal random variables y,, y,,
and y,, the variables z; and z, are jointly normal. Their means are easily
seen 1o be 0, as the means of the ys are all 0. The covariance matrix of z,
and z, is

zy | _ 2-2p, 1—2p,+p, . (14)
z, 1-2p,+p, 2—12p,

cov

The proof (14) is left as-an exercise for Problem 6 in this chapter. We now
evaluate the probability that the two random variables that satisfy a
bivariate normal distribution with means 0 and covariance matrix given by
(14) are both positive. We can integrate the specified bivariate density, over
positive values for the two variables.
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To simplify this procedure we change the units for the two variables z,
and z, by dividing by their standard deviation, that is, by using x,=z,/
(2—2p,)% and x2=zz/(2—2pl)%. The probability that both z, and z, will
be positive is the same as the probability that both x, and x, will be
positive. The means of x, and x, are 0; their variances are 1 and their
correlation coefficient is, according to (14),

_1-2p,+p,

'r——2T2p—l“. (15)

The required probability is therefore
=1 pe0 po0 -
P(x,>0,x,>0=Q2aV1i-r") f f exp{—[2(1—r2)] :
o o

X(x,2—2rx,x2+x§)}dxldx2, (16)

which can be evaluated by the same method as in (10). By completing the
square for the exponent as in (11) and by changing the variable x; to

z=(x|——rx2)/\/1—r2 as in (12) we can rewrite (16) as the following
expression, analogous to (13):

By the argument used for the evaluation of (13), the probability (17) is the
ratio of the angle @ between the horizontal axis and the line x,= —r~"
X(1- rz)%z in the (z,x,) diagram shown in Figure 3.2. The angle 4 satisfies
tanf=—r~'(1— )7 or, by trigonometry, cosf = — r.

By using (15) for r we have obtained the probability cos™ (1=2p,+p5)/
(2p,—2)]/2x for a time series to be a maximum at any discrete time point.
The expected time between relative maxima is therefore 2m /cos™ T(1—2p,+
p2)/(2p,—2)] if the time series y, is stationary normal and has autocorrela-
tions p, and p, with y,_, and y,_,, respectively. For a time series that
satisfies (1) with a=.9 the expected time is 3.88, which is much shorter
than the expected time between crossings of the mean.

There is a simple explanation why for many aggregate economic time
series the average length of cycles, measured from peak to peak, is
approximately four years. If the first difference of an annual time series is
assumed to be serially independent and normally and identically distrib-
uted, the probability for the time series to be at a peak in any year, that
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Figure 3.2 Probability of a relative maximum.

is, the probability of a positive first difference followed by a negative first
difference, is one-half times one-half, or one quarter. Thus on the average
a peak would be observed every four years. This result is a special case of
the above formula, when p,=p? and p, is approximately equal to 1.

3.5 SYSTEMS OF LINEAR STOCHASTIC
DIFFERENCE EQUATIONS

Having pointed out some important uses of the autocovariance function
for a univariate time series, we shall now generalize the discussion to a

situation that involves many time series generated by a system of linear
stochastic differencé equations:

W=Ay,H Ayt Ay, bt (18)

In (18) y, is a multivariate or vector time series, 4, are matrices of real
coefficients, & is a vector of intercepts, and u, is a random vector with
mean 0 and covariance matrix ¥ which is statistically independent of u, for
t7=s. We shall study the means of the time series as functions of time.sFor
the study of linear models with autocorrelated disturbances u, the reader is
referred to Section 3.11.

As in the deterministic case in Chapter 2, it is convenient to rewrite (18)
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as a first-order system,

Vi 4, A A Yi—1 b ,
Vi1 - I 0 0 Yi—2 + 0 ,

Yi—m+1 0 07 0 Vicm 0 0
(19)

and in a more compact form as
y,=Ay,_+b+u,. (20)

The vector y, in (20) stands for the vector on the left-hand side of (19),
without the use of a new symbol. Similarly, b and %, in (20) are also
redefined. It is thus sufficient to study the first-order system (20).

The mean Ey,=jp, of the time series that obeys (20) can be derived in
two ways, as in the univariate time series in Equation 1. First, we eliminate
the lagged y on the right-hand side of (20) successively to yield

y,=b+Ab+ A%+ + AT b+ Ayt ut Ayt +A 7. (21)

By taking mathematical expectations on both sides of (21) we obtain the
mean function

Ey,=y,=b+Ab+ A%+ +4" b+ A%, (22)

Second, we take expectations of both sides of (20) and find that the mean
function y, satisfies the nonstochastic system of difference equation

)71=A}71—l+b' . (23)

The solution of (23) is (22), with yy= Ey,.

The mean function (22) will reach a steady siate or a vector equilibrium
value as t increases if and only if all the characteristic roots of the matrix A
are smaller than 1 in absolute value. To show this, we write the matrix 4 as
BD, B!, following the discussion in Chapter 2. Here Dy is a diagonal
matrix consisting of the characteristic roots of 4, and B is a matrix whose
columns are the corresponding right characteristic vectors. Equation 22
can then be rewritien as

$,=b+BD,B~'b+BDB b+ +BD{"'B~'b+ BD{By,

=B(I+D,+ D3+ -+ +D{")B '+ BD{B Yy, (24)
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Note that the sum of the matrices in parentheses is a diagonal matrix with
diagonal elements

LA +A2+ - AL

As ¢ approaches infinity, the limits of the diagonal elements are (1—A,) ' if
and only if the absolute values of all A; are smaller than 1. Under this
assumption the matrix in parentheses in (24) will approach (/— D,)™! as
the limit, and D5 will approach a matrix of zeroes as ¢ approaches infinity,
making the last term of (24) vanish. The steady-state value of 7, is

lim 5,=B(I—-D,)"'B 5. (25)

An alternative, .and simpler, way to write the steady state (25) is
obtained by using the inverse of B(/— D,)B ~'=1— 4, yielding

Jlim 5,=(1-4)"". (26)
In connection with our proof of (25) and (26) it has been shown that if and

only if all the characteristic roots of the matrix 4 are smaller than 1 in
absolute value

Jim (I + A+ A%+ A7) =B(I=D) "B =(I=4)" (27)

and
dirm, 4"=0. (28)
The identity (27) can also be obtained in the following manner: let the

finite sum of  terms I+ A4+ A%+ - -+ + 4*~! be denoted by S,. It is easy to
see that S, — AS,=I— A, which implies that

S=I+A+A%+ -+ A7 =(1-4)7 (1~ 4, (29)

itself a useful identity. By using (28) we find that the limit of (29) as ¢
approaches infinity is (I—4)~".

3.6 AUTOCOVARIANCE MATRIX OF STOCHASTIC
DIFFERENCE EQUATIONS

Haviqg considered the means, we shall now study the variances and
covariances of y;, and y;,_,. We have already dealt with the interpretation
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and uses of the autocovariance function of an individual time series. As for
the covariances between y, and y;,_, for different values of k, they
indicate the degrees of association between the two time series at different
times and are called cross-covariances. If the covariance between y, and y,
is large, the two time series observed at the same time are highly
associated. To eliminate the arbitrary effects of the units of measurement
cross-correlations between y,, and y, ,_, are used and defined, as usual, as
ratios of the cross-variances to the products of the respective standard
deviations, that is, to Vvary,-vary;,_, . The cross-covariance or the cross-
correlation function also reveals the lead-lag relationships between the two
time series. Its value, for example, may be highest for k=3, which suggests
that y, and y; ,_, are most highly correlated or that y,, perhaps leads y;, by
about three time units. :

To study the autocovariances and cross-covariances of a set of interre-
lated time series it is useful to define a matrix function whose i —j element
is COV( ;s ¥j, - 1); that is,

T2, k) =[cov(yin;,i- ) =17, ()] (30)

The diagonal elements of (30) are autocovariance functions of the indivi-
dual time series. Equation 30 is a matrix generalization of the scalar
function defined by (6) and is called the autocovariance matrix of the
vector time series y,.

For the time series that obeys system (20) the autocovariance matrix can
be derived as follows. First, define y*=y,—J, as the random vector of
deviations of the time series from their means. By subtracting (23) from
(20) we find that

yr=Ay¥ +u, (31)
which implies
yr=utAu_+ A%yt ATy, (32)
where we assume that y,=Jp, is a vector of constants, which implies y§ =0.
The autocovariance matrix I'(¢,k) for k>0 is

E(}’z*)’x*—'k)=E(u,+Au,_1+.. . +At—lul)
X(ull_k+ull—k—lA,+ P +u/1Au—/<—1)
=E(Aku,__ku,'_k+Ak+lu’_k_lul’_k_lA/+ .. +A'_lulu"A"“k_1)
=AkV+Ak+lVA/+...+Al—lVAu—k_1 (k}o) (33)

In (33) the relations Eu,u,=0 for (t#5) and Eu,u/=V have been used.
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A necessary and sufficient condition for the autocovariance matrix (33) to
approach a limit for any nonnegative integer k, as t approaches infinity, is that
all the characteristic roots of A are smaller than one in absolute value. To
prove this theorem

T(t,k)=E(yyr )= AX[V+AVA + AVA?+ - + A 7* g =4
=AX[V+BD\B 'VB'"'D\B’+--- + BD{"*"'B~'VB'~'D{"*"'B’]
=A¥[B(B~'WB'"'+D\B"'VB' "'D,+ -

+D{k-'g-'vp-Di~* ") B']

=A*[B(W+ D,WDy+D}WD}+--- + DI~*"'WD"*"1)B'],  (34)

where we have defined
W=B"'WB'"' or BWB'=V. (35)

Note that the i—j element of the matrix in parentheses in the last line of
(34) is

t—k-—1

2
wy;+ wihA+ Wy ()\,)\j) +ee Aty ()\,.)\j)

-1 —ky i
=w,(1-A%)" (1= 7).

(36)
The elements of this matrix will therefore approach limits equal to

wy(1-2A) " (37)

if and only if all roots are smaller than 1 in absolute value. This proves the
theorem.

While proving the important theorem of the last paragraph we have also
provided an explicit expression for the autocovariance matrix T(2,k) of a
system of linear stochastic difference equations in the form of (20). To
repeat the last line of (34), using (36) also, we write

T(4,k) =‘A"{B[w,j(1 -7 —)\,.""Aj“")]B’} (k>0), (38)

where w;, is defined by (35) and where the expression in brackets stands for
the i —j element of the matrix; B, as before, denotes a matrix consisting of
columns of the right characteristic vectors of 4. For k=0, in particular, we
have a covariance matrix of the contemporaneous variables y ...y,

T(1,0)= B[ w;(1-A}) (1 —NA)] B (39)
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Equation 38 also shows that the autocovariance matrix satisfies the matrix
difference equation in the variables ¢ and k; that is,

T(t,k)=AT(t—Lk—1)="-- =A*T(1—k,0), -(k>0) (40)

which can be used for the computation of T(1,k) from T'(z — k,0), the latter
given by (39).

1f, and only if, all the roots of 4 are smaller than 1 in absolute value, the
autocovariance matrix approaches a limit as ¢ increases. The multivariate
time series y, is then covariance-stationary. The autocovariance function, at
the steady state, can be written as

lim r(z,k)srk=Akr0=A’<{B[w,.j(1 —)\,.}\j)_l]B’} (k>0). (41)

If we do not wish to use the characteristic roots and vectors of A to
compute Iy, we can go back to the first line of (34) and use

T(,0)=V+AVA +--- +A4 WA (42)
For the steady-state of a covariance-stationary vector time series, we use
the infinite series
Jim [(1,0)=T,= V+AVA + AVA? + - - - 43)
The additional terms on the right-hand side of (43) will get smaller and
eventually become negligible if the roots of 4 are all smaller than 1 in
absolute value. (43) can thus be used to compute I,

Explicit expressions have been given to evaluate the autocovariance
matrix of a linear stochastic system. It suffices to evaluate the matrices for
nonnegative integers k, using (40) and (42) for the general case and (41)
and (43) for the stationary case. If & is negative, we can utilize the identity

Cov(yinyj,r—k)=cov(yj,t—k’yi,t—k—(—k))’
or in matrix terms
T(t,k)=T"(t—k,— k), (44)
and for the steady state
T=T", (45)

In particular, for the steady state

Yii,kEcov(yil’yi,I—k) = Yii, -k (46)
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Equation 46 simply means that for any individual time series at the steady
state the covariance between y, and y;,_, is the same as the covariance
between y,, and y;,,, because the observations in either pair are k time
units apart.

3.7 THE AUTOCOVARIANCE MATRIX VIA
CANONICAL VARIABLES

The derivation of the autocovariance matrix of a system of linear
stochastic difference equations is intimately tied up with characteristic
roots and vectors and therefore not surprisingly with the canonical
variables of the system. Recall the construction of canonical variables in
Chapter 2 as linear combinations of the original variables y,; that is,

z,=B7Y, or y,=Bz,. (47)

The construction can be applied whether y, is stochastic or not.
For stochastic y,, taking expectations on both sides of either equation in
(47), we get

Ez,=Z,=B"Y, or 7,=BzZ; (48)

that is, the mean vector of z, consists of the same linear combinations of
the elements of the mean vector of y, as z, itself of y,. Also, the deviations
of z, from mean are the same linear combinations of the deviations of y,
from mean as

z,*Ez,—Z,=B_1(y,—}7,)=B_ly,* or y¥=Bz}. (49)

Therefore the autocovariance matrices of z, and y, are related by

T(6,k)=Ez 2, = B~ (Eypy 0B "= B~ 'T(1,k)B™";

T,(1,k)=BT,(t,k)B’". (50

We could have derived the autocovariance matrix of y, from that of z, by

-using (50). The latter matrix is easy to obtain. By premultiplying (31) by

B ~! and using (49), we have

z}=Dyz¥ |+uv, (51
where v, is defined as

v,=B"ly (52)
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and has a covariance matrix

W = Ev,0,= B~ (Euu))B~V=B"'VB~V=(w)). (53)
Each component of (51) satisfies a first-order stochastic difference equa-
tion

=Nz} _ l+vi1=vi1+}‘ioi,l—l+>\i20i,l—2+ e +>‘i1_loil‘ (54)

i,

By taking expectations of the products z}z¥_, the auto- and cross-
covariances of the z;, and z; are

Ez2z¥ = wAN (AN AN+ 0TI

it “j
=wAK(1=2A) " (1=MN). (55)

Therefore by using (55) and (50) we obtain the autocovariance matrix of
the original variable y, as

T,(1,k) = B[ wAR(1-AX) T (1-AA) B
Df[‘wij(1¥>»~x,)"(1—A,-'A;)]B'

= A*B[ W, (1=AN) T (1= NN L2 (56)

which is identical with the result in (38) obtained without explicit mention
of the canonical variables.

3.8 A RELATION BETWEEN STOCHASTIC AND
NONSTOCHASTIC TIME SERIES

In Chapter 2 it was found that the solution of a system of nonstochastic
linear difference’ equations is a linear combination of the characteristic
roots A,, each raised to a power 1. This is so because each of the solutions

—zo)\ of the canonical variables is a multiple of A/ and the solution of
the orlgmal variable y, is a linear combination of the above solutions, that
is, bz,

For a stochastic time series y, we can no longer think in terms of a
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deterministic time path for the variable itself. It would be useful to think of
its autocovariance function, which is a function of the time lag k. If y, is a
weighted sum Z b, z; of the canonical variables, the covariance between y,
and y; ,_, will be a weighted sum of the auto- and cross-covariances of the

canonical variables, all with lag &:

E.YiTyifr I 2 0] ,mEZ zml k- (57)

Equation 57 is simply the ith diagonal element of the second line of (50),
but we know, from (55), that the auto- and cross-covariances between the
jth and other canonical variables lagged k time units are multiples of }\j"‘
Therefore by (57) and (55) the autocovariance function of y, is a linear
combination of A%

Eyifyifl—k zbl_] im Jm >\>\ ) (1 IA’)A,‘
= S bybim(Ezizi) A (58)
Srm
In the covariance stationary case the autocovariance function is reduced to

-1
Eyllyl 1=k~ 2 by im Jm >\/>\m)
2 i xm jl mt) >‘k (59)

Therefore, whereas the ith deterministic time path from a system of non-
stochastic difference equations is a linear combination of A/ (j=1,...,p), the
autocovariance function of the ith time series from a system of stochastic
difference equations is a linear combination of }\j" (J=1,...,p).

3.9 PERIODICITY IN THE AUTOCOVARIANCE FUNCTION

The result just obtained with the autocovariance function has an interest-
ing implication. If a pair of complex roots A, and A, exist, being, respec-
tively, re® and re™®, they would in the .deterministic case contribute a
component to the solution of the ith time path, which is a multiple of a
cosine function with cycle length equal to 27/6, as we pointed out in
Chapter 2. In the stochastic case the pair of complex roots would contrib-
ute a component to the autocovariance function of the ith time series,
which is also a multiple of a cosine function with cycle length equal to
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27 /8. By (58) or (59) the component is
biy 2 b ( Bz 2N+ by 2 by (Ezz i )Ag =24 (1) cos [k +2(1)], - (60)

mt.

where the two coefficients of Af and Af are written as g(2)e™®® and
q(t)e ——i(b(t).

If the absolute value r of the roots is greater than 1, the contribution to
the time path in the deterministic case will be magnified by r‘ through
time; if the absolute value is smaller than 1, the combination will be
damped, as pointed out in Section 2.5. In the stochastic case, if r is greater
than 1, the contribution (60) to the autocovariance function of y, will be a
function of ¢ because the terms Ezfz}, and Ez}z}, in (58) and (60) are in
general functions of ¢. If r is smaller than 1 and all other roots are also
smaller than 1 in absolute value, the contribution (60) to the auto-
covariance function is constant through time because the terms I—A{A}
and 1AjA) in (58) will approach unity. From (60) this contribution will be a
damped cosine function 2gr* cos(8k + ®) of the lag k. Thus the angle § of
a pair of complex roots tells something about the length of the cycles in
both the deterministic and  the stochastic cases. If the autocovariance
function shows high degrees of association between observations of a time
series 2o /6 time units apart, we may be tempted to say that the time series
itself has important cycles of lengths approximately equal to 2#/8. The
statement implies another possible measure to the length of cycles for a
stochastic time series via the angle.of the complex roots. The elaboration
of this statement, and a general discussion of time series in terms of their
cyclical components will be found in the following chapter.

3.10 A NUMERICAL EXAMPLE

This section provides a numerical example of an autocovariance matrix for
a first-order system of two stochastic difference equations:

Yo —1.62 —.80 []| vy, Uy,

Yu 1 1 DAWETIS I T (61)

where the covariance matrix ¥ of u,, and u,, is assumed to be the identity
matrix, This example is obtained by adding the random disturbances to the
nonstochastic equations in (35) in Section 2.8. We shall evaluate the
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autocovariance matrix I';, by BD¥B ~'T,, as Section 2.8 aiready contains
the roots A, and A, and the matrices B and B .
To obtain Ty we can use (43):

R O 1 I -162
0 1 -162 -8 || 1 —.80
2 2
o 1 2
162 -80| |1  —.80
O ~242 | | 4244 00488
0 1 242 32644 00488 1.065376

1.499,536  —1.551,638
—1.551,638 1.808,285

+ ...

This series will converge, but not too rapidly because the absolute value of
the roots is .906. We can apply (56) alternatively by first finding the
covariance matrix W of the residuals in the autoregressions for the canoni-
cal variables:

—-5i —36"1-36"Y4
50 =367 14367

W=B"'VB"=

—.5i Si
-3671-367% —3.671+3.674

—.25+.1543{ 4043
4043 —.25—.1543i

where the matrix B ™! is taken from Section 2.8. Because the residuals are
complex, their variances can be complex. At the steady state the
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covariance matrix of the canonical variables is

{ a )\}\)—1] r(—.25+.1543i)(1.80—.181')" 4043(.18) "
v 4043(.18) " (= 25—.1543i)(1.80+.18) "
_r 2938~ 55301(] 809~ 09%671) ! 2246
2246 2938353011 80999967 !
_( .1624¢ =453 2.246
2246 16244533

. 17,
The autocovariance matrix of y,, and y,, is BD,{‘[WU(I —)\,.)\j) ]B by
the second line of (56):

1+i 1—i || (.1460—.07112/)Af 2.246)f 1+i —18
-18 —18 L 2.246\F (.1460+.071120)A% || 1—i —1.8

(—4.434— 4 178D
+(~4.434+4.178)AF

(4.634+ 292\ K
+(4.634— 2920\ K

(—4.434+3.908/)AF (7.750— .230/)A
+(—4.434—3908)AF  +(7.750+ 230)AF

The autocovariance function vy, , of the first time series is
Eytyt,_, =4.643¢%21(9055¢146%)" 44,6436~ 962(9055 ¢~ 1460))"
=9.286(.9055)" cos(1.460k +.0629) (k>0).
The autocovariance function y,, , of the second time series is

Eytyt,_,=7.154e ™7 ( 90551460 1. 7 7549297 ( 9055 ¢~ 4601y

= 15.508(.9055)" cos(1.460k —.0297) (k> 0).
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By evaluating these functions at k=0 we obtain the variances of the two

time series, 9.268 and 15.501, respectively. Both autocovariance functions

are damped cosine functions with frequency 1.460/2x or cycle length of

4.3 time units. The periodicity is the same as that of the damped cosine

functions showing the time paths of the deterministic series in Section 2.8.
The cross-covgriance function v, , is

Eytys . =6.092¢75(.9055¢"46%" 1 6.002¢ = 756 9055 ¢ = 14600

=12.184(.9055)" cos(1.460k +.756) (k> 0).

The cross-covariance function vy, , is

Eyiyt,_i=591072(.9055¢ 4% + 5.910e 722 (9055 ¢ = 4607y

= 11.820(.9055)" cos(1.460k —.722) (k> 0).

By evaluating either of these functions at k=0 we obtain the con-
temporaneous covariance 3.87, between the two time series. The correla-

tion coefficient between these two series is 8.87 (9.268 X 15.501)%, or .740.
This fairly high correlation is not surprising in view of the way the two
series are interrelated in the model (61).

3.11 TREATMENT OF AUTOCORRELATED RESIDUALS

This section provides a method of converting a system of linear stochastic
difference equations with autocorrelated residuals u, to a system with
serially uncorrelated residuals. This method of conversion can be applied
not only for the study of the dynamic properties in this and later chapters
but also for the solution to optimal control problems from Chapter 7 on. It
is therefore convenient to consider the linear model

y=Ay,_+Cx,+b+u, (62)

which is made more general than the model (20) by including a vector of
exogenous variables x,, some of which may be subject to the control of a
policy maker. Assume that a higher order system to begin with has been
transformed to first-order and that lagged exogenous variables are also
eliminated by identities (see Section 7.2). The following method has been
used in Pagan (1973).

Consider first the case of a residual vector u, which satisfies an autore-
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gressive system

U1

u,=(I>,u,_l+--'+<I>qu,_q+e,=(<l>,~~-(1>q) : +e, (63)

t—q

where ¢, is serially uncorrelated. The system (63) can be transformed into
first-order by writing

L q)l CDZ Qq U €,
Uy 1 0 0 Uy + 0 (64)
Uit 0 O 1 0 U_, 0
and by using (64) to define the first-order system
v,=Fo,_,t+ef. (65)
The definition of v, also permits us to write
u=(D,- - @ Jv,_,+e=20,_,+e,. (66)

By substituting the right-hand side of (66) for %, in the original system
(62), we have

yy=Ay,_+®v,_+Cx,+b+te, (67)

and by combining this result with (65) we form a first-order system with
serially uncorrelated residuals:

Vol A P v || Ol Pl 4 ()
o, 0 F | v, 0 0 | e*

If the residual vector u, satisfies a moving average process

u=e+Pe_+ - +0e_,=e+P0vf, (69)
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where the e, are serially uncorrelated as before, we observe that vf is
specified by

2 0 0 - 0 || an 2
B I I T [ o1
€ g 0 0 - 10|l e, 0

or by the first-order equation
vFf=F*o} | +¢. (71)
Substituting the right-hand side of (69) for u, in (62) and combining the

result with (71) will form a first-order system in y, and v} with serially
uncorrelated residuals.

Numerous references to the subject of time series relevant to various

parts of this chapter could be cited. Among the many books on time series
analysis in general perhaps mention should be made of Anderson (1971)
and Box and Jenkins (1970). Both books cover much more ground than
this chapter and contain in particular material on the statistical estimation
of parameters in time series models, a subject that has been ignored here,
and other kinds of time series models than systems of stochastic difference
equations. One important early contribution to time series analysis is
Quenouille (1947), but it was not written as a textbook.

On the subject of expected times between down-crossings of the mean
and between relative maxima the reader may refer to Kendall (1945).
These measurements were used by Johnston (1955) to study the average
duration of business cycles in the United States. Howrey (1968) provided
an economic application of several measurements of average cycle length,
and Chow (1968) made an attempt to integrate stochastic elements into
business cycle theory, using the tools of this chapter.

PROBLEMS

1. Plot the mean function of the time series y, = 9,_, + | +u,, given that the variance of ¥,
is } and given yo= 10. What is the stationary value for the mean? When will this stationary
value be a good approximation to the mean.

2. Plot the autocovariance function y(5,k), 0< k<3, t=1,2,3,..., for the time series
specified by Problem 1. What is the autocovariance function when the steady state is
reached? How long does it take to reach the steady state, approximately? What is the
autocorrelation function at the steady state?
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3. Plot the stationary autocorrelation function for the time series y,=ay,_, -+ 4, given that
the variance of u, is 1, for a=.8, a=.2, a=0, a=—.2, and a=—.8. Comment on 'the
differences.

4, What are the expected times between down-crossings of the mean for the time series
specified in Problem 3, assuming %, to be normal?

5. What are the expected times between maxima for the time series specified in Problem 3,
assuming , to be normal?

6. Let ygy,, and y, be jointly normal with means 0 and variances 1. The correlation
between y, and y, and between y, and y, are both p;; the correlation between yo and y, is p,.
Define z, =y, — y, and z,=y, —y,. Show that the covariance matrix of z; and z, is that given
by Equation 14.

7. Lety, satisfy the second-order stochastic difference equation

=9y~ 8y, 2t u,

where u, has mean 0, variance 1, and is uncorrelated with u, for ¢3¢ s. Find the autocorrela-
tion function of y, in the steady state, using (41) and (43). Plot this function for =0,
*1,+2,..., and other selected values.

8. Find the canonical variables of the equation in Problem 7.

9. Express the autocorrelation function of the time series in Problem 7 in terms of the
characteristic roots and as a modified cosine function of the lag k.

10. What is the expected time interval between down-crossings of the mean for the time
series specified in Problem 7?7 ’

11. What is the expected time interval between relative maxima for the time series specified
in Problem 7?7

12. What is your estimate of the approximate length of cycles for the time series specified in
Problem 7, using the angle of the pair of complex roots?

13. Compare the answers to Problems 10, 11; and 12, or any pair of them. Comment on the
differences.

14. Compare the behavior of the time series

2,=99%,_1—9%,_,+u,

with the time series specified in Problem 7 in terms of any one of the following:

a. the autocorrelation function;

b. the associated canonical variables and the difference equations for them;

c. the length of cycles in terms of the angle of the roots;

d. the expected time between down-crossings of mean;

e. the expected time between maxima.
15. Construct a time series which, when compared with that of Problem 7, will have longer
tycles, Check your answer.

16. Find the autocovariance matrix of the system

Yu =[1 —1-62] Y-t |y | |
Yo 1 —.80 Y2,e-1 Uy,

where the covariance matrix ¥ of u,, and u,, is assumed to be the identity matrix.

CHAPTER 4

Analysis of Linear
Stochastic Systems:
Frequency Domain

In Chapter 3 it was pointed out that periodic or approximately periodic
movements in the autocovariance function may reveal periodic movements
in the time series itself. In this chapter the discussion of the dynamic
properties of stochastic time series stresses their periodic or cyclical
movements, both individually and in relation to one another. Because the
notion of the autocorrelation function is already familiar, it is used first to
derive a spectral density function for the time series. This function shows
the importance of different periodic movements of which the time series is
composed. A time series is viewed as a weighted sum of many cosine or
sine functions of time with different periodicities or frequencies. The
spectral density, being a function of frequency, measures the importance of
the cosine function of that frequency as a component of the time series.
The analysis of a time series through its periodic components of different
frequencies is said to be an analysis in the frequency domain.

Having obtained a spectral density function by way of the auto-
covariance function of a time series, we then perform a similar operation
on the cross-covariance function to obtain a cross-spectral density function
to show the relation between the cyclical movements of two time series. A
time series is defined as a weighted sum of many periodic or frequency
components. Spectral and cross-spectral densities are defined directly in
terms of the time series and the relations between two time series without
using the autocovariance and cross-covariance functions. The two defini-
tions are shown to be equivalent. The spectral and cross-spectral densities
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of time series generated by a system of linear stochastic difference equa-
tions are also derived. Throughout the discussion, the time series is
assumed to be covariance stationary, implying, in the case of linear
stochastic difference equations, that all roots are smaller than 1 in absolute
value. Traditionally, spectral and cross-spectral densities are defined only
for covariance stationary time series. We postpone the definition, and
derivation of these functions for linear systems with roots greater than 1 in
absolute value until Chapter 6. It will then be possible to study stochastic
systems of cyclical growth by the useful concepts of spectral and cross-
spectral densities.

4.1 SPECTRAL DENSITY FUNCTION VIA
THE AUTOCOVARIANCE FUNCTION

As suggested in Chapter 3, periodic or approximately periodic movements
in the autocovariance function reveal periodic movements of similar
frequencies in the time series itself. A striking illustration is the time series
y,=—9y,_,+u, where u, is random, with mean 0 and variance 1, and
uncorrelated with u, for r#s. We can imagine that this series moves up
and down from one time unit to the next, exhibiting an approximately
periodic movement of about two time units in length. It is only approxi-
mately pericdic because there are random disturbances contributing to the
series and because only .9 of the preceding observation repeats itself, with
opposite sign, in each time unit. Accordingly, it is not precisely a periodic
function of exactly two time units in cycle length but only approximately

s0.
What about its autocovariance function y,? By the method in Chapter 3
v, =(—9fs(k=0,1,2,...). Thus y,, as a function of the time lag &,

satisfies the difference equation vy, = —.9y,_,. This difference equation is
identical to the difference equation y,= —.9y,_, for the original variable y,
in time ¢ omitting the random disturbance u,; v, must behave like y, of the
nonstochastic difference equation y,= —.9y,_,. Note that the initial condi-

tions y, and y, differ: vy, the variance in the stochastic time series at the
steady state is (1—.9%)~! for the above example; y, is the value of the
deterministic series at time 0, whatever it may be. In any case, periodicities
in the autocovariance function do reveal similar periodicities in the time
series itself.

This point can be generalized to a time series generated by a system of
linear stochastic difference equations such as the first component y,, of the
vector time series y,= Ay, _,+u,. The deterministic system omitting the
random disturbances satisfies y, = Ay,_,. The autocovariance matrix of the
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stochastic system satisfies the matrix difference equation I',=A4T,_,,
implying, for the first column and with v, , denoting cov(y;,»,,-4),

Y1k an 4 T 4y Yit k-1
York (| %21 92 T azp Y2161
Ypik Gy G Tt Ay Yprk—1

Thus the autocovariance function for the first variable y,, ,, along with
other functions ¥y 4,...,Y,1,4» satisfies the same system of difference equa-
tions in the time lag k as the variable y,, of the deterministic system
»,=Ay,_,, along with other variables y,,...,y,. The initial conditions of
the two systems are different. The first is a set of covariances vy,
Yar,000 -5 Yp1,00 The second is a set of initial observations of the multivariate
time series itself, yp,...0,0 but the two sets of variables should have
similar cyclical characteristics.

To extract the periodic movements in the autocovariance function vy, ,
we can weight it by the periodic function coswk and form the weighted
sum

fu(“’)=l i Y11,k COSWK. )]

T
If the periodic movements of v,, , and of coswk coincide, this weighted
sum will be large. In particular; imagine that vy, , is itself a cosine function
of the same frequency w/27 as the weighting function. When v,, , equals 1
(for k=0, 27 /w, 47 /w,...), the weighting function will also be 1. When
Yi1.equals —1 (for k=7/w, 37/w, 57 /w,...), the weighting function wili
be —1, giving a product of 1. On the other hand, if the periodic move-
ments of v, ;, and of coswk do not coincide, the weighted sum (1) will be
small, for when v, , is large coswk may be small or even negative and
when v,, , is small or negative coswk may be large, so that the products of
the two functions for different values of k will cancel out to yield a small
sum. In other words, if v, ; includes an important periodic movement of
frequency w /27, the weighted sum (1) will be large; otherwise the sum will
be small. To the extent that periodic movements in the autocovariance
function reflect similar periodic movements in the time series itself, we can
say that if (1) is large the time series itself will contain important periodic
movements of frequency /27 or of cycle length 27 /w.

The function (1) is called the power spectrum of the time series y,,. Itis a
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weighted sum, over k, of the autocovariance function v, , with coswk as
weights. The power spectrum is a function of w. A large value of the
function at w=w, indicates that the time series contains important cycles
of frequency w,/2x or of cycle length equal to 27 /w, time units. For a
discrete time series the argument  can range from 0 to =, as the
corresponding length of the cycle 27 /w ranges from an infinitely large
value to 2. Observations in discrete time, with ¢ an integer, cannot reveal
cycles shorter than two time units or frequencies larger than 1. If we divide
the power spectrum by the variance of the time series, we will obtain the
spectral density function of the time series. In other words, the spectral
density function of y,, is the weighted sum of the autocorrelation function
Piix fOr k= —co t0o +o0, using coswk as weights. In the literature,
however, the term spectral density function is often used more generally to
denote both the power spectrum (1) and the normalized power spectrum
that results from dividing (1) by the variance y,; o of the time series. This
more general use of the term spectral density is adopted in this book. If the
spectral density f},(w) is normalized, the integral [§ f;,(w)dw will be equal
to 1. That is why #~! appears in the definition (1). For a proof of this
normalization constant see (28) below, with p, replacing vy, and k=0.

As an example, let us find the spectral density function of the time series
y,=ay,_,+u,. For this time series the autocorrelation function is p, =a*
for k=0,1,2,..., and p,=p_,; that is, p, = all. We evaluate the weighted
sum of p, = a'® by rewriting the spectral density function, using complex
weights:

o0 0 o0
f(w)—— > pkcoswk——( S et i Y pksinwk)

T k=- k=—o0 k=—o0
1 S — e
= ; 2 Pre k! (2)

where we have used the identities
e~k = cos wk — i sinwk
and

o0
> psinwk=0,
k=—c0

because p_, =p, and sinw(— k)= — sinwk. The last expression in (2)serves
as an alternative definition. of spectral density. For p,=a it can be
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evaluated thus:

1 & —iw S iw
Sw) =;( 2 e+ X pge "—Po)
k=0 k=0
1 ]
=__( 2 ake—iwk 4. Z ak ik _ )
T \k=0

(;w;__l)
l—ae™™ 1—ae™

8 [—

1 2—ae™—ae”*—(1—ae”*)(1—ae™)

T (1—ae~)(1—qe™)

_1 1-4? _1 1-a? 3)
T 1+a?—a(e™™®+e®) 7 (1+4*>—2acosw)

This is the spectral density function for the autoregressive time series
N=ay, .

The shapes of the spectral density functions for different values of the
coefficient @ can be asertained from the last expression in (3). Please see
Problem 1 in this chapter. For 0 <w <, cosw is a decreasing function of
w. If a is positive, the denominator (1+ a*—2acosw) increases with  and
therefore the spectral density function f(w) decreases with w. This means
that the components of the time series with the smaller frequencies w/27
or the longer cycles dominate those with greater frequencies or shorter
cycles. A time series satisfying y,=.9y,_,+u, is a slow moving time series
in which 90 percent of its value in the last period carries over to the
present. The series does not change much from one period to the next.
Therefore long cycles dominate short cycles. If a is negative, the de-
nominator (1+a®—2acosw) decreases with w and the spectral density
function f(w) increases with w. In this case short cycles dominate long
cycles. The time series shows fluctuations with high frequencies. The cycles
with the highest frequency 4 or with the shortest length of two time units
are the most pronounced. In the extreme case in which a=.99, say, the
function f(w) has densities heavily concentrated for w near « or for cycles
with lengths close to two time units. When a equals 0, y, is just the random
series u, and f(w) =1/ is a constant. It shows that cycles of different
lengths are equally important. Because f(w) is normalized, the area under
the function from w=0 to w= is exactly 1.
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4.2 SPECTRAL DENSITY FUNCTIONS OF A BIVARIATE SYSTEM

The spectral density function of a time series that satisfies a first-order
autoregression y,= ay,_, +u, does not have a maximum at w between 0 and
7. In other words, either very long or very short cycles dominate, depend-
ing on whether a is positive or negative. The spectral density function of a
time series generated by y,=Ay,_,-+u,, A being a 2X2 matrix, can have a
relative maximum at a value of w between 0 and #. To pursue this point
and to set the stage for the discussion of spectral density functions of a
multivariate stochastic system we consider next the spectral density func-
tions of time series that satisfy a first-order bivariate system of stochastic
difference equations.

The autocorrelation function p, of a time series generated by a bivariate
system of first-order stochastic difference equations takes the form d,A¥ +
d,Af (k>0)and p_,=p,,as we saw in Chapter 3. Here A, and A, are the
characteristic roots of the system; d, and d, are suitable weights, which are
conjugate complex if A, and A, are conjugate complex. To derive the
spectral density function from this autocorrelation function we can use the
result from (3) that for any A with absolute value smaller than 1

§ Nkl =ik — 1-A2 _ 1-A2 @)
P (I=2Ae™)(1=2Ae™™) 1+A%=2\cosw

and obtain
fw) =1 3 (g e ik
k=—oc0

[_a-d  40-n)

7| 1+A?—2\ cosw 1+}\§——2)\2cosw.'

)

This is the spectral density function of a time series that satisfies a
bivariate system of stochastic difference equations.

To find out whether the time series contains any periodic components of
particular importance we can try to locate a relative maximum for the
spectral density function (5) for 0<w< 7. If a relative maximum exists at
w,, periodic movements at frequencies near w,/27 are more important
than at other frequencies. Of course, how pronounced these periodic
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movements are depends on the sharpness of the peak. To search for a
relative maximum we differentiate (5) with respect to « and obtain

@@ _ 1] —a-A)-Nsine  — (1-A2)- 2\, sinw

1
do T (14N cosw)  (14AI—2hc080)

Because sinw>0 for 0<w< 7, the foregoing necessary condition can be
restated as
2
dn (1= N2)(1+ A= 2 c050) + dAy(1-A2)(1+A2 =21 cosw) =0. (6)

Equation 6 is a quadratic equation in cosw. In order for a relative
maximum to exist a solution of (6) must take a value between 1 and —1

for cosw. . .
We illustrate the spectral density (5) with the numerical example in

Section 3.10. The system of stochastic difference equations is

Yu | = 1 1 Yri-r | 4] ¥ (7

= s

Y —1.62 —.80 Ya,1—1 Uy,

where the covariance matrix V of u,, and u,, is assumed to be the identity
matrix. According to Section 3.10, the autocorrelation functions of the two
time series are, respectively,

Pik= du}‘lk"‘ d12>\2k
= 5010¢%2%(.9055¢"46%)* + 5010 ~-062% (9055 ¢ = 14607)*

=1.0020(.9055)" cos(1.460k + .0629)  (k >0),

and
P2,k = d21>‘1k + ‘1722}‘4c

= 50026 ~771(.9055¢ 1469 1 50029297 (.9055 ¢ ~ 4600y

= 1.0004(.9055)" cos(1.460k —.0297)  (k>0).
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As we have pointed out, both autocorrelation functions are damped cosine
functions with periodicity 2o /1.460 or 4.30 time units. If either function is
weighted by cos 1.460k and the sum over &k from —oo to + co is formed,
we would expect the result to be larger than the sum obtained by a
weighting function coswk whose argument w is quite different from 1.460.
In other words, we can expect the spectral density to have a relative
maximum near w=1.460. The relative maximum will not occur at exactly
1.460 because the autocorrelation function is not strictly a periodic func-
tion, having been blurred by the factor (.9055)%.
The spectral density function for the first time series is

1| .5010e%%%(1.8090e ~0%97)

7| 2691e728 1811 cos

fulw)=

.5010e ~%62%(1.8090¢0%°7)
2691e 2 _1811e "% cos

For any « between 0 and 7 the two components of the sum in square
brackets are complex conjugates. Therefore the spectral density is real. To
find a refative maximum we use (6):

Ny (1=AD)[(14+23) = 4(1 + A3\, cos 0+ AT cos?e |
+complex conjugate=0.

Substituting the values for A, d;,, and A, and dividing the equation by the
absolute value or modulus of A;d;;(1—A%), we have

el 472( 072416~ 14956 — 9746621928 o5 5+ 3.2797 e T 2920 £p5? 1)

+ complex conjugate=0.

The addition of each complex term to its conjugate by (33) in Chapter 2
yields

.07234 — 69995 cos w +.24246 cos® w=0.

The solutions to this quadratic equation are 2.780 and .1074. The first is
greater than 1, hence unacceptable. The second implies w=1.463. This
figure is close to the value 1.460 of w in the autocorrelation function. It
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implies a cycle length of 27/1.463 or 4.29 time units, compared with 4.30
units for the latter value. This example shows how a periodic weighting
function e~ or coswk picks up the periodic movements in the auto-
correlation function.

43 CROSS-SPECTRAL DENSITY FUNCTION VIA

THE CROSS-CORRELATION FUNCTION

In the same way that a spectral density function is obtained as a weighted
sum of the autocorrelatioh function by using periodic weights the cross-
spectral density function is a periodically weighted sum of the cross-
correlation function. There is one difference, however, in using the
periodic weights. For the autocorrelation function coswk can serve as the
weighting function. There is no possibility that these two functions will be
out of phase because both functions reach a maximum at k=0 and both
take equal values at k and — k. One only has to match the two functions
by their periodicities or frequencies and does not have to be concerned
with their phase differences. The cross-correlation function p,, , may not
have a2 maximum at k=0 and, in general, p,, , does not equal p;; _;. The
function p,, , may have a maximum at k=2, for instance, which suggests
that y, ,_, is more highly correlated with y,, than any y, ., for k+2. This
may indicate that the second time series leads the first. In any case, the
weighting function applied to the cross-correlation function .should be
cos(wk — ) for some  yet to be determined rather than just cos wk.

To measure the importance of the periodic component with frequency
w/2 in the cross-correlation function p,, , we use the weighting function
cos(wk — ), where ¢ is chosen to make the weighted sum

0 o0
1 > pn,kcos(wk—\p)=l S pias(coswk: cosy+sinwk-sing) (8)
T h=—c0 T g=—co

as large as possible. By maximizing (8) with respect to ¢ we find the
appropriate phase shift for the periodic weighting function with frequency
w/27. Setting the derivative of (8) with respect to ¥ equal to 0, we get

o0 o0

—1—(— sing D pppicoswktcosy D plz,ksinwk) =0,
7 k=—c0 ’ k=—0o0

which implies

412(®) ) ©)

cpp(w)’

tany,(w) =
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where
1 o0
cp(w)= p 2 P12, COS WK, (10)
k=—-o
and
1 S .
guw)== X Pz, g Sinwk. (1
T k=—o

The solution of (9) for ¢,,(w) is that phase shift in the weighting function
cos(wk — ) which will make the weighted sum (8) as large as possible. It
indicates that the periodic component of frequency w/2x in the auto-
correlation function p,, , has a phase shift of y,,(w). This means that, as
far as the periodic components of frequency w/27 are concerned, the first
time series is most highly correlated with the second time series lagged
k={y,(w)}/w periods. In other words, the cyclical component of fre-
quency w/27 in the first time series lags behind the corresponding cyclical
component in the second time series by [{,(w)]/w periods or by ¢,,(w)/27
cycles; Y,,(w), defined by (9), is called the phase-difference cross-spectral
density of the two series. It shows that the first series lags behind the
second series by ¥,(w)/w periods in relation to the cyclical components of
frequency w/27. It is computed from the functions c;,(w) and g¢,,(w),
defined respectively by (10) and (11). The former is called the in-phase
cross-spectral density and the latter the out-of-phase cross-spectral density. If
the out-of-phase cross-spectral density g,,(w) is 0, the phase-difference
cross-spectral density will also be 0. In this case there is no phase shift
required in the weighting function coswk.

Having obtained the appropriate phase shift y ,(w) for the weighting
function cos(wk —1), we can use it to compute the weighted sum (8). The
result will measure the correlation between the periodic components of
frequency /27 in the two time series, once their phase-difference is
ironed out. Substituting (9) for ¢ in (8) and using the definitions (10) and
(11), we obtain

1 3 . X .
= cosyp(w) X ppscoswktsingy(w) X oy, sinek
k=—oco

k=—o0

(@) 712(w)

=——¢p(w)+ _—"‘hz(w)
Vi) + aiy(w) Veh(w) + giy(w)

=Vei(w) +gh(w) . (12)
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Equation 12 is called the cross-amplitude spectral density. It shows the
degree of association between the periodic component of frequency « / _277
in the first series and the corresponding component in the second series
after appropriate adjustment has been made of the phase difference.

The above development of the phase-difference cross-spectral density
and the cross-amplitude spectral density helps to explain and motivate the
definition of the cross-spectral density as

1 S — i
flz(“’)=;k2 Pi2,x€ k, (13)

where the complex weighting function e~ is used. The resulting function
fia(w) is in general complex. It can be written as

1 oo . heed 3
Sia(w)= ;[ S piprcoswk—i 2 ppsinek
k=—o0 )

k=—c

= ¢ p{w) — ig(w)

= Vel () + ghy(w) e~ | (14)

The absolute value of fi (@) is Veh(w)+ gh(w) or the cross amplitude
spectral density. The angle ¥,(w) of fiy(w) is tan™[g,(w)/ c1o(w)] or the

phase-difference cross-spectral density. )
For a pair of time series satisfying a first-order system of stochastic

difference equations the cross-spectral density .function fi,(w) can be de-
rived from the cross-correlation function

px=cuM ey (k>0),
P12,—k=sz,k=czl>‘1k+C22>‘2k (k>0).

Because pj, ;7 P1z 4 the derivation of the cross-spectral density functipn
does not simplify to the same extent as that of (5) for the spectral density
function. The result can be written as

1 S — i < ik
fralw)= —( > pigpe Y+ 2 P xe™ —P1z,o)
T \k=0 k=0

2
W) —(enten)|
2

i Cy C12 €21 €2
7

— + — + — +
1-Ae~®  1-Ae ™ 1-Ae® 1-

(15)
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Note that ¢)y+¢;;= ¢5; + ¢y, because py, =05, o Equation 15 is in general
complex. It can be used to obtain the cross-amplitude spectral density and
the phase-difference spectral density as recommended in Problem 5 in this
chapter. We shall study the applications of the cross-spectral density
functions in Sections 4.8 and 5.8.

4.4 DECOMPOSITION OF TIME SERIES DATA
INTO PERIODIC COMPONENTS

Our discussion has hinted to the possibility of decomposing a time series
into periodic components of cosine and sine functions. This decomposition
provides a useful way to characterize a time series. We first perform the
decomposition for a set of data y,, (t=1,...,N), which are simply N
arbitrarily giveh numbers. This decomposition will be suggestive to, and
enhance the understanding of, a similar decomposition for a time series
that is, as we have defined it, a random function of time. The first
decomposition amounts to manipulating sample data. The second is con-
cerned with analyzing population values and should be distinguished from
the first; it is the subject of Section 4.5.

Let N arbitrary numbers y,;,y5,...,7; 5 be given. Imagine fitting this set
of data by a weighted sum of sine and cosine functions. These functions
should have cycle lengths equal to N, 3N, {N,...,2, so that the N points
will cover one cycle, two cycles, and so on, of the functions. The functions
are cosw; and sinw#, where w;=Q2x/N)yj (j=1,...,N/2). For con-
venience let N be even or N/2=n. For j=n we have w, = and therefore
sinew,?=0. The decomposition is

n—1
Yu=aypt X (a,;coswt+by;sinwt) +a,cosw,t. (16)
=1 :

The N unknown coefficients q, j' and b,; can be determined by performing
a least-squares regression of y,, on the explanatory variables cosw;?
(=1,...,n) and sinwt (j=1,...,n—1).

To obtain the least-squares estimates the sums of squares and cross-
products of the explanatory variables (measured from their means) are
used. Note first that the sum of each variable over ¢ is 0 because the
positive and negative values of each function cancel out for every cycle
and there are an integral number of cycles. Thus

N N \
2 coswt= 3 sinwt=0 (wj=g]g-j;'j=l,...,§). (17)

=1 t=1
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The explanatory variables have 0 mean and we can deal directly with the

sums of squares and cross-products:

N N N
> costwl= sinzwjt=7 (G=1,...,n—1),

=1 =1

(18)
N
> cos?w,t=N,
t=1
N
> (coswyr)(sine,)=0  (jk=1,...,n—1),
(19)

% (cosw;?)(cose, t)= % (sinw;f)(sine,£)=0  (j#k).
=1 t=1

For the proofs of (18) and (19) consult Problems 6 and 7 at the end of this
chapter. Equations 18 and 19 are important identities. They show that.each
periodic component cosw;? or sinw? (j=1,...,n—1) has the same variance
and that each component is uncorrelated with any other component.

By the method of least squares the normal equations are

_ ~ -
% 0 .. 0 _1 a, Zy“coswlt ]
0 %; 0 b, :;)q,shlwlt
0 % o || b Syusine, it
0 0 N a, Zyl,cosvrt

L JL 4L B

(20)

Solving these equations and using a well-known formula for the intercept
@, We obtain

Il M)z

yusingt  (j=L...,n=1)

@n

=

5y X
ay=% D yucoswt,  by=

=1 t

(=D,

13 -
2=y 2= a4, = )

1=1

2=
ﬁMz
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Because the number of coefficients in (16) equals the number of data
points, the equation will fit the observations y;, (t=1,....,N) exactly
without leaving any residuals. A given set of data has thus been decom-
posed into a weighted sum of cosine and sine functions that are mutually
uncorrelated. o ] .

To measure the importance of each periodic component in y;, 1t seems
natural to use the contribution of that component to the sample variance
of y,,- Squaring y, — aio from (16), summing over ¢ and using (19) and (18),
we have

N n=l N N N R
=32 2 2 2 ) 2
S u-7) = E (”Uz cos?ey + b 2] sin?a; +al,,2:1 cos?ew,!
=1 =1 = =

Jj=1

|z

n—1
> (al+ b))+ Naz.,. (22)
j=1

The contribution of the periodic component of frequency /27 to the sample
. 2 4 p2 .
variance of y,, is therefore §(af;+by)-

4.5 DECOMPOSITION OF THEORETICAL TIME SERIES
INTO PERIODIC COMPONENTS

The idea of the last section can be extended and modified f(?r the
decomposition of a time series that is defined as a random func.tl.on of
time. No probability considerations were invo}ved in the decomposition of
(16). Now let y,, be a random function of t defined by

yu= 3 [ay(w) coseyt + By(w) sinwt], (23)

J

where a,(w;) and f,(w) are random variables with O mean and equa.l u;zriance
Ela}(w)]=E[ B(wp)] for each j and all of these random Qa_rzab es are
mutually uncorrelated. By introducing randon}ness in the coefficients a,(w;)
and B,(w;) we attempt to model a stochastic time series. Here w; may range
over many values between 0 and 1, so that there may be many an.d even an
infinite number of periodic components. What is the cor.xtrlbutlon of the
periodic component of frequency w;/27 to the total variance of y,,? To
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answer this question we decompose the variance of y,,:

. 2
Eyl,=E [ > [o;(w;)coswyt + ,Bl(wj)sinwjt]]

J

- 2 {[Ealz(ab.)]coszwjt-l- [E,B,z(wj)]sinzwjt}
= 2 [Ealz(wj)]= 2 var[a,(wj)], 24)
J J

where use has been made of E[af(wj)]= E[ ,B,Z(wj)] and the 0 correlations
of the random coefficients. Thus the total variance of the time series is the
sum of the variances of the periodic components. The contribution of the
jth component is the common variance of the coefficient of cosw;t or of
sinw;?. Please compare this contribution with the contribution given in the
last section by the jth component to the sample variance of an arbitrary set
of data. In the latter case we have estimated coefficients a,; and b,;. The
common variance of these coefficients can be estimated by %(alzj+ bfj),
which is analogous to Eaj(w) of (24).

For the time series (23) let us redefine the power spectrum f,(w)) as the
common variance Ealz(wj) of the random coefficient a,(w) or B,(w) or
equivalently as the contribution of the random periodic component of
Jrequency w; /27 to the total variance of the time series. In order to make
this definition applicable to more general situations we have to allow the
variable  to be continuous. Thus «; in (23), even if countably infinite, will
have to be replaced by a continuous variable w. The sum of (23) can
indeed be replaced by an appropriate integral such that all covariance
stationary time series can be so represented. This can be done without
abandoning the essential structure of the as and the Bs as specified above.
We can then speak of a power spectrum or a spectral density function
f1,(w) for continuous « between 0 and 7. The area [4f,(w)dw under the
spectral density function between two points @ and b measures the contri-
bution of the periodic components with w between a and b to the total
variance of the time series. If the spectral density is normalized, the
contribution to total variance is given as a fraction and the total area
under the function [§ f,,(w)dw is equal to 1.

This definition of the spectral density function enables us to understand
the concept in terms of regression theory. As pointed out in Section 4.4, we
can imagine decomposing a time series into many periodic components as
performing a regression of the time series on many explanatory variables
which are cosine and sine functions of time. The variances of the regres-
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sion coefficients are the spectral densities, but we have to think of an
infinite number of explanatory variables and of regression. coefficients.
These coefficients are also random coefficients.

4.6* EQUIVALENCE OF TWO DEFINITIONS OF SPECTRAL DENSITY

In Sections 4.1 and 4.5 two definitions have been given to the term spectral
density. The first is through the autocovariance function. The second is in
terms of the variances of the periodic components of the time series itself.
Both are useful ways to view the concept of spectral density and should be
equivalent.

Before we show the equivalence of the two definitions, one further
mathematical relationship has to be developed from the first definition. In
Equation 1 the spectral density function f}(w) is derived from the autoco-
variance function y,,,. It is possible to invert the operation, that is, to
obtain the autocovariance function from the spectral density function. The
inverse operation will be derived in a more general setting by the use of
complex weights e " and e* and by defining g(w)= g(—w)=%1f(w)
(0<w<7) to extend the domain of the spectral density function to
negative values of w. Thus we propose to invert the operation

g(w)=5l— S e (~w<w<m). (25)

T k=—o0

The inversion can be achieved by taking the integral

i ok g ’ 13 — i ), ook
f_wg(w)e dw f(zﬂmzwyme )e dw

1

x, m
% zwymf o itk=mo g,

m=— -

8]~

ka etk dy=1y,, (26)

-
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where it was observed that the integral of
e!k=me = cos(k — m)w+ isin(k — m)w

over w from — = to 7 is O for m+ k because the positive and the negative
parts from these cosine and sine functions exactly cancel out. The function
g(w) defined by (25) is the Fourier transform of v,. The inverse Fourier
transform of g(w) is given by (26) and equals y,. Thus the spectral density
function and the autocovariance function are a pair of Fourier transforms
to each other. One can be defined in terms of the other if we adopt our
earlier definition of the spectral density function of Section 4.1. It is also
known that the pair of Fourier transforms is unique. Given either one of
the transforms, the other is uniquely determined.

The development of (25) and (26) implies that the cosine transform of the
autocovariance function

flw)= % i ¥, coswk =2g(w) (0<w<m), 27)

k=—c0

can be inverted by the cosine transform of the spectral density

f flw)coswk dw=2 f 7rg(w)cos«okdw
(] 0

= [" go)cosokdo= [ g du=r, (28)

where the integral of g(w)sinwk vanishes because g(w)sinwk= —g(—w)
sin{—wk). Hence the spectral density function and the autocovariance
function are related by a pair of cosine transforms. One can be obtained
from the other.

To check the equivalence of the two definitions of ‘the spectral density
function for a model like (23) we evaluate the autocovariance function of
the time series defined by (23). If the result is a cosine transform (28) of the
spectral density function, as specified by the second definition, the two
definitions are equivalent because of the uniqueness of the cosine trans-
forms. The autocovariance function of y,, by (23) is, with a,(w;) and Bi(w)




82 ANALYSIS OF LINEAR STOCHASTIC SYSTEM: FREQUENCY DOMAIN

abbreviated by o; and B,
Yie=E1P -«
= E[ > (aycoswyt+ Bjsinwjt)]
Jj

x{ 3 [ coslt k) + ,Bjsin(wjt—aiik)]]

= 2 E(a;cosw;t + B;sinw;1)[ a; cos(wt — wyk) + B sin(wyt —wk)]
J

= 2 E(o;cosw;t + B;sine;t) (e cosw; tcoswk+B sinw;? coswk

+ o;sinw;tsine; k B;cosw;tsiney; 5,k)
= > (Ea?cos®w;t + EBF sin’ wyr)cos wik
y :
= 2 [Ea}(w)]coswk. (29)

In (29) we used the assumption that a;, &, f3; and S; are all uncorrelated
and observed, after the fourth equallty sign, that certain terms with
opposite signs cancel out. Presumably, if proper care is taken to define (23)
as an integral and to make w continuous, the result in (29) will be an
integral like the first part of (28), with Ea}(w) identified with the spectral
density f;;(w). Thus the two definitions of the spectral density function
coincide. Although this discussion is far from being a rigorous mathemati-
cal argument, it is useful for an intuitive understanding of the subject.

4.7* A SECOND DEFINITION OF CROSS-SPECTRAL DENSITY

Besides the time series (23), let there be another time series defined by
Vo= 2 [aa(e) cos st + Bz(w',:) sinwt]. (30)
J
The coefficients a,(w;) and By(w;) are also assumed to be random with 0

mean, uncorrelated, and with the same variance for each j. In addition, it
is specified that .

E[ay(@)a(w)] = E[ Buw)Boe)];
E[ By(@) ()] = — E[a()Bo()]-

€3))
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These are covariances because the means are all 0.
Consider the covariance between the component of frequency w;/27 in
y,, and the corresponding component in y, ,_,:

cov] ey (w;)cos &t + By (w;)sin a1, ay(w,)cos(w;r — wk) + Blw;)sin(wf — wk)]
= E{[a,(w)cos wt + B, (w)sine;t] X [a, cos et coswk
+ aysine;t-sinwk + By sin et coswk — B, cos it sinw k] }
=coswkE[(a,cosw+ By sinwt)(aycoswt + Bysinet) ]
+sinwkE[(a; cosw;t + B sinw?)(a,sinwt — Bycoswr)]  (32)
Define the in-phase cross-spectral density as
)= cov[al(wj)cos Wi+ Bl(wj)sin w;t, a5(w;)cos w;t + Bz(wj)sinwjt]_
= E[ay(w))a5(w)] = E[ B1(w)Bx(w)]. (33)

where the relations in (31) have been applied. Define the out-of-phase
cross-spectral density as

gra{e;) =cov[ay(w))cos et + B (w))sin w;z, ay(w;)sinw;t — By(w;)cos wt]

= E[ Bu(w)ar(w)] = — E[ () B5(w)]- (34)
The covariance (32) of the two components then becomes, for any w,
cosipe 5(w) + sin g (w), (3%)

where we have defined ¢ = wk.
To find the phase shift ¢ that will maximize the covariance (35) we set
the derivative equal to O to obtain

tany,(w)= 1)

()
The phase shift y,,(w) so defined shows that the w-component of the
second time series leads the w-component of the first time series by
k=y,,(w)/w time units; Y,,(w) is the phase-difference cross-spectral density.
Once this optimum phase shift is found, the covariance between the
w-component of the first series and the appropriately timed w-component
of the second series is, by (35) and (36),

Veh(w) +ahw) . @7

(36)
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This is the cross-amplitude spectral density.
By using (36) and (37) we can define the cross-spectral density as the
complex function

Silw)= chz(“’) +gh(w e~ ¥nl=¢(w)— iq15()- (38)

In sum, the cross-spectral density shows in two parts the magnitude of the
covariance between corresponding periodic components in thé two time
series and their relative lead or lag.

To check whether this definition of cross-spectral density is consistent
with the one given in Section 4.3 via the cross-covariance function an
analysis similar to that in Section 4.6 can be performed. By the same
argument used in (25) and (26) the cross-spectral density function and the
cross-covariance functions are a pair of Fourier transforms:

IS —iw .

glz(w)='2—w > Yi2,k€ ., (—m<w<a); (39)
k= —c0

where g;,(w)= 3f15(w) is seen to be the complex conjugate of g,,(—w) for

O0<<w< m;

Yi2.6= f glz(w)eiwk dw

= [Tga@e o+ [ gu(-w)e™* do. (40)
0 0

Equation 40 implies that yy, , is twice the real part of either of the last two
integrals. For the two definitions to agree the covariance between y,, and
Ya,i-p» 88 given by (23) and (30), should be equal to the v, , of (40). To
evaluate the vy, , of (40) we take the real part of

[ Falw)e* do
0
= fw[clz(w) — igo(@)](cos wk + i sinwk)dw
0

= f ﬂclz(w)cos(wk)dw—i- f quz(w)sin (wk)dw+imaginary part.  (41)
0 0

If the definition' proposed in this section is to agree with the former
definition ¢,,(w) and g,(w) in the above integrals should be, respectively,
E[a(w)ay(w)] and E [ B,(w)a(w)), as given by (33) and (34). The reader
may wish to check this by doing Problem 10.
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4.8 GAIN AND COHERENCE

The variances and covariances of periodic components of time series have
been defined as spectral and cross-spectral densities. It is natural to utilize
these concepts to study the simple regression problem for the periodic
components. Consider the regression of the w-component of the first series
on the w-component of the second. The regression coefficient is the ratio of
the covariance to the variance of the second series; that is,

| fia(w)|

Gi(e)= fzz(‘*’) ’

(42)

where |f,5(w)| stands for the absolute value or the modulus of the cross-
spectral density function. The regression coefficient G y(w) is called the
gain. The squared correlation coefficient between the two components is

[fa(@)l?

2 ()=
Rl S @

43)

called the coherence.

The gain and coherence have the same interpretations as the regression
coefficient and correlation squared, respectively, as they are applied to the
relationship between the corresponding periodic components of two time
series. They are functions of w. It is possible for some components of one
time series to be highly dependent on the corresponding components of a
second series, but not for others; for example, the slow-moving com-
ponents of consumption -expenditures may have large coefficients in the
regressions on the corresponding components of income, but the fast-
moving components of consumption expenditures may not. We can extend
the regression and correlation analyses via the periodic components to
more than two variables. Multiple regression and partial correlations can
be defined in a fairly straightforward manner, but we shall not pursue
them in this book.

4.9 SPECTRAL DENSITY MATRIX OF STOCHASTIC DIFFERENCE
EQUATIONS

Having defined and interpreted spectral and cross-spectral densities and
derived them for univariate and bivariate systems of stochastic difference
equations of the first-order, we now derive them for a multivariate system.
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Define the spectral density matrix for a vector time series y, as
F(o)=[f«)] (44)

The diagonal elements of F(w) are the spectral densities and the off-
diagonal elements are the cross-spectral densities. The spectral-density
matrix is related to the autocovariance matrix I', =T"_, by

1 = — it
F(w)=; 2 I‘ke k

=—00

o0 o0
=l( S e+ S I‘}(ei""—l‘o). (45)
T\ k=0 k=0

In each term of a sum the weight e ~*** is to multiply every element of the
autocovariance matrix T, or T';. A sum of these matrices is obtained by
adding corresponding elements as usual.

By using the results on I', from Chapter 3 we can derive the spectral
density matrix for the multivariate stochastic system

y,=Ay,_,+b+u, (46)

where u, has a covariance matrix ¥ and is serially uncorrelated. Recall the
matrix B that consists of the right characteristic vectors of 4 and the
diagonal matrix D, that consists of the corresponding characteristic roots,
with 4=BD,B~". The autocovariance matrix has been found to be
T,=BD}B™'T, for k>0, where To=B {w,(1-A\)"'}B’, (w)=W
=B "'WB " being the covariance matrix of the residuals of the autore-
gressions for the canonical variables. The canonical variables were defined
by z,= B ~,. Their autocovariance matrix is

I3 =DiT5=D{w,(1-M) '], (k>0), @7)
and the autocovariance matrix of y, is
T,=BD/T:B'=BDfB~'T,,  (k>0). (48)

By applying the first part of (48) in (45) and interchanging summation
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and matrix multiplications in each of the two sums we have

x . )
F(w)= -71;[ B(kEOD;‘ 3e—"wk)B'+B(kzorgbfe"”")ls'—ro

el o0
=fl3( S piTier 3 rgD{e"“"—rg)B'. “9)
T \k=0 k=0

The i —j element of the matrix in parentheses in the second line of (49) is

o0

00
k. —iwk k,, iwk
> S Y50e 2 Yi]z‘,0>‘jew ~ Yo
k=0

i 1
=¥ —+ _ 1
‘YU-O( 1—)\i€_'” 1_>\jem )

% 1=AN
=AM | (1-Xe ) (1-Ae™)

N (1=Ne )1 =Ae™) ’ (50)

The spectral density matrix of y, is therefore

1 Wy .
Fw)= WB[ o™ ne) ]B : &)

4,10+ SPECTRAL DENSITY MATRIX IN TERMS OF
CANONICAL VARIABLES

The derivation of the spectral density matrix in (51) is based on and
intimately related to the idea of canonical variables. To make the idea
explicit recall that the autocovariance matrix I'; of the canonical variables
is related to the autocovariance matrix I', of y, by

T,=BIiB". (52)
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Because the spectral density matrix is defined in (45) as a weighted sum of
T, and because summation and matrix multiplications can be in-
terchanged, the spectral density matrices of the two sets of variables are
related by

F(0)=BF()B". (53)

Once the:, spectral density matrix F*(w) of the canonical variables is found
the 1je.qu1red result for F(w) can be obtained by matrix multiplications as
specified by (53).

Tc? derive the cross-spectral density for iwo canonical variables z, and z,
we first obtain their cross-covariance function: ’

Y:]z‘,k=Ezixzj.t—k-
=E(v, + Ao+ oot o, A+ )
= (Evixvjz)(}‘ik+)‘ik+l}‘j+)‘ik+z>\j2+ e )

W,

= YAk
T=a, ™
=vioNS (k>0);
Vi k= Y= V5N (k>0). 4

The Fourier transform of (54) can be performed as it was in (50) to give
the cross-spectral density

z | . 1 w,,
f@=L § e L v
d T 7T (I-Ne “)(1=Ne™) (53)

for the ith and jth canonical variables. Application of (55) to (53) yields
the desired result (51).

Equatiqn 55 gives the spectral or cross-spectral density functions Ji(w) of
the _canoplcal variables. If the spectral density function of the ith canonical
variable is normalized and denoted by g,(w) [not the g(w) of (25)}, it is
1 1-A2
™ (1-Ne ™) (1-Ae™)

LR ) S
7 (14+A2—2\cosw)

1 r3
{w)=—F? =
&(w) Yig ol (w)

(56)
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This is the same result that we have obtained for the first-order autoregres-
sion in Section 4.1. If a root A; is real, the spectral density of the
corresponding canonical variable is real. If A; is positive, the spectral
density is a decreasing function of w; if A; is negative, it is an increasing
function that shows the relative importance of short cycles. It would be
interesting to inquire into the relation between the spectral density of an
original variable y, and the spectral densities of the canonical variables.

By (51) the spectral density of y,, is a quadratic form in the ith row b, of
B:

Ji(w)= b F*(@)b). = b, [ F* (w)+ F* ()16}, (57
where the j— m element of the matrix in square brackets is, by (50),

jfn (@) + ,f.j(‘*’)

z

1 1 1 1 1

=y —+ —+ — + — 2
vryf'""’(l—)\je—w 1=Ae®  1-Ae ™ 1-Ae® )
= Ym0l g(©)+8a ()} (58)

Denoting by D, the diagonal matrix with the normalized spectral densities
g;(w) of the canonical variables on the diagonal, we can combine (57) and
(58) to write

Ju()=$6,D,T5b; + 4b,T5D, .
=5,D,T3bi = 3 S bybiminog (). (59)
Jj m

The result is that the spectral density function of y,, is a linear combination of
the normalized spectral densities g;(w) of the canonical variables. In fact, this
is the same linear combination as the autocovariance function vy, . of y, is
of the autocorrelation functions A% of the canonical variables. Recall the
latter relationship given by (59) in Chapter 3:

Yii, o = 2 2 bijbim‘yjfn,okjk‘ (60)
J m

By taking the Fourier transform on both sides of (60) we could have
obtained (59) in this chapter directly. Thus we see that the spectral density
function of a time series generated by a system of linear stochastic
difference equations. is a linear combination of the spectral densities of
first-order univariate autoregressions with the form (56).

If all the roots in a linear deterriinistic system are real and positive, the
time paths cannot have prolonged oscillations. An interesting question is
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whether the time series generated by a linear stochastic system can have
pronounced cycles in the form of a peak in the spectral density function if
all roots are real and positive. The answer is yes because a linear combina- -
tion of the spectral densities g;(w) formed by real and positive roots A; can
have a relative maximum for 0 <w < . Consider the following example of

a bivariate first-order system.

A=1 A,=9
wel 18
8 1 (61)

(b bp)=(1 —.01)

The first time series y,, will have a spectral density equal to 7! times

1 .8
n —oyl 8@ 0 % o 1
0 2>(w) EYNT] —.01
.9913 .001570

Selected values of the function (62) are

T 10l—2cosw  181—1.8cosw

w/2n

1/32

1/16

2/16

3/16

4/16

5/16

6/16

7/16

8/16

7fi(w)

1.067

1.183

1191

1.138

1.061

981

912

.860

.829

819

(62)

The peak of the spectral density at «/27 approximately equal to % can be
discerned. This example shows how much the incorporation of random
disturbances can alter the conclusion from a deterministic theory.

4.11* A NOTE ON SPECTRAL ANALYSIS

The concepts of spectral and cross-spectral densities are useful for studying
cyclical properties of econometric models. In addition, and more preva-
lently, they are useful for extracting cyclical properties of observed
economic time series without the intervention of an econometric model.
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Thus, assuming that certain time series are covariance stationary, or
approximately so, probably after adjustments for trends by fitting trend
functions or by taking first differences and the like, we may wish to
estimate the spectral and cross-spectral densities directly from the data.
This process of estimation is called spectral analysis of time series data. No
econometric models in the form of systems of interdependent dynamic
equations are needed. The only hypothesis employed is concerned with the
form of the trend, if trend is taken out, with the appropriate transforma-
tion of variables such as taking logarithm and with the smoothness of the
spectral density function. Little theory is required. Spectral analysis can
also be applied, not to economic data directly but to data generated from
stochastic simulations of am econometric model estimated from economic
data. This will enable us to study certain dynamic properties of the
econometric model. Such an undertaking differs from spectral analysis of
raw data and also from the analytical derivation of spectral properties
from a model as we have done in this chapter.

Given time series data for a variable y,, (#=1,...,N), it seems reason-
able to utilize the periodic regression coefficients a,; and by; of (21) in
Section 4.4 to estimate the spectral density at «;. The spectral density at o,
is the common variance of the coefficients a,; and b,;. There are N/2 of
these variances that can be calculated from a sample of size N. Each
variance has to cover a range of « values equal in width to 27/N ifwisa
continuous variable from 0O to «. Therefore a possible estimate of the
spectral density at w; is the variance §(a};+b}) divided by the width
27 /N:

N
I(w)=4(afi+b}) 5
2 2

N N
( E'yl,coswjt) +( Zy“sinwjt)
' =1

=1

]

2~

-

N
{ 2 y1(coswit cos w2 + sinwy sine;r)
=1
N-1 .
+ 3 11 ealcos eyt cos(w +w) +sinwsin(w + )]
=1

N-2
+ D y1v el cosw;r cos(ut +20) + sinetsin(ayt +2e) ] + - ¢ ]
=1

1 N-1
== >

k=—N+1

€1, COSWik, (63)
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where ¢, , is the sample autocovariance

N—k
Cie=Ci,—k= 21}’11)’1,1+k~ (64)
(=

Thus the use of the arithmetic mean of the squares of the regression
coefficients a,; and b,; amounts to the same thing as the application of a
cosine transform to the sample autocovariance ¢, ,.

What is the sampling property of the estimate of spectral density given
by (63)? If y,, is normally and independently distributed, each regression
coefficient a;; and b,; computed by the method of least squares, using (20),
will also be normally and independently distributed. Each will have a
variance equal to 2/ N times the variance of y,,, according to least-squares

theory. The variables a;;VN/2 and b;;VN/2 are independently normal
and have variance equal to the variance of y,,. The estimate I(w) in (63)

can be written as
2 2
N . p /N -
(aij 7 ) + (sz —2— ) (2‘7T) l.

Except for the factor (27)7), it is the sum of the squares of two indepen-
dent normal random variables with a common variance. Therefore, except
for a factor, it is distributed as a chi-square variable with two degrees of
freedom. The main point is that, no matter how large the sample size N,
the estimate /(w;) for each w; will be distributed as a chi-square random
variable with two degrees of freedom and thus will not converge to a
constant. This means that a consistent estimate of the spectral density
cannot be obtained by using I(w). '
In order to obtain a consistent estimate of the spectral density, it is
required to modify (63) by applying a set of weights w, to the sample
autocovariance functions ¢;; , before performing the cosine transform:

fn(‘*’)_“k 2 Wy Cqy, it COSwk. (65)

The weighting function w, is called the lag window. Specialists in spectral
analysis have proposed various windows and investigated their properties.
A simple one is the Bartlett window. For some m smaller than N this
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window is

, O<|k|<m,

0, otherwise.

It ignores those sample autocovariances ¢;, , with lag k larger than m that
are computed from fewer and fewer observations as k increases in absolute
value. For this particular window the weights w, are linearly declining with
the absolute value of k. Others have proposed windows that are different
decreasing functions of |k|, but there is no need for us to pursue the
subject here. These windows can also be applied to the sample cross-
covariance functions before the appropriate cosine and sine transforms are
formed for the consistent estimation of cross-spectral densities. This pro-
cess is termed cross-spectral analysis. Computer programs are available to
perform spectral analysis and cross-spectral analysis of time series data.

In this chapter our main concern has been to introduce the important
tools of spectral and cross-spectral densities for the analysis of stochastic
dynamic systems and to derive these functions for linear systems of
stochastic difference equations. We turn to some applications of these tools
in economics in Chapter 5.

Readers interested in studying time series analysis from the frequency
point of view may consult Anderson (1971), Box and Jenkins (1970), Cox
and Miller (1965), Dhrymes (1970), Hannan (1960), Kendall and Stuart
(1966), and Whittle (1963). Blackman and Tukey (1958) and Parzen (1961)
contain early contributions to spectral analysis. On applications of spectral
analysis in economics important references include Fishman (1969),
Granger and Hatanaka (1964), Granger and Morgenstern (1970), and
Nerlove (1964), as well as many other studies of special economic prob-
lems. Part of the material in this chapter is based on Chow (1968).

PROBLEMS

1. Plot the spectral densities of the time series y,=ay,_;+u, fora=.8, 2, 0,—.2and —.8.
2. Find and plot the spectral densities of the time series

Y=y 1~ 8y, 2t Uy

3. Consider y, and y,_; as two separate time series that satisfy a first-order system of
stochastic difference equations obtained by transforming the equation y, = 9y,_;— 8y, 5+,
Plot the cross-spectral density function for these two time series. Comment on your answer.

4. Find and plot the spectral density function of y,, as defined by (7).

5, Calculate two values at w=0 and w=w/2 for the phase-difference spectral density




94 ANALYSIS OF LINEAR STOCHASTIC SYSTEM: FREQUENCY DOMAIN

function and the cross-amplitude spectral density function of the two time series defined By
(7), using (15) and the result from Section 3.10. Interpret your answer.

6. Prove Equations 18 in this chapter. Hint: You may write coswt=}(e’s’ +e i),
sine;t=—(i/2)(e's' —e~'a"), Use (17). Once it is shown that either sum is equal to N /2, the
other sum can be evaluated by using sin*a;t + cos? wr=1.

7. Prove (19) in this chapter. Hinr: See the hint in Problem 6.

8. Obtain a quarterly series of real GNP in recent decades consisting of an even number of
N (> 40) observations. Use a computer to decompose the series into cosine and sine functions
as in (16). Plot the contribution of each periodic component to the sample variance of the
series.

9. Fit the model y, =ay,_, + 4, to the data obtained in Problem 8. Plot the power spectrum
of the time series generated by the fitted model. Compare it with the graph of Problem 8, if
you have done that problem.

10, Show that the covariance between Y1 and y, ,_, defined by (23) and (30) equals
? Elay(wp)ay(w)] cosek+ ; E[ B ay(w)]sinek.

11. Calculate the gain Gy(w) for the two time series defined by (7) at w=0 and w=n/2.
Interpret your answer. :

12. Calculate the coherence for the two time series defined by (7) at w=0 and @=7/2,
Interpret your answer.

13.  Calculate the gain G, () for the two time series defined by (7) at w=0 and w=m/2.
Compare your answer with that of Problem 11.

14. What is the relation between the gains G 5(w) and G,;(w) and the coherence Ri(w)?
1S. What are the gains Gp(w) and G,,(w) and the coherence R}(w) for the two time series
defined by Problem 3.

16. Specify the canonical variables for the system Y¢=9y,_1—.8y,_,+u,. Find their cross-
covariance function and from that their cross-spectral density function.

17. Specify the canonical variables for the system of (7). Find their cross-covariance
function and from that their cross-spectral density function.

18. Provide. numerically a bivariate first-order system of stochastic difference equations
from which the spectral density function of (62) for ¥y, can be derived. Evaluate the spectral
density of y,, from this system at several values of w. Does it also have a peak? Explain.




