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OutlineOutline

1. Certainty optimization problem used to1. Certainty optimization problem used to 
illustrate:

a. Restrictions on exogenous variablesg
b. Value function
c. Policy functiony
d. The Bellman equation and an associated  

Lagrangian 
e. The envelope theorem
f. The Euler equation
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Outline Cont’dOutline Cont d

2 Consumption over time2. Consumption over time

3 Addi t i t3. Adding uncertainty

4. Consumption under uncertainty: setting 
up the problem. p p
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1. A certainty dynamic problem
d h DP hand the DP approach

• Maximize ( )tu k x cβ
∞

∑Maximize
0
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=
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• Subject to 1 ( , , )t t t t tk k g k x c+ − =

and ( )x x ςand
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Notable (relative to Lecture 1)Notable (relative to Lecture 1)
• Immediate jump to infinite horizon problem, not j p p

essential but matches presentation in LS chapter 
2 (note differences in notation, though).

• The exogenous (x) variable(s) are now functionsThe exogenous (x) variable(s) are now functions 
of a vector of exogenous state variables, which 
evolve according to a difference equation 
(perhaps nonlinear perhaps in a vector)(perhaps nonlinear, perhaps in a vector).

• The latter is a key part of the vision of Richard 
Bellman, the inventor of DP: his experience in 

h ( h diff i ) l dother areas (such as difference equations) led 
him to think in terms of describing dynamics in 
terms of state variables.
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Recursive policiesRecursive policies
• Suppose controls are functions of states, 

1

( , )
( , , )

t t t

t t t t t

c k
k k g k x c

π ς

+

= ⇒

= +

• Then, the state vector evolves according to a 
recursion

1 ( , , )
( , ( ), ( , ))

t t t t t

t t t t t

g
k g k x kς π ς

+

= +

recursion 

1
1

1 1
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t t t t t t

t t
t t

k k g k x k
s M s

m
ς π ς

ς ς
+

+
+ +

+⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

that can be used to generate future states from given 
initial conditions

1 1( )t tmς ς+ +⎣ ⎦ ⎣ ⎦
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Evaluating the objectiveEvaluating the objective 

• Under any recursive policy, we can see thatUnder any recursive policy, we can see that 
all of the terms which enter in the objective 
are a function of the initial state (s0) so that 
the objective is also a function of the initial 
state  

0

( , , )t
t t t

t

u k x cβ
∞

=
∑
0

0

( , ( ), ( , ( )))

t

t
t t t t

t

u k x k xβ ς π ς

=
∞

=
= ∑

0t
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Notice the switchNotice the switch

• Given that there is a function whichGiven that there is a function which 
describes the policy, the objective is now a 
function of the state vector.

• We have made the change – we are now 
thinking in terms of functions rather than g
sequences.

• But we haven’t optimized yet! We could be p y
calculating the objective with a very bad 
policy.
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Bellman’s core ideaBellman s core idea

• Subdivide complicated intertemporalSubdivide complicated intertemporal 
problems into many “two period” problems, 
in which the trade-off is between thein which the trade off is between the 
present “now” and “later”.

• Specifically the idea was to find the• Specifically, the idea was to find the 
optimal control and state “now”, taking as 
given that latter behavior would itself begiven that latter behavior would itself be 
optimal.
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The Principle of OptimalityThe Principle of Optimality

• “An optimal policy has the property thatAn optimal policy has the property that, 
whatever the state and optimal first 
decision may be the remaining decisionsdecision may be, the remaining decisions 
constitute an optimal policy with respect to 
the state originating from the firstthe state originating from the first 
decisions”—Bellman (1957, pg. 83)
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Following the principleFollowing the principle, 
• The natural maximization problem isp

1
1 1

,
max{ ( , , ( )) ( , )}

( )
t t

t t t t t
c k

u c k x V k

t k k k

ς β ς
+

+ ++

1

1

. . ( , , )

( )

t t t t t

t t

s t k k g k x c

mς ς

+

+

= +

=

• Where the right hand side is the current 
momentary objective (u) plus the 
consequences (V) of for the discountedconsequences (V) of for the discounted 
objective of behaving optimally in the 
future.
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Noting that time does not enter in 
i lan essential way

• We sometimes write this as (with ‘ meaning next 
i d)period)

, '
max{ ( , , ( )) ( ', ')}

. . ' ( , ( ), )
c k

t

u c k x V k

s t k k g k x c

ς β ς

ς

+

= + ( , ( ), )

' ( )

t g

mς ς=

• So then the Bellman equation is written as 

( , ) max{ ( , , ( )) ( ', ')}V k u c k x V kς ς β ς= +
, '

( , ) { ( , , ( )) ( , )}

. . ' ( , ( ), )

' ( )

c k

s t k k g k x c

ς ς β ς

ς

+

= +

' ( )mς ς=
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After the maximizationAfter the maximization
• We know the optimal policy (which we will p p y (

call π as above) and can calculate the 
associated value, so that there is now a 
Bellman equation of the formBellman equation of the form

( , ) { ( ( , ), , ( ))V k u k k xς π ς ς=

• A functional equation is defined, colloquially, 

( ( , ( ), ( , )), ')}V k g k x kβ ς π ς ς+ +

as an equation whose unknowns are 
functions. In our context, the unknowns are 
the policy and value functions.the policy and value functions.
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How to do the optimization?How to do the optimization?

• You are free to choose depending on theYou are free to choose, depending on the 
application

• Sometimes we take the Euler route• Sometimes we take the Euler route, 
substituting in the constraint and 
maximizing directly over k’maximizing directly over k

• Other times we want to use a Lagrange 
h tti lti li thapproach, putting a multiplier on the 

constraint governing k’
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The associated LagrangianThe associated Lagrangian

• Takes the form• Takes the form

{ ( , , ( )) ( ', ')}L u c k x V kς β ς= +

Th ti l li t t l ti d

[ ( , ( ), ) ']k g k x c kλ ς+ + −

• The optimal policy, state evolution and 
related multiplier are obtained by 
maximizing with respect to c k’ andmaximizing with respect to c,k  and 
minimizing with respect to λ. Hence these 
are all functions of the state variables.
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For an optimum (off corners)For an optimum (off corners)

• We must haveWe must have

( , , ( )) ( , ( ), ) 0L u c k x g k x c
c c c

ς ςλ∂ ∂ ∂
= + =

∂ ∂ ∂
( ', ') 0

' '

c c c
L V k
k k
L

ςλ β

∂ ∂ ∂
∂ ∂

= − + =
∂ ∂
∂

• And at the values which solve these

[ ( , ( ), ) '] 0L k g k x c kς
λ
∂

= + − =
∂

• And, at the values which solve these 
equations, V=L
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The envelope theorem
(B i S h i k )(Benveniste-Scheinkman)

• Question: what is the effect of an infinitessimal Q
change in k on V?

• Answer: It is given by 
( , , ( )) ( , ( ), )V u c k x g k x c

k k k
ς ςλ∂ ∂ ∂

= +
∂ ∂ ∂

when we evaluate at the optimal policy and 
the associated multiplier. As in LS, this may 
also be written a form which does not involvealso be written a form which does not involve 
the multiplier,  ( , , ( )) ( ', ') ( , ( ), )

'
V u c k x V k g k x c
k k k k

ς ς ςβ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
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Outline of proof
• Nontrivial to show differentiability of V
• But if we have this (as we will frequently assume) then

( , , ( )) ( , , ( )){ }

( ' ') '

V L u c k x c u c k x
k k c k k

V k k

ς ς∂ ∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂
∂ ∂( ', ') '

'

[ ( ( ) ) ']

V k k
k k

k k k

ςβ

λ

∂ ∂
+

∂ ∂
∂ [ ( , ( ), ) ']

( , ( ), ) ( , ( ), ) '[1 ] [ ]

k g k x c k
k

g k x c g k x c c k

ς

ς ςλ λ

∂
+ + −
∂

∂ ∂ ∂ ∂
+ + + −

• While this looks ugly, all terms involving behavior are 
multiplied by coefficients that are set to zero by the FOCs

[1 ] [ ]
k k k k

λ λ+ + +
∂ ∂ ∂ ∂

multiplied by coefficients that are set to zero by the FOCs.
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Iterating on the Bellman EquationIterating on the Bellman Equation

• Under specific conditions on the functions u and p
g, the Bellman equation has a unique, strictly 
concave (in k) solution.
U d h di i i b l l d b• Under these conditions, it can be calculated by 
considering the limit

( ) max { ( ( ) ) ( ' ')}V k u k x c V kς ς β ς= +

• These iterations are interpretable as calculating

1 , '( , ) max { ( , ( ), ) ( , )}

. . ' ( , ( ), )
j c k jV k u k x c V k

s t k k g k x c

ς ς β ς

ς
+ = +

= +
• These iterations are interpretable as calculating 

the value functions for a problem with 
successively longer horizons.
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2 Optimal consumption over time2. Optimal consumption over time

• Simple case (no k,x in u)p ( , )

0

( )t
t

t

u cβ
∞

=
∑

• Accumulation of assets
0t=

1

1

[ ]

( )

t t t t

t t

a R a y c

y y y yρ

+

+

= + −

= + −

• And βR=1 (level consumption)

1 ( )t ty y y yρ+ +
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Bellman EquationBellman Equation

, '( , ) max { ( ) ( ', ')}c aV a y u c V a yβ= +

. . ' [ ]
' ( )

s t a R a y c
y y y yρ
= + −

= ( )y y y yρ− = −
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Taking an Euler RouteTaking an Euler Route

1
, '

1( , ) max { ( ') ( ', ')}c aV a y u a y a V a y
R

β= + − +

. . ' ( )s t y y y yρ− = −

1 1 ( ', '): 0 ( ')
'

( ) 1

c
V a yEE u a y a

R R a
V

β ∂
= − + − +

∂
∂ ( , ) 1: ( ')c
V a yET u a y a

a R
∂

= + −
∂
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Learning about consumptionLearning about consumption

• Update ET and insert in EE to getUpdate ET and insert in EE to get
1 1( ') ( ' ' '') 'c cu a y a u a y a c c
R R

+ − = + − ⇒ =

• Suppose there is a linear policy function
( )θ θ( )

' ( ' ) '

y ac y y aκ θ θ

θ θ

= + − +

' ( ' ) '

( ) [ ]
y a

y a

c y y a

y y R a y c

κ θ θ

κ θ ρ θ

= + − +

= + − + + −

( ) [ ( ) ]y a y ay y R a y y y aκ θ ρ θ κ θ θ= + − + + − − − −
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Requiring c=c’, we have equations that 
t i t d t i d ffi i trestrict undetermined coefficients

( )y ay y aκ θ θ+ − +( )

( ) [ ( ) ( ) ]
y a

y a y a

y y

y y R a y y y y y aκ θ ρ θ κ θ θ= + − + + − + − − − −

( )

(1 ) /[1 ]
a

y y a y y a a

R y y

R R R

κ κ θ κ κ

θ θ ρ θ θ θ θ ρ θ

= + − ⇒ =

= + − ⇒ = − +( ) [ ]

1[1 ] ( )

y y a y y a a

a a a a
RR

R

ρ ρ

θ θ θ θ −
= − ⇒ =

1
y aθ θ=

(1 )
y a

R
ρ

−
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Economic RulesEconomic Rules

• Consume the normal level of income (y)Consume the normal level of income (y)
• Consume the interest from asset stock, 

leaving the asset stock unchanged periodleaving the asset stock unchanged period 
to period (except as noted next)

• Consume based on the “present value” ofConsume based on the present value  of 
deviations from normal income, treating 
this as if it were another source of wealth; 
allow variations in asset position on this 
basis.
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Could have gotten 
h l di lthese rules more directly

1 1
0 0

1 1( ) ( ) [ ( )]

1 1 1

j j j

j j

c a y y y
R R

ρ
∞ ∞

= =

= + + −∑ ∑
1 1 1 ( )1 11 1 1

c a y y y

R R R
ρ= + + −

− − −

1 1

R R R

R −1 1[ ( )]
1

Rc y a y y
R

R
ρ= + + −

−
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Questions & AnswersQuestions & Answers

• If we could have gotten them more easily then why do we• If we could have gotten them more easily, then why do we 
need DP? 
– Because there are many problems that we cannot 

sol e so easil and DP is a proced re for sol ing themsolve so easily and DP is a procedure for solving them.
• What is the value function?

1 1 1( ) ( ( ))V a y u a y y y= + + −

– Easy to determine in this case because c is constant over time; V

( , ) ( ( ))11 1 1
V a y u a y y y

R R
ρβ

= + + −
− − −

Easy to determine in this case because c is constant over time; V 
inherits properties of u

– Check: take this v, insert in Bellman equation as v’, show optimal 
form c has specified form, show v has this form.p
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3. A Stochastic dynamic problem
d h DP hand the DP approach

• Maximize { ( )} | ( )tE k kβ
∞

∑Maximize
0 0

0

{ ( , , )} | ( , )t
t t t

t

E u k x c kβ ς
=
∑

• Subject to 1 ( , , )t t t t tk k g k x c+ − =

and Markovian exogenous state variables

1

( )

( , ) ( | )

t t

t t

x x

B prob B

ς

ς ς ς ς+

=

ϒ = ∈ =1( , ) ( | )t tpς ς ς ς+
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Markov examplesMarkov examples
• Markov chains (LS, Chapter 1)( , p )
• Linear state space systems
• Nonlinear difference equations with iid shocks, 

1 1( , )t t tm eς ς+ +=

• We won’t be more explicit until necessary.
• Key point: states are enough to compute• Key point: states are enough to compute 

expectations. 
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Bellman EquationBellman Equation

• Uncertainty case is minor modification ofUncertainty case is minor modification of 
certainty case

, '
( , ) max{ ( , , ( )) ( ', ') | ( , )}

c k
V k u c k x EV k kς ς β ς ς= +

. . ' ( , ( ), )s t k k g k x cς= +
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Proceeding as aboveProceeding as above
• Lagrangian { ( , , ( )) ( ', ') | ( , )}L u c k x EV k kς β ς ς= +g g { ( , , ( )) ( , ) | ( , )}

[ ( , ( ), ) ']
u c k x V k k

k g k x c k
ς β ς ς

λ ς+ + −

• FOCs ( , , ( )) ( , ( ), ) 0

( ' ')

L u c k x g k x c
c c c
L EV k

ς ςλ

ς

∂ ∂ ∂
= + =

∂ ∂ ∂
∂ ∂ ( , ) 0

' '

[ ( ( ) ) '] 0

L EV k
k
L k k k

ςλ β
ς

∂ ∂
= − + =

∂ ∂
∂

• ET is unchanged

[ ( , ( ), ) '] 0L k g k x c kς
λ
∂

= + − =
∂

ET is unchanged
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Implications for optimal policies 
d l iand state evolution

• Functions of statesFunctions of states

1

( , )
( , ( ), ( , ))

t t t

t t t t t t

c k
k k g k x k

π ς
ς π ς+

=
− =

• State evolution is now a larger Markov

1 ( , ( ), ( , ))
( , )

t t t t t t

t t t

g
k

ς ς
λ λ ς

+

=

• State evolution is now a larger Markov 
process. For example,  

( ( ) ( ))k k g k x kς π ς+⎡ ⎤ ⎡ ⎤1
1 1

1 1

( , ( ), ( , ))
( , )

( , )
t t t t t t

t t t
t t t

k k g k x k
s M s e

m e
ς π ς

ς ς
+

+ +
+ +

+⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Value FunctionValue Function

• Since c k x depend on states the valueSince c,k,x depend on states, the value 
function also is V(s).

• It is the maximized RHS of the Bellman• It is the maximized RHS of the Bellman 
equation. 
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4. Optimal consumption with 
fl i i i DPfluctuating income: setting up a DP
• Simple case (no k,x in u)Simple case (no k,x in u)

0{ ( )} |t
tE u c sβ

∞

∑
• Accumulation of assets (don’t necessarily 

restrict R)

0

{ ( )} |
t=
∑

restrict R)
1 [ ]t t t ta R a y c+ = + −

• Income process ( )

:

t

t

y

Markov

ς

ς :t Markovς
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One version of 
h B ll ithe Bellman equation

( ) {( ( ) ( ' ')}V EV, '( , ) max {( ( ) ( ', ')}
1[ ( ) '] 0

c aV a u c EV a

s t a y c a

ς ς

ς

= +

+ − − =. . [ ( ) ] 0s t a y c a
R

ς+ =
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FOCs and ETFOCs and ET

• Make sure you can work these out followingMake sure you can work these out following 
the recipe above, 

: ( ) 0
1 ( ', ')' : { } 0

'

cc u c
EV aa E

R

λ
ςλ

− =

∂
+ =

∂
{ }

'
1: [ ( ) '] 0

R a

a y c a
R

λ ς

∂

+ − − =

( , ):

R

EV aET ς λ∂
=:ET

a
λ=

∂
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Implications for policiesImplications for policies

• Optimal consumption depends on (a)Optimal consumption depends on (a) 
wealth; and (b) the variables that are useful 
for forecasting future income.

( , )c a ς

• But solving for this function is no longer 
easy. Rationalizes SL’s discussion of 
numerical methods, a topic that we will 
consider further later.
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Implication for Value functionImplication for Value function
• Value function is objective evaluated at optimal j p

consumption policy, which is a function of a Markov 
process, so that 

∞

• Value function satisfies the Bellman functional

0 0 0 0
0

( , ) { ( ( , ))} | ( , )t
t t

t

V a E u a aς β π ς ς
∞

=
= ∑

• Value function satisfies the Bellman functional 
equation.

'( , ) max {( ( ) ( ', ')}c aV a u c EV aς ς= +,( , ) {( ( ) ( , )}

1
. . [ ( ) ' 0]

c a

s t a y c a
R

ς ς

ς+ − − =

( ( ( , )) ( [ ( ) ( , )], ') | ( , )u a EV Ra y a aπ ς ς π ς ς ς= + + −
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What we’ve covered in this lectureWhat we ve covered in this lecture

• Introduction to DP under certaintyy
• Bellman Equation
• Associated Lagrangiang g
• FOCs and the ET
• Setting up and solving certainty consumption 

problem
• DP with exogenous variables that are functions 

of a Markov process (exogenous state vector)of a Markov process (exogenous state vector)
• Setting up consumption problem with uncertain 

incomeincome
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What’s next?What s next?

• Further analysis of optimal consumptionFurther analysis of optimal consumption
– Theory: Levhari/Srinvasan

Theory: Sandmo– Theory: Sandmo
– Theory and Empirics: Hall
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