CHAPTER 7

MEAN COVER TIMES FOR COUPON
COLLECTORS AND STAR GRAPHS

Erol Pekoz and Sheldon M. Ross

7.1 Introduction and Summary

Suppose that there are m distinct types of coupons and that each coupon collected
is type j with probability P, j=1, . .., m. Let N, denote the number of coupons one
needs to collect in order to have at least one of each of k distinct types. We are inter-
ested in using simulation to efficiently estimate the mean and variance of Nj,
for each k =1, ..., m. Whereas we could simulate the successive types of coupons
obtained and then utilize the observed values of N, over many runs to obtain our
estimates, we will attempt to obtain estimators having smaller variances than these
raw estimators.

In Section 7.2 we present simulation estimators based on conditional expecta-
tions, and in Sections 7.3 and 7.4 we show how these estimators can themselves be
improved by use of stratified sampling (in Section 7.3) and control variates (in
Section 7.4).

In Section 7.5, we specialize to the case where k = m, that is, where one is inter-
ested in N = N,,, the number of coupons that need be collected until a complete set
is obtained. Whereas our previous approach remains available, we present, in
Section 7.5, new unbiased estimators of E[N] that have smaller variances than our
earlier estimator. In Section 7.6, we present analytical bounds on E[N]. In Section
7.7, we show how our results can be used to analyze the mean time until a random
walk on a star graph visits k distinct leafs and then returns to the origin.

There is a large literature on the coupon-collecting problem, although we have
not come across other papers that are concerned, as we are, with the number needed
to have at least one coupon of each of k distinct types. The literature is mostly con-
cerned with N, the number needed to obtain a full set. See Nath [3], Stadje [6], and
the references therein for some background on the problem. '

12 Variance Reduction by Use of Conditional Expectation

Suppose we simulate the above model until a complete collection is obtained. Let
I,j=1,...,m denote the jth type of coupon that is obtained. That is, I, is the type
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of the first coupon, /, is the type of the first coupon not of type I,, and so on. Also
let A; denote the additional number of coupons, after the first type I; coupon
is obtained, until a type I;,; is obtained. (Thus, for instance, if the types of the first
eight coupons collected are 1,1,3,1,3,1,2,1,then ;= 1, I, = 3, =2,A,=2,
A= 4-)

Proposition 7.1. Given I = (I},...,1,), A,, ..., A, are independent geometric
random variables, with

E[4]=(1-Q)",

where
j‘ -
G=3 B T=luoum-1,
S=1
Proof.
PlA;=n;, j=1,....m-1I=(,..., im)}
ZCP{A! =n;, Ij =£j,j=1,..., m—l}
=CROM RO RO . B, O R,
which, since C does not depend on (n,, . .., n,.1), proves the result.

Now, with N equal to the number of coupons needed to obtain at least one from
k distinct types, it follows that

k-1
N =1+Y A
j=1

Therefore, from Proposition 7.1,
EINM)=1+3(1-0,)"
=1
and
E[N{[l]=Var(N,JI)+ E*[N,]I]

k-1 k-1 2
=Y 0,1-0,) +(1+ (1-QJ.)“] d
j=1 j=1

We propose using the average, over many simulation runs, of E[N,|I] and E [N
to estimate, respectively, E[N,] and E[N¢]. It is well known (see [5]) that these esti-
mators have smaller variances than the raw simulation estimators N, and N? In
addition, to use them we need only to simulate the value of I, and this can be easily
accomplished as follows: Generate independent exponential random variables X;
with respective rates P, j=1,..., m. If we now order these random variables and
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let [; denote the index of the jth smallest of them, then I = (i, . .., I,) has the appro-
priate distribution. That this is so can be easily seen by imagining that the coupons
are collected at random times distributed according to a Poisson process with rate
L. Given this, we can assert that the times until the first occurrences of the differ-
ent types of coupons are independent €xponential random variables with respec-
tive (for a type j coupon) rates P, j=1,..., m. Since our supposition as to when
the coupons are collected does not affect the order of occurrence of the different
types, the result follows.

Even though the use of the estimators E[NJI] and E[NZ|I] should result in a sub-
stantial variance reduction over the raw estimators N, and N? (for instance, in the
case where the P, = 1/m, the variances of these conditional estimators are both 0),
additional variance reduction can still be obtained. :

7.3 Additional Variance Reduction by Use of Stratified Sampling
For an ordering vector I = (L, ..., 1,) let I, be the m-vector
L =(} by,
where the component of I that is equal to j is deleted. (For instance, if T = U A

then I; = (3,1,2))
Suppose now that I has been simulated. Then, rather than using E[N,JI] and

E[NHIL k=1,... , M, as our estimators from that simulation run, we can use the
estimators

m

Y PE[NL],

j=1

S BE[NIL], k=1,....m.

1

These are stratified sampling estimators that take into account the fact that
P{l,=j} =P, It is known (see [5]) that these estimators not only will remain unbiased
but also will have smaller variances than will the estimators E[N/I] and E[NZ[I].

74 Additional Variance Reduction by Control Variates

S_uppose that we have simulated the value of I Let M,.r=1,...,m denote the posi-
tion of r in this ordering. That is, M, = j if the type r coupon was the jth type to be
collected (i.e., ;= r). Then

M, =1+ I{i before r}

and so

EIM,]=1+Y P/(P. +P)

izr
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Since their expectations are known, we can thus utilize certain of the M, as contro]
variates (see [5]).

To see which of these M, might be effective control variates, let us first suppose
that we number the types so that P, > P,>+--> P Now a control variate will be
effective in reducing the variance of the simulation estimator if it is strongly corre-
lated (either positively or negatively) with the estimator. As an illustration, suppose
that P, is quite a bit larger than the other P; and that these others are roughly equal
in value. For instance, we might have that P =01,P=001,j=2,...,91. Then M,
should be strongly (negatively) correlated with both E[N,[I] and E[NZ[1], as well as
with Z7, P,E[N{I]] and Z, P,E[N|1], and thus should be an effective control variate,
That is, in estimating E[Ni],s=1,2, k> 1, we can, in this situation, use estimators
of the form

E[NS]+cs(M; - E[M, )

or, even better, one of the form

iBEINﬂL]“‘ cs(M; — E[M,]),

i=

where the value of c, that minimizes the variance is estimated from the simulation
(see [5]). If both P, and P, are quite a bit larger than the others, then we might use
both as control variates — that is, we would use estimators of the form

3. PEINSI, T+ o, (M, — EOM: D+ c52(M, — E[MS),

=1

Similarly, if P,, is quite a bit smaller than the others, then M,, should be strongly
(positively) correlated with E[N; T} and so can be used as a control. Therefore,
depending on the values of the P,j=1,...,m,we should be able to further improve
upon our simulation estimators by using certain of the M, as control variates. The
use of all three variance reduction schemes should serve to greatly reduce the vari-
ance of the simulation estimator. '

7.5 Simulation Estimators of E[N]

In this section we obtain new estimators of E [N], the expected number of coupons
one must collect in order to obtain at least one of each type.

To begin, let i,...,i,bea permutation of 1, ..., m. Let T, denotes the number
of coupons it takes to obtain a type iy, and for j > 1, let 7, denote the number of
additional coupons after having at least one of each type iy, ..., iy, until one also
has at least one of type .. (Thus, if a type i; coupon is obtained before at least one
of the types iy, ..., i, then Tj=0.) Then N =", T}, and so '

E[N]= Y P{i; is the last of i,,..., i, to be collected}/P, (7.1)

=1
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We will now indicate three different ways of utilizing (7.1) to obtain a simulation
estimator of E[N]. To begin, note that if we let I(n;:ny, . .., ng) be the indicator for
the event that a type n; coupon is the last of the types ny, ..., n; to be collected,
then from (7.1) we have that LMy, - . ., i)/ P, is an unbiased estimator of E[N)].
Since this is true for all permutations of 1, ..., m, it thus follows that

l ooy ;
ESI(I)EEZZI(II Hhyeess e )Ry
. J=1

is an unbiased estimator of E[N], where the leftmost sum is over all m!

permutations.
Now, as before, let /, be the rth type of coupon to be collected. Since there are
-1 ;
exactly Er ‘) (m - j)! terms of the form I(I,:iQy, . . . i) that are equal to 1, it follows
r—j :

that we can express the preceding estimator as

Est(1) = —l—i 3 g — 1;! (m—j)/P,

m! S =t (F—] !

253 )

Like the estimator of Section 7.2, Est (1) also depends on the simulated data only
through I. In addition, since we only need to compute (and save) the m(m + 1)/2

sums (;' :}] / (;?‘_‘11), J < r, once, it involves roughly the same amount of computa-
tional time as does the estimator of E[N] given in Section 7.2.

Another estimator can be obtained from (7.1) by fixing the permutation i, ...,
im and then using simulation to estimate the unknown probabilities in (7.1). So let
us assume, without loss of generality, that the coupons are numbered so that P is
nondecreasing in i, i = 1,. .., m. With X, i=1,..., m, being independent expo-

nential random variables with rates P;, we have that
P{jislastof1,..., j} = P{X, = max(X,,..., X;)}

= [ Pexp{-Px}[ (1 - exp{-Px}dx

where U is a uniform (0, 1) random variable. :
Hence, we can estimate E[N] by generating a single random number U and then
using the estimator

m -1
1/P, +Z%i‘[(1 = {10,

=24 i=l
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However, because of the positive correlations between the successive products, we
recommend using separate random numbers to estimate each of the product&-h'i_
addition to estimate P{j is last of 1,. .., j}, we can utilize (1 - U)"* as a control
variate. That is, we recommend estimating P{j is last of 1,..., j} by generating a
sequence of random numbers U, ..., Uy and then using the estimator

%g{ﬁ(l-Uﬁ”Pf)-kq[(l _u,y -1/;]}

where the appropriate value of ¢; is to be obtained from the simulated data by stan-
dard means. A separate set of random numbers is to be used for each different value
of j. Call this estimator Est(2). '

Example 7.1. Suppose that m=2.Let P, =p = 1 - P,.Then N =1 + X, where

. {Geo( p) w.prob.1-p,
~1Geo(l1-p) w.prob.p.

A simple computation gives that the variance of the raw simulation estimator is
Var(N)=(1-p)/p* +p/(1-p) 2.

With I = (I;, I,) equal to the order of appearance of the types, the conditional
expectation estimator is

E[N[I}=1+1/P,

and so the variance of this estimator is

Var(1+1/P,)=(1-p)/p*+p/(1-p)’ ~[(1-p)/p+p/1-PT
=(1-p)/p+p/1-p)-2.

The first estimator of this section can be expressed as
1
Est(1) =5[1/P+I{Iz =2}/P, +1/(1- p)+I{I, =1}/P;,]
1 1
=5 0/p+1/A-p+3Y/Ps.
Hence,

Var[Est(1)] = Var(1/P, )/4.

That is, Est(1) has one fourth the variance of the conditional expectation estimator..
To determine Var[(Est(2)], suppose that p < 1/2. Then
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1.1
Est(2) = —+——{1-UPA-? 4 ([1 -U - 1/2]},
> I—p{ [ /21}

where ¢ = - Cov(U, UP?)/Var(U). A simple calculation now yields that

Var[Est(2)] = Var[U?"'-P"] - Cov*(U, U'-?)/Var(U)
=p*/(1-p*)-3p*/(2-pY’.

Table 7.1 provides the variances of these four estimators for p = 0.5, 0.4, and 0.2.

Another approach to estimating E[N] is to again suppose that the P; are nonde-
creasing, utilize (7.1), but now estimate P{j is last of 1, ..., j} by first conditioning
on the order of appearance of 1, .. . ., j— 1.Letting /;; be the ith one of types 1, .. . .,
j—1toappear,i=1,...,j—1,then

j=1 (j-1 j-1
P{jis last of 1,...,;|1,-}=]‘[{ZP,,,,./[3 +ZP,,.‘,]}.

r=1 \Li=r

Hence, we can simulate I; (by simulating and then ordering X, . .., X, where X;
is exponential with rate P;) and then use the preceding to estimate P{; is last of
1,..., j}. Let us call this estimator Est(3). Table 7.2 compares the variance of
Est(2) and Est(3) in the case of m = 3 and specified values of the P,

Table 7.1. Variance of Estimators

p N C. Expectation Est(1) Est(2)

0.5 2 0 0 0

0.4 103/36 1/6 1124 1/336

0.2 18.3125 235 0.5625 1/216 = 0.00463

Table 7.2. Comparison of Var[Est(2)] and Var[Est(3)]

Py, Py, Ps Var[Est(2)] Var|[Est(3)]
0.2,03,0.5 3.081 x 107 4783 x 107
0.1.02.07 1.466 x 107 1.890 x 107
0.1,04,0.5 2.094 x 107 3.086 x 107
03,03,04 1.095 x 1073 0

0.2,0.4,04 1331 x 1073 22722 % 16r?
0.1,03,0.6 2.070 x 107 1.089 x 107
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- Remark 7.1. The problem of estimating the moments of the number of coupons
one need collect to obtain a fixed set of k types, say types 1,2, . . ., k, can be solved
by considering the coupon-collecting problem having only those & types with the
probabilities Pf= P/ZL,P,j=1,...,k.If N is the number that one needs to obtain
a full set in this new problem, then, with N(1, . . ., k) equal to the number needed
in the original problem,

4§ I— k)=iX,-,

where X, ...1s a sequence of independent and identically distributed geometric
random variables with mean 1/Z£, P, that is independent of N. Hence, the moments
of N(1, ..., k) are easily obtained from those of N.

Remark 7.2. If P;=1/m, then Est(1) is constant and must thus (since it is unbiased)
equal E[N], giving rise to the interesting identity

2mii= 3375

r=l j=1

7.6 Bounds on E[N]

Suppose p; £ P, <...< P, For fixed u, u > 0, it is easily shown that the function f,
defined by

flo. )= Hfa -1

is a Schur concave function. Hence, letting P, = X%, P/k, it follows that

ﬁ(l ~URm) < (1-UPnmY,

i=1

Therefore,

j=1
P{jislastof1,..., j} = E[H(l —yPIP )]

< E{(Il ~yimy)

j=1

110 /7 + ),

where the final equality follows since E[(1 - U PRIEY-] is the probability that jis the
last of 1,.. ., j to appear when a type j occurs with probability P; and each of the
others occur with the same probability P, ;. Hence, we obtain the upper bound

Lid

EINIS YR+ 3 TP /(8 +iB)

j=2 ] =1
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A lower bound for E [N] can be obtained by letting R,, . . ., R,, be a random per-
mutation of 1, ..., m. (That is, By R R equally likely to be any of the m! per-
mutations.) Then, analogous to (7.1), we have

EINI=Y ) E[1/Py|R; is the last of R, ..., R/

=1

> f{ SEY/Py ]

mn

- 1/&_2"’11/;',

1
m g i=

where the inequality follows, since the conditional distribution of Pg, given that R;
isthe lastof R,, . . ., R; is stochastically smaller than the unconditional distribution
of Py,

Another lower bound can be obtained by utilizing (7.1) along with the permuta-
tionm,m-1,..., 1. Since Fn2Pusi 2. 2P.a simple coupling argument shows
that

P{jis the last of m, m—1, ... , J to be obtained} > Y(im-j+1),
implying that

EIN1= ¥ [(m—j+ BT,

j=1

(Of course, a similar argument can be used to show that E[N] < =7,1/(jP;), but this
is not as strong as our previously derived upper bound.)

Remark 7.3. In the special case where P;=1/m for all j, both bounds give the exact
value.

Remark 7.4. Flajolet et al., in [2], present formulas for E[N]. However, an amount
of time that is exponential in  is required to evaluate these formulas.

7.7 A Star Graph

Consider a star graph consisting of m rays, with ray i containing n; vertices, i =
1,...,m (Figure 7.1). Let leaf i denote the leaf on ray i.

Assume that a particle moves along the vertices of the graph in the following
manner. Whenever it is at the central vertex 0, it then moves to its neighboring
vertex on ray i with probability o;, Z,a; = 1. Whenever it is on a nonleaf vertex of
ray i, then with probability p; it moves to its neighbor in the direction of the leaf,
and with probability 1 — p; it moves to its neighbor in the direction of 0. When at a
leaf, it next moves to its neighbor. Starting at vertex 0, we are interested in the mean
number of transitions that it takes to visit & distinct leafs and then to return to 0,
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leaf

Figure 7.1. A star graph.

for 1 <k <m. When k = m, this quantity is the mean cover time, defined to equal
the mean time to visit all vertices and return to 0.

To begin, consider first a graph with a finite number of vertices and nonnegative
weights defined on its edges, and suppose that a particle moves along the vertices

vertex j with probability
R}' = wl,/z Wi,
k

where w; is the weight on the edge (i, 7). (If (i) is not an edge of the graph, then
take w; to equal 0.) It is well known that the successive vertices visited constitute
a time-reversible Markov chain with stationary probabilities

m= ; wf,‘/zlg Wi.

The random walk on the star graph can be regarded as a special case of the pre-
ceding model. Just let o, denote the weight on the edge from 0 to its neighbor on
ray i, and let o/ be the weight on the edge connecting vertex j and J+1onrayi,
J=1,...,n,~ 1 where w, = p/(1 - p;). Hence, if we let Moo denote the mean time
between visits to 0, then from the result quoted it follows that

m ni-1 ] )
Hoo =75 =1 +zai[w;'"-l + Z(WEJ —wi! )J
J=1

i=1

=1+ 3 on (14w, - 20|/ (1 -, 7.3)

If B; denotes the probability that the particle, when at the 0-neighbor vertex on
ray i, will reach leaf i before returning to 0, then by the gambler’s ruin problem,

B=01- l/Ws)/[l — (l/wf)m]'
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Now, say that a cycle is completed every time the particle returns to vertex 0,and
let X; denote the time of the jth cycle,j > 1. If we let N, denote the numbe‘r of cycles
needed to visit k distinct leafs, then T} = Eﬁm} represents the time that it takes to
visit k distinct leafs and then return to 0. By Wald’s equation, we have that

E[T,]= E[X]E[N.]= toE[N,]. (7.4)

To determine E[N,], note that each cycle will take place on ray i with probability
0,i=1,..., m. Calling a cycle an i-success if it reaches leaf f’, i=1...,m, an.d
calling it a failed cycle if it returns to 0 before reaching a leaf, it fo_llqws that N, is
the number of cycles needed to obtain at least one i-success for k d1§t1nct values of
i. Letting G denote the number of nonfailed cycles needed to obtain at least one

i-success for k distinct values of i, then

G
Ne=3Y,

i=1

where Y is the number of failed cycles between the (j — 1)st and the jth nonfailed
cycle. Sir;ce each cycle will be a nonfailed cycle with probabilityZe;8, it follows that

-1
EY]=(Xep) -1
and, by Wald’s equation,

EN]={(SeB)" - 1)}EIG.}

Thus, from (7.3) and (7.4), we see that the expected time to visit & distinct leafs and
then return to 0 is

EL)=EGH(Zeh) - 1)}{1 + g[a,-(l +wi = 2w )]/t —w,-)}. (75)

Now, each nonfaild cycle will be an i-success cycle with probability P, where

P :a'.ﬁ‘, Z(Ifﬁ}-, =1y
=

Hence, E[G,] is equal to the expected number of coupons one needs collect in order

to have at least one of each of k distinct types, when each coupon is a type i with
probability P, i=1, . .., m. It can thus be estimated (and bounded) by the methods

of the previous sections.
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