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IMPROVING POISSON
APPROXIMATIONS

EroL A. PEKOZ AND SHELDON M. Ross*

Department of Industrial Engineering and Operations Research
University of California, Berkeley
Berkeley, California 94720

Let X,,...,X,, be indicator random variables, and set W = X7, X;. We
present a method for estimating the distribution of W in settings where W has
an approximately Poisson distribution. Our method is shown to yield estimates
significantly better than straight Poisson estimates when applied to Bernoulli
convolutions, urn models, the circular k of n:F system, and a matching prob-
lem. Error bounds are given.

1. INTRODUCTION AND SUMMARY

There has been much in the recent literature (see Barbour, Holst, and Janson
[2] and the references therein) on approximating the distribution of the sum of
dependent indicator variables using a suitably chosen Poisson distribution. In
this paper we take a new approach by combining several Poisson estimates into
an estimator that, in the applications discussed, is seen to yield estimates signif-
icantly better than straight Poisson estimates. Our results show that this method
generally performs better than the straight Poisson approximation when the
indicators are negatively related (see Definition 1, in Section 2) and either the
mean of their sum is less than one or when estimating the probabilities of sets
sufficiently above this mean. In the applications discussed we present bounds
on the approximation error that are roughly the factor of the mean of the sum
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times the bounds given elsewhere for straight Poisson approximations, thus
yielding an improvement when this mean is less than one.

In Section 2 we present the new method (with theorems bounding its error),
and in Sections 3-7 we apply it to approximate the distribution of Bernoulli con-
volutions, the distributions of the number of empty urns, and the number of
urns with more than a given number of balls when balls are placed indepen-
dently into urns, the reliability of a circular consecutive-k-of-n:F system, and
a matching probability. Section 8 describes a setting that would not be expected
to be well suited for our method, Section 9 gives a brief summary of our con-
clusions, and the Appendix contains additional data demonstrating the efficacy
of the new method.

2. MAIN RESULTS

Let X;,...,X, be (not necessarily independent) Bernoulli random variables
with \; = P(X; = 1), and set W =27, X;. Let 1 + V; have the distribution of
W given X; = 1. First we present our method for approximating the distribu-
tionof W. Let A= 2; \; = E[W].

LeEMMA 1:

(a)
PW>0)= Z}A;E[Tﬁ] .
(b) For k> 0,

P(W=Fk) = % SINPVi=k—1).
i
Proor: For an arbitrary random variable R, E[WR] = 3,,E[X;R] = 2; \; X
E[R|X; = 1]. Part (a) follows by letting '
{I/W if W>0

0 otherwise

and Part (b) with

é {I/W if W=k
B 0 otherwise. |

In situations where W has an approximately Poisson distribution, it is rea-
sonable to expect that ¥; also has approximately a Poisson distribution. Using
a Poisson approximation in Lemma 1(b), we obtain the following with q; =
E[V;] and k > 0:

k—1

1 e %ig;
PW=k)==> > N ——.
( ) kE,-: (k—1)!
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To estimate P(W € A) for any set A, we sum the preceding over kK € A. This
gives the new estimator u(A) as follows: for any set with 0 & A, we define

—a,ak -1

p(A) = ) - Z} = Z ’PO(a,){A},

kEA

where

Po(a){A} = >, e “a*/k!.

keA

For any set with 0 € A4, we define
p(A) =1—p(A9).
Note that the new estimator of P(W > 0) is |
p([l,)) = E ﬁ (1 —e™).

Remark: Lemma 1(a) is a variation of an identity used by Stein [6] to bound
errors of Poisson approximations. For some other applications of the general
identity, see Aldous [1] and Ross [5].

It is also possible to obtain the following lower bound.
COROLLARY 1:

Ai
1+a;’

P(W>O)2Z

Proor: By Jensen’s inequality we have for a random variable Y, E[1/Y] =

1/E[Y]. The result follows by applying this to the expectation in Lemma 1(a).
||

Remark: In Ross [4] the inequality of Corollary 1 is shown to be better than the
second moment inequality P(W > 0) = (E[W1)*/E[W?]. It is seen from
examples that simply using this bound as an approximation of P(W > 0) can
be better than the straight Poisson approximation.

In the following theorem we establish bounds on the error of the new esti-
mator.

THEOREM 1:
d(W,p) = sup| P(W € A) — p(A)| = > N\id(V;, Poisson(a;)).
Proor: For any set A, since |P(W € A) — u(A)| = |P(W € A°) — u(A9)],

we can without loss of generality assume that 0 & A. Letting f;(k) = P(V; =
k—1) —e %(a;)*"'/(k — 1)! and summing over & in Lemma 1(b), we obtain
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fi(k)

keA k

P(WEA) —p(A)=| 3 %ﬁ(k)‘ <3\

keAa |

Next, with B; = {k € A : f;(k) > 0}, we know that

0= )] j% < >, fi(k)
kERB; ke B;

=< d(V;, Poisson(a;))
and similarly

(k
s Jilk)

. ~ = —d(V;, Poisson(a;)),

ke A\B; k

which when combined yield

3 fi(k) ’ = d(V;, Poisson(a;))
keA k

and the result. 3]

Remark: In cases where the X; are negatively correlated, Poisson approxima-
tions to V; are generally better than approximations to W, for the indicators
comprising the former indicate rarer events. In these cases we thus see that the
supremum error of the new estimator is roughly A times the supremum error
of the straight Poisson approximation. In the applications considered below,
upper bounds on d(¥;, Poisson(a;)) were roughly the same as upper bounds on
d(W, Poisson(\)).

We now present cases for which we can prove that this new approximation
is better than the straight Poisson approximation. First we need a definition and
lemma.

DEerFINTTION 1: The random variables X;, 1 < i < n are negatively related if there
exist random variables X;; so that for each i, 1 < i < n, the random variables
(X;; 1 =j < n,j+i) have the same joint distribution as (X;; 1 < j < n,
J#i|X;=1)and X;<X;a.s. forl <j<n,j+#Ii.

Note that being negatively related is a stronger condition than being nega-
tively correlated. Correlation is a pairwise property, whereas being negatively
related depends on the entire joint distribution.

LemMA 2: If the X; are negatively related and for each i, given X; = 1, the ran-
dom variables X, j # i, are conditionally negatively related, then for k = 3\ + 1

PW=k) <23 % Po(a;) {[k — 1,0)}.
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Proor: Summing over k in Lemma 1(b), we have
P(W=zk)= % SINP(Viz k—1).

Next, we need Theorem 2.R from Barbour et al. [2], which states that when ¥
is comprised of negatively related indicators, with k£ = 3A,

P(Y = k) <2Po(A){[k,»)}.

Applying this inequality to the V;, the result is obtained. 3]

TrEOREM 2: Under the conditions of the previous lemma, there exists an integer
k* < max(l + (log 6 — a + N)/log(Na),3N + 1),

where a = max; a;, so that given any set A where vk €A k=k*
|P(W € A) — u(A)| < |P(WeE A)— Po(N) (A}

Proor: Let B(k) be the bound given by Lemma 2. Note that it suffices to find
a k* so that for all k = k*

Po(M) {k}
B(k)
which implies that
B(k) < 3Po(M\){A}

when k = min,e 4 i and k = k*. Since P(W € A) < B(k) and p(A) = p([k,)) <
B(k), we then obtain the result.

To find such a k*, note that when & = 3\ + 1 we have (see Barbour et al.
[2, Property A.2.3(ii)])

k

3
5 B(k) <Po(a){[k—1,o)} =< gy Po(a){k—1} < > %Gtk =Dl
thus,
Po(N) [k} | [ _
S (A—a) k/ k l,
B(k) g Al

which is above 2 when k > 1 + (log6 — a + A)/log(M\/a). Note that X; nega-
tively related implies @ < A. |

As an application of this theorem, note that in the case where 100 balls are
put randomly into 20 urns and W counts the number of empty urns, £* < 7.
This means that the new approximation is strictly better when estimating the
probabilities of sets whose elements are all at least 7.
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3. BERNOULLI CONVOLUTIONS

Here we consider the case where the X; are independent Bernoulli random vari-
ables with A; = P(X; = 1). In the next theorem we give an error bound for the
new approximation, which is the factor A = E[W] times the bound given in Bar-
bour et al. [2] for the straight approximation. We also show that the supremum
error of the new approximation is less than the supremum error of the straight
approximation when A is small. The new approximation can thus be viewed as
an improvement when X is small.

THEOREM 3: For A < I,

(a)
d (W, Poisson(\)) < 2)\?
(b)
d(W,u) < NI\
(©)

d(W,un) < 14\d(W, Poisson (N\)).

Proor: Part (a) is given in Barbour et al. [2, p. 8]. To obtain part (b), note that,
because V; also is a convolution of Bernoulli random variables, part (a) gives
d(V;, Poisson(a;)) < > A < D N7,

Jii J
where @; = A — \;. Applying Theorem 1 gives part (b). To obtain part (c), Bar-
bour et al. [2, Remark 3.2.2] give

1 e
d (W, Poisson(\)) = a p o

which when combined with parts (a) and (b) yields the result. ]

A program was written to compare exact values of P(W = k) with our esti-
mates (see Table 1). Our estimates are seen to be better than straight Poisson
estimates. In Table 1 \; = P(X;=1) =i/1000,i =1,...,10, and @; = \ — A;.

Using the inequality from Corollary 1, the bound P(W = 0) < .947751 is
obtained. By the previous theorem, the straight approximation’s error is always
less than .0004 while the new approximation’s error is less than .000021.

4. EMPTY URNS

Consider m urns and n balls. Each ball is independently placed into urn i with
probability p;. Letting X; be the indicator of the event that urn i is empty, W
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TaeLe 1. Comparison of Estimates for Bernoulli Convolutions

k P(W=k) New Approximation Straight Approximation
0 .946302 .946299 .946485

1 .052413 .052422 .052056

2 .001266 001257 .001431

3

.000018 .000020 .000026

counts the number of empty urns. In cases when # is large compared with m,
it is reasonable to believe that W has approximately a Poisson distribution.

Here
AN=P(X;=1)=(1—-p)"

and

p Y
a=E[V]= 3 (1 - —*‘—) :
JujEi 1—p;
In the next theorem we give an error bound for the new approximation, which
is the factor A = E[W] times the bound given in Barbour et al. [2] for the
straight approximation.

THEOREM 4: For A < 1,

(a)

2
d(W, Poisson(\)) < A max \; + n(‘.—l'?gi’; + f) .
i n—logn n

(b)

2
d(W,,u)i:}\(}\ max >\,,+n(1°i + ‘—‘) )
i n—logn n

Proor: Part (a) is a slight modification of Theorem 6.D from Barbour et al.

[2]. To show part (b), note that V; also counts the number of empty urns in

a problem with urn / removed, so we can apply part (a) to bound d(V}, Pois-

son(a;)). Since the X; are negatively related (see Barbour et al. [2]), @; < A and

a;max;. ., E[ X;| X; = 1] = Amax; \; for each i. This with part (a) implies
log n 4 )2

d(V;, Poisson(a;)) =< Amax A; + n(——~—— + —
J n—logn n

which with Theorem 1 implies the result. n
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TasrLe 2. Comparison of Approximations for the Empty Urns Problem

k P(W=k) New Approximation Straight Approximation

0 .86690 .86689 .87464
1 13227 .13230 11715
2 -00084 .00080 .00785

A comparison of our approximations, Poisson approximations, and exact
values is shown in Table 2, where we have 4 urns and 20 balls and p; = P(ball
goes into urn i) =i/10,i = 1,...,4.

The inequality in Corollary 1 yields P(W = 0) < .86767, which is below the
straight Poisson estimate.

5. VERY FULL URNS

Again, consider m urns, n balls, with each ball independently placed into urn
{ with probability p;. Letting X; be the indicator of the event that urn / has at
least b balls, W counts the number of urns with at least » balls. In cases when
these are rare events, it is reasonable to believe that W is roughly Poisson. Here,

n

N=P(X;=1)= 3] (:) (2:Y @~ p),

Jj=b

and by conditioning on the number of balls in urn ¢

n!
5 Z Z Z “k)’ pr p_,r (1 "p: Pj)"‘x'-k-

f,rj#:k b x=b X'k'(ﬂ'

A comparison of the approximations with exact values is shown in Table 3,
where we have 6 urns and 10 balls, b =35, and p; = 1/6,i =1, ...,6. W counts
the number of urns with at least 5 balls.

The inequality of Corollary 1 yields P(#W = 0) < .90735, which is again
below the straight Poisson estimate.

TaeLe 3. Comparison of the Approximations for the Full Urns Problem

k P(W=k) New Approximation Straight Approximation
0 .9072910 9072911 91140
1 .0926468 0926469 .08455
2 -0000625 .0000624 .00392
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6. CIRCULAR CONSECUTIVE k OF n:F SYSTEM

Flip n coins independently, each with P(heads) = p =1 — g, and arrange them
around a circle. What is the probability of seeing a run of at least k heads?
Numbering the coins 1,...,n, and letting

{ 1 if a clockwise run of k£ heads ends with coin i

0 otherwise.

with W = 3}; X;, we are interested in P(W > 0), known in the reliability liter-
ature as the failure probability of a circular consecutive k of n:F system. In
cases where this is an unlikely event, a Poisson approximation is reasonable but
we can do better by first redefining the indicators to eliminate the clustering
caused by overlapping runs. Given there is a run ending with coin /, it is more
likely that there will also be overlapping runs ending with coins adjacent to .
This motivates the following definition to eliminate the possibility of overlaps:
let

5 { 1 if a clockwise run of k heads followed by a tail ends with coin i
Lo otherwise.

Note that the events {3; X; > 0} and {3, ¥; > 0} differ only by the rare event
that all 7 coins come up heads. Letting

A =E[Z Y,-] = ngp*,
our approximation yields
A .
PW>0=—-(1—e"),
a
where
n—k
azE[ 2 Yn= 1] =E[ > Y,] = (n — 2k — 1)gp~.
IR i=k+2

The first equality above follows by symmetry, and the second by the impossi-
bility of overlaps.

In the next theorem we give a bound for the error, which again is essentially
the factor A times a bound for the straight approximation error given in Bar-

bour et al. [2].
THEOREM 3:

(@)
|[P(W>0)— (1 —e™)| = @2k+ l)gp* +p".
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(b)
P(W>0) — 2 (1—e™) | =A@k + 1)gp* + p".

Proor: Part (a) is a modification of inequality (4.4) on page 164 of Barbour
et al. [2]. Though the argument there is for linearly arranged coins, the same
argument can be applied to circularly arranged coins; add p” for the case when
all coins come up heads. Part (b) follows upon applying the inequality to obtain

d(V;, Poisson(a;)) < (2k + 1)gp*,

where V; now counts the number of times k heads is followed by a tail for a
linear arrangement with n — k — 1 coins. The result follows by applying Theo-
rem 1. ]

Remark: Similar bounds can be obtained for the problem where the coins are
arranged in a line, though the new approximation becomes slightly more com-
plicated to evaluate.

A comparison of our approximations and exact values is shown in Table 4.
To compute the exact values of P(W > 0), we use the formula given in Pekoz
and Ross [3]. The straight Poisson approximation is P(W > 0) = 1 —e ™.

7. A MATCHING PROBLEM

All the applications presented in Sections 2-6 involve negatively related indica-
tors, a situation ideally suited for our method. For a Poisson approximation to
be reasonable, we generally need to have a sum of indicators with small means
and with weak dependence between them. When the indicators comprising W
are negatively related, we are at least assured that those comprising V; have
smaller means and may therefore also be amenable to a good Poisson approx-
imation. Here we present a situation where there is weak positive dependence

TasrLe 4. Comparison of Approximations for the
Consecutive k-of-n: F System

New Straight Corollary
k n p P(W=>0) Approximation Approximation 1 Bound

5 20 4 .11949 .11954 115 =.11644

o) 20 2 .005114102 005114106 .005107 =.005108
5 30 2 00766134 00766135 .007650 =.007643
5 30 5 402 .406 374 =.361

3 20 .1 .01789 01790 01784 =.01779

5 80 2 .020300020 .020300019 .02027 =.02012

5 80 3 .12835 .12840 12732 =.12179
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in the indicators, but our method still performs better than the straight Poisson

approximation.

The problem is as follows: n people throw their hats into a ring and then
each randomly draws a hat. What is the probability that any of the first k& people
to draw get their own hat? Let X;, 1 <i < k, be the indicator that person 7 gets
their own hat, and let W = 3%, X;. We are interested in estimating P (W > 0).

Here,
AN=E[W]=k/n

and

a=(k—1)/(n—1).
The straight and new approximations are

PW>0)=1—e
and

P(W>0)= A1~ e ") /a,

respectively. A comparison is shown in Table 5.

8. A CASE NOT WELL SUITED FOR OUR METHOD

Our approximation relies on the assumption that ¥; is roughly Poisson when W
is. In this section we look at a situation where there is much stronger positive
dependency between the indicators comprising the V; than there was in the X,
and our approximation is not expected to perform well. _

The setting is a modification of the classical birthday problem: assuming all
birthdays are equally likely, what is the chance that at least three people share
a birthday in a group of k people? This problem was considered in Section 3;
here we give a different treatment. We number the distinct triples of people and

define an indicator for each: fori=1,...,(%),
{ 1 if triple number i shares a birthday

0 otherwise.

TasLE 5. Comparison of Approximations for the Matching Problem

New Straight Corollary
k n P(W=>0) Approximation Approximation 1 Bound
5 10 .4018 .4036 .393 =>.346
5 20 .2251 2254 221 =.206

5 30 .15559 15568 .154 =.146
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The straight Poisson approximation yields
PW>0)=1—e,

where X\ = E[W] = (1/365%)(}). Our approximation yields

P(W>0) = % (1—e™),
where

a=E[V]] = (k ; 3)/3652 + 3(k —3)/365 + 3(k ; 3)/3652.

Here we see positive dependencies in the indicators comprising V; since given
that triple / matches birthdays there is a 1/365 chance that another person shares
the same birthday and, hence, creates three additional matching triples. The
comparison of the approximations with exact values is shown in Table 6.

9. CONCLUSIONS

Our results, both experimental and theoretical, show that the new approxima-
tion to the distribution of W presented here generally performs better than the

TasLE 6. Comparison of Approximations for the Birthday Problem

Straight New
No. of People P(a Shared Birthday) Approximation Approxiation

10 8.9E—4 9.0E—4 8.8E—4
20 8.2E—-3 8.5E—-3 8.0E-3
30 2.9E-2 3.0E-2 2.7E-2
40 6.7E-2 7.2E-2 6.2E-2
50 13 .14 .11

60 21 .23 .18

70 31 .34 .26

80 42 .46 .35

50 .53 .59 .44
100 .65 .70 .52
110 a5 .80 .60
120 .83 .88 .66
130 .90 .93 .70
140 .94 .97 .74
150 .96 .98 7
160 .98 .99 .79
170 .59 .999 .81

180 996 .999 - .83
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straight Poisson approximation when the indicators are negatively related and
either E[W] < 1 or when estimating the probability of sets sufficiently above
E[W]. Computing the new approximation only involves the extra information
about the mean of the conditional distribution of W, information that is gen-
erally immediately available in applications. In amenable situations the bounds
we obtain on the approximation error are generally much better than bounds
given elsewhere for the straight Poisson approximation. The preceding criteria
are met in many applications so that this new approximation is widely appli-
cable.
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APPENDIX

This appendix contains additional data demOnstrating the approximations.

1. With 4 urns and 14 balls and P(ball goes into urn /) = i/10, i =1, .. .,4, W counts
the number of empty urns.

N—éw Straight
kK  P(W=k) Approximation Approximation Bound -
0 72737 72715 75555 P(W=0)=<.7338
1 .26494 .26562 21179
2 .00768 .00702 .02968

2. With 4 urns and 18 balls and P(ball goes into urni) = .2 + i/50, i =1,...,4,
W counts the number of empty urns.

New ._ Straight
k PW=k) Approximation Approximation Bound
0 .97432 .97433 .97462 P(W =0) < .97436
1 .02564 ; .02564 .02506
2

.00003 .00003 .00032

3. With 4 urns and 12 balls, and P(ball goes into urn {) = .25, W counts the num-
ber of empty urns.

New Straight
k P(W=k) Approximation Approximation Bound
0 .87476 .87475 .88099 EPp(W=0) < .87616
1 12378 .12381 .11163
2 .00146 .00143 .00707

4. Consider a Bernoulli convolution where P(X, = 1) = .0016, P(X, = 1) = .0064,
P(X, =1) = .0144, P(X, = 1) = .0256, and P(Xs = 1) = .04. Letting W =

Z!'X!"
- New Straight
k P(W=k) Approximation Approximation Bound
0 91459 91457 91576 - P(W = 0) < .9169
1 .08286 .08292 .08059
2 .00253 .00246 .00355
3

.00003 .00005 .00010




