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isk adjustment facilitates meaningful comparisons of outcomes across

groups of patients by accounting for those differences in intrinsic pa-

tient characteristics that are related to outcomes. However, such com-
parisons are just a means to a larger end. Nightingale and Codman viewed
comparing outcomes as a powerful way to motivate improvement of quality
of care (see Chapter 1). As Nightingale wrote in 1863 (175-76):

In attempting to arrive at the truth, I have applied everywhere for
information, but in scarcely an instance have I been able to obtain
hospital records fit for any purposes of comparison. . . . I am fain

to sum up with an urgent appeal for adopting . . . some uniform
system of publishing the statistical records of hospitals. There is a
growing conviction that in all hospitals, even in those which are best
conducted, there is a great and unnecessary waste of life . . .

Nightingale and Codman argued that simply comparing rates of events was
insufficient. One must discover why differences in patient outcomes occurred
and correct identified problems.

Jumping to the start of the twenty-first century, comparisons of out-
comes are now central to scrutiny of the American health care delivery system
and an important component of responses to competitive market forces. Pa-
tient outcomes are compared across individual physicians, group practices,
clinics, hospitals and other institutional settings (e.g., nursing homes), and
private and public health insurers. These comparisons are variously called per-
formance or practice profiles, report cards, scorecards, and outcomes reports.
As noted in Chapter 1, the growing interest in pay-for-performance schemes
will likely put such profiles center stage, heightening the financial stakes of
risk-adjusted outcome measures (Institute of Medicine 2002c).

Several types of questions motivate report card and profiling initiatives,
such as:

* Do any particular providers stand out as cither much better or worse than
average?

* How strong is the evidence that provider A’s performance has been (or,
perhaps more importantly, will be) substandard?
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Numerous decisions are required when designing a profiling approach and
assembling the data to compare patient outcomes across providers and answer
such questions (Table 12.1). In addition, interpreting results requires both
good methodology and a thoughtful conceptual framework. This chapter dis-
cusses “principles of good design” as well as important practical considerations
in performance profiling. We emphasize, however, that no all-purpose best way
exists to compare patient outcomes across providers. Especially when using
profiles to support decisions with serious patient care or financial implications,
analysts must remain aware of how various methodological choices can shape
their findings.

The Effect of Randomness on Comparing Patient
Outcomes

Random fluctuations affect estimates of provider performance and thus limit
the conclusions that can be drawn safely from performance profiles. To elu-
cidate the role of randomness, we consider a contrived example targeting
hospital costs as our outcome. We assume that the patients have identical
clinical conditions and receive the same treatment across hospitals.

The simplest model views the costs of the 74 cases admitted to hospital
A this year as a sample from a theorctically infinite population of cases that
might be treated at hospital A. This year’s observed average cost at hospital
A, Y4, estimates the underlying average cost, u 4, for all cases that might be
treated there.

The distribution of observed costs for this year’s patients provides in-
formation about the variability of costs among potential groups of patients at
various hospitals. Examining this distribution is always advisable. For exam-
ple, analysts should look at standard summary statistics: the mean, median,
and standard deviation; minimum and maximum values; and values associated
with different percentage points of the distribution (e.g., the value demar-
cating the upper 1 percent of cases). For facilities in hospital A’s comparison
group, side-by-side boxplots (sometimes called box-and-whiskers plots, dis-
cussed later; Figure 12.1) help to identify likely errors (e.g., hospital stays
with negative costs) or values that are correct but extreme (Tukey 1977). For
instance, a hospital with high average costs because all its cases were expensive
differs from an institution where one very expensive case raised the average
by neatly $10,000 (e.g., one “million-dollar baby” among 100 average-cost
newborns).

The standard deviation (SD) is the most common summary measure
of variation for a variable Y. It is estimated for a population from a sample 11,
Tg, iy ially Tm b}_f:

s = \/z,-(}:- ~1)2/(n=1)
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What data will be used?
Can information be linked at the person level?
Can numerators and denominators be determined?
What are the accuracy and reliability of the data?
Which patient risk factors are captured in the data?
What is the time frame encompassed by the data?
What outcomes can be measured from the data?
Which providers will be included?
Are there reasons to exclude any providers?
« Small sample sizes
« Incomplete data
« Known patient risks unable to measure with the data (e.g., public hospitals)
. Policy considerations (e.g., small hospitals, rural hospitals)
Which patients will be included?
What are the specific inclusion criteria (e.g., disease, surgery)?
Are there reasons to exclude any patients?
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NOTE: Box plots from three hospitals with the lowest and three with the highest cxpected LOS using Disease
Staging’s Relative Resource Scale to determine expected values.

Just as T4 is an estimate of an unobserved mean, 4, of a larger theoretical
population, the SD in hospital A, 54, is an estimate of o 4, the SD of that larger
population. SDs have the same units as T (here, dollars). Regardless of the
shape of the distribution of 7, most costs arc likely to lie within two or three
SDs of the average.

The usual model hypothesized when comparing hospitals (or any other
provider unit) assumes that

TABLE 12.1
Design
Considerations
for Provider
Profiling

FIGURE 12.1
Box Plots of
Expected LOS
at Six Hospitals
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* each case at hospital A has expected value 4, which may differ by facility;
but

¢ the Y values at each facility arc equally variable (i.e., there is a single,
common value o of the g4s).

If all the SDy4s have the same value, o, each s4 (computed by applying the
above formula to the cases at hospital A) is an estimate of it. The “pooled”
estimate of s is calculated from the s4s using weights that reflect differences
in sample sizes, as:

5= JE&(WA * :fl)

where A indexes facilities and w4 = (n4— 1) /(N — K), with N being the total
number of patients and K the number of facilities.

A common goal is both to estimate 4 and measure the accuracy of
these estimates based on what we observe, namely T‘A, #4, and s4. For almost
any distribution of 7, the observed average cost at hospital A, Ty, is very
likely to fall within two standard errors (SEs) of the true average puq4—that s,
within the range p4+ 2 % SE 4, where SE 4, the (observed) SE of the mean at
hospital A, is calculated as:

SEA = I/\/HA

Thus, each interval Y4 & 2 * SE4 is likely to contain its true hospital mean
value, (4.

For a given hospital A, i 4 (the value around which individual 7" values
are centered) and o4 (a measure of how much the individual values are dis-
persed around 4 ) are propertics of the population and do not depend on 74,
the number of cases at hospital A. In contrast, SE 4 relates to the variability of
an “estimator”; specifically, it measures how accurately T4 cstimates p 4. As
the number of observations at hospital A increases, SE 4 decreases, reflecting
the increased accuracy of Y4 as an estimate of u 4. For example, suppose that
we observe mean costs of $5,000 with an SD of $5,000.! With 100 observa-
tions, we are reasonably sure that 1 4 will be in the interval $5,000 % 2 * 500,
that is, from $4,000 to $6,000. With » = 400, we are reasonably confident
that 14 is between $4,500 and $5,500.

Even with the highly skewed distributions typical of health care cost
data (see Chapter 10), unless 74 is small, the observed mean will be approxi-
mately normally distributed. This implies that an interval centered at Y4 and
extending for two or three SE-sized units above and below will likely include
4. For many purposes, 30 cases is an adequate 7,4. However, especially when
the outcome variable is extremely skewed, producing a nearly normal distri-
bution of T4 may require hundreds of cases, as extreme values significantly
affect the mean. When the underlying variable in the population from which
the 74 cases were sampled is distributed normally, Y4 has about a 95 percent
chance of falling in the so-called “prediction interval,” i 4 + 2 * SE 4. This is
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equivalent to saying that the interval T4 £ 2 % SE4 has a 95 percent chance
of containing the true value, ju4. This latter interval is called the 95 percent
confidence interval (CI). A CI specifies plausible boundaries for a parame-
i ter estimate (here, f14), whereas a prediction interval establishes boundaries
within which an observed random variable (here, Y4) should lie. Alth()ug,h
F we know that cost distributions are not normal, cost averages, such as Y4, are
more nearly 50.2

Profiling is not a theoretical exercise in statistical science. Rather, these
intervals provide a convenient “cutoft” for highlighting situations requiring
further examination. A two-SE cutoff casts a broad net for identifying possible
problems, many of which will be spurious. Three SE’s might prove more
appropriate for settings, such as public reporting, in which false flags have
severe consequences.

The observed coefficient of variation (CV) is the ratio of the SD to the
mean: 5/ 7 4. Table 12.2 shows the half-widths of (approximate) 95 percent
Cls:
2%xSE=2% 24 %CV//na

for different values of CV and sample size. The figures in Table 12.2 demon-
strate the combined effect of sample size and data variability on the range
containing the average of a sample of size . For example, with CV = 1 and
a sample size of 100, the approximate 95 percent CI for 4 is:

(0.8% Y, 1.2% Ty)

That is, we can estimate mean cost with about 20 percent crror. Because
accuracy is proportional to 1 over the /7, achieving estimates with 10 percent
error requires 400 observations.

From a different perspective, assume that average costs are the same at
each hmpltal If g4 equals p, T4 is likely to be within the interval o &= 2 *
s//m4.2 Assuming a large number of patients across all hospitals, Y calculated
from all patients is a good estimate of , the true mean cost for all patients.
Hence, T4 is likely to be within the interval Y +2 % s//na. Suppose i)
falls outside this interval. In the traditional hypothesis-testing framework, we
conclude that hospital A’s costs differ from average. Furthermore, suppose that
we are judging 100 facilities and we flag any hospital as an outlier when 4 is
outside the interval T = 2 * 5/,/7%4. In this situation, hospitals designated as
outliers have costs that are statistically significantly different than average at p <
0.05. Among 100 identical facilities (i.e.,all 14 = ), this approach incorrectly
flags about five outliers. This is an example of the “multiple comparisons”
problem (Snedecor and Cochran 1980). Incorrectly flagging a typical hospital
is called a type I error.

On the other hand, trying to avoid type I errors by being conservative
about flagging outliers increases the chance that true outlier hospitals are
missed—a type II error. To illustrate type 11 errors, assume that an inefficient
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TABLE 12.2
Effect of Clefid
Sample Size Sample Size (n) 0.5 1 1.5 2 2.5 3
and Coefficient " > o —— 50
i 10 0.32 0.63 0.95 : J :
"’éﬁamnoﬁ 25 0.20 0.40 0.60 0.80 1.00 1.20
(C¥) oa the 50 0.14 0.28 0.42 0.57 0.71 0.85
HalfWidth of  19¢ 0.10 0.20 0.30 0.40 0.50 0.60
Approximate 150 0.08 0.16 0.24 0.33 0.41 0.49
95 Percent 200 0.07 0.14 0.21 0.28 0.35 0.42
Gt 300 0.06 0.12 0.17 0.23 0.29 0.35
400 0.05 0.10 0.15 0.20 0.25 0.30
Intervals*
Gl i 500 004 009 013 018 022  0.27
1000 0.03 0.06 0.09 0.13 0.16 0.19

* Cells of the table are 2  CV /7. Half-width = T4 * table cell.

hospital (hospital I) has costs 20 percent above an average of $1,000. This
difference seems sufficiently large to be important. Suppose that we flag a
hospital as an outlier only when its observed mean differs from $1,000 by
at least 40 percent (roughly the cutoff for identifying a statistically significant
difference at p < 0.05 when # = 100 and the CV = 2). Under this rule, hospital
I will be flagged if its average cost exceeds $1,400 (i.e., the 95 percent CI for
w1 lies entirely above $1,000). However, with only 100 observations and a
CV of 2, the chance that hospital I’s observed mean will exceed this threshold
is only 20 percent. Thus, hospital T has an 80 percent chance of avoiding an
outlier flag.

The same considerations apply when examining a dichotomous out-
come, such as death. Assume that P is the death rate in a large population
of patients and P is the observed rate in a smaller population of size # (c.g.,

patients at hospital A). The estimated SE is then y/ P(1 — P)/#. For different
values of # and death rate P, Table 12.3 shows the half-width of an interval that
is about 95 percent likely to contain P.* For example, if P were 10 percent in
a sample of 100 patients, the interval from 4 percent to 16 percent is likely to
contain P.® This interval is wide compared to reasonable differences berween
poor- and high-quality providers (Hofer and Hayward 1996; Ash 1996).
With any rule for flagging outliers, as the difference increases between
a given hospital’s underlying performance and typical performance, the likeli-
hood of being flagged rises. Thus, depending on the (unknown) mix of normal
and variously aberrant providers in a study population, roughly 5 percent of
nonproblematic providers will erroncously receive outlier flags, whereas some
(unknown fraction of) problematic providers will escape flags. Which flags
are incorrect is generally not obvious. Using data on cardiac catheterization,
Luft and Hunt (1986, 2780) illustrated that small numbers of patients and
relatively low rates of poor outcomes make it difficult to “be confident in the

—-————-—J
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Ag—
- i _______—_P_; b_lt_ _f_l;_;_(;_’:—_—_ ——— TABLE123

s _ e e e —— Effect of
sample Size () 0.01  0.02 005 040 015 020 025 0.50 Sample Size
e SR - and Probability
25 = = 012 014 016 017 020 rDeath on the
50 = _ 006 008 010 011 012 0.14 -
100 ~ o4 006 007 008 009 0.10 Half-Width of
150 — _ 004 005 006 007 007 008 Approximate
200 — — 0.03 0.04 0.05 0.06 0.06 0.07 95 Percent
300 — 002 003 003 004 005 005 0.06 Confidence
400 _ 001 002 003 004 004 004 0.05 Intervals*
500 001 001 002 003 003 004 004 004
1,000 001 001 001 002 002 003 003 003

N s i

+ Cells of the table (= half-width) are 2 * N-"I’; = I-'),-Tn

e+ When # + P (the expected number of deaths) < 5, the normal uppmximarion {the basis for caleulations in this
table) is unreliable -

NOTE: More precise Cls for proportions are described in Agresti and Coull (1998) and implemented in
hn-p-,//ww“'.gmphp:d.cnm/quic keales /Conflnterval2.cfm.

identification of individual performers.” For example, suppose the death rate
is 1 percent, but a hospital treating 200 patients experiences no deaths. Even
using a lenient 0.10 significance level, determining whether that hospital had
statistically significantly better outcomes is impossible. If the expected death
rate is 15 percent and five deaths occurred out of 20 patients (an observed rate
of 25 percent), the difference is insufficient to label the hospital as performing
poorly. Thus, random chance plays a prominent role in determining outlier
status when sample sizes are relatively small. In this situation, comparisons
across providers must be interpreted cautiously.

Comparing Observed and Expected Outcomes

Calculating expected rates of outcomes is usually the first step in producing
risk-adjusted performance profiles. The simple example above ignores the need
for risk adjustment by targeting patients with identical clinical conditions.
In most situations, different providers see different mixes of patients, so risk
adjustment is essential.

Linear regression modeling is the most commonly used method for
risk adjusting continuous outcomes (see Chapter 10). Thus, we might build
amodel as follows:

PRED; = i + 5j bj * Xy

where PRED; is the expected outcome for patient #, who has characteristics
X f=1,..., 7 for the J predictors in the model. For patients treated
by a specific provider, their expected outcome (E ) equals the average of the
P RE}.), S.




MR%SK Adjustment for Measuring Health Care Qutcomes

In contrast, logistic regression, in which the log of the odds of the event
:s modeled as a linear function of the predictor variables, is generally used to
predict dichotomous (yes/no) outcomes.® After fitting a logistic regression
model, the predicted probability of death for the ith case (PRED;) is calculated
from the relationship:

In(odds;) = In(PRED;/(1 — PRED))) = & + % b Xij
by solving for PRED;:
PRED; = #0385 /] . (0380

To determine the expected number of deaths in a group of # cases, we sum
the PRED; terms; to determine the expected death rate, we divide this sum
by .

Comparing observed to expected outcomes is central to performance
profiling (e.g., drawing inferences about the quality or cfficiency of care).
Various approaches have been used for comparing O and E. Neither (O -
E) nor O/E is clearly superior. For example, supposc that hospital A treats
cases expected to average $5,000 (i.c., average PRED;), but the actual cost is
$6,000. In contrast, hospital B treats cascs that should cost $10,000 but ac-
tually average $11,500. Thus, both hospitals’ costs arc greater than expected,
but how do they compare with each other? On an additive or difference scale
(O - E), hospital B performs worse, as hospital A’s excess is only $1,000 per
case, compared to B’s excess of $1,500. However, on a multiplicative or ratio
scale (O/E), hospital A docs worse, as its cases cost 20 percent more than
expected, compared to only 15 percent more for B. Theory offers no insight
into which hospital to prefer.

Consider another example. Which is worse: 2 percent complications
when only 1 percent was expected (double the rate), or 50 percent compli-
cations when only 40 percent was expected (ten excess problems per 100
but only a 25 percent higher complication rate)? This question has no simple
answer. Analysts can use their data to explore which model is more realistic—
an additive model (where adding the same amount to each case represents the
provider effect) ora multiplicative model (where providcr«associatcd increases
arc proportionate to the expected outcome). Even when multiplicative models
are chosen, observers typically still want to know how observed results com-
pare additively to expected results, such as how many extra dollars a provider
costs or how many extra complications have occurred.

Ratios, such as O/E, are centered at 1 but range from 0 to infinity. To
put comparable distances between ratios below 1 and those above 1, analysts
sometimes display log( O/E) values rather than O/E values (Roos, Wennberg,
and McPherson 1988). On a graph where O values are on the x-axis and
log( O/E) values are on the y-axis, a “broken” y-axis can be used to indicate
the gap between the smallest log( O/E) associated with a positive observed

el
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(0) and negative infinity (the value of the logarithm function at zero). On an
untransformcd scale, substantial differences among O/E values less than 1 are
hard to se¢ and thus may appear unimportant. [n contrast, on a log scale, the
distances between points representing O/E values of 0.25, 0.50, 1.00, 2.00,
and 4.00 arc equally spaced because cach value doubles the one below it.

A drawback of the ratio O/E is that when E is small, its value changes
dramatically with small changes in O. For example, if we observe 30) cases, each
witha 1 percent risk of complications, the expected number of complications is
0.3.1f0,1,0r2 complications are observed, O/Eis 0,3.3,0r 6.7, respectively.
Agood guideline is to avoid examining such ratios when the expected number
of events is less than 1.0. Some researchers advise against O-to- E comparisons
anless E is at least 5.

Fortunately, when comparing O to E, findings as extreme as our cxam-
ples above are unlikely. If expected costs at two hospitals are $5,000 versus
$10,000, or if expected complications rates are 1 percent versus 4() percent,
these hospitals should probably not be compared—their patient populations
or other characteristics differ too much. When distributions of expected out-
comes are roughly similar across hospitals, difference and ratio measures of
performance will produce reasonably similar results. Examining expected out-
comes across providers is therefore important to €nsure that patients’ risks do
not differ radically across providers (se¢ below). Reviewing common descrip-
tive statistics (¢.g., mean and median, SD, percentage cutoffs of the distri-
bution, boxplots) is a useful first cut at comparing expected outcomes across
providers.

In our prior work, we examined the extent to which severity explained
differences in hospital LOS for pneumonia patients (Iezzoni ct al. 1996c¢).
To illustrate the relationship between the distribution of predicted LOS and
severity, we examined these distributions for six hospitals (number of cases
per hospital ranged from 73 to 316): the three hospitals with the highest
and three with the lowest predicted average LOSs (which corresponds to the
hospitals with the lowest and highest risk-adjusted severity). Figure 12.1 shows
side-by-side boxplots of predicted LOS values at these six hospitals, using DS
Relative Resource Scale as the severity measure. (We removed outliers using
Medicare’s definition: cases more than three SDs above the mean on a log
scale; see Chapter 10.)

In Figure 12.1, the box shows the range encompassing the middle 50
percent of cases. Thus, 25 percent of cases have values below the bottom edge
of the box, and 25 percent have values above the upper edge. The horizontal
line within the box is the median. The length of the box is the interquartile
range (IQR), sometimes called the “H-spread.” The top of the box plus 1.5 *
IQR and the bottom of the box minus 1.5 * IQR define the inner fences; the
top of the box plus 3 * IQR and the bottom of the box minus 3 %+ IQR define
Fhe outer fences. The ends of the lines extending above and below the box
indicate the highest and lowest values within the inner fences; circles indicate
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individual values between the inner and outer fences. (Different computerized
statistical packages use different symbols, but the boxplot concept is similar.)
The boxplots show that 75 percent of patients in the three hospitals with
the least severely ill patients were expected to have an LOS below eight days,
whereas 75 percent of cases at the hospitals with the most severely ill patients
were expected to have an LOS above eight days.

Failure of O-to-E Comparisons to Adjust Fully for Risks

When examining death rates, epidemiologists often use standardized mortal-
ity ratios (SMRs). SMRs are O/E ratios, where the E values are calculated
using indirect standardization. To illustrate the need for standardization (the
epidemiologist’s term for risk adjustment), consider a hypothetical situation
involving two types of patients: low-risk, with a 1 percent mortality rate, and
high-risk, with a 5 percent mortality rate (Table 12.4). Suppose further that
half of all patients in a large population are low- and high-risk, yielding an
overall mortality rate of 3 percent. Now consider hospital A, which treats
1,000 patients, 800 at low risk and 200 at high risk. Hospital A’s experi-
ence with its low-risk patients is similar to the overall experience—a 1 percent
mortality rate (8 deaths among the 800 patients). However, hospital A does
poorly with high-risk patients; it has a 10 percent mortality rate, double the
population average, leading to 20 deaths among the 200 high-risk patients.
Despite this, because of its favorable case mix, hospital A’s mortality rate is
2.8 percent (28,/1,000), somewhat better than the 3 percent population av-
erage.

Indirect standardization determines a hospital’s expected number of
deaths by applying stratum-specific rates determined from all patients to the
number of cases in each stratum in the hospital. In this case, a stratum is a
risk category. Based on the overall data, we expect 8 deaths among the 800
low-risk patients (with a 1 percent mortality rate) and 10 deaths among the
200 high-risk patients (with a 5 percent mortality rate), for an expected rate of
1.8 percent.” The standardized mortality ratio for hospital A is 1.56 (28,/18),
since it has 56 percent more deaths than expected based on its patient mix.

One can report this discrepancy in other ways. Some prefer to express
the hospital’s performance on the same scale as the population average, giving
a “risk-adjusted average.” This is achieved by multiplying the SMR by the
population average rate (e.g., 1.56 % 3 = 4.68 percent). Another choice is to
report the difference between the observed rate (2.8 percent) and the expected
rate (1.8 percent); thus, hospital A has 1 percent more deaths than expected.
All of these summary measures agree on the main point: After adjusting for
its patient mix, hospital A has more deaths than expected.

Indirect standardization and its generalization via multivariable risk-
adjustment modeling are powerful tools for making fairer comparisons among
providers with different types of patients. Nevertheless, comparing outcomes
across providers is complicated when patient mix both strongly affects the out-
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TABLE 12.4
Hypothetical Hospitals with Different Patient Mixes and Death Rates
o d— e
All Patients in Population Hospital A Hospital B Hospital C
Patient Mix (%) Death (%) n Death(%) n Death (%) n  Death (%)
Risk Category
Low 50 1 800 1 200 1 800 1.25
High 50 5 200 10 800 10 200 12.50
performance
Observed death rate (0) 3 28/1,000=2.8% 82/1,000=8.2% 35/1,000=3.5%
Standard mortality ratio 28/18 = 1.56% 82/42=1.95% 35/18 = 1.94%
(SMR) = O/E
Risk-adjusted mortality 3%1.56=4.68% 3%1.95=5.85% 3x1.94= 5.82%
Difference (0 - E) 28—1.8=1% 8.2—4.2=4% 3.5—1.8=1.7%

come and differs widely across providers. In the terminology of epidemiology,
patient mix is a confounding factor when examining patient outcomes.

To illustrate, consider another institution, hospital B, with exactly the
same mortality experience within cach stratum as hospital A above, but with
an unfavorable case mix. Hospital B treats 200 low-risk patients with 2 deaths
and 800 high-risk patients with 80 deaths (see Table 12.4). Solely because of
differences in patient mix, hospital B’s unadjusted death rate is 8.2 percent,
much higher than hospital A’s 2.8 percent rate. When facilities differ widely
in their patient mix, “raw” comparisons can mislead.

However, risk adjustment does not always do what we anticipate or
hope that it does. For example, an indirect adjustment approach fails to make
hospitals A and B look equally good. To perform indirect adjustment for
hospital B, we first compute its expected number of deaths as 42 (0.01 x 200
+0.05 % 800). Hospital B’s SMR is thus 1.95, its risk-adjusted death rate is
5.85 percent, and its excess mortality rate is 4 percent (as opposed to 1.56
percent, 4.68 percent, and 1 percent, respectively, at hospital A). However
reported, hospital B looks worse than A, although the same type of patient had
the same outcome at either hospital. Results could be even more misleading.
Imagine that hospital C is seriously deficient: It has the same favorable patient
mix as hospital A but 25 percent higher death rates for both patient types
(1.25 percent and 12.5 percent mortality, respectively, among low- and high-
risk patients). Hospital C’s SMR, risk-adjusted death rate, and excess mortality
rate (1.94 percent, 5.82 percent, and 1.7 percent, respectively) look marginally
better than hospital B’s, although its performance is clearly worse.

Direct standardization, an alternative adjustment approach, produces
results that feel more correct, but the method has conceptual and practical
problems. In direct standardization, provider-specific rates are computed in
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each risk stratum and applied to a “standard” population case mix, produc-
ing an estimate of what might be expected if the provider were to treat this
standard patient mix. For example, suppose that the standard population has
50 percent low- and 50 percent high-risk patients. Under this assumption,
hospitals A and B have stratum-specific death rates that are estimated to yicld
5.5 percent mortality in the standard population (0.5 % 0.01 + 0.5 % 0.10),
as compared to hospital C’s estimated 6.9 percent rate (0.5 * 0.0125 + 0.5 *

0.125).

In epidemiological studies, the strata are generally large, such as popula-
tions in different states broken into five-year age categories. Relatively reliable
estimates of stratum-specific rates are possible using such large populations.
However, in profiling individual providers for patients stratified by disease or
other risk factors, stratum-specific rates are generally based on too few cases
to provide reliable estimates. Furthermore, questions arise about whether a
provider should be judged harshly for ostensibly doing poorly with types of
patients that it rarely sees. For example, supposc hospital D treats 1 high-risk
patient who dies and 999 low-risk patients, of whom only 5 die. Although
its death rate is only half as large as the 1 percent expected rate for nearly
all of its 1,000 patients, its projected death rate for the standard population
is more than 50 percent (0.5 % 0.005 + 0.5 % 1.00). Thus, as this example
demonstrates, which of several providers looks best can change depending on
the patient mix of the standard population. Direct standardization is rarely

used to profile physicians or hospitals.

Most performance profiles use more complex multivariable models to
determine expected values. However, the fundamental approach is identi-
cal: Each provider’s observed outcome is compared to expected outcomes
based on the risk characteristics of its patients and the model-specified re-
lationship between these characteristics and the outcome of interest. When
providers treat very different populations, risk adjustment therefore cannot
answer definitively “which is better.” In reality, particular providers may do
better with certain types of patients and worse with others. Thus, examining
the data in multiple ways becomes particularly important, for example, exam-
ining provider performance within high- and low-risk strata of patients. In a
rational world, providers would concentrate on their most successful types of
cases, and performance profiles would help steer patients to providers who do

well with similar kinds of patients.

Random Variation in Comparing O-to-E Outcomes

As discussed, standard errors capture the effect of random variation on the
reliability of estimates from data. When each of # observations is an indepen-
dent observation from a common distribution with mean u and SD o, we

estimate x by 7 and o by:

6=s= \/21(1’; -~ 1)2/(n —I-}
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The valuces of T and s remain relatively constant as # increases, cach becoming
e increasingly accurate estimator of p and o, respectively. In contrast, the
statistic that measures the accuracy of T as an estimator of j¢ becomes smaller
2§ 7 INCIEASES:

SE(Y) = s//»

Properly estimating standard errors for predictions of providers’ ex-
pccted outcomes requires carc. Consider prcdictitms ofa continuous outcome
from a multivariable linear regression model. Most cnmputcrizcd statistical
regression packages estimate the SE associated with an observed outcome.
However, there are two SE values: the SE for the expected value of an ob-
served outcome (1.¢. for the mean of many patients similar to that one for
whom the prediction s made), and the SE for that individual patient. For
provider profiling, the latter SE is more relevant. It is larger than the first
because it reflects not only uncertainty about estimates of parameters in the
model but also uncertainty associated with the outcome of an individual ob-
servation given its expected value.

If 5; is the standard error for the ith observation, the SE for the average

of a group of » cases 1

An approximate 95 percent CI for the average outcome of n paticnts at hospital
Als:
_ 3 T
TR
n

The distributions of continuous outcomes like costs and LOSs usually
have “long right tails,” including some cases with extremely high values (see
Chapter 10). Therefore, the logarithm (usually the natural logarithm) of these
continuous values is often used in modeling because its distribution is more
symmetrical than that of the antransformed data. In this situation, CIs can be
computed on the log scale. However, achieving estimates on the original scale
requires that the “point estimate” of the mean and the endpoints of the CI
be retransformed by exponentiation (and adjusted for bias; see Chapter 10).
Resulting ClIs will not be centered at the estimated mean.

Consider a dichotomous outcome like death. The SD associated with
an individual’s predicted probability of death (corresponding to 5; for a con-
tinuous dependent variable) is:

and the SD of the mean death rate of n persons, used to estimate the “real”

death rate P that we cannot observe, is:
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VEPiQ-P)
s :
When each provider’s expected outcome (E) comes from a model fit

to many cases, calculations of 95 percent CIs for O/E ratios can treat E as
a constant. Then, one can calculate the CI around the observed number of

deaths as:
O 24+ 5200 — B)

and divide the resulting lower-, midpoint-, and upper-interval values by E.
Multiplying each end of the CI by the areca-wide rate yields a CI for risk-
adjusted outcomes. Hosmer and Lemeshow (1995) found this approach was
reasonable based on simulation studies, including a situation in which the
observed cases were excluded from the data set used to build the model gen-
erating the expected findings.

Presenting Comparisons of O-to-E Outcomes

As noted throughout this book, risk-adjusted outcomes information—in-
cluding performance profiles—is increasingly used by nontechnical audiences
for a variety of purposes. Therefore, results must be presented in a clear-cut,
easy-to-understand fashion. Because few users comprehend the methodologi-
cal underpinnings of the computations, some performance profiles aim for the
simplest presentation, even though it obscures important issues. For example,
the 1996 profile of health plan performance produced by the Massachusetts
Healthcare Purchaser Group initially arrayed ratings on a scale of one to five
stars, establishing cutpoints to determine the numbers of stars. Apparently
some health plans objected, noting that a single star, for the lowest-rated plan,
sent a disproportionately negative message. The final version of the rating used
only the center part of the five-star scale, with the lowest-rated plan having
two stars and the highest having four. The Boston Globe published this rating
on the front page of their business section, with the stars printed in bright red
(Pham 1996a, C1). The numerical rankings appeared to the right of the stars,
in small black print on a gray background. The lowest three-star plan had
89.8 percent overall satisfaction, while the sole two-star plan, Massachusctts
Blue Cross and Blue Shield, had 87.3 percent, hardly a striking difference.
Blue Cross withdrew from the voluntary rating program, noting that their
low rating by the star method obscured the fact that their performance was
numerically only slightly below their competitors’ (Pham 1996b, C3).
However, the American public frequently sces results of opinion surveys

presented alongside their “margin of error,” especially around election time.
People should therefore not have difficulty understanding that comparisons
of observed-to-expected outcomes are also uncertain. How should this uncet-
tainty be portrayed on the printed page? Producers of performance profiles us¢
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two common strategies to depict differences between O and E outcomes in a
way that captures the effect of random variation: showing the observed value
in relationship to a “prediction interval” of the form p £ 2 * SE or measuring
the difference between observed and expected values in units of SE.

A report card on heart attack outcomes produced by the Pennsylvania
Health Care Cost Containment Council (PHC4 1996) illustrates the first
approachA PHC4 developed separate models for “direct admits™ (patients re-
ceiving initial care fora heart attack) and for “transfer-ins.” Figure 12.2, repro-
duced from the PHC4 report, illustrates a prediction interval ge nerated from
1 multivariable model that adjusts for risk factors and a particular hospital’s
rate relative to the interval. Figure 12.3, also from the PHC4 report, shows
an example of the results. The prediction intervals were wide, many spanning
a range of 10 percent (¢.g., from 5 percent to 15 percent). The interval for
Aliquippa Hospitalis typical; based on 87 cases, the interval ranged from about
3 percent to 13 percent. Butler Hospital, with 259 cases, had a narrower inter-
val (from about 6 percent to 12 percent), whereas Corry Memorial Hospital’s
interval, based on only 46 cases, went from about 2 percent to 17 percent.
Hospitals with higher or lower observed than expected rates are obvious,
flagged by a small symbol to the left of the hospital.

For all hospitals depicted on the same page, readers can compare the
relative widths of the prediction intervals, which are primarily a function of
the number of cases treated. Hospitals with wider intervals treat fewer cases.
Despite cluttering the presentation, showing the number of cases treated at
each hospital would have been useful here, although detailed tables later in the
report list the number of cases, percentage transferred out, and actual values
with 95 percent Cls for mortality and LOS (PHC4 1996, 23-25).

In Figure 12.3, 4 of the 39 hospitals had rates outside the 95 percent
prediction intervals, one with a higher rate than expected. The display invites
the conclusion that the three below-interval hospitals had particularly high-
quality care and the one above-interval hospital had low-quality care; however,
5 percent of ordinary hospitals fall outside the 95 percent prediction interval
because of random chance alone. Thus, among 39 similar hospitals, about two
would be spuriously flagged. Of the four that fell outside the interval, read-
ers cannot know which, if any, are quality outliers. The traditional approach
for adjusting for this “multiple comparisons” problem essentially expands the
width of the prediction interval. This decreases the power of tests to identify
hospitals that really do differ from expected and has been rarely used in per-
formance profiling. As discussed later, hierarchical models handle the multiple
comparisons problem better.

The PHCA4 heart attack report showed the same findings for physician
practices within hospitals, provided they treated more than 30 cases. As noted
carlier, if a continuous variable does not have a widely skewed distribution, the
mean of a sample of 30 cases is approximately normally distributed, probably
the rationale for choosing a minimum sample size of 30. However, in this
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FIGURE 12.2
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SOURCE: Pennsylvania Health Care Cost Containment Council (1996).

situation, PHC4 addressed a dichotomous outcome. With such an outcome,
the normal approximation is generally rcasonable when the event rate times
the number of cases is at least five. Using this rule, 30 cases necessitate an event
rate of more than 15 percent. This is higher than what occurred (Localio et
al. 1997y,

In both the mortality and 1.OS analyses, the PHC4 excluded patients
from hospitals closing since 1993; who left against medical advice; under 30
and over 99 years of age; from hospitals treating fewer than 30 cases; involved
in two or more transfers; and who were “clinically complex,” with a preexisting
or coexisting clinical condition not related to heart attack treatment and not
included in the risk model. The LOS analyses also excluded patients who
died, patients transferred out (who had “truncated” LOSs), and patients with
“atypical” LOSs (more than 40 days or those discharged on the same day they
were admitted). While PHC4 exempted hospitals with fewer than 30 cases
from the mortality analysis, they included all hospitals in the LOS analysis-

.
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ACUTE CARE HOSPITALS
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Meadville Medical Center
Medical Center, Beaver, PA
Mercy Providence Hospital
Metro Health Center

+ Millcreek Community Hospital
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o actual mortality significantly lower than expected range J

SOURCE: Pennsylvania Health Care Cost Containment Council (1996).

The PHC4 LOS analyses used a log transform: In(LOS) was the dependent
variable. They calculated upper and lower endpoints for CIs in the log scale,
then retransformed them by exponentiation. As illustrated in Figure 12.4,
presentation of LOS data paralleled that for mortality. More hospitals fell
outside the prediction intervals for LOS than for mortality.

Obviously, the number of cases treated is crucial in interpreting such
data. For example, if a provider’s expected death rate is 10 percent, an ob-
served rate of 15 percent based on 400 cases is more worrisome than either
an observed rate of 15 percent based on 100 cases or an observed rate of 20
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FIGURE 12.4
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SOURCE: Pennsylvania Health Care Cost Containment Council (1996).

percent based on 10 cases. Figures 12.3 and 12.4 appropriately remind readers
to pay less attention to deviations based on fewer cases.

Standardizing is a common statistical technique for converting a devi-
ation (i.c., an O — E) into a measure that suggests whether the deviation is
statistically meaningful. We consider:

2= (0 — E)/SE

where SE is calculated as described above. If the observed rate pertains to
a process whose expected value really is E, and if # is sufficiently large, this
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quantity has appm,\'imarcly 2 standard normal distribution. This is called a
«yscore,” SINCC = is used in statistics to denote the standard normal random
variable. The standard normal is centered at 0: 68 percent of Z-SCOICS fall
in the interval from —1 to +13 and slightly more than 95 percent arc in the
interval from 2 to +2. Widely available standard normal tables (or computer
Programs) are used to convert Z-SCOTES into p-values.

The p-value measures how likely it is for observed and expected rates
to differ at least as much as they do, assuming that the observations reflect the
hypothcsizcd model. For example, a standard normal variate falls outside the
interval =1 to +1 only 32 percent of the time. Thus, a z-score of cither +1 or
1 (ie., Oand E differ by one SD) has p = 0.32. A z-score greater than 1.96
or less than —1.96 has a p-value smaller than 0.05. If a provider’s O — E value
Jeads to z = 1.96 (p = 0.05), its true rate may nonetheless be E. However,
random deviations this large occur only one time in 20.

We used z-scores in study of hospital-based severity measures. Table
12.5 shows z-scores at five hospitals when we used different severity measures
to determine expected rates of death for pneumonia patients (Iezzoni et al.
1996a). We sclected these five hospitals for illustrative purposes from the 30
out of 105 hospitals in the study at which observed mortality rates diftered
significantly from expected (p < 0.05) when judged by one or more, but notall
14, severity methods analyzed. For example, at hospital B, observed mortality
was significantly lower than expected when using DS’s probability of mortality
model (z=-3.07, p < 0.01), APR-DRG (z =-2.30, p = 0.02), or PMC-RIS
(3=-2.16, p=0.03). In contrast, observed rates were less than two SEs from
expected, consistent with the null hypothesis of no difference, when using the
original version of MedisGroups (3 =~1.33,p = 0.18), physiology score 1(z
=-1.53,p=0.13),0r R-DRG (z=-0.84,p= 0.40), as well as other severity
measures. Thus, whether hospital B was identified as a particularly high quality
hospital, and perhaps used to benchmark performance at other institutions,
depended on which severity measure Was used for risk adjustment.

California’s hospital report card nitiative used a similar approach to
portray outlier hospitals (Wilson, Smoley, and Werdegar 1996). However,
rather than use the normal approximation to converta z-score into a p-value,
an “exact” p-value was calculated as described in Luft and Brown (1993).
Figure 12.5, taken from the California report, shows how they reported their
results.

Some critics complain that z-scores and p-values are not intuitive; many
consumers of report cards would rather receive their information in such famil-
far terms as rates of excess problems Or risk-adjusted problem rates. A deeper
criticism is that any single-number summary (or point estimate) is likely to
convey more precision than is justfied, especially when ranking providers.
Several strategies might combat this “tyranny of spurious precision.” One in-
volves using categorical reporting, as in Figure 12.5. This solves the problem
of believing that one provider is better than another because 3.2 is bigger

_44
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TABLE 12.5

Examples of Relative Mortality Rate Performance from Five Hospitals: Pneumonia Patients

Hospital Performance Measure
and Severity Method A B C D E

No. of cases
No. (%) died

200 317 88 267 132
17 8.5) 32 (10.1) 10 (11.4) 36 (13.5) 25 (18.9)

z-score (decile rank) from -0.53 (4) 029 7) 0.56 (8) 2.14 (10) 3.63 (10)
unadjusted model®

MedisGroups
Original version
Empirical version

Physiology score 1

z-score (decile rank) from severity-adjusted model®

230 (1) -133 (@ 156 9) 2.70 (10) 1.99 (10)
273 (1) =173 (1) 203 (10) 1.33 (9) 1.17 (9)
225 (1) -1.53 (1) 1.64 ©) 2.24 (10) 2.79 (10)

Physiology score 2 312 (1) -1.84 (1) 1.49 9) 1.95 (10) 2.02 (10)
Body Systems Count 174 1) -1.23 3) 1.95 9 2.29 (10) 3.07 (10)
Comorbidity Index -1.28 (2 -1.13 (3) 1.32 (9) 2.11 (10) 3.16 (10)
DS

Mortality probability 251 (1) -3.07 1 15109 351 (10) = 2.14 9)

Stage -2.05 (1) -0.95 (3) 1.87 (9) 2.12 (10) 2.88 (10)
Comorbidities =115 (2] -1.66 (1) 1.45 (8) 2.05 (10) 2.57 (10)
PMCs: severity score ~1.99 (1) -1.88 (1) 2.23 (10) 1.04 (9) 2.78 (10)
AlM -1.54 (1) -1.97 (1) 1.99 (9 2.17 (10) 3.20 (10)
APR-DRGs -2.25 (1) -2.30 (1) 2.32 (10) 1.73 (9) 2.50 (10)
PMC-RIS -2.05 (1) -2.16 (1) 2.60 (10) 1.48 (9) 3.41 (10)
R-DRGs —2.08 (1) -0.84 (3) 0.60 (8) 3.04 (10) 1.79 (10)

SOURCE: Iezzoni et al. (1996a).
3 Unadjusted model assumed 0.096 probability of death for all patients.
b Severity-adjusted model included age-sex, DRG, and severity score.

than 3.1, for example, at the cost of introducing harmful “edge effects” in
which two nearly identical hospitals appear different because only one “made
the cut” into a better category (as illustrated in the Boston Globe example at
the start of the section). Another strategy is to report numerical performance
measures using fewer decimal places (¢.g., 3.1 rather than 3.14159). Display-
ing confidence (or acceptance) intervals is also helpful. Finally, performance
reports should resist the urge to list providers in rank order from “best t0
worst.”

Pictures often convey messages more powerfully than words or o
merical tables. The graphical displays shown in Figures 12.3 and 12.4, for
example, provide point estimates and prediction intervals for each hospital
in a way that facilitates and encourages comparison. One important feature
of such displays involves the order for listing data from different hospitals-
The Pennsylvania report used alphabetical order, making it easier to locat¢
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SOURCE: Wilson, Smoley, and Werdegar (1996).

information for a particular hospital and harder to find the supposedly best
and worst performers.

Displaying hospitals from highest to lowest performance draws atten-
ti(.)n to ranking, an unwise choice given the unreliability of rank determinations
(Goldstein and Spiegelhalter 1996). Furthermore, when observed rates, O/E
ratios, or risk-adjusted rates are used to establish a rank ordering, the most
extreme rates are usually those based on few cases (such as 0 percent problems
based on zero of ten cases). These extremes Most likely reflect randomness
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and will likely change in subsequent periods. Reordering the same data may
prompt new insights. For example, displaying hospitals by important charac-
teristics (e.g., ownership, payer mix, teaching intensity) encourages compar-
isons among similar facilities. Such displays also highlight differences by type
of hospital.

The art and science of good visual displays has advanced rapidly in
recent years (Tufte 1983). Also, software for producing graphics is increas-
ingly available, such as the many powerful display formats that have been
implemented in the S or S+ computer language (Cleveland 1993).

Figure 12.6 shows how one might compare several providers (e.g., hos-
pitals A, B, and C) on their performance with cach of several kinds of patients
(¢.g., low, middle, and high risk) by portraying results separately within pa-
tient categories (Teres and Lemeshow 1993). Observing a multidimensional
“signature” for a hospital might highlight areas that require explanation and
reveal potential strategies for improvement (¢.g., hospital A may do well with
low-risk patients and poorly with others). Such an approach, however, requires
enough patients to estimate rates reliably within each hospital or risk cell. Al-
mond and colleagues (2000) suggest useful graphical displays for comparing
a particular provider to other providers in the group.

Bayesian Models

Standard approaches for provider profiling present several problems. The first
is how the “true” mean value of an outcome is estimated for cach provider
(e.g., wa for provider A). Traditionally, this is calculated scparately for each
provider as the average outcome of patients treated by that provider (Y4).
However, the resulting set of provider estimates is often not as close as it could
be to the true means and not the best predictor of what will happen in the
future. Typically, Y4s are too extreme, the highest ones being higher than the
associated true p 45 and the lowest Y 45 being too low. When provider-specific
averages are based on small numbers of patients, large over- and underesti-
mates are especially likely.

In addition, traditional estimates of SE values (described above) may
understate the amount of variability that is present, leading to Cls that are
too narrow. Understating true variation causes more normal providers than
expected to be flagged as outliers. One reason is that traditional methods rec-
ognize only one source of variation in the data—random variation of patients
within a provider. However, variation across providers also exists. Standard
errors arc also often underestimated because patients treated by a particular
provider may fall into groups such that patients in one group are more similar
to each other (for whatever reason) than patients in another group. In other
words, patients may not be independent observations but are “pested” of
“clustered,” often by some organizational hierarchy: For example, patients
are clustered by their treating physicians; similarly, CABG surgeons arc nested
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within hospitals. When analyzing units within which clustering occurs, effec-
tive sample sizes (in terms of the amount of information provided) are less
than actual sample sizes. Approaches that do not adjust for clustering under-
estimate SEs (Greenfield et al. 2002). Bayesian hierarchical models (also called
multilevel or random coefficient models) provide a comprehensive approach
for dealing with such problcms.8

The Bayesian Approach

Hierarchical models fit within a more general Bayesian perspective that views
newly observed data within the context of prior knowledge. For example, sup-
pose in ten coin tosses we observe one head. We know from our understanding
of coin tosses that P (the true probability that a coin comes up heads) is quite
close to 0.5. Therefore, our observed rate of 0.1 heads raises some question
about whether the coin is truly fair.” However, if the coin looks normal, it still
seems more reasonable to suppose that the P is more like 0.5 than 0.1. If we
toss the coin more and continue to generate fewer than 50 percent heads, we
grow more suspicious that P is less than 0.5. If the coin is biased, what is its
true P} As the number of coin tosses increases, the observed proportion of
heads increasingly becomes a more credible estimate of P.

Similar reasoning is useful for evaluating providers such as hospitals,
where, without data, we assume that hospital A is ordinary and has outcomes
like those at other hospitals. (Technically, this is called the exchangeability
assumption.) If we receive a little evidence about hospital A’s performance,
we adjust this “prior” estimate slightly. As evidence accumulates, however, we
place increasing weight on the new data and less weight on our prior belief.
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At some point, the data may be enough to convince us that hospital A is of
truly lower (or higher) quality or efficiency than other hospitals.

This is the sense in which Bayesian analyses interpret new data within
the context of prior beliefs. To give another example, if we are uncertain about
the safety of an operation but we observe one complication in ten operations,
we may accept P = 0.1 as our best guess for the true complication rate P
However, if we observed no complications in ten operations, we may feel
uncomfortable with P = 0, since we know that all surgery presents risks.
Implicit in this is our belief that this operation is in some ways like other
surgeries where complication rates around 10 percent are typically seen, but
a complication rate of 0 percent is not.

Classical statistical methods capture the level of uncertainty in estimat-
ing P by putting confidence intervals on P (as described above). This approach
has two major limitations: First, computations of P and a CI for P rely only
on current observations; and second, the approach leads to “all-or-nothing”
estimates. That is, if the difference between observed and expected values is
statistically significant (e.g., because a 95 percent CI does not include the
expected value or the p-value is < 0.05 ), we accept the observed mean as the
best guess for the true mean. Otherwise, we continue to believe that the true
mean equals the previously held expected value. Using traditional hypothesis
testing, our ten coin tosses lead us to estimate P as 10 percent if we observe
one head (i.c., after rejecting the null hypothesis that P is 0.5). However, if
we observe two to eight heads, we would conclude that the coin is probably
fair, and our best guess for P would be 0.5.

A Bayesian framework uses prior knowledge about a situation to pro-
duce estimates for the true mean that lie somewhere between the observed
average and the expected mean based on prior knowledge. The resulting es-
timate is closer to the expected mean when the observed mean is based on
few data and prior knowledge (e.g., about how fair coins behave) is strong.
The estimate is closer to the observed mean to the extent that either outside
knowledge is less certain (e.g., surgery with an unknown complication rate)
or when more data are available (e.g., when the observed mean derives from
1,000 operations rather than just 10).

Historically, the Bayesian dependence on “prior knowledge™ has gen-
erated considerable controversy. Two people examining identical data might
reach different conclusions because of personal differences in their prior
knowledge and assumptions. Nevertheless, Bayesian analysis has entered
mainstream statistics, partially because powerful modern computers have
overcome previously intractable computational problems associated with the
approach. Furthermore, analysts can use a Bayesian framework without de-
pending strongly on prior knowledge. One way is through an approach called
“empirical Bayes”—using the data both as the basis for prior knowledge and t0
adjust this knowledge. Another strategy is to assume very vague prior knowl-
edge, captured by placing noninformative prior probability distributions 08
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unknown parameters (c.g., by conjecturing that complication rates associated

with a new surgery arc uniformly distributed between 0.1 percent and 80.0
percent). When prior knowledge is vague, the data primarily drive the Bavesian

estimates.

Empirical Bayes Analysis

Casella (1985, 83) attributes the basis of “modern” empirical Bayes analysis to
work by Efron and Morris (1972, 1973, 1975). As they discuss in an excellent
nontechnical paper (Efron and Morris 1977), parametric empirical Bayes anal-
ysis derives from a theorem initially proven by Stein (1955) that challenged
the fundamental assumption of traditional estimation theory, that the average
of the observed data is usually the best estimate of the mean of the population
from which the data were drawn. However, Stein proved that there are better
ways to estimate jointly the (true) means of three or more normal populations
than by using the three averages computed separately from samples from each
population. The thinking inspired by Stein’s theorem evolved into better ways
to estimate means for several populations simultaneously. '?

Empirical Bayes estimation extracts information from the current data
set to function as the prior knowledge required for Bayesian estimates. For
instance, in a particular database of 10,000 AMI patients treated at 100 hos-
pitals, 13 percent die in hospital. This 13 percent serves as prior knowledge
and provides a context for interpreting hospital A’s experience—10 deaths
out of 100 patients. The empirical Bayes estimate for the true death rate at
hospital A will lie between 10 percent (the observed value) and 13 percent
(our prior knowledge). Exactly where depends on the relative size of random
variation in the observed death rate (10 percent) and the amount by which
true hospital death rates differ from their mean of 13 percent.

To illustrate the empirical Bayes approach, consider comparing costs
at four hospitals. A typical classical analysis considers two alternatives: (1) to
accept the null hypothesis, in which case the true mean cost at each hospital
is estimated as the common mean from the pooled sample of all patients,
or (2) to reject the null hypothesis, in which case the mean of each hospital
is estimated as the average of patients in that hospital. The empirical Bayes
estimator represents a COMPromise, estimating each hospital’s mean by giving
weight to both the common mean and the mean at cach hospital. Thus, the
empirical Bayes estimate of the average cost in cach hospital “shrinks” the
hospital-specific cost toward the overall average.

Empirical Bayes estimates explicitly recognize two sources of variation
in the data: (1) random variation within each unit examined (e.g., within each
hospital, variation of individual patients’ observed costs from the hospital’s
true average cost, measured by 04 for hospital A) and (2) variation across
hOSpitals in their true average cOsts (i, variation in the ju; values for 2 = 1to
N, the number of hospitals). In making empirical Bayes estimates, the weight
given to the observed mean in cach unit is 2 function of these two sources
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of variation, measured by the variance (which equals the standard deviation
squared):

weight = variance across units/(variance
across units + variance within units)

As variation within units (e.g., hospitals) increases, unit-specific averages re-
ceive less weight (i.e., estimates are shrunk closer to the overall average). As
noted earlier, variation in the average is 5/+/7, making within-unit variation
larger for smaller samples. Usually, the most extreme raw averages come from
units with small sample sizes. Thus, their Bayes estimates are shrunk much
closer to the overall mean, leaving units with less extreme raw averages based
on larger samples with the most extreme Bayes estimates.

We used empirical Bayes techniques to profile small geographical ar-
eas based on hospitalization rates among people aged 65 and over in Mas-
sachusetts (Shwartz et al. 1994). Specifically, we examined so-called “relative
hospitalization rates” (RHR) in each geographical area, defined as the ob-
served number of hospitalizations minus the expected, expressed as a multiple
of expected:

RHR = (O — E)/E

Thus, for example, RHRs of -0.5, 0.0, and +0.5 represent areas with 50
percent less than expected, as much as expected, and 50 percent more than
expected hospitalizations, respectively. We determined cxpected numbers of
hospitalizations using indirect standardization to adjust for differences in age
and sex distributions of the population in each area. Consider the effect of em-
pirical Bayes shrinkage on perceptions of hospitalizations for cardiac catheter-
ization. The highest RHR for cardiac catheterization, 0.90, occurred in a very
small area with only 4,955 residents over age 64. The second highest car-
diac catheterization RHR, 0.84, came from a much larger area, with 40,390
residents over age 64. The empirical Bayes estimates for the two areas were
0.65 and 0.80, respectively. Because the first area had a small population, the
empirical Bayes estimate gave less weight to its observed rate and more to
the overall mean of 0. In other words, the rate estimated by empirical Bayes
“shrank” much closer to the overall mean, from 0.90 to 0.65. Because the
second area had a much larger population, far less shrinkage occurred. This
illustrates how empirical Bayes techniques adjust point estimates to reflect the
uncertainty associated with raw averages, helping to guard against drawing
conclusions from extreme estimates based on a few cases.

Our study also found that the set of empirical Bayes estimates of hospi-
talization rates in small geographical areas generally matched the set of area-
specific rates for the following year better than did the raw averages (Shwartz
et al. 1994). For 62 of the 68 conditions studied, empirical Bayes estimates
vielded smaller weighted average errors (weighting by the size of the arcas)
when used to predict next year’s hospitalization rates.
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[t is important to note thata shrunken (Bayes) estimate may be worse
than the average of the data for an individual unit. Across all units, however,

shrunken estimates produce lower overall errors.

Hierarchical Bayesian Models

Hicrarchical models generalize the idea of shrinkage and provide a compre-
hensive framework for explicitly incorporating variation at different levels of
analysis (Bryk and Raudenbush 1992). The “hierarchy” derives from nesting,
which arises when the dataare not generated independently, but in groups. For
example, patients are nested within provider (a group of patients treated by the
same physician); in turn, providers may be nested within practice groups (¢.g.,
physicians who work at the same hospital) and hospitals may be nested within
types (€.&-, teaching versus nonteaching). At each level of the hierarchy, the
relevant independent variables and their influence may differ. Explicit model-
ing of the hierarchical structure recognizes that nested observations may be
correlated and that different sources of variation can occur at each level.

Consider the cost for treating patients with a particular disease; to
simplify, assume patients are clinically similar across providers. For profiling
provider costs, we could use the following simple (although slightly unrealis-
tic) hierarchical model:

* Tj;has some distribution (e.g., normal truncated to be positive) with
mean f¢; and variance o2 (stage I model)

* iy has some distribution (¢.g., normal truncated to be positive) with mean
» and variance v? (stage IT model)

Tj; is the observed outcome for person i treated by provider j. Provider j’s
true expected outcome is fi;. “his model assumes that random variation of
outcomes is identical for each provider. It s measured by 0. Providers’ true
expected outcomes differ; in this example, they follow a normal distribution
with mean A and variance v2, Hence, we can generate data point as follows:
(1) by randomly selecting a p1; froma positively truncated normal distribution
with mean A and some variance v2 and (2) by randomly selecting a Tjj from
alog normal distribution with mean fi; and variance o2. Thus, the 7j; values
have two sources of variation, one due to variation within provider (the o)
and another due to variation across providers (the v?). In a Bayesian hierar-
chical framework, the stage 11 parameters A and v? are called hyperparameters.
These parameters are usually given vague or noninformative prior distributions
(which implies vague prior knowledge); for example, the distributions are uni-
formly (or nearly uniformly) distributed over some appropriately wide range
that incorporates any feasible values. As a result, the data primarily determine
the estimates. Analysts can easily enrich this simple model by incorporating
individual-level risk factors or a risk score in the stage I model and provider-
level covariates (e.g., physician specialty, practice site) in the stage 1T model.
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Hierarchical models have several key features (Thomas, Longford, and
Rolfe 1994). They

¢ explicitly model differences among providers (over and above what is
explained by differences in patient mix);

s view provider effects as “random variation,” with the measure of spread,
2, estimated during model fitting;

e “shrink” the point estimate of a provider’s outcome from the observed
provider average toward a risk-adjusted expected value for the provider by
an amount that depends on v?, o2, and the provider’s sample size;

o produce wider intervals around point estimates that appropriately reflect
the uncertainty arising from both individual variation of patients within
providers and variation of providers; and

* provide a framework for comprehensively addressing the problem of
multiple comparisons.

Gatsonis and collcagues (1995) offer a good nontechnical illustration
of hierarchical modeling in examining variations across states in the use of
coronary angiography for more than 21 8.000 elderly AMI patients. Patients
were nested within state; states were nested within region. Within each state,
the probability that a patient reccived angiography was modeled using logis-
tic regression as a function of patient age, sex, race, and comorbidities. The
rescarchers coded independent variables so that the intercept in that state was
the log odds that a baseline case (a 65-year-old nonblack man with no comor-
bidities) received angiography. These were the stage I (or level 1) models. In
stage 11, they modeled the intercepts from the stage I models as a function
of region and a measure of the availability of angiography in the statc. Stage
II models were developed in the same way for each stage 1 model coefficient.
Thus, for example, the log odds of angiography for black versus nonblack per-
sons in each state were also modeled as a function of region and angiography
availability.

This approach recognized several sources of variation: within the same
region, for a given level of angiography availability, states vary; within state,
for a given set of patient characteristics, patient outcomes vary; and finally,
variation remains after accounting for both patient and state characteristics.
Differences in observed rates across states reflect all three sources of variation.
The approach is similar to the empirical Bayes method, which recognizes two
sources of variation, within units and across units; thus, empirical Bayes rep-
resents a special case of hierarchical modeling and the same types of shrunken
estimates result. For example, the log odds of angiography in a particular
state is a weighted combination of the intercept from the model that only
includes patients from that state (stage I model) and the predicted value from
the stage II model based on the region and availability of angiography in
the state. The cocfficient associated with the effect of race on nngi('lgraph}'
is a weighted combination of the coefficient from the stage I model and the
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p[cdjctcd value from the stage 11 model. As in empirical Bayes estimation, the
degree of shrinkage is a funcoon of the reliability of the within-unit estimate
(here, within state) and the estimate of variation across states.

Interval estimates of parameter values from hierarchical models “quan-
4fy uncertainty,” although they are not CIs.!! Goldstein and Spiegelhalter
(1‘996} Jlustrated this approach by reexamining the New York state CABG
mortality data (see Chapter 1). They found very wide Bayesian intervals, which
pfccludcd definitive conclusions about MOSt SUrgeons. For example, the anal-
ysis supported strong conclusions about whether rankings fell into the top or
bottom half for only two of 17 surgeons. Green and Wintfield (1995, 1230)
had criticized New York’s CABG report because “in one year 46 percent of the
surgeons had moved from one half of the ranked list to the other.” Goldstein
and Spiegelhalter (1996, 404) noted that “such variability in rankings appears
to be an inevitable consequence of attempting to rank individuals with broadly
similar performances.” Furthermore (Goldstein and Spiegelhalter 1996),

An over-interpretation of a set of rankings where there are large un-
certainty intervals . . . can lead both to unfairness and to inefficiency
and unwarranted conclusions about changes in ranks. In particular,
apparent improvements for low ranking institutions may simply be a
reflection of “regression to the mean.”

Hierarchical models deal comprehensively and appropriately with the
problem of multiple comparisons, as both point and interval estimates for
each provider derive from all the data rather than just data for that particular
provider. As Greenland (2000b, 920) notes:

Giving the target parameters random components [as is done in
hierarchical models] treats the problem [of multiple comparisons |
with a global loss function quite different from that in classical adjust-
ment: . . . modeling of the sort described here attempts to minimize
estimation error by using additional background information, while
classical methods only attempt to preserve global a-levels through
purely arithmetic adjustment. It should come as no surprise, then,
that critics of the latter find mixed [that s, hierarchical] modeling
more acceptable.

In reanalyzing CABG mortality data from the Pennsylvania Health Care Cost
Containment Council, Localio and colleagues (1997, 280) used simulations
to demonstrate “the dramatic reduction in the number of false outliers with
the use of hierarchical statistical models. The hierarchical models maintained
adequate statistical power for detecting true departures from expected rates
of mortality.”

Hierarchical models rapidly become complex, requiring computer-
intensive simulations to solve for parameter estimates, although computa-
tionally efficient approaches exist for conducting the simulations (Gelfand and
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Smith 1990). New, casier-to-use software for personal computers is constantly
evolving. The software package BUGS (Bayesian Inference Using Gibbs Sam-
pling) is available free of charge from the United Kingdom’s Medical Research
Council Biostatistics Unit at the University of Cambridge Institute of Pub-
lic Health (see http://www.mrc-bsu.cam.ac.uk/bugs/ for information on
downloading and using the software). BUGS obtains solutions to the models
using Markov Chain Monte Carlo simulation methods. This is a very powerful
approach, although its use requires some statistical sophistication.

One advantage of simulation-based methods is that analysts can esti-
mate more policy-relevant outcomes. Normand, Glickman, and Ryan (1996)
did this in a study profiling hospitals for the HCFA Cooperative Cardiovascular
Project in the carly 1990s. Outcomes included the probability that hospital-
specific mortality for average patients was at least 50 percent greater than me-
dian mortality, and the probability that the difference between risk-adjusted
mortality (calculated for cach hospital using a logistic regression model fit to
the hospital’s patients) and standardized mortality (predicted mortality based
on a model developed from all patients) was large. Simulations enable relatively
straightforward calculations of such statistics.

An Example Using Bayes Estimation

As an example of Bayesian methods, we simulated patient-level cost data and
then used two approaches to estimate underlying parameters: shrunken es-
timates from a hierarchical model and averages calculated directly from the
data. We illustrate two things: (1) Bayes estimates are more likely to “get it
right” than traditional estimates and (2) how Bayes intervals and traditional
Cls compare.

We assumed that the cost data were generated according to a slight en-
richment of the simple hierarchical model described above. Specifically, each
patient’s cost was randomly sampled from a lognormal distribution with pa-
rameters that varied from provider to provider. For each provider, the param-
cters for the lognormal distribution were randomly sampled from a common
normal distribution (truncated to be positive).1?

We estimated parameters for the underlying distributions based on
charge data for patients under age 65 admitted to Massachusetts hospitals
in 1997 in DRGs 89 /90 (simple pneumonia and pleurisy). Average costs pet
patient (more precisely, charges) were about $6,400, with an SD of roughly
$4,000. We assumed hospitals’ true mean costs varied from about 20 percent
below to 20 percent above the average of $6,400.

For 25 hospitals, we generated data under two alternative assumptions
about patient volume: first, assuming that each hospital treated 30 patients,
often the minimum considered acceptable for producing profiles; and second,
assuming that cach hospital treated 100 patients, a relatively large number for
a condition-specific profile. We gencrated five sets of simulated data under :
either scenario. From the simulated data, we estimated each hospital’s meatl :
two ways: (1) as the average of the data for the hospital and (2) using & =
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hjerarchical model with noninformative priors (corresponding to vague prior
knowlcdgc) on unknown parameters (i.c., the mean and SD of the normal
distribution and one of the parameters of the lognormal distribution). We
ranked hospitals from high to low cost based on their mean costs estimated
each of the two ways. We then compared the rankings to rankings based on
their actual mean Costs, which we knew because we knew the distributions
from which the data were simulated. We report two measures: (1) on average,
how far hospitals’ ranks were from their true ranks (calculated as the average
of the absolute value of the difference in ranks) and (2) how often hospitals’
ranks were five or more ranks away from their true ranks (which would put
them in a different quintile).

With sample sizes of 30, ranks based on the mean cost of hospital’s
patients were, On average, 4.8 positions away from true ranks; more than 40
percent of the ranks were five or more positions away from true ranks. Ranks
derived from the hierarchical model were, on average, 2.1 away from the true
ranks; fewer than 8 percent of ranks were five or more ranks away from the
true ranks.

We found similar results with sample sizes of 100, a size usually thought
sufficient to “get things right.” The ranks based on the mean cost of a hos-
pital’s 100 cases were, on average, 3.6 away from the true ranks; more than
35 percent of the ranks were five or more positions away from the true ranks.
Ranks derived from the hierarchical model were, on average, 1.6 away from
true; fewer than 5 percent of the ranks were five or more positions away from
true ranks. Simulation results, however, probably overstate the real value of
Bayesian estimation because we used the correct underlying model to make
the Bayesian estimates. In real life, the hypothesized model is only an approx-
imation of the underlying reality.

Figure 12.7 shows, for sample sizes of 30, the raw averages and shrunken
estimates for the 25 hospitals from one replication of the simulation. (To avoid
cluttering the graph, we connect only some of the pairs of estimates.) The
shrinkage is evident. Estimates for hospitals at the extreme are “pulled” toward
the mean, suggesting by how much raw averages overestimate differences
among hospitals compared to the estimates from hierarchical models. Because
all sample sizes are equal, differences in the amount of shrinkage are caused by
differences in the distribution of hospitals’ cost data, especially the influence
of outliers. Consider the two most expensive hospitals. The most expensive
hospital’s shrunken estimate was below that of the second most expensive
hospital. The explanation is that two very expensive outliers caused the most
expensive hospital’s high average costs. In contrast, the second most expensive
hospital had many cases with relatively high costs but no extreme outliers.
The Bayesian estimates discount outliers and shrink the estimates more when
outliers drive the raw averages.

Figure 12.7 also demonstratcs that hierarchical models do not neces-
sarily shrink all estimates toward the overall mean. In fact, the hierarchical
model pulls the tenth most expensive hospital’s cost away from the mean.
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FIGURE 12.7
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* Calculated from simulated data for 30 patients at 25 hospitals.

Examining the distribution of this hospital’s costs is informative. This hospital
had many inexpensive cases, but one very costly outlier pulled up the average.
After reducing the effect of this outlier, average cost fell, and the shrunken
estimate pulls this “average with outlier effect reduced” toward the mean.

For five hospitals, Figure 12.8 shows the estimated means as well as
CIs and Bayesian probability intervals. Figure 12.8 makes two points. First,
Bayes estimates pull extreme averages toward the overall sample mean, which
is slightly under $6,000; second, Bayesian intervals are frequently wider than
the Cls.

Hierarchical modeling provides an attractive framework for estimation
when profiling providers. Shrunken estimates appropriately adjust for the in-
fluence of outliers and the increased unreliability associated with estimates
from smaller samples. Furthermore, the Bayesian probability intervals bettet
reflect the uncertainty associated with estimates than do traditional CIs. Nev-
ertheless, hierarchical models have generally not been used to profile provider
performance outside of research settings. One criticism is the extent to which
results are based on the underlying probability models, although Greenland
(2000c, 164) noted:

Every inferential statistic (such as a p-value or confidence interval)
is model based, in that some set of constraints (i.c., a model) on the
data-generating process must be assumed in order to derive tests
and estimates of quantities of interest. . . . Multilevel modeling is
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distinguished only by its unfamiliarity, which obliges one 1o make
more effort to explain the model. But multilevel modeling need not
volve stronger assumptions than ordinary modeling, and in fact
provides an opportunity to use weaker assumptions.

A more serious problem is that hierarchical models “require substantial
statistical sophistication to implement properly” (Shahian et al. 2001, 2162).
Hicrarchical models nonetheless offer substantial advantages, and ever-easier
methods for implementing these models will likely continue to appear.

Comparing Outcomes over Time

Chapter 12 thus far has concentrated on cross-sectional comparisons——infor-
mation relating to a single time period. However, powetful profiling tool
involves examining changes over time, so-called “longitudinal” analyses. As
Donald M. Berwick, M.D. (1996, 4), 2 leading health care quality-improve-
ment expert, observed, “Pick a measurement you care about, and begin to
plot it regularly over time. Much good will follow.”

Plotting measures over time highlights change. For simplicity, suppose
that all patients have the same level of risk. Suppose that we examine the
problem rate in twoO hospitals in year 1. Hospital A has a problem rate of 3
percent, with a 95 percent CI from 2 percent to 4 percent, whereas hospital B’s
rate is 5 percent, with a 95 percent CI from 4 percent to 6 percent. From the
classical “hypothesis testing” perspective, we can reject the hypothesis that the
underlying problem rates at the two hospitals (P4 and Pg) were identical in year
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1 in favor of the alternative that hospital B’s rate was higher. This conclusion
does not mean that hospital B’s problem rate will be higher than A’s next
year. Furthermore, even if in year 2 hospital A’s problem rate is statistically
significantly higher than B’s, that does not mean that the assessment of which
facility did better in year 1 was wrong. Hospital B could have improved.

However, provider profiles are useful chiefly to the extent that they
reflect a persistent reality. As noted earlier, Green and Wintfeld (1995, 1230)
criticized New York state’s CABG mortality report. They said:

The usefulness of the risk-adjusted data was also limited in that sur-
geons’ rankings during two years of the study offered few clues about
their position in the subscquent year (R? = 4.9 percent). . . . The
fact that surgeons’ performance ratings fluctuate so much from year
to year means that by the time the data are published, users of the
report can have little confidence that the ratings are still applicable.

Green and Wintfeld thus speculate that real differences in comparative per-
formance are outdated by the time they become publicly available. However,
Goldstein and Spiegelhalter (1996) provide a more fundamental critique, sug-
gesting that such large changes in rank are likely when true differences in
provider performance, even if real and stable over time, are small compared
to random “noise.”

For the NSQIP (see Chapter 8), Khuri and colleagues (1998) illus-
trated a way to portray O/E ratios over time. Such presentations suggest that
providers’ performance varies from year to year. From the numbers alone,
however, we cannot know how much variability results from some providers
improving more than others (i.e., last year’s data are outdated) and how much
from randomness (i.c., noise overwhelms the “signal”). In-depth study is re-
quired to disentangle these different possibilities. Nevertheless, longitudinal
plots can reveal when providers’ ranks change dramatically from one year to
the next. When big yearly changes are common, both public reporting and
decision making should be restrained. In particular, report cards should not list
providers in rank order of their measured performance, as this reinforces the
impression that the figures are reliable. Managers should think twice before
disrupting provider-patient and network-provider relationships over findings
that may be transitory, even if real.

Given the various methodological concerns and resulting questions
about interpretation, profiles should be employed only where they are likely
to be useful. For example, if last year’s findings differ from this year’s because
relative quality can change rapidly among providers, profiling data will be
most valuable for quality improvement and less useful to large purchasers and
individual consumers of health care services aiming to select providers for the
tuture. Even when longitudinal analyses show stability over time, legitimate
concerns remain over whether consistently poor performers are the victims
of inadequate risk adjustment. Future research must identify profiling infor-
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mation that is relatively stable over rime and distinguish 1t from figures that
fluctuate without obvious explanation. With most current profiling initiatives,
random nOIse is a major consideration, asare u ameasured differences in patient
rsk. Small sample sizes for individual providers also raise concerns. These fac-
tors limit the ‘nferences that can be drawn from practice profiles. Longitudinal
plots often provide a sobering reality check to the evaluation process.

Despite methodological concerns, profiles arc increasingly generated
and used as important tools in ensuring health care “yalue”—a melding of
cost and quality. Comparing patient outcomes across providers can be valu-
able, but much depends on how the profiles are used. Given the state of the
art, however, relying on such profiles alone to make all-or-nothing business
decisions (¢.8-, withdrawing business from outlier providers) 1 inappropriate.
In this context, profiles are likely to generate (often well-founded) criticism
and heighten adversarial relationships among providers, payers, and policy-
makers. Similarly, if such profiles are disseminated to a public unawarc of the
need for cautious interpretation, further controversy may erupt, impeding op-
portunities for useful dialog and improvements. If providers are given profiles
without education about how to use them productively to identify areas for
improvement, the information will likely be ign yred.

Profiles comparing patient outcomes are most valuable in an environ-
ment of cooperation and collaboration, with incentives for learning and im-
provement. With increasing competitive pressures, however, this ideal envi-
ronment may be more pipe dream than tangible reality.

Notes

1. The coefficient of variation, or CV, defined for a ponnegative variable as
s/L, is a useful summary measure. Hospital costs for a specified type of
hospitalization often have a CV of around 1. In looking at total costs
next year for a heterogencous population (with many z€ros and a few
extreme outliers), the CV may be 4 or larger.

2. Recognizing that averages based on moderate sample sizes arc only
approximately normal, it makes sense tO avoid the “appearance of
precision” implied by using intervals with half-widths equal to 1.96 *
SE. Thus, we use 2 * SE.

3. s is calculated as the weighted average of the SDs at cach hospital, as
described above. If the data wer¢ distributed normally, Y 4 would be
in this interval about 95 percent of the time. With highly skewed cost
data and modest sample sizes, the probability is lower. As a result, under
the hypothesis of no differences among providers, having more than
5 percent of “pormative” providers fall outside these bounds 1s not
surprising.

4. The calculations of Table 12.3 are only approximate. Especially when
P is near zero, a reasonable 95 percent CI would not be centered
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at P. For example, after observing 5 deaths in 500 patients (1
percent), the modified Wald method that Agresti and Coull (1998)
recommend yields the 95 percent CI 0.4 percent to 2.4 percent.
Note, however, that the half-width of this interval is 1 percent, as
suggested by the calculations in the table. For a clear discussion of these
issues, see “ ‘Exact” Confidence Intervals Are Not Exactly Correct” at
http:/ /www.graphpad.com /articles /ClofProportion.htm.

5. A better CI—of approximately the same width—would be 5.4 percent
to 17.6 percent.

6. Odds—the ratio of the probability of an event to the probability that it
will not happen—are much used in the world of betting. For example, an
event has 3-to-1 odds (i.c., odds = 3) when it has a P = 0.75 likelihood
of happening and P = 0.25 chance of not occurring.

7. This expected rate is identical to that from a model that predicts
probability of death from the whole population using the single predictor
of high versus low risk.

8. Greenland (2000c) gives an excellent nontechnical description of the
principles of multilevel modeling. McNeil, Pedersen, and Gatsonis
(1992) also provide a nontechnical description of hierarchical models
in the context of provider profiling. Shahian and colleagues (2001)
discuss problems with traditional approaches and the advantages of
hierarchical models as part of a review of cardiac surgery report cards.
Normand, Glickman, and Gatsonis (1997) provide a technical discussion
of statistical methods for profiling providers.

9. For ease of exposition, we ignore here the interesting observation that
“you can load a die, but you can’t bias a coin” (Gelman and Nolan 2002,
308).

10. Traditional thinking held that statistical estimators should be unbiased
(i.e., the difference between the expectation of the estimator and
the parameter being estimated equals zero). However, overall error,
measured by the mean square error (MSE) has two components: bias in
the estimated parameter and the spread of individual data points around
the estimated parameter. Stein estimators minimize MSE but are biased.
For profiling, it is probably fine to accept a small amount of bias if that
leads to a smaller MSE.

11. A 95 percent ClI is an interval that has a 95 percent chance of covering
the parameter of interest; if data were resampled from the population
100 times and 95 percent Cls constructed, about 95 of these 100
intervals would include the underlying parameter. Note that in this
interpretation, the intervals have a chance of covering a fixed parameter.
Ninety-five percent CIs are often interpreted incorrectly as being the
interval in which there is a 95 percent chance the parameter value falls.
In this incorrect interpretation, the parameter is viewed as having a
chance of falling into a fixed interval. The distinction is between the
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chance the interval covers the parameter (which is what a CI is) and
the chance that the parameter falls in the interval (the way in which

1 Cl is incorrectly interpreted). A non-Bayesian framework assumes
that the parameter value is fixed. Hence, considering the chance that
the parameter value falls in an interval makes little sense. A Bayesian
framework creates a probability distribution for parameters; therefore,
considering the chance the parameter lies in some interval makes sense.
This is the interval determined in a Bayesian analysis.

A lognormal distribution with parameters u; and o2 has mean exp(u; +
02/2) and variance exp(2p; + 202) — exp(2p; + o?). Here, we supposed
o2 was fixed and that for each provider the parameter u; was generated
according to a common normal distribution. Then, we generated
patients’ costs according to a lognormal distribution with parameters (;

and o2 and took the true mean for a provider to be exp(u; + o2/2).



