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We consider a bandit problem with in finitely many Bernoulli arms whose
unknown parameters are i.i.d. We present two policies that maximize the al-
most sure average reward over an infinite horizon. Neither policy ever returns
to a previously observed arm after switching to a new one or retains inf; orma-
tion from discarded arms, and runs of failures indicate the selection of a new
arm. The first policy is nonstationary and requires no information about the
distribution of the Bernoulli parameter. The second is stationary and requires
only partial information; its optimality is established via renewal theory. We
also develop e-optimal stationary policies that require no information about the
distribution of the unknown parameter and discuss universally optimal station-
ary policies.

1. INTRODUCTION

Consider the following bandit problem: There are infinitely many Bernoulli
arms having unknown parameters that are i.i.d. (on [0,1]). The objective is to
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select arms so that we maximize the proportion of successes Over an infinite
horizon. In particular, we are interested in policies without recall, that is, where
each switch is to a previously unobserved arm and, furthermore, policies that
require no information from the observations of discarded arms.

We establish the optimality of two such policies. In both policies, runs of
successive failures indicate switching to a new arm. In the first policy, one pulls
the ith arm until i failures in a row are observed; this policy is optimal regard-
less of the common distribution of the Bernoulli parameters. In the second, one
pulls an arm until N failures in a row are observed, where N is a (possibly
degenerate) random variable generated for each arm. Properties of the distri-
bution of the Bernoulli parameter determine the distribution of N.

This problem is a special case of one considered by Mallows and Robbins
[2]. In their work, rewards may come from general, unknown, nonidentical dis-
tributions (as opposed to Bernoulli rewards). With the assumption of uniformly
bounded rth moments of the rewards for some r > 1, the authors presented a
policy that obtains almost surely the supremal average reward; this policy
requires no other information about the unknown distributions. Yakowitz and
Lowe [4] considered the problem of general, positive-mean losses on an infinite-
armed bandit. Under the assumption of a certain uniform probability bound,
these authors derived a policy that guarantees zero as the expected long-run pro-
portion of selections of suboptimal arms. Berry, Chen, Heath, Shepp, and
Zame [1] consider the special case of our problem where the Bernoulli param-
eters are independent and uniformly distributed on the unit interval. Among
other results, they show the optimality of switching to a previously unobserved
arm immediately following the observation of a single failure.

The policies of Mallows and Robbins return to previously observed arms
infinitely often; that of Yakowitz and Lowe pulls each arm infinitely often. In
contradistinction, as the policy of Berry et al., each of the policies in the present
paper never return to an arm once we have switched to a new one. Our restric-
tion has the advantage that we need not retain any information about earlier
arms. Furthermore, in the setting of i.i.d. Bernoulli parameters considered here,
such a restriction has a certain appeal: In any realization of the problem, we
have previously decided that we prefer a new unknown arm to each discarded
arm already observed; because the horizon remains infinite and an infinite num-
ber of unknown arms remain, we have no reason to change our evaluation.
Moreover, for each arm we discard, we will always eventually find an arm at
least as good. However, the cost of the restriction of no recall lies in the rate
of convergence to optimum (see, €.8., Berry et al. [1]).

We present the two optimal policies in Sections 2 and 4. In Section 3, we
develop a sequence of stationary policies whose returns converge monotonically
to optimum, and we discuss a necessary condition for stationary policies that
are optimal for all distributions.

Throughout this article, 6 represents generically the unknown Bernoulli
parameter for any given arm (although the parameter for each arm is distinct
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and independent of the others); v = 1 — @, and ¢ denotes the essential supremum
of 6, that is, ¢ = inf{¢: P{0 < ¢} = 1}. Thus, a policy is optimal if and only if
~ the long-run average reward is almost surely c. (The strong law of large num-
bers implies that the average reward cannot exceed ¢.) We assume throughout
that c is strictly positive.

2. A NONSTATIONARY POLICY

THEOREM 1: The policy where we pull the ith arm until we observe i JSailures in
a row is optimal (regardless of the distribution of 9).

ProoF oF THEOREM 1: Fix @ and r such that 1 — ¢ < ra < a < 1. Define an arm
as good if v < ra, bad if v = a, or neutral if ra < v < a. Label a trial as good,
bad, or neutral in accordance with the arm pulled. We shall first show that the
proportion of bad pulls is almost surely 0.

Say a cycle begins with each first selection of a good arm, and let G,, and
B,, be the respective numbers of good and bad trials in the mth cycle (m=1).

LemMA: Under the policy of Theorem 1, for any positive e,
P{B,, = €G,, for infinitely many m} = 0.

PROOF OF THE LEMMA: The initial arm in a cycle is the only good arm pulled in
that cycle. It is pulled until we have observed a certain number of consecutive
failures thereon; call this number T,,. Heading for application of the first
Borel-Cantelli lemma, we bound probabilities by conditioning:

P(Bm 2 aGmlrm’ Tm+l) = E[P(Gm = Bm/alea Tms Tm+l) 'Tmo Tm-!-l]
B,,/€
= E[ E P(Gm = iITm) ITms Tm+l]
i=1

= E[(m)TMBm/EITm- Tm+i]

l T,
E ——— (m)'=a~'mnZ_,
g(l —a) a3 ”
where Z,, = T,,,, — T,,. The last inequality arises from the fact that, given T
and 7,,,,, B, is the sum of Z,, — 1 random variables, each with conditional
mean no greater than Z::;' a "< a " Tmi/(1 — a).
Because T;, = m, it follows that

1 i z
i m n " -
P(B,,,>SG IZ )Ss—-—-———(l )r Zpa=cm

Note that, because Z,, is the number of arms in the mth cycle, the random
variables Z,,Z,,. .. arei.i.d. with common geometric( P{v < ra}) distribution.
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Now note that for any positive 8 < |

>, P{B, =Gyl = Y, [P{B, = &Gy, Zn > fm]

m=1 m=1

+ P(B,, = £G,, Zy, < Bm)]

< Y, P{Z,>Bm] + E' P(B,, = G| Z,, < Bm)

m=1

oo 1 an
Bm m —Bm
:S”E(P{v>ml) +——-——-8(l_a) mz=:lr Bma 5",

If we choose 8 such that ra~® < 1, then

P|B, = €G,} < o,
|

whence the lemma follows from the first Borel-Cantelli lemma. ]

Returning to the proof of Theorem 1, let R, be the cumulative number of
successes on good or neutral arms by the nth pull, and let M, be the number
of trials on such arms by the nth pull. Then, the total average number of suc-
cesses is at least as large as

liminf-&'# = lim inf £-"-’~-liminf M. =1—-a.
n—+co n n-sco n n—so n

The latter inequality holds because the strong law of large numbers implies, via

a coupling argument, that lim inf, . (R,/M,) =1—a and because the lemma

implies that the second limit is one. The optimality of the policy follows because

a is arbitrary. 3]

3. STATIONARY POLICIES FOR AN UNKNOWN DISTRIBUTION

The policy in the preceding section is optimal for any distribution on the
unknown parameter, but it is nonstationary. That is, the switching rule changes
for each arm. The next theorem yields a sequence of stationary policies that con-
verge to optimal in a monotonic fashion.

THEOREM 2: Let w, be the almost sure average reward from the policy that
stays with each arm until k successive failures have been observed and switches
to a previously unobserved arm thereafter. Then, w, increases to c as k grows
arbitrarily large.

Proor: We first show that w, is nondecreasing in k. For each k, define a
renewal reward process by positing a unit reward for each success and saying
a renewal occurs when we switch to a new arm. In this process, the expected
cycle length is E XX, v~ (see, e.g., Ross [3, pp. 231-232]). We may condition
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on 8 and apply Wald’s equation to obtain the expected reward in a cycle as
E[0Z),v~'] = E[v™*] — 1. Thus, by the renewal reward theorem,

: k
we = (Elv*] -1N/EJ v,
i=1
from Theorem 3, later, we may assume without loss of generality that the
numerator and denominator are finite. Thus,

k=1 k-1
Wi < Wiy @ 35 E[o™*]E[v=#] < 3 E[o~*+DE[p~1]
i=0

i=0
=E[v~"D]2 < E[y~ ] E[v-t+D] for all i;

the last relation is the Cauchy-Schwarz inequality. We have thus established
monotonicity,

To show convergence, fix positive  and b such that @ < b < c. Now define
a renewal reward process where we receive a unit reward for each trial on an
arm with @ < a; switches remain renewals. The average reward in this case is

E[f:‘ vl < a]P[G:s a)

i=1

k

EX v

i=1

k
3 (1 —a)~P{6 < a}
i=1

- k k
E[)_‘j v=10 < b]Pw <b)+ 3 (1-b)~P(8> b]
=1 ! ;

i=1

b (1—a)y*-1
SE(T":F:T/P‘””"

which approaches 0 as & grows arbitrarily large.

Let r, be the proportion of trials on arms with 8 > a. As at the end of the
proof of Theorem 1, w; = ria. Therefore, lim,_.., w; = a lim, ., rx = a by the
preceding paragraph. Because a was arbitrary, w, converges to c. 5]

The existence of a stationary optimal policy remains an open question. We
note, however, the following necessary condition for any such policy: The con-
ditional expected number of trials on an arm given @ must be infinite for any
positive 8. For the policy must be optimal in particular for two-point distribu-
tions, supported by a and c, say, where 0 < @ < ¢ < 1. As before, the fraction
of trials on arms with @ = g for such a policy is

E[number of trials|0 = a] P{6 = a)
E[number of trials |6 = a] P{6 = a) + E[number of trials |0 = c] P{8 = ¢}’
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where we refer to the number of trials on a single arm. For this expression to
be zero when P{@ = a} > 0, the conditionally expected number of trials must
be infinite given 8 = c. Thus, infinite conditional expectation is the cost of simul-
taneous generality and stationarity.

4. OPTIMAL POLICIES FOR A KNOWN DISTRIBUTION

When the distribution of the Bernoulli parameter is known, we may exploit this
information to construct a stationary optimal policy. Let ¢ = (1 — (8/4))"".

THEOREM 3: Let { be the probability generating function of a distribution on the
positive integers such that {(x) is finite for all real x and E{(£) is infinite. The
Jollowing policy is optimal: For each arm, independently generate a random
variable M with generating function {; then generate N with Pascal(M, c) dis-
tribution. Pull the arm until we observe N failures in a row; then switch to a
previously unobserved arm.

Proor: Let a be any positive number strictly less than c. As before, we shall
show that the fraction of trials on arms with a parameter no greater than a is

zero.

Define a renewal reward process by positing a unit reward for each pull of
such an arm; say a renewal occurs each time we start pulling a new arm. As in
the proof of Theorem 2,

N
E[cycle length|0,N] = v = vV,
i=l '

whence
E[cycle length] = EE[v~"|0,M]
c/v
= Ei'(m) = E{ (%) = oo.
Also,
E[reward in cycle] = E[number of pulls|0 < a] P(0 < a)
N
<EY (1-a)”’
i=1
—_ gy} —_ )N —
=E[“ a) '[(1 _ﬂ) 11]
(1-a) ' -1
_ $(c/(c—a) — 1 & &
a

By the renewal reward theorem, the average reward per unit time is almost
surely zero. [
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Note that if E£* is infinite for some integer kK we may set M = k degener-
ately. If Ee*t is infinite for some s, we may-let M — 1 have the Poisson distri-
bution with parameter s. More generally, we have the following.

ProrosiTioN: The generating function of each of the following distributions
satisfies the hypothesis of Theorem 3:

(@) P{M > m) = min(a/E:™,1) for any fixed positive a, and
(b) P{M =m) < a™/Et™ ! for any fixed a = 1.

Proor: If some moment of { is infinite, the statement is easy to verify; thus,
assume all moments are finite. With distribution (a) and x > 1,

!(X)=ImPix”>uidu
0

1 oo
= Iogx(f x¥dv + f P{M > v}x® dv).
L 1

The first integral is finite, and the second integral does not exceed aex 25 (x™/
Et™). The ratio test confirms the convergence of the series: by Jensen’s
inequality,
EE m+1
EE™
and the right-hand side grows arbitrarily large because £ is essentially unbounded.
Thus, { is finite everywhere. Also,

> (Esm)lfm,

E¢(%) z'EmelM> V)E® Lgne) dv
1

= ), PIM > mE[£™ ] ;2.] = oo.
m=1
Similar techniques verify that distribution (b) satisfies the desired conditions.’
=

Regarding this optimal policy, note that if ¢ = 1, then N = M and there is
no need to generate a second random variable. Thus, if ¢ = 1 and Et* is infi-
nite for some k, we have a deterministic optimal policy, viz., to pull each arm
until we observe k failures in a row. In particular, the policy of Berry et al. (see
our introduction) is a special case of the one in Theorem 3. When the Bernoulli
parameter is nondegenerate and bounded away from one (i.e., ¢ < 1), no fixed,
nonrandom number of failures will work. The renewal-theoretic approach
reveals this fact: with ¢ < 1 and N degenerate, the expected cycle time (number
of pulls of an arm) is finite and the expected number of successes in a cycle is
strictly less than c times this expected cycle time.
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We can generalize the policy of Theorem 3 to bandits with general rewards.
With positive probability, discussion of this topic will appear in a future article.

Note

1. We thank A. de Acosta for pointing out that the tail 1/E£™ is a solution to this distribu-
tional problem.
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