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Approximate models for aggregate data
when individual-level data sets are very large
or unavailable
Erol A. Peköz,a∗† Michael Shwartz,a,b Cindy L. Christiansenc and
Dan Berlowitzd

In this article, we study a Bayesian hierarchical model for profiling health-care facilities using approximately sufficient statistics
for aggregate facility-level data when the patient-level data sets are very large or unavailable. Starting with a desired patient-level
model, we give several approximate models and the corresponding summary statistics necessary to implement the approximations.
The key idea is to use sufficient statistics from an approximate model fitted by matching up derivatives of the models’ log-
likelihood functions. This derivative matching approach leads to an approximation that performs better than the commonly
used approximation given in the literature. The performance of several approximation approaches is compared using data on
5 quality indicators from 32 Veterans Administration nursing homes. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

The field of approximate Bayesian computation (ABC) has developed in reaction to the computational demands of the
growing size of data sets used in biology [1]. It is often necessary to summarize a huge amount of data by a few
well-chosen summary statistics in situations where there are no exact sufficient statistics available. The recent article
by Joyce and Marjoram [2] develops a framework for assessing whether an approximately sufficient statistics is useful;
Le Cam [3] also addresses the concept of approximate sufficiency.

In this article, we look at a common statistical model often used to profile health-care facilities and develop customized
approximately sufficient statistics. The setting of the problem is that there is a large amount of patient-level data located
at many different facilities. A research group has developed risk-adjustment models to compute from the individual-level
patient data a predicted probability that each patient experiences each of the different adverse events of interest and
has developed a software that allows individual providers to calculate expected rates of adverse events; providers can
compare these expected rates to observed rates as a way of monitoring their performance over time. In addition, a
policy group would like to profile facilities. However, due to the volume of data and possible concerns about patient
confidentiality, it is not feasible to transmit patient-level data to the policy group.

A realistic context for this problem arises out of software developed by the Agency for Healthcare Research and Quality
(AHRQ) that hospitals can download in order to calculate risk-adjusted rates of patient safety indicators and of inpatient
quality indicators from their own administrative data. As other measures of quality become acceptable (e.g. hospital
re-admission rates), AHRQ is likely to continue to develop the software for calculation of relevant risk-adjusted rates.
This software makes it easy for hospitals to use the quality indicators as part of their quality improvement programs.
A useful service that AHRQ, other federal or state agencies, or private organizations could provide is to profile hospitals
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based on the data generated from the software. Such an organization would encourage hospitals to submit results from
use of the risk-adjustment software (much as AHRQ encourages hospitals to submit the results from use of its Hospital
Survey on Patient Safety Culture, from which it then prepares comparative reports). To encourage flexibility in profiling,
it would be most desirable for each hospital to submit, for each eligible patient for each adverse event of interest, the
predicted probability of the outcome and whether or not the adverse event occurred. However, this would involve the
transfer of large volumes of information. In addition, because patient-level information is being transferred, a variety of
IRB considerations are likely to arise.

The goal of the research we present here is to identify useful summary statistics on quality indicators at each facility
that can be conveniently transmitted to the profiling organization so that estimation approaches involving ‘shrinkage’
across facilities can be done. It is natural to consider sufficient statistics for this purpose, but there are none in our setting.
We evaluate several alternate approaches to deal with the lack of sufficient statistics and identify one that performs well
and does not introduce any computational complexity.

The organization of this article is as follows: In Section 2, we describe the statistical model and discuss the fact that
sufficient statistics are not available. In Section 3, we describe the data to which we will apply our approach. In Section 4,
we discuss two approaches for fitting approximate models for the data. In Section 5, we discuss the approximate models,
in Section 6 we illustrate our approach using the data, in Section 7 we give a summary of the results, and Section 8 is
an appendix containing the proofs.

2. The model

Let Xij be a binary data variable that equals 1 if a particular adverse event happens to patient i,1�i�N j , in health-care
facility j , 1� j�M , and it equals zero otherwise. We are interested in the following hierarchical model, which we
subsequently refer to as the ‘exact’ model, where Xij are the data values, pij are known constants, f is a given (known)
link function and � j , �, � are unknown parameters that we would like to estimate:

Xij|� j , pij ∼Bernoulli( f (� j , pij)) and � j |�,�∼Normal(�,�2). (1)

In this model, pij is a risk-adjusted probability that has been previously calculated by taking into account various patient-
specific characteristics, and it represents the chance patient i at facility j would have an adverse event if they were at
an average facility. The parameter � j is a facility-specific factor, representing the quality at facility j , that increases
or decreases the probability of an adverse event for the facility’s patients. Note that this is a random effect model and
therefore there should be shrinkage across facilities when estimating the model parameters. Our goal is to estimate the
parameters � j for a function f such as

f (�, p)= logit−1(�+ logit(p))= (1+(1− p)e−�/p)−1,

which we refer to as the logit link function, or

f (�, p)=min(1, pe�),

which we refer to as the log link function. These functions are both sensible to use, as they both equal p when �=0
and they are increasing in �. This means �=0 corresponds approximately to an average facility and higher values of �
represent worse facilities. Typically, the function f will be increasing in � and will have f (0, p)= p.

The standard Bayesian hierarchical modeling approach is to put prior distributions on the unspecified parameters
and estimate the means of all the parameters conditional on the data. The difficulty in this situation is that the values
of Xij and pij are both confidential and are too numerous to conveniently transmit from each of the facilities to the
main organization that performs the profiling. We need a method for summarizing these sets of numbers so that each
facility only needs to report a small number of summary statistics. The usual approach is to use sufficient statistics,
but, as we discuss in Section 4 below, there are no sufficient statistics we can use because the pij parameters are
different across the N j patients—if they were identical, we could use the total number of adverse events as a sufficient
statistic which, conditional on the parameters, would have a binomial distribution. When they are not identical, the
sum has what is called a Poisson-binomial distribution: the sum of independent Bernoulli trials with different success
probabilities.

To implement the model in (1), it may seem as though each facility could simply transmit the maximum likelihood
estimate of � j , but once these are gathered together there would be no obvious way to accurately allow for ‘shrinkage’
of the estimators across facilities. In fact, we test the approach of having each facility transmit the posterior mean and
standard deviation of � j using separate (fixed-effect) models and then ‘shrinking’ them at the central organization using
the assumption that they have a normal distribution. This approach does not work well on the data to which we applied it;
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we call this the ‘two-stage normal’ approximation and illustrate it in Table III below. What is really necessary is for
each facility to transmit enough information so that the central organization can, as best as possible, re-create the entire
likelihood function for the data from each facility as a function of �.

As there are no sufficient statistics available, the key idea we propose in this article is to use sufficient statistics
from an approximate model fitted by matching moments or derivatives of the models’ log-likelihood functions. In our
recommended approach, described in Proposition 2 below, we use a binomial distribution to approximate the sum of
non-identically distributed Bernoulli random variables where the two parameters of this distribution (the number of trials
and the probability of success) are fitted using the first two moments of the probabilities from each facility. As a result,
each health-care facility will simply need to report the total number of adverse events, as well as the first two moments
of the predicted probabilities. For a different approach to approximating a similar model, see [4].

3. About the data

The data for this study were originally collected in 1998 from 35 Department of Veterans Affairs (VA) nursing homes
that were selected to represent a balanced sample of different sizes, locations, and quality of care [5]. Complete data were
available from 32 of the 35 nursing homes on five binary quality indicators (QIs) that reflect changes in patients’ status
over time. These 32 facilities are the ones included in our study. All the QIs have been used previously as measures of
nursing home quality: pressure ulcer development [6--9]; functional decline [7--9]; behavioral decline [7, 10]; mortality
[7, 11]; and preventable hospitalizations [12].

Data used in calculating QIs were from semi-annual patient assessments performed for case-mix-based reimbursements.
Pressure ulcer development was recorded if a patient who was ulcer free at one assessment had a stage 2 or deeper
pressure ulcer at the subsequent assessment. Functional decline was measured by a change between assessments in a
score measuring limitations in eating, toileting, and transferring. Behavioral decline was measured by a change in a score
measuring extent of verbal disruption, physical aggression, and socially inappropriate behavior. Mortality was recorded
if there is a death within 6 months of an assessment regardless of location. Preventative hospitalizations occurred if the
patient was admitted to an acute medical unit within 6 months of an assessment for one of 13 conditions identified as a
potentially preventable hospitalization [13]. Risk-adjustment models have been developed for these QIs: pressure ulcer
development [6], functional decline [14], behavioral decline and mortality [15], and preventable hospitalizations [16].

For each patient, the risk-adjustment models give a predicted probability of the adverse event in a six-month period
based on the risk factors at the time of initial assessment. Thus, for each patient, we know whether each adverse event
occurred (indicated by a 0 or 1) and the predicted probability of the adverse event from the relevant risk-adjustment
model. Table I shows percentiles of the distribution of the predicted probabilities for each of the QIs. For 4 of the 5
QIs, individual predictions range from close to 0 to around 0.50 to 0.60; for mortality, there is a longer right tail, with
predictions ranging almost to 1.

Table II shows percentiles of the distribution of the number of eligible cases (the total number of people who could
potentially have the given adverse event) at each facility for the pressure ulcer and mortality QIs. The number of eligible
cases ranges from 32 to over 400 for pressure ulcers (and for functional decline and behavioral decline, not shown in
the table); and from slightly over 80 to almost 1200 for mortality (and preventable hospitalizations, also not shown).
The second part of Table II shows percentiles of the distribution of the ratio of the observed number of adverse events
at each facility to the predicted number for each of the QIs. The distribution is quite wide for 3 of the QIs, ranging from
zero to over 2; it is tightest for mortality, ranging from 0.65 to 1.29.

Table I. Percentiles of the distribution of predicted probabilities by type of adverse event (pu—pressure
ulcer development; fd—functional decline; bd—behavioral decline; mort—mortality; ph—preventable
hospitalization).

Percentile pu fd bd mort ph

Maximum 0.469 0.512 0.545 0.978 0.573
95th 0.107 0.348 0.320 0.759 0.197
90th 0.084 0.307 0.275 0.451 0.158
75th 0.055 0.250 0.206 0.221 0.109
50th 0.038 0.170 0.158 0.127 0.064
25th 0.021 0.081 0.127 0.074 0.027
10th 0.013 0.037 0.101 0.046 0.017
Minimum 0.011 0.011 0.062 0.006 0.004
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Table II. Percentiles of the distribution of the number of eligible cases and of the ratio of observed
to predicted number of adverse events in each of the 32 facilities (pu—pressure ulcer development;
fd—functional decline; bd—behavioral decline; mort - mortality; ph—preventable hospitalization. The
numbers of eligible cases for fd and bd are approximately the same as for pu; the number of eligible
cases for ph is approximately the same as for mort).

Number of eligible cases Observed/predicted

Percentile pu mort pu fd bd mort ph

Minimum 32 83 0.00 0.15 0.00 0.65 0.23
25th 85 228 0.44 0.60 0.39 0.90 0.62
50th 159 324 0.90 0.96 0.81 0.99 0.96
75th 236 521 1.41 1.10 1.16 1.08 1.23
Maximum 408 1193 2.07 2.26 2.78 1.29 1.59

4. Two approaches for finding an approximate model

The log-likelihood function for the data at facility j under the model in (1) is

LL j (�)=∑

i
Xij log f (�, pij)+(1− Xij) log(1− f (�, pij)). (2)

In general, there are no sufficient statistics for the individual-level data Xij under this model. For example, with M =1
facility having N1 =2 patients with probabilities p1 = 1

3 , p2 = 1
4 (omitting the subscript j) and f (�, p)=�p, we simplify

(2) to get

LL(�)= X1 log
�

3−�
+ X2 log

�

4−�
+ log

�

3−�
+ log

�

4−�
.

Since this log-likelihood is of the form aX1 +bX2 +a+b, it can be seen that this cannot be expressed in terms of two
quantities where one depends on a, b but not X1, X2 and the other depends on X1, X2 but not a, b.

In the absence of a sufficient statistic, we therefore propose several alternative approximate models for the data for
which the sum of the data values

X j =
∑

i
Xij

is a sufficient statistic for a facility. Notice, we omit the subscript i to indicate that the binary variables have been
summed over i for a given facility.

We say that an approximate model for the data is a k moment approximation if, when �=0, the first k moments
of X j conditional on all other parameters under the exact model coincide with the corresponding conditional moments
under the approximate model. We also say that an approximate model for the data is a k derivative approximation for
the exact model if the first k derivatives of its log-likelihood function with respect to � evaluated at �=0 match the first
k derivatives for the exact model LL j (�).

These definitions can be formalized by saying that an approximate model for the data X j given � j along with some
set of parameters S is a k moment approximation if, with the above definitions

E[(X j )
m |� j =0, p1 j , p2 j , . . .]= Ea[(X j )

m |� j =0, S]

for m =1,2, . . . ,k. We use the superscript a to denote expectations with respect to the approximate model. An approximate
model with log-likelihood function LLa

j (�) for the data X j is a k derivative approximation with respect to � if

�m

��m LLa
j (�)|�=0 = �m

��m LL j (�)|�=0 for m =1,2, . . . ,k. (3)

We say that an approximate model with multiple parameters is a k derivative approximation with respect to a given set
of parameters if (3) holds with respect to each parameter separately.

Both these approaches seem sensible. The moment approximation is simpler in the sense that it does not depend on
the link function f , whereas the derivative approximation does depend on f . As we show empirically later, when they
are different, the derivative approximation performs better. For some choices of f the two approximations will coincide,
whereas for others they will be different.

The intuition for why the derivative approximation performs better is the following: To estimate the distribution of X j
conditional on the parameters, it seems best to match moments to directly approximate the distribution. To approximate
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the posterior distribution of � conditional on the data requires the likelihood function and so it seems natural that the best
performance is obtained when the likelihood function is directly approximated using an approach such as the derivative
approach.

In order to find a good approximation for this model, it is important for practical reasons that it be easy to implement
in standard Bayesian software packages like WINBUGS. Thus, it would be best to use only common distributions such
as the binomial, Poisson or normal. In the article by Peköz et al. [17], several different approximations to the distribution
of the sum of independent Bernoulli random variables are considered and evaluated. A Poisson approximation performs
well if the Bernoulli probabilities are all very small. The normal approximation performs well if the probabilities are
mostly near 1

2 . The binomial distribution performs well if the probabilities are either very small or very large overall—or
very similar to each other. In practical applications, the probabilities will be quite diverse: some facilities will have
very low numbers while others have probabilities spread more evenly between zero and one. It is therefore important
to have an approximation that can flexibly adapt across all the situations. With a standard binomial approximation, it
makes sense to pick the probability parameter to match the mean of the distribution to be approximated. One way of
improving the binomial approximation is to let both the probability and the number of trials be two free parameters that
can be fitted. This means in principle it may be possible to match the first two moments. Another idea for improving
the Poisson approximation is to consider a translated Poisson approximation where a constant is added to a Poisson
random variable. The constant and the Poisson rate are then two free parameters that can be adjusted to approximately
match the first two moments.

A good combination of these ideas is to try a translated binomial approximation, where a constant is added to a binomial
random variable. This then allows three parameters to be adjusted and, in most cases, three moments or three derivatives
could be matched. The article by Peköz et al. [17] evaluates all the approximations discussed here (and derives error
bounds) over a range of different settings and finds that a translated binomial approximation performs the best. As we
show later, our analysis demonstrates that a binomial approximation with two fitted parameters performs much better
than the usual binomial approximation with one fitted parameter, and the three parameter binomial approximation does
not perform much better than the two parameter binomial approximation—though it requires additional computations
and data to be transmitted and stored. We will therefore recommend the two-parameter binomial approximation, though
we will illustrate all three approximations below. Once an approximation is fit to the data, the unknown parameters
can be computed using either a Bayesian approach in WINBUGS, maximum likelihood estimation or other transform
methods [18].

5. The approximate models

The first approximation we propose is one that is commonly used and is both a one-moment approximation and one-
derivative approximation. It assumes that X j , conditional on the parameters, has a binomial distribution, where the
number of trials is the number of eligible cases and the binomial probability is chosen to be the average Bernoulli
probability at that facility. To implement this approximation, each facility must simply transmit the total number of
adverse events X j along with the total number of eligible cases N j and the average probability p j =

∑
i pij/N j at that

facility. This first approximation is summarized next.

Proposition 1
The one moment, one-derivative approximation. With the above definitions and the model in (1) with

f (�, p)= logit−1(�+ logit(p)),

and p j =
∑

i pij/N j , the model

X j |� j , p j ∼Binomial(N j , f (� j , p j ))

is both a one-moment approximation and a one-derivative approximation with respect to � j , j =1, . . . , M for the exact
model (1).

Proof
See Appendix.

The second approximation we propose is both a two-moment approximation and a two-derivative approximation for the
exact model. It assumes that X j , conditional on the parameters has a binomial distribution, where the number of trials
and the probability of success are both chosen to match the first two moments. This means that the number of trials in
the binomial distribution n j will not necessarily equal the number of eligible cases N j in the facility. To implement this
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approximation, each facility must simply transmit the total number of adverse events X j along with the first two moments
of the probabilities

∑
i p2

ij and
∑

i pij. We will recommend this approximation based on the numerical illustrations below.

Proposition 2
The two-moment, two-derivative approximation. With the above definitions and the model in (1) with

f (�, p)= logit−1(�+ logit(p)),

and p j =
∑

i p2
ij/

∑
i pij, n j =

∑
i pij/p j , the model

X j |� j ,n j , p j ∼Binomial(n j , f (� j , p j ))

is both a two-moment approximation and a two-derivative approximation with respect to � j , j =1, . . . , M for the exact
model (1).

Proof
See Appendix.

Remark 1
With the above definition, n j may not necessarily be an integer, though the number of trials in a binomial distribution
must be an integer. In principle, we could round off the number of trials to the nearest integer. In practice, we are
using the likelihood as a function of � and so the use of non-integer values in some sense represents an interpolation of
the likelihood functions at the two adjacent integer numbers of trials. Standard software packages such as WINBUGS
allow non-integer values for the number of trials in a binomial distribution and so a non-integer n j is not a limitation
of the approach. So that the propositions make sense, we can assume that n j happens to be an integer—though the
approximations can be improved using non-integer values.

Our third approximation is both a three-moment approximation and a three-derivative approximation. It assumes that
X j , conditional on the parameters, has a translated binomial distribution. A translated binomial distribution is simply
a binomial distribution plus a constant. The three parameters, which consist of the number of trials, the probability of
success and the amount translated, are chosen to match the first three moments. To implement this approximation, each
facility must transmit the total number of adverse events X j as well as the first three moments of the probabilities pij.

Proposition 3
The three-moment, three-derivative approximation. With the above definitions and the model in (1) with

f (�, p)= logit−1(�+ logit(p)),

and �kj =
∑

i (pij)k along with

p j = �2 j −�3 j

�1 j −�2 j
,

n j = �1 j −�2 j

p j (1− p j )
,

s j = �1 j −n j p j ,

the model

(X j −s j |� j ,s j ,n j , p j )∼Binomial(n j , f (� j , p j ))

is both a three-moment approximation and a three-derivative approximation with respect to � j , j =1, . . . , M for the exact
model (1).

Proof
See Appendix.

Remark 2
It may be that the quantity s j is not an integer. However, as discussed in Remark 1 above, this is not a limitation.

Our next result is that for the log link function f (�, p)=min(1, pe�), the k moment approximations above do not
coincide with the k derivative approximations. We can derive a different k derivative approximation. Empirical evidence
shows that this performs much better than the k moment approximation.
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Proposition 4
The two-derivative approximation differs from the two-moment approximation with the log link function. With the above
definitions and the exact model in (1) with

f (�, p)=min(1, pe�),

and p j =
∑

i p2
ij/

∑
i pij, n j =

∑
i pij/p j , the model

X j |� j ,n j , p j ∼Binomial(n j , f (� j , p j ))

is a two-moment approximation but is not a two-derivative approximation with respect to � j , j =1, . . . , M for the exact
model (1).

Proof
See Appendix.

We next present the two-derivative model for the log link function.

Proposition 5
With the above definitions and the exact model in (1) with

f (�, p)=min(1, pe�),

and

� j = ∑

i

pij

1− pij
(1− Xij),

� j = ∑

i

pij

(1− pij)2
(1− Xij),

and letting

p j =1−� j/� j ,

and

n j =
�2

j

� j −� j
+ X j

the model

X j |� j ,n j , p j ∼Binomial(n j , f (� j , p j ))

is a two-derivative approximation with respect to � j , j =1, . . . , M for the exact model (1).

Proof
See Appendix.

The final result in this section is a straightforward extension to multiple types of adverse events. Note in this model
that � j is an underlying latent measure of quality at facility j that is reflected in the data for each of the quality indicators.

Proposition 6
A model for multiple adverse events. Suppose there are m different types of adverse events. Let Xijk equal 1 if person
number i in facility number j has an adverse event of type k, 1�k�m, and let it equals zero otherwise. Let pijk be the
given probability associated with this variable. For the kth type of adverse event, we define

fk(�, p)= logit−1(dk +ck�+ logit(p)).

Suppose that

Xijk|� j , pi jk ∼Bernoulli( fk(� j , pi jk)) and � j |�,�∼Normal(0,1) (4)

is the exact model for some unknown parameters ck , dk that are to be estimated. With Xjk =∑
i Xijk along with

pjk =∑
i (pijk)2/

∑
i pijk, njk =∑

i pijk/pjk, the model

(Xjk|� j ,njk, pjk)∼Binomial(njk, fk(� j , pjk))
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Table III. The approximate models.

Proposition Approximation (link function) Summary statistics necessary

1 1-moment, 1-derivative (logit) N j ,
∑

i pij,
∑

i Xij,∀ j

2 2-moment, 2-derivative (logit)
∑

i p2
ij,

∑
i pij,

∑
i Xij,∀ j

3 3-moment, 3-derivative (logit)
∑

i p3
ij,

∑
i p2

ij,
∑

i pij,
∑

i Xij,∀ j

4 2-moment (log)
∑

i p2
ij,

∑
i pij,

∑
i Xij,∀ j

5 2-derivative (log)
∑

i
pij

1−pij
(1− Xij),

∑
i

pij

(1−pij)2 (1− Xij),
∑

i Xij,∀ j

6 2-moment, multiple QIs (logit)
∑

i p2
ijk,

∑
i pijk,

∑
i Xijk,∀ j,k

is both a two-moment approximation and a two-derivative approximation with respect to � j , j =1, . . . , M for the exact
model in (4) when ck =1, dk =0 for 1�k�m.

Proof
See Appendix.

We summarize all the approximations, along with the necessary summary statistics, in Table III.

6. Numerical results and comparison of the approaches

In this section, we illustrate the different approximations. We will see that the two-derivative approximations (for both
link functions we consider) seem to perform much better than the one-derivative approximations, and (for the logit
link function) the three-derivative approximation performs quite similarly to the two-derivative approximation—though
all the approximations are fairly reasonable. We will illustrate the approximations using two different approaches. In
the first approach, we test the approximations on data from the Veterans Health Administration—see Section 3 for a
description of the data.

To do the computations, we put flat priors on the top level unknown parameters and then estimate the posterior means
of the facility effects conditional on the data under the exact model and various approximate models. We use the notation
�̄ j to denote our numerical estimate (computed by averaging together samples from the posterior distribution using the
software package WINBUGS) of the posterior mean E[� j |Xij,∀i, j] under the exact model and we use the notation
�̄

a
j to denote our numerical estimate of the posterior mean Ea[� j |X j ,∀ j] under some given approximate model. For

the illustrations below, we measure the accuracy of an approximation using the average of the absolute value of the
difference between our estimate of the facility-effect parameters under the approximate and exact models. We compute
this using

Error= 1

M

M∑

j=1
|�̄ j − �̄

a
j | (5)

except for the multiple quality indicators in Proposition 6, where we instead use

Error= 1

m

m∑

k=1

1

M

M∑

j=1
|�̄ j,k − �̄

a
j,k |, (6)

where � j,k =dk +ck� j and �a
j,k =da

k +ca
k �a

j .

First, we illustrate the approximations given in Propositions 1, 2, 3. The top half of Table IV gives the errors for
models using the logit link function f (�, p)= logit−1(�+ logit(p)). The standard deviation of the effect sizes in Table V,
when compared with the first row of Table IV, shows that the error from the one-moment approximation is not bad; in
many cases, it is of a smaller order of magnitude than the estimated standard deviation (of the effect size � in Table V).
The second line shows that the two-moment approximation is always much better than the one-moment approximation.
In several cases, the error is an order of magnitude improvement on the one-moment approximation in the prior line.
The third line of the table shows that the three-moment approximation does not perform consistently better than the
two-moment approximation with the logit link function. The rightmost column (labeled as ‘3QIs’) shows that when
multiple quality indicators are included in the model (using the approach of Proposition 6 above, where only the two-
moment case is illustrated—the one- and three-moment versions are analogous to those in Propositions 1 and 3) the
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Table IV. Errors associated with different approximations for the different quality indicators.

pu fd bd mort ph 3QIs

Logit link function
One-moment 0.015 0.028 0.021 0.042 0.020 0.016
Two-moment 0.004 0.003 0.007 0.003 0.002 0.004
Three-moment 0.004 0.003 0.007 0.002 0.004 0.004
Two-stage normal 0.103 0.018 0.182 0.003 0.012

Log link function
Two-moment 0.014 0.018 0.040 0.050 0.014
Two-derivative 0.006 0.008 0.020 0.004 0.004

Table V. Standard deviation of the effect size � for the different quality indicators.

pu fd bd mort ph

0.420 0.465 0.982 0.123 0.422

two-moment approximation performs much better than the one-moment, and the three-moment approximation performs
quite similarly to the two-moment approximation.

The fourth line of the table, labeled ‘two-stage normal,’ illustrates an approximation approach where each facility
separately computes its best estimate of � j , which is then transmitted to the organization and ‘shrunk’ using a hierarchical
model. Specifically, first the posterior mean and standard deviation for � j is computed separately for each facility using
a fixed-effects model with a flat prior for � j . Then, these facility estimates are combined in a model where we assume
the � j values are the sum of two draws from a normal distribution: one is a distribution with an unknown mean and
standard deviation that is common to all facilities, and the other is an error term that is normally distributed with mean
zero and standard deviation which is specific to each facility. The fourth line shows that this approximation approach
performs better than the one-moment approximation in most cases—though in cases where there are facilities with zero
observed adverse events (for pu and bd), it performs much worse. Some adjustments to the model would need to be
made to account for zero values. But, the approximation is not nearly as good as the two-moment approach in most
cases.

The last two rows of the table show, using the log link function f (�, p)=min(1, pe�), that the two-derivative
approximation in Proposition 5 performs much better than the two-moment approximation. This is evidence for the
theory that the derivative approach works better than the moment approach when they differ.

In the second approach, we use to illustrate the accuracy of the approximations, we generate simulated data and
compare the maximum likelihood estimates of the unknown parameters across the different models. In particular,
we create a single health-care facility with 100 patients having predetermined risk-adjusted probabilities. In the first
simulation, we create these probabilities according to equally spaced percentiles of a beta distribution with a coefficient
of variation equal to 1; in the second simulation, the coefficient of variation is equal to 0.4. We also vary the means
of these distributions from 0 to 0.2. These ranges are chosen in order to mimic the summary statistics we saw in the
actual data for the risk-adjusted probabilities. We also use different values of the unknown parameter � ranging from
0 through 4. Given specific values of the parameters, we use the logit link function to generate simulated data and then
compute the maximum likelihood estimate of � under the exact model and then under the various approximations. Our
simulations show that when � is in the range from 0 to 2, the two-moment approximation generally performs better
than the one-moment approximation. As the value of the � parameter becomes very large (this corresponds to the case
where there is a large amount of variation in the risk-adjusted probabilities across facilities and implies large differences
in underlying quality), we see that a two-moment approximation performs worse than the one-moment approximation.
As there is rarely such large variation in underlying quality across facilities, it is not a surprise that the two-moment
approximation performs well when tested on real data.

7. Conclusion

In conclusion, we see that the two- and three-derivative approximations performed the best. The three-derivative approx-
imation requires more data and performs similarly to the two-derivative approximation, and so we recommend the
two-derivative approximation. For the logit link function, the two-derivative and two-moment approximations are iden-
tical though, for the log link function, the two-derivative approximation seems to perform better. To implement the
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two-derivative approximation, each health-care facility needs to report three summary statistics to the central profiling
organization: the first two moments of the predicted risk-adjusted probabilities, as well as the total number of adverse
events occurring. Then, the two-parameter binomial distributional approximation described in Proposition 2 can be fitted
and used to estimate the likelihood function.

The approach we recommend is nice because the approximation is quite simple and easy to implement. The standard
(one-moment) binomial approximation is commonly used and this two-parameter binomial approximation is an improve-
ment with essentially no additional computational costs or model complexity other than computing and transmitting one
additional summary statistic.

Appendix

In this section, we prove the propositions above. We drop the facility subscript j in each proof.

Proof of Proposition 1
As the first moment of a binomial distribution equals np, the fact that this model is a one-moment estimator follows
immediately. To see that it is also a one-derivative estimator, let

f (�, p)= 1

1+ 1− p

p
e−�

,

and recall that the exact log-likelihood function is

L L(�)=∑

i
Xi ln( f (�, pi ))+(1− Xi ) ln(1− f (�, pi )).

The log-likelihood function for this approximation is

LLa(�)= X ln( f (�, p))+(N − X ) ln(1− f (�, p))+c,

where we write X =∑
i Xi and c= ln(N !/(X !(N − X )!). It then follows that

�
��

LL(�)=∑

i
(pi e

−�−e−�− pi )
−1(pi − Xi pi − Xi e

−�+ Xi pi e
−�)

along with

�
��

LLa(�)= (pe−�−e−�− p)−1(Np−Xp−Xe−�+Xpe−�),

and we obtain

�
��

LL(�)|�=0 =∑

i
(Xi − pi ),

and

�
��

LLa(�)|�=0 = (X −Np).

Solving the equation

�
��

L L(�)|�=0 = �
��

LLa(�)|�=0

for p yields the result of the proposition. �

Proof of Proposition 2
As the mean and variance of a binomial distribution equals np and np(1− p) respectively, the fact that this model is a
two-moment estimator follows immediately. To see that it is also a two-derivative estimator, we again let

f (�, p)= 1

1+ 1− p

p
e−�

,
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and recall that the exact log-likelihood function is

LL(�)=∑

i
Xi ln( f (�, pi ))+(1− Xi ) ln(1− f (�, pi )).

The log-likelihood function for this approximation is

LLa(�)= X ln( f (�, p))+(n− X ) ln(1− f (�, p))+c,

where we write X =∑
i Xi and c= ln(N !/(X !(N − X )!) and now the parameters n, p are both to be solved for. It then

follows, using the results from the previous proposition, that

�2

��2
L L(�)=∑

i
(pi e

−�−e−�− pi )
−2(pi −1)(e−�)pi ,

and

�2

��2
LLa(�)= (pe−�−e−�− p)−2(p−1)(e−�)np,

and we obtain

�2

��2
LL(�)|�=0 =∑

i
(p2

i − pi ),

and

�2

��2
LLa(�)|�=0 = (np2 −np).

Using the results from the previous proposition, we can then solve the system of equations

�
��

LL(�)|�=0 = �
��

LLa(�)|�=0,

and

�2

��2
LL(�)|�=0 = �2

��2
LLa(�)|�=0

for both n and p to obtain the result of the proposition. �

Proof of Proposition 3
The mean, variance, and third-central moment of a binomial distribution equals np, np(1− p) and np(1− p)(1−2p),
respectively, and for a Poisson-binomial distribution W with probabilities p1, p2, . . . and � j =

∑
i (pi ) j , we have E[W ]=

�1,Var(W )=�1 −�2 and E[(W − E[W ])3]=�1 −3�2 +2�3. The fact that this model is a three-moment estimator follows
from these facts. To see that it is also a three-derivative estimator, we again let

f (�, p)= 1

1+ 1− p

p
e−�

,

and recall that the exact log-likelihood function is

LL(�)=∑

i
Xi ln( f (�, pi ))+(1− Xi ) ln(1− f (�, pi )).

The log-likelihood function for this approximation is

LLa(�)= (X −s) ln( f (�, p))+(n− X −s) ln(1− f (�, p))+c,

where we write X =∑
i Xi and c= ln(N !/(X !(N − X )!) and now the parameters s, n, p are all to be solved for. It then

follows, using the results from the previous proposition, that

�3

��3
LL(�)=∑

i
(pi e

−�−e−�− pi )
−3(pi −e−�+ pi e

−�)(pi −1)(e−�)pi ,
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and

�3

��3
LLa(�)= (pe−�−e−�− p)−3(p−e−�+pe−�)(p−1)(e−�)np,

and we obtain

�3

��3
LL(�)|�=0 =∑

i
(3p2

i − pi −2p3
i ),

and

�3

��3
LLa(�)|�=0 = (3np2 −np−2np3).

Using the results from the previous proposition, we can then solve the system of equations

�
��

LL(�)|�=0 = �
��

LLa(�)|�=0,

�2

��2
LL(�)|�=0 = �2

��2
LLa(�)|�=0,

and

�3

��3
LL(�)|�=0 = �3

��3
LLa(�)|�=0

for s, n and p to obtain the result of the proposition. �

Proof of Propositions 4 and 5
The fact that this approximation is a two-moment approximation follows from the argument in the proof of Proposition 2
above. Let

f (�, p)=pe�

and recall that the exact log-likelihood function is

LL(�)=∑

i
Xi ln( f (�, pi ))+(1− Xi ) ln(1− f (�, pi )).

The log-likelihood function for this approximation is

LLa(�)= X ln( f (�, p))+(n− X ) ln(1− f (�, p))+c,

where we write X =∑
i Xi and c= ln(N !/(X !(N − X )!) and now the parameters n, p are both to be solved for. It then

follows that

�
��

LL(�) = ∑

i
Xi −e� pi

1− Xi

1−e� pi
,

�2

��2
LL(�) = ∑

i
−e� pi

1− Xi

1−e� pi
−e2� p2

i
1− Xi

(1−e� pi )2

along with

�
��

LLa(�)= X −pe� n− X

1−pe�
,

and

�2

��2
LLa(�)=−pe� n− X

1−pe�
− p2e2� n− X

(1−pe�)2
,
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and we obtain

�
��

LL(�)|�=0 =∑

i
−pi

1− Xi

1− pi
− p2

i
1− Xi

(1− pi )2
,

and

�
��

LLa(�)|�=0 = X − p
n− X

1− p
,

and

�2

��2
LLa(�)|�=0 =−p

n− X

1− p
− p2 n− X

(1− p)2
.

We can then solve the system of equations

�
��

LL(�)|�=0 = �
��

LLa(�)|�=0

along with

�2

��2
LL(�)|�=0 = �2

��2
LLa(�)|�=0

for both n and p to obtain the result of the proposition. �

Proof of Proposition 6
This proposition follows immediately from the same argument used to prove Proposition 2. �
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