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Flexoelectricity is a form of electromechanical coupling that has recently emerged because, unlike piezoelec-
tricity, it is theoretically possible in any dielectric material. Two-dimensional (2D) materials have also garnered
significant interest because of their unusual electromechanical properties and high flexibility, but the intrinsic
flexoelectric properties of these materials remain unresolved. In this work, using atomistic modeling accounting
for charge-dipole interactions, we report the intrinsic flexoelectric constants for a range of two-dimensional
materials, including graphene allotropes, nitrides, graphene analogs of group-IV elements, and the transition
metal dichalcogenides (TMDCs). We accomplish this through a proposed mechanical bending scheme that
eliminates the piezoelectric contribution to the total polarization, which enables us to directly measure the
flexoelectric constants. While flat 2D materials like graphene have low flexoelectric constants due to weak π -σ
interactions, buckling is found to increase the flexoelectric constants in monolayer group-IV elements. Finally,
due to significantly enhanced charge transfer coupled with structural asymmetry due to bending, the TMDCs are
found to have the largest flexoelectric constants, including MoS2 having a flexoelectric constant ten times larger
than graphene.
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I. INTRODUCTION

Piezoelectricity is perhaps the best-known mechanism of
converting mechanical deformation into electrical energy, and
has been widely used in engineering practice [1,2]. While
piezoelectricity is well-established, other types of electrome-
chanical coupling, such as flexoelectricity, have recently at-
tracted significant interest [3–7]. One reason for this is that
piezoelectricity is limited to materials with noncentrosym-
metric crystal structures. In contrast, in flexoelectricity the
polarization is not only related to the strain as in piezoelec-
tricity, but also the strain gradient. Thus, for flexoelectricity,
the polarization P induced due to mechanical deformation is
given as [8]

Pα = dαβγ εβγ + μαβγ δ ∂εγ δ

∂xβ

, (1)

where dαβγ is the piezoelectric coefficient, εβγ is the strain,
μαβγ δ is the flexoelectric coefficient, ∂εγ δ

∂xβ
is the strain gradient

and α, β, γ , and δ represent the directional components of the
coordinate system.

Because flexoelectricity is dependent on the gradient of
strain it can, in principle, occur in any dielectric material.
Furthermore, significant potential for flexoelectricity emerges
as the dimensions of materials reduce to the nanometer scale
due to the ability to produce larger strain gradients for small
size scales. However, studies of electromechanical coupling
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in nanomaterials, and specifically two-dimensional (2D) ma-
terials such as graphene and molybdenum disulfide (MoS2)
have largely focused on their piezoelectric properties [9–22];
we also note a recent review article summarizing the vari-
ous simulation and experimental methods for characterizing
piezoelectricity in 2D materials [23].

In contrast to the extensive study of piezoelectricity in
nanomaterials, relatively few studies on flexoelectricity have
been performed. Majdoub and co-workers reported an en-
hancement of flexoelectricity in nanoscale barium titanium
oxide (BTO) [24]. Surface effects on flexoelectricity in BTO
nanobelts were investigated using core-shell potentials [25].
In addition, several preliminary studies on flexoelectricity in
2D materials have recently been carried out using density
functional theory (DFT) calculations, theoretical analyses or
experiments. For instance, a linear relationship was found
between induced dipole moment and bending curvature in
graphene using DFT calculations [6]. A theoretical analy-
sis [26] of flexoelectricity in carbon nanostructures (nan-
otubes, fullerenes, and nanocones) confirmed the dependence
of flexoelectric atomic dipole moments on local curvature.
Others have patterned graphene to generate strain gradients
and enhance the electromechanical coupling and polarization
[15,16,20]. Furthermore, a recent experimental study [11]
provided evidence that monolayer MoS2 exhibits an out-of-
plane flexoelectric response using the piezoresponse force mi-
croscopy. However, one key issue in calculating or measuring
the flexoelectric constants of 2D materials is that it has been
difficult to isolate the relative contributions of piezoelectricity
and flexoelectricity to the resulting polarization [11]. As a
result, the intrinsic flexoelectric properties of 2D materials re-
main unresolved, and furthermore the mechanisms controlling
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FIG. 1. Top and side view of the studied materials: (a) graphene
allotropes; (b) nitrides XN, X = B, Al, Ga; (c) graphene analogues
of group-IV elements X , X = Si, Ge, Sn; and (d) transition metal
dichalcogenides XS2, X = Cr, Mo, W. For (a)–(c), h refers to the
buckling height, while in (d), h1 and h2 refer to intralayer distances.

the intrinsic flexoelectric properties of different 2D materials
are also unresolved.

In this work, we develop a classical charge-dipole (CD)
atomistic model that couples with classical molecular dy-
namics (MD) simulations to calculate the intrinsic bending
flexoelectric constants of the four different 2D material groups
shown in Fig. 1: graphene allotropes, nitrides, graphene
analogues of group-IV elements, and transition metal
dichalcogenides (TMDCs). Specifically, we propose and val-
idate a mechanical bending formulation that eliminates the
piezoelectric contribution to the polarization in Eq. (1), thus
enabling us to directly calculate the intrinsic flexoelectric
constants. By comparing these different classes of 2D materi-
als, we investigate and elucidate the effects of charge-dipole
interactions, out of plane buckling in monolayers, intralayer
buckling asymmetry, and charge transfer on the flexoelectric
response of 2D materials.

II. SIMULATION METHOD

In this work, we performed MD simulations by utilizing a
CD model in conjunction with bonded interactions to deter-

TABLE II. Piezoelectric coefficients (C/m2) for BN and MoS2.

Material Calculated Reported

BN 0.163 0.390a; 0.417b

MoS2 0.646 0.564c; 0.453d

aReference [69]; bRef. [14]; cRef. [14]; dRef. [70].

mine the atomic configurations, as well as the point charges
qi and dipole moments pi associated with each atom i. The
bonded interactions were modeled using well-known poten-
tials, i.e., adaptive intermolecular reactive empirical bond
order (AIREBO), Tersoff, and Stillinger Weber (see Table I
for references to all potentials), while the point charges and
dipole moments were calculated using the well-known CD po-
tentials [27–29] (further details are given in Appendix A). The
potential parameters for the CD model were determined using
DFT calculations (more details are given in Appendix B), and
were validated through calculation of piezoelectric constants
for boron nitride and MoS2, which as shown in Table II in
Appendix C are in good agreement with previous studies. All
simulations were performed using the open-source MD sim-
ulation code large-scale atomic/molecular massively parallel
simulator (LAMMPS) [30].

The MD simulations were performed using the unit cell
dimensions (a, b, c, and h) for each material given in Table I,
along with the potential functions employed to estimate the
bonded interactions. A fixed unit cell size of 80 × 80 Å [31]
was adopted for all simulations to estimate the flexoelectric
coefficients. The flexoelectric constants were determined by
first prescribing the following displacement field to the atomic
system

uz = K
x2

2
, (2)

TABLE I. Calculation details for each material. The unitcell dimensions a, b, c, and h are given in angstroms. The bonding interactions
are modeled using different types of “short-range potentials.” αDFT

total and αCAL
total are the polarizability estimates from DFT and calculated using

Eq. (B6) in Å
3
. Calculated in angstroms, RA and RB are the CD potential parameter for atom types A and B in a given unit cell, respectively.

material a b c h short-range potential αDFT
total αCAL

total RA RB

C1 2.46a 4.26a 3.5b 0.0 AIREBOc 2.49 2.78 0.64 0.64
C2 4.87a 8.84a 3.5 0.0 AIREBOc 2.46 2.72 0.64 0.64
C3 5.70a 7.56a 3.5 0.0 AIREBOc 2.45 2.77 0.64 0.64

BN 2.50d 2.50d 3.33d 0.0 Tersoff e 2.85 2.84 0.76 0.35
AlN 3.13f 3.13f 3.39f 0.0 Tersoff f 19.79 19.97 1.04 0.48
GaN 3.21g 3.21g 3.63g 0.0 Tersoff h 15.80 16.38 1.05 0.48

Si 3.82i 6.62i 2.41j 0.44i Tersoff k 20.62 20.92 1.37 1.37
Ge 3.97i 6.87i 3.20l 0.65i Tersoff m 13.43 13.14 1.27 1.27
Sn 4.67n 8.09n 3.30o 0.89n Tersoff o 15.25 15.86 1.52 1.52

MoS2 3.16p 3.16p 12.29q 1.58 SWr 12.32 12.35 0.69 1.04
WS2 3.18s 3.18s 12.16s 1.56 SWt 15.36 15.38 0.70 1.09
CrS2 3.04q 3.04q 14.41q 1.45 SWt 10.86 10.87 0.75 1.00

aReference [32]; bRef. [50]; cRef. [51]; dRef. [52]; eRef. [53]; fRef. [54]; gRef. [55]; hRef. [56]; iRef. [57]; jRef. [58]; kRef. [59]; lRef. [60];
mRef. [61]; nRef. [62]; oRef. [63]; pRef. [64]; qRef. [65]; rRef. [66]; sRef. [67]; tRef. [68].
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FIG. 2. Schematic illustration of the geometry and loading con-
dition for 2D material system.

where x represents the atom coordinate in the x direction,
K represents the inverse of curvature (strain gradient) of the
bending plane, and where the prescribed mechanical defor-
mation is shown in Fig. 2. Once the bending deformation is
prescribed, the edge region atoms are held fixed while the inte-
rior atoms are allowed to relax to energy minimizing positions
using the conjugate-gradient algorithm, after which the point
charges and dipole moments are found for each atom. From
the MD simulations, we establish the relationship between
polarization and strain gradient as follows. The strain gradient
from Eq. (2) is

∂εxz

∂x
= 1

2

∂2uz

∂x2
= 1

2
K (3)

where εxz is the strain in the x direction from the applied
deformation in the z direction. Substituting Eq. (3) in Eq. (1)
and assuming that the imposed mechanical deformation in
Eq. (2) removes the piezoelectric contribution, we obtain

Pz = 1

2
μzxzxK, (4)

where μzxzx is the out-of-plane or bending flexoelectric co-
efficient and Pz is the out-of-plane polarization. We will
verify the assumption of the removal of the piezoelectric
contribution through the prescribed bending deformation in
the next section.

III. RESULTS AND DISCUSSION

We use the simulation procedure described previously in
Sec. II to study the flexoelectric properties of four groups of
2D materials: graphene allotropes (C1, C2, and C3), nitrides
(BN, AlN, and GaN), graphene analogues of group-IV ele-
ments (Si, Ge, and Sn) and TMDC monolayers (MoS2, WS2,
and CrS2). C1 corresponds to pristine graphene, while C2
and C3 represent graphene with Stone-Wales defects which
replace some hexagons by pentagons and heptagons with
different periodicity, respectively [32]. BN, AlN, and GaN
are the nitrogen-based hexagonal monolayers with boron,
aluminum, and gallium, respectively. Silicene (Si), germanene
(Ge), and stanene (Sn) are the group-IV 2D graphene analogs.
However, the vertical distance between the atoms or buckling

height (h) in the unit cell is nonzero when compared to the
graphene allotropes and nitride material groups [see Figs. 1(a)
and 1(c)]. The TMDCs possess three sublayers or intralayers
where element X (center layer) forms bonds with two S
atoms in the top and bottom layers. The layers are vertically
separated by the intralayer heights h1 and h2, as shown in
Fig. 1(d).

We first demonstrate that the proposed bending scheme
eliminates the piezoelectric contribution to the total polariza-
tion, such that we can focus on the resulting intrinsic flex-
oelectric properties of the different 2D material groups. The
applied deformation [using Eq. (2)] results in strain (εxz ) and
strain gradient ( ∂εxz

∂x ) along the xz direction, and a polarization
along the z direction, where we use MoS2 as an example as
it has the most complex 2D structure of the 2D materials we
consider. We calculate the local atomic strain for each atom
i using the local deformation gradient F, which involves the
initial and deformed atomic coordinates. The local atomic
strain tensor for atom i (εi) is [33]

εi = 1
2 [(Fi )

TFi − I], (5)

where I is the identity matrix.
Figure 3(a) represents the atomic configuration of MoS2

system colored with the xz component of strain, which is

calculated from Eq. (5) at a given curvature (K = 0.01 Å
−1

).
The variation of strain εxz along the x direction is plotted
in Fig. 3(b), where the strain was found by dividing the
atomic system into several equal width bins and averaging the
strain in each bin. A linear variation in εxz is observed from
Fig. 3(b). This demonstrates that the induced deformation
is symmetric and the resulting polarization due to strain is
canceled out. Therefore the total strain εxz is zero (sum over
all the bins), which eliminates the piezoelectric contribution
to the polarization in Eq. (1) and supports the assumption
made in obtaining Eq. (4), i.e., for the prescribed bending
deformation, the out-of-plane polarization is only dependent
on the strain gradient. Furthermore, symmetry analysis on the
piezoelectric tensor show that dzxz is zero for a point group
symmetry associated with the 2D material sets [34].

The mechanical bending deformation that is imposed
serves to strictly to zero out the out-of-plane piezoelectric
contribution to total polarization. However, it is important to
note that an in-plane polarization is generated due to the out-
of-plane bending. Furthermore, the in-plane polarization from
out-of-plane bending may receive a contribution from in-plane
piezoelectricity. We further discuss the in-plane polarization
in Sec. III D and Appendix E.

A. Mechanisms of inducing polarization in 2D materials

Our analysis of the mechanisms governing the flexoelectric
constants for the 2D materials depends on understanding,
within the framework of the utilized CD model, the various
contributions to the dipole moments that are induced from
the prescribed bending deformation. Specifically, the dipole
moment pi on atom i depends on its polarizability and the
presence of a local electric field, which consists of three
parts: the electric field at position ri due to neighboring (i)
dipoles p j , (ii) charges q j , and (iii) from the externally applied
electric fields Eext. Because the only external stimulus is the
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FIG. 3. (a) Atomic configuration colored with strain εxz in x

direction for MoS2 sheet when the strain gradient K = 0.01Å
−1

;
the large spheres represent Mo atoms, and small spheres represent
S atoms. (b) Binwise distribution of strain εxz along x axis, circles
represent the calculated average strain εxz at location x and solid line
is linear fitting to the calculated data.

prescribed bending deformation, Eext = 0 and the governing
equation for the dipole moments [Eq. (B1)] becomes

Tp−p
ii pi −

N∑
j,i �= j

Tp−p
i j p j =

N∑
j,i �= j

Tq−p
i j q j, (6)

where Tp−p
i j and Tq−p

i j are the polarizability tensors. These
two tensors represent dipole-dipole and charge-dipole inter-
actions, respectively, which can also be interpreted as ac-
counting for σ -σ and σ -π electron interactions, respectively
[28,29,35], and can be written as [29]

Tq−p
i j = 1

4πε0

ri j

r3
i j

≈ 1

4πε0

ri j

r3
i j

×
[

erf

(
ri j√
2R

)
−

√
2

π

ri j

R
exp

(
− r2

i j

2R2

)]
, (7)

Tp−p
i j = 1

4πε0

3ri j ⊗ ri j − r2
i jI

r5
i j

×
[

erf

(
ri j√
2R

)
−

√
2

π

ri j

R
exp

(
− r2

i j

2R2

)]

− 1

4πε0

√
2

π

ri j ⊗ ri j

r2
i j

1

R3
exp

(
− r2

i j

2R2

)
. (8)

From Eqs. (7) and (8), the interatomic distance (ri j ) and R
(factor related to polarizability) are identified as the important
factors in defining the dipole moment of atoms via the polar-
izability tensors.

B. Flat 2D monolayers

We first consider the simplest 2D structures, flat graphene
and BN monolayers. To aid in the analysis, we rewrite Eq. (6)
for only the pz

i component, which is

T p−p,zz
ii pz

i = E p,z
i + Eq,z

i , (9)

where E p,z
i = ∑N

j,i �= j{T p−p,xz
i j px

j + T p−p,yz
i j py

j + T p−p,zz
i j pz

j}
and Eq,z

i = ∑N
j,i �= j T q−p,z

i j q j are the electric fields on
atom i due to neighboring dipoles, charges and associated
polarizability components.

For the undeformed graphene sheet, the out of plane dipole
moment pz

i is zero due to the flat nature of the monolayer.
However, once graphene is bent, the π -σ interactions in-
crease, leading to a nonzero pz

i . Specifically, for deformed

graphene with bending curvature 0.002 Å
−1

, the measured
contributions of E p,z

i and Eq,z
i to the total electric field on

atom i are 93.45% and 6.55%, respectively. As graphene is
bent further, these contributions change to 93.27% and 6.73%,

respectively, when K = 0.01 Å
−1

. The increased importance
of Eq,z

i with increasing bending implies an increasing im-
portance of π -σ interactions on the total electric field and
dipole moment on atom i. This can also be interpreted through
pyramidalization [36–38], in which sp2 bonding converts to
sp3 bonding. In this process, the valence electrons of each
carbon atom develop bonding interactions with the neigh-
boring atoms due to the bond bending involved symmetry
reduction, which allows mixing between π and σ electrons,
leading to π -σ interactions [39]. This interaction modifies
the charge state of the carbon atom as well as the locally
generated electric fields, which is captured by the CD model
in the form of the charge-induced electric fields Eq,z. Overall,
these increased π -σ interactions result in the flexoelectric
coefficient for graphene being found as μgr = 0.00286 nC/m,
which is found from linear fitting of the polarization as a
function of bending curvature in Fig. 4.

In case of BN, the contribution of Eq,z also increases from
1.86% to 1.99% when bending curvature increases from 0.002

to 0.01 Å
−1

, though the overall contribution of Eq,z to the
total electric field is smaller than for graphene. This suggests
that the π -σ interactions in BN are weaker than in graphene,
which may be related to the difference in the tendency of pyra-
midalization between B and N atoms. Specifically, B atoms
prefer the sp2 hybridization while N atoms are more likely to
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FIG. 4. Polarization Pz vs strain gradient K for graphene, BN,
silicene, and MoS2. Markers indicate the simulation data and solid
lines indicate the linear fitting.

achieve sp3 hybridization or pyramidalization [40,41]. Thus,
even though the polarizability of BN is similar to graphene
(see αCAL

total values in Table I), the flexoelectric constant of BN
of 0.00026 nC/m is ten times smaller than graphene due to
the smaller Eq,z contribution in BN.

The graphene allotropes C2 and C3 show similar flexo-
electric coefficients to defect-free monolayer graphene (C1),
as shown in Fig. 5. Though C2 and C3 contain different
arrangements of defects, the sp2 hybridization is unchanged,
which induces nearly equal charges and dipole moments for
atoms in C2 and C3 under deformation. As a result, the
flexoelectric coefficients are nearly constant for this material
group. In the case of the nitride group, AlN and GaN are found
to have larger flexoelectric constants than BN as shown in
Fig. 5, though still significantly smaller than graphene. This
is due to a corresponding increase in the contribution of Eq,z,
from 1.99% for BN to 2.25% for AlN to 6.85% for GaN for a
curvature of 0.01 Å

−1
.

FIG. 5. Bending flexoelectric coefficient for 2D materials.
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FIG. 6. (a) Undeformed and (b) deformed atomic configuration
of MoS2 sheet. Red colored atoms are used to explain the changes
in bond length. Dashed lines represent the Mo layer and dash-dotted
lines indicate the S layers. Atoms X and Y in (a) possess bond lengths
of 2.42 Å with neighbor sulfur atoms. The bond length between
atoms Y-A and Y-D is 2.42 Å and 2.41 Å, respectively. Atom Y has
bond length of 2.26 Å with atoms B and C. The bond length between
atoms Y-E and Y-F is 2.76 Å. Only left portion of the atomic system
was shown here.

C. Buckled 2D monolayers

As seen in Fig. 4, the induced polarization for flat 2D
materials is much smaller than is seen in silicene. From a
structural point of view, silicene and graphene differ in that
the atomic polarizability of silicene is larger, and also that it
exists in a buckled configuration as compared to graphene (see
h values in Table I). Therefore we performed simulations to
examine the effects of both of these factors on the induced
polarization in silicene. We first performed a bending test for
silicene in which the buckling height was kept to zero, in
order to understand the effect of buckling on the polarization.
To do so, we simply imposed the bending deformation on
silicene without allowing any subsequent relaxation of the
atomic positions. The variation of polarization for flat sil-
icene and silicene is plotted in Fig. 8. From the numerical
fitting, the flexoelectric coefficients for flat silicene μsi-flat

and silicene μsi are identified as 0.00634 and 0.00728 nC/m,
respectively. Noting that the graphene flexoelectric coefficient
is μgr = 0.00286 nC/m, the ratio of μsi-flat/μgr is 2.217, which
is close to the ratio of their atomic polarizability parameters
(Rsi/Rgr = 2.141 from Table I). From this, it is clear that the
atomic polarizability increases the induced polarization and
thus flexoelectric constants. The ratio of μsi/μgr is 2.545,
which is about 15% higher than 2.217. This increase in
polarization of about 15% between silicene and flat silicene
can therefore be ascribed to the buckled structure of silicene.

Further understanding can be drawn from the contributions
of the electric fields from dipole-dipole and charge-dipole
interactions. The contributions from E p,z

i and Eq,z
i to the

total electric field are estimated for flat silicene and silicene
when the bending curvature is 0.008 Å

−1
. The numerical

values for flat silicene are 91.89% and 8.10%, respectively,
which are similar to that of graphene. Therefore the increased
dipole moment and flexoelectric coefficient for flat silicene is
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FIG. 7. (a) Loading scheme for estimating piezoelectric coefficient and (b) polarization Px vs strain εxx for BN and MoS2 material systems.

primarily due to its larger atomic polarizability (Rsi/Rgr =
2.141) compared to graphene.

For buckled silicene, the contributions from E p,z
i and Eq,z

i
to the total electric field are 76.89% and 23.10%, respectively.
Comparing to flat silicene, there is an increase in Eq,z

i and
decrease in E p,z

i for silicene. Thus the CD model predicts
that π -σ interactions are dramatically enhanced in buckled
silicene as compared to flat silicene, which is in agreement
with recent DFT studies by Podsiadły-Paszkowska et al. [42],
who found that it is easier to achieve sp3 bonding in buckled
silicene. Such changes in hybridization (pyramidalization)
lead to significant charge modulations and induce large dipole
moments. The difference in the numerical contribution of Eq,z

to the total electric field in flat versus buckled silicene of
15% is identical to the observed difference in magnitude of
the flexoelectric coefficients. This demonstrates that buckling
in the atomic structure of 2D materials can induce increased
polarization, and thus flexoelectric constants.

Germanene and stanene also have flexoelectric constants
that are larger than graphene and BN as shown in Fig. 5,
though lower than silicene. This is due to a combination
of lower polarizability of these materials as compared to

0 2 4 6 8

0

1

2

3
at silicene

silicene

FIG. 8. Polarization Pz vs given strain gradient K for silicene and
flat silicene.

silicene (see αCAL
total values in Table I), and due to reduced Eq,z

contributions of 20.91% and 18.45%, respectively, indicating
weaker π -σ interactions in these buckled structures as
compared to silicene.

D. TMDCs

As shown in Fig. 4, the polarization under bending is
significantly higher in MoS2 than the other 2D materials.
Interestingly, for MoS2, the contributions from the dipole and
charge-induced electric fields in the z direction are 15.23%
and 84.76%, respectively, where the contribution of Eq,z is
significantly higher than for the previously discussed 2D
materials.

As we now elaborate, the mechanism enabling the large
polarization, and thus large flexoelectric constant in MoS2, is
different from the other 2D materials. As shown in Fig. 6(a),
MoS2 is a trilayer 2D materials in which each central Mo
atom bonds with the S atoms in the layers above and be-
low. The thickness of this sheet is defined as the sum of
the vertical separation between these layers. The imposed
bending deformation causes the top and bottom S layers to
deform differently with respect to the central Mo atom. For the
initial (flat) configuration in Fig. 6(a), the central Mo atoms,
labeled as X and Y, are located 2.42 Å away from both the
neighboring top and bottom layer S atoms. This initial atomic
configuration also induces nonzero dipole moments to each
atom since the z component of ri j is nonzero. An equal and
opposite dipole moment is observed for the top and bottom S
atoms due to the equidistant separation with the central Mo
atoms, whereas no dipole moment is found on the Mo atoms
due to symmetry.

However, after bending, there are significant changes in
bond length, as shown in Fig. 6(b). The bond lengths between
atom X and its nearest S atom neighbors are unchanged
even after deformation; the bond lengths Y-A and Y-D are
measured as 2.42 and 2.41 Å. In contrast, significant changes
in bond length result for other nearest S neighbors, where a
compression in the Y-B and Y-C bond lengths is identified
(2.42 to 2.26 Å) in Fig. 6(b), and where an elongation of
the Y-E and Y-F bond lengths (2.42 to 2.75 Å) is seen. The
identified differences in bond lengths break the symmetry
seen in undeformed MoS2 in Fig. 6(a), which leads to nonzero
dipole moments, and increases the Eq,z contribution to the
total electric field as compared to buckled silicene.
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FIG. 9. The variation of polarization (a) Px and (b) Py with bending curvature (K ) for graphene, BN, silicene, and MoS2 materials. The
inset in (a) and (b) represent the polarization variation for materials other than MoS2.

Interestingly, the polarizability of silicene is significantly
larger than MoS2, i.e., RMoS2/Rsi is about 0.5, according to
Table I. This indicates that MoS2 has a significantly higher
polarization and flexoelectric constant than buckled silicene
for other reasons, starting with the enhanced π -σ interactions.
Furthermore, a recent DFT study on the bonding charac-
teristics and charge transfer in MoS2 [43] found that the
S atoms share their electrons with the Mo atoms, which
results in the transfer of electrons back to the Mo atoms.
This charge transfer, coupled with the bond length asymmetry
due to bending, results in a large Eq,z, and thus large dipole
moments.

The flexoelectric coefficients for other members of TMDC
group are smaller than MoS2 as shown in Fig. 5, where
the flexoelectric coefficient of WS2 is three times smaller
than MoS2, and where CrS2 has an even smaller value. We
found that the bond length asymmetry between the layers
after bending is highest for MoS2 and decreases for WS2 and
CrS2, and also that the local difference in radius of curvature
for MoS2, WS2, and CrS2 materials is 49%, 40%, and 26%,
respectively, both of which lead to a decreasing contribution
of Eq,z for WS2 and CrS2. The DFT study of Pike et al. [43]
also found a smaller Born effective charge for WS2 compared
to MoS2, which supports the observation of lower Eq,z for
WS2 compared to MoS2.

We also calculated the in-plane flexoelectric constants for
all the 2D materials, as summarized in Appendix E. However,
we focus on the in-plane flexoelectric constant for MoS2

as they are larger than the out-of-plane constants for the
other 2D materials. From Figs. 9 and 4, we observe that the
polarization Py is about an order of magnitude higher than
Pz for MoS2, whereas the electric field Eq,y is less than Eq,z

for MoS2 (Eq,z/Eq,y = 7). This is because of cancellations in
the induced dipole moments in calculating the polarization.
Specifically, the dipole moments py have the same sign for all
S atoms, whereas pz has a different sign for the top and bottom
planes of S atoms, which induces cancellation of polarization
in the z direction making Pz smaller than Py. Thus, while Py

is higher than Pz, the flexoelectric coefficient μyxzx is less than
μzxzx due to its correlation with Eq. Overall, the enhanced
π -σ interactions and bond length asymmetry also leads to

strong in-plane electromechanical coupling, and an in-plane
flexoelectric constant of μyxzx = 0.00962 nC/m.

An interesting observation from Fig. 5 is that the flexo-
electric constants of graphene (C1) and CrS2 are nearly equal.
Though CrS2 exhibits higher atomic polarizability and bond
length asymmetry, the final dipolar polarization is similar to
graphene. This is because there is a relatively low asymmetry
in dipole moment between S atoms in the top and bottom
layers in CrS2, which results in some cancellation of the
induced polarization, leading to a flexoelectric constant that
is similar to graphene. However, for WS2 and MoS2, the in-
creased asymmetry between layers avoids the dipole moment
cancellation to achieve larger flexoelectric coefficients.

We find that MoS2 has an intrinsic bending flexoelectric
constant of 0.032 nC/m. This value is about ten times larger
than found in graphene, and about 3–5 times larger than seen
in the buckled monolayers. We can compare our computed
value with one extracted from the recent experimental study
on the electromechanical properties of MoS2 reported by
Brennan and coworkers [11]. In that work, the out-of-plane
piezoelectric coefficient (d ) of MoS2 using piezoresponse
force microscopy was measured to be 1.03 pm/V [11]. That
work also established a relationship between the flexoelectric
constant (μ) and piezoelectric (d ) coefficient under the as-
sumption of small length scales and linear electric field [11] as

μ = dY
t

2
, (10)

where Y is the elastic modulus of MoS2 and t is the monolayer
thickness of MoS2. With Y = 270 GPa and t = 0.65 nm, μ

is about 0.091 nC/m, which is significantly higher than our
calculated value of 0.032 nC/m. This difference is due to
the usage of elastic modulus in Eq. (10), where the usage of
the bending modulus may be more appropriate. The bending
modulus of MoS2 was previously found to be about 9.61 eV or
65.01 GPa [44]. Using this bending modulus, the flexoelectric
coefficient from Eq. (10) with bending modulus gives a value
of 0.021 nC/m. This value is close compared to the calculated
value of 0.032 nC/m from this work and demonstrates that
the flexoelectric constant for MoS2 estimated using the
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FIG. 10. Binwise distribution of polarization (a) Px and (b) Py along x axis for BN at a curvature of K = 0.08 nm−1.

atomistic CD model is in good agreement with experimental
measurements.

IV. CONCLUSION

In this work, we used classical atomistic simulations ac-
counting for charge-dipole interactions to study the bend-
ing flexoelectric constants for four groups of 2D materi-
als: graphene allotropes, nitrides, graphene analog mono-
layer group-IV elements, and TMDs. Our proposed bending
simulations enabled us to directly estimate the flexoelectric
constants by eliminating the piezoelectric contribution to the
polarization. In doing so, we were able to analyze the mech-
anisms underpinning the calculated flexoelectric constants
by interpreting them through the electric fields generated
from dipole-dipole (σ -σ bonding) and charge-dipole (π -σ
bonding) interactions. While the charge-dipole interactions
increase with bending curvature, their relative weakness in the
flat monolayers (graphene, h-BN) lead to lower flexoelectric
constants for these materials. In contrast, we found that buck-
ling, which occurs in the monolayer group-IV elements, lead
to > 10% increases in flexoelectric constant. Finally, due to
significantly enhanced charge transfer coupled with structural
asymmetry due to bending, the TMDCs are found to have
the largest flexoelectric constants, including MoS2 having a
flexoelectric constant ten times larger than graphene.
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APPENDIX A: CHARGE-DIPOLE POTENTIAL MODEL

The charge-dipole potential model was first proposed by
Olson et al. [27]. This model assumes that atom i in a system
is associated with a net point charge qi and a dipole moment
pi. This model has been further developed to overcome the nu-
merical divergence under point charge approximation [28,29].
The total electrostatic energy (ECD) for an N atom system is

given as

ECD = 1

2

N∑
i

N∑
j,i �= j

qiT
q−q

i j q j −
N∑
i

N∑
j,i �= j

qiT
q−p
i j p j

− 1

2

N∑
i

N∑
j,i �= j

piT
p−p
i j p j + 1

2

N∑
i

qiT
q−q

ii qi

+ 1

2

N∑
i

piT
p−p
ii pi −

N∑
i

qiχi −
N∑
i

piEext(ri ), (A1)

where χi is the electron affinity of atom i. T q−q, Tq−p,
and Tp−p represent charge-charge, charge-dipole, and dipole-
dipole interaction coefficients, respectively. The first three
terms in Eq. (A1) describe the mutual interaction of atomic
charges and dipoles among different atoms. The fourth and
fifth terms in Eq. (A1) represent the energy required to create
a charge and dipole on atom i. The sixth term represents the
nucleus-to-electron interaction energy. The last term represent
the energy due to external electric fields. T q−q represents the
Coulombic interaction between atomic charges, which are
separated by a distance ri j . This coefficient diverges under
the point charge approximation when accounting for the self-
charge term in Eq. (A1). In order to avoid the divergence of the
self-energy term, the point charge approximation is modified
into atoms with Gaussian distributed charges [28,29]. The
charge distribution for atom i at position r is

ρi(r) = qi

π3/2R3
exp

(
−|r − ri|

R2

)
, (A2)

where ri is position vector of atom i. R is equal to√
R2

A,i + R2
B, j/

√
2, where RA,i represents the width of Gaus-

sian distribution for atom index i with type A. RB, j represent
the Gaussian distributed charge width for atom type B and
with index j. For further details about charge-dipole potential
refer to Refs. [28,29] and references therein. The parameter R
can be estimated from the atomic polarizability. The method-
ological details are given in next section.

For a given atomic configuration, the charge q and dipole
moment p for each atom can be found from the minimization
of total electrostatic energy Eq. (A1). The energy minimiza-
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tion with respect to qi yields

T q−q
ii qi +

N∑
j,i �= j

T q−q
i j q j −

N∑
j,i �= j

Tq−p
i j p j = χi. (A3)

The energy minimization with respect to pi is

Tp−p
ii pi −

N∑
j,i �= j

Tp−p
i j p j −

N∑
j,i �= j

Tq−p
i j q j = Eext(ri ). (A4)

From the numerical solution of Eqs. (A3) and (A4), the charge
and dipole moment are known for the atomic configuration.
The electrostatic force and energy calculated from the charge
and dipole moment of each atom are supplied to the atomic
dynamical equation of motion in addition to the strong short
range interactions. Further details on the numerical implemen-
tation of charge-dipole potential can be found in recent work
by the authors [20].

From the known values of the dipole moment, polarization
for the unit cell is defined as the sum of dipole moments of
atoms present in that unit cell divided by the volume of the
unit cell. The polarization of the mth unit cell (Pm) is

Pm = 1

Vm

(
n∑

i=1

pi

)
, (A5)

where n is the number of basis atoms present in unit cell m,
Vm is the volume of the unit cell, and the total polarization is
the average among all unit cells in the system.

APPENDIX B: ESTIMATION OF CHARGE-DIPOLE
POTENTIAL PARAMETER R

Consider Eq. (A4) for dipole moments, which is
rewritten as

Tp−p
ii pi −

N∑
j,i �= j

Tp−p
i j p j =

N∑
j,i �= j

Tq−p
i j q j + Eext(ri ). (B1)

This represents that the dipole moment of an atom is defined
by three different parts: electric field at position ri due to
neighboring (i) dipoles p j [the left-hand-side second term in
Eq. (B1)]; (ii) charges q j [the right-hand-side first term in
Eq. (B1)], and (iii) from the externally applied electric fields.
The diagonal coefficient Tp−p

ii is known as the inverse of
atomic polarizability tensor (α). The mathematical expression
for Tp−p

ii is given under the CD potential approximations is
[28,29]

Tp−p
ii = 1

4πε0

√
2

3
√

πR3
= 1

αi
, (B2)

where ε0 is the dielectric permitivity of vacuum. The CD
parameter R is related to the polarizability α. For an N
atomic system, Eq. (B1) modifies into a matrix-vector system,
which is

Ap = E, (B3)

where

A =

⎡
⎢⎢⎢⎣

α−1
1 Tp−p

12 · · · Tp−p
1N

Tp−p
21 α−1

2 · · · Tp−p
2N

· · · · · ·
Tp−p

N1 Tp−p
N2 · · · α−1

N

⎤
⎥⎥⎥⎦ (B4)

and p and E represent the vector of dipole moments and
associated external electric field of each atom, respectively. In
order to estimate the polarizability, assuming that the dipoles
are experiencing a uniform electric field (E) (which includes
both external fields and charge related fields) [45,46], the total
dipole moment (ptotal) of atomic system is written as

ptotal = αtotalE, (B5)

where αtotal is the total polarizability of the atomic system,
which is expressed as

αtotal =
N∑
i

N∑
j

Bi j, (B6)

where Bi j is the components of matrix A−1. Equation (B6)
represents that, in order to estimate R, αtotal has to be known.
The polarizability can be calculated from the changes in
electronic wave functions. We have used the function polar
in GAUSSIAN [47] software to estimate αtotal, where details
about computing polarizability in DFT calculations are found
elsewhere [48,49].

In order to estimate the R value for graphene, DFT sim-
ulations are performed for different sized graphene systems.
The isotropic polarizability values from DFT (αDFT

total ) for these
systems are noted. With the atomic coordinate information
and assuming R between 0.1 to 1.0 Å, the total polarizability
is calculated (αCAL

total ) from Eq. (B6). The atoms present in
graphene unit cell are named as A and B. Since both are
carbon atoms, it is assumed that RA is equal to RB because
of the identical electron negativities of these atoms in the unit
cell. For graphene samples with size greater than 1 nm show
that for R = 0.64 Å, αCAL

total is identical to αDFT
total . The estimated

R value for graphene is in close agreement with the estimate
based on fullerene structure [29]. The size based studies are
carried for BN. RA defines the parameter for N atom and RB for
the B atom. The electron negativities suggest B atom should
have a low Gaussian distribution of electronic density when
compared to N atom. During the estimation of αCAL

total using
Eq. (B6), it is assumed that RA is greater than RB and the
estimate matches with the αDFT

total at 0.76 and 0.35 for N and B,
respectively. Similar type of studies are performed to estimate
the CD parameter for other materials. The calculated total
polarizability from DFT and derived estimate from Eq. (B6)
and the parameter R are tabulated in Table I.

APPENDIX C: VALIDATION OF CHARGE-DIPOLE
MODEL

In this section, the CD model parameters are validated by
calculating the piezoelectric coefficients of BN and MoS2. A
80-Å square sheet of BN and MoS2 is subjected to in-plane
stretching by displacing (ux ) the left and right ends of the
sheet, shown in Fig. 7(a). The deformed atomic configurations
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TABLE III. Anisotropic flexoelectric coefficients [μzxzx, μyxzx (ay
1), μxxzx (ax

1)] given in nC/m. a0 has units of C/m2, while a2 has units of C.

Material μzxzx ay
1(μyxzx ) ax

1(μxxzx ) ay
0 ax

0 ay
2 ax

2

Graphene 0.00286 1.53 × 10−7 5.18 × 10−6 −7.40 × 10−7 −1.61 × 10−8 −1.72 × 10−4 1.97 × 10−4

Silicene-flat 0.00634 1.04 × 10−5 1.91 × 10−5 1.69 × 10−5 5.35 × 10−8 −0.00180 0.00072

BN 0.00026 0.00146 3.06 × 10−5 −5.76 × 10−6 3.04 × 10−7 0.26296 −1.96 × 10−4

Silicene 0.00728 0.0027 2.94 × 10−5 −6.43 × 10−5 8.03 × 10−7 −0.0164 0.00152
MoS2 0.03194 0.00962 0.00164 −0.00039 0.00060 −4.5484 −0.0512

are energy minimized using the conjugate gradient scheme,
after which the charge and dipole moments are obtained
from Eqs. (A3) and (A4) of CD model. A linear variation is
observed between total polarization and strain, as shown in
Fig. 7(b). The piezoelectric coefficient (slope of this variation)
for BN and MoS2 are in good agreement with the reported
DFT estimations (see Table II). This validates the CD parame-
ters derived from DFT and the prediction of electromechanical
behavior.

APPENDIX D: FLEXOELECTRICITY IN
UNSTABLE STRUCTURE

The developed simulation scheme with CD model is ap-
plied to unstable 2D structure of silicene. For unstable silicene
(flat silicene), the buckling height is assumed as zero to
understand the effect of buckling height on the flexoelectric
polarization. The polarization response with the strain gradi-
ent is given in Fig. 8. The response of silicene was also added
for comparison purpose. The slope of silicene and flat silicene
are differ only by 15%, which is directly connected with the
absence of buckling height.

APPENDIX E: IN-PLANE FLEXOELECTRIC
POLARIZATION

The variation of in-plane polarization Px and Py show a
quadratic dependence with bending curvature K as shown in
Fig. 9, which is similar to earlier reports for BN [71–73].

Py = dyzxεzx + μyxzx ∂εzx

∂x
= ay

0 + 1

2
ay

1K + 1

4
ay

2K2, (E1)

Px = dxzxεzx + μxxzx ∂εzx

∂x
= ax

0 + 1

2
ax

1K + 1

4
ax

2K2. (E2)

In the above equations, ax
1 and ay

1 have units of C/m, which
are those of flexoelectric constants, while a0 and a2 have units
of C/m2 and C, respectively. Taking a1 as the flexoelectric
coefficient, the numerical values for graphene, BN, silicene,
and MoS2 are tabulated in Table III along with the bending
flexoelectric coefficients. We note that because the mechanical
bending we imposed to generate the out-of-plane flexoelectric
constants only generate a constant strain in the x direction
from applied deformation in the z direction, the in-plane
polarization that is generated also results in contributions to
in-plane piezoelectricity.

From Table III, the in-plane flexoelectric coefficients
(μyxzx and μxxzx ) are significantly smaller than the out-of-
plane coefficient (μzxzx ) of graphene under bending deforma-
tion. The corresponding in-plane polarizations Px and Py are
also lower than the out of plane polarization Pz. This implies

that the in-plane π -σ interactions for graphene generate rel-
atively small in-plane dipole moments. A symmetry analysis
can be used to show that μyxzx and μxxzx are zero [74], which
implies that the graphene system is isotropic [75]. Similarly,
lower in-plane flexoelectric coefficients are observed for flat
silicene (see Table III).

In the case of anisotropic BN [75], the in-plane coeffi-
cient (μyxzx ) is nearly five times larger than the out-of-plane
coefficient (μzxzx ), as shown in Table III, while Figs. 9(b)
and 4 show that the polarization Py is higher than Pz. In
addition, the charge-dipole coupling induced electric field
Eq,y is greater than Eq,z, and that the ratio of Eq,y/Eq,z is about
4.6, which is similar to the ratio between the in-plane and out
of plane flexoelectric coefficients. First principles calculations
for a corrugated BN sheet [76] provide significant in-plane
polarization, which is related to π and σ chemical bond shifts
due to the out-of-plane atomic displacements. The very small
difference in out of plane displacements of the B and N atoms
[77,78] leads to relatively small out-of-plane dipole moments,
and also suggests that in-plane π -σ interactions are stronger
which makes μyxzx is higher than μzxzx.

The flexoelectric coefficient μzxzx is higher than μyxzx for
buckled silicene. The corresponding polarization Pz is greater
than Py, as observed from Figs. 4 and 9(b), and the out of plane
electric field is larger than the in-plane electric fields, which
implies that the π -σ coupling is stronger out-of-plane than
in-plane. It is also noted that the atomic buckling in silicene
significantly enhances the in-plane flexoelectric coefficient
compared to flat silicene (see values of μyxzx for silicene
and silicene-flat materials in Table III). Because the buckling
height of silicene is significantly larger than seen in BN, larger
dipole moments and thus larger in-plane and out-of-plane
flexoelectric constants are predicted for buckled silicene as
compared to BN.

In BN, silicene, and MoS2, it is observed from Fig. 9
for BN that the in-plane polarization Py is higher than the
in-plane polarization Px. In the present study, the x direction is
considered as the armchair configuration while the y direction
represents the zigzag configuration, which means that polar-
ization in the zigzag direction is higher than in the armchair
direction, which was previously observed for BN [76]. To
further confirm this, we rotated the atomic system to change
the x direction to zigzag and the y direction to armchair and
repeated the bending test. There is no change in polarization
Pz and the corresponding flexoelectric coefficients. When
coming to in-plane polarizations, we found px (zigzag) is
higher than py (armchair). We also observed that px is linear
and py is parabolic [see Figs. 10(a) and 10(b)], which is also
the same form for the strain fields that were observed in the
armchair and zigzag directions. This implies that the local
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atomic configuration strongly impacts the deformation, and
thus the induced polarization, which was also observed in
silicene and MoS2. The observation of anisotropic in-plane
polarization due to bending is similar to the earlier findings
reviewed by Ahmadpoor and Sharma [75].

In summary, we find that monatomic unit cells, such as
graphene and flat silicene, do not exhibit spatial variations
in the out of plane displacements due to bending, whereas
MoS2, buckled silicene and BN do exhibit, to varying degrees,
spatial variations in the out of plane displacements due to

bending. As a result, the in-plane charge-dipole interactions
are week for graphene and flat silicene, resulting in low
in-plane flexoelectric constants. In contrast, MoS2 exhibits
significant structural asymmetry under bending, which en-
hances the in-plane π -σ coupling, with a similar effect seen
in buckled silicene. While BN does not exhibit some spatial
variation in the out of plane displacements, the out of plane
displacements are relatively small, and as such, the in-plane
flexoelectric constants are smaller than buckled silicene and
MoS2.
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