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Abstract
Abstract In bistable actuators and other engineered devices, a homogeneous stimulus (e.g., mechanical,
chemical, thermal, or magnetic) is often applied to an entire shell to initiate a snap-through instability. In
this work, we demonstrate that restricting the active area to the shell boundary allows for a large reduction
in its size, thereby decreasing the energy input required to actuate the shell. To do so, we combine theory
with 1D finite element simulations of spherical caps with a non-homogeneous distribution of stimulus-
responsive material. We rely on the effective curvature stimulus, i.e., the natural curvature induced by
the non-mechanical stimulus, which ensures that our results are entirely stimulus-agnostic. To validate our
numerics and demonstrate this generality, we also perform two sets of experiments, wherein we use residual
swelling of bilayer silicone elastomers—a process that mimics differential growth—as well as a magneto-
elastomer to induce curvatures that cause snap-through. Our results elucidate the underlying mechanics,
offering an intuitive route to optimal design for efficient snap-through.

1 Introduction

Following the lead of organisms like the Venus fly
trap [1,2] and the hummingbird [3], which rely on fast,
snapping motions to capture prey, engineers often use
snap-through instability of shell structures for function-
ality in design. Snapping rapidly releases stored elas-
tic energy and does not require a continuously applied
stimulus to maintain an inverted shape in bistable
structures. Thus, snap-through instability is a partic-
ularly attractive mechanism for e.g., robotic actuators
or mechanical muscles [4,5], optical devices [6], and
dynamic building façades [7]. Each relies on a combi-
nation of geometry-endowed bistability [8] and a snap-
inducing stimulus to achieve its purpose. The stimulus
can be mechanical—e.g., an indentation force [9], pres-
sure [5], or torque from a child’s hands inverting a jump-
ing popper toy [10]—or non-mechanical, e.g., tempera-
ture [11], voltage [4], a magnetic field [12], or differen-
tial growth [13,14], swelling [15,16], or de-swelling [17].
An important connection between these wide-ranging
stimuli is that each destabilizes a shell by generating a
change in the shell’s curvature relative to its original,
stress-free curvature.
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In particular, non-mechanical stimuli alter the stress-
free reference state, producing spontaneous or natural
curvature. A classic example is the bimetallic beam of
Timoshenko, which curves as its two layers experience
different expansive responses to an increasing thermal
stimulus [18]. The natural curvature may be observed
as the shape that a beam adopts when free of external
constraints and exposed to a stimulus that causes this
beam to bend. In plates or shells, however, the natural
curvature is generally not achievable at all points. In
such non-Euclidean [19] structures, geometric incom-
patibility leads to residual stresses and often complex
reconfiguration [20,21]. Still, the relationship between
a stimulus and the corresponding natural curvature it
induces in a residually stressed structure can be dis-
cerned via simple experimental methods based on the
bending deformation of an equivalent beam. Calibra-
tion can be performed as an independent experiment,
or in a manner similar to the opening angle method,
wherein an axial slice exposes stresses induced by dif-
ferential growth in tubular biological structures like
arteries [22]. Thus, natural curvature serves as use-
ful “effective” stimulus, allowing for generalization of
these many non-mechanical, curvature-inducing stim-
uli. This concept was recently formalized within a non-
Euclidean theoretical framework based on Koiter shell
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theory, revealing that the curvature stimulus behaves
like a mechanical potential [15,23]. With experiments
and simulations, Pezzulla et al. [15] demonstrated that
their curvature potential framework captures instabil-
ities of spherical shells subjected to a homogeneously
applied curvature stimulus.

Advanced functional devices actuated by homoge-
neous, curvature-inducing stimuli often require signif-
icant energy input, or have high material costs. Com-
mon commercially available dielectric elastomer (DE)
films require up to 150 V µm−1 for most applications,
resulting in driving voltages in the kV range, and pro-
portionally high energy consumption [24,25]. Using less
of these smart materials can decrease both cost and
the likelihood of device failure. This need has inspired
custom production of ultrathin electroactive films via
methods like pad-printing [26] or electrospraying [27].
Clearly, it is desirable to reduce these costs for DEs
and other stimulus-responsive devices without requir-
ing such efforts. We find that snap-through behavior
may be preserved in spherical caps while the size of
the active region—that is, the portion of the shell sub-
jected to an arbitrary curvature-inducing stimulus—is
significantly reduced.

In the present study, we extend the work of Pezzulla
et al. [15] to show that when the active portion of a
snapping shell is strategically placed, the magnitude of
the stimulus need not increase, thus allowing for sig-
nificantly reduced energy and material needs overall.
We demonstrate this with 1D numerical simulations
performed in COMSOL Multiphysics, wherein a cur-
vature stimulus acts on a section of an otherwise pas-
sive shell. We validate our numerics with experiments,
in which shells respond to different curvature-inducing
stimuli—this also serves to demonstrate the generality
of our findings. In one series of experiments, we rely
on localized differential swelling of silicone elastomers,
and in the second we use a magneto-active elastomer.
Our numerical and experimental methods are described
in Sect. 2. In Sect. 3, we present our results to answer
the question: Is the active region more effective when
placed in the bulk of the shell, or at the edge? Next,
we ask: What is the ideal size of the active region? In
other words, what is the smallest active region that
preserves snap-through behavior, without requiring the
magnitude of the stimulus to increase? In Sect. 4 we
present a scaling solution for the ideal size of the active
region, which we derive via energy minimization. These
findings, which our data support, offer a mechanics-
informed route to optimization. The underlying physics
revealed prompt an additional examination of how the
critical curvature scales with the active area in each
configuration (Sect. 5), which adds rigor to the compar-
ison presented earlier (in Sect. 3). We offer concluding
remarks in Sect. 6.

2 Methods

In this work, we study spherical caps in two configura-
tions: “active bulk” (Fig. 1a), and “active boundary”
(Fig. 1b). We refer to the angular depth of the shell
measured from the pole as θ. The angular extent of the
active region is denoted by θa, and is measured either
from the pole or from the end of the passive region for
the active pole and edge configurations, respectively.
The shell thickness is given by h and the radius of
curvature by R. Below, we describe our numerical and
experimental methods.

2.1 1D numerics

We performed finite element simulations in COMSOL
Multiphysics 5.2. Following Refs. [15,23], and because
our experiments (Sect. 2.2) confirm that the shells
we study retain rotational symmetry at least up to
the point of snapping, the energy is minimized in the
1D profile curve of the shell. A circular segment with
radius of curvature R ∈ [9.65, 45.25] mm represents
the midline of a spherical cap with an angular depth
θ ∈ [0.52, 1.14] rad measured from the pole. This corre-
sponds to θ/

√
h/R ∈ [2.2, 9.6], which covers most the

range where curvature-induced snap-through occurs for
fully active shells [15]. As we discuss in Sect. 4, this
parameter compares the depth of the shell to the char-
acteristic size of its bending-dominated boundary layer,
which becomes central to our analysis. The ratio θa/θ
is between 0.3 and 1 for the data presented herein,
because we did not observe snapping for shells with
θa/θ < 0.3. The shell thickness h ∈ [0.5, 1.3] mm (so
that h/R ∈ [0.015, 0.135]) enters in the energy. The
material is linear, elastic, and isotropic, with Poisson’s
ratio ν ∈ [0.25, 0.5]. The Young’s Moduli Ea and Ep

of the active and passive regions were set to either
Ea = Ep ∈ [0.1, 20] MPa, or Ea/Ep ∈ [0.005, 200].
Despite that we assume a homogeneous modulus (see
Sect. 4), we observe no significant impact of the modu-
lus on our results. This is expected, since the bistability
of the shell depends only on geometry [8]. A Dirichlet
boundary condition is applied to the endpoint at the
pole, while the edge end remains free.

Our model relies on the theoretical framework recently
introduced by Pezzulla et al. [15] and detailed further
by Holmes et al. [23], which offers significant advan-
tages for numerical energy minimization in the pres-
ence of non-mechanical stimuli. The authors demon-
strate that in the absence of in-plane stretching of the
middle surface, the curvature-inducing stimulus may be
decoupled from Koiter’s elastic energy and treated as a
potential of the natural curvature κ. Thus, it is straight-
forward to selectively apply a curvature stimulus. The
elastic energy (Uel in the schematic in Fig. 1b) must
be minimized over the entire body, while the curvature
potential Pκ ∼ κ contributes to the total energy only
in the active region. To capture the sudden, nonlinear
snap-through instability, we use a custom arc-length
method to vary the curvature stimulus κ [15]. A com-
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(a)

(c)

(b)

Fig. 1 Schematics of the a active bulk and b active edge
configurations of the partially active spherical cap, with cor-
responding profile curves used in FEM simulations. Relevant
parameters are labeled: the angular shell depth θ measured
from the pole, the angular size of the active (red) region θa,
and the radius of curvature R and thickness h. As depicted
in b, the COMSOL model minimizes the elastic energy Uel

over the whole body, with an additional contribution from
the curvature potential Pκ in the active region. c Images
from a typical residual swelling experiment in the active
edge configuration. Residual swelling occurs in the bilayer
(active) region, which has an outer pink layer (PVS 8) and
an inner green one (PVS 32). Here, the pink layer contracts

while the green layer beneath it expands, driving the cur-
vature to increase. The beam has the same cross section as
the bilayer region. Free from geometric constraints, it adopts
the curvature κ̄ = 1/R + κ, revealing the evolving natural
curvature stimulus κ that acts on the active region of the
shell. The passive region consists of two (non-swelling) green
layers. In i, the materials have just cured. ii The curvature
stimulus creates a torque-like effect, causing the boundary
of the shell to curl upward. The curvature evolves to a criti-
cal value κ̄c when snap-through occurs, as shown in iii False
color has been added to the thin, green layer of the beam,
and to the inverted shell in iii

plete derivation of the equations used in COMSOL is
provided in Ref. [23].

2.2 Experiments

To validate our numerical results, we performed exper-
iments in which shells are made, in part, of stimulus-
responsive elastomers. To emphasize the generality of
the curvature stimulus, we did this in two ways. In
one set of experiments, we used residual swelling of
bilayer silicone elastomers [15,28–30], wherein diffusion
of free polymer chains causes a geometric incompati-
bility resolved by curving. Deformation from residual
swelling is growth-like and permanent. In additional
experiments, we used magneto-active elastomers, which
reversibly curve in response to a magnetic field. Below,
we describe the methods used for each type of experi-
ment.

2.3 Residual swelling experiments

It was previously demonstrated that residual swelling
creates a curvature sufficient to drive inversion of full
bilayer spherical caps [15]. In the present work, only
a portion of the shell is subjected to residual swelling.
Within this active region, we layer two polyvinylsilox-
ane (PVS) elastomers (ν = 0.5), which we refer to as
green (Zhermack Elite Double 32, E = 0.96 MPa) and
pink (Zhermack Elite Double 8, E = 0.23 MPa). In a
procedure detailed in “Appendix A” (see Fig. 6), we
cast the materials one-by-one in their fluid state over a
metal ball bearing to form a nominally green cap with

either a bilayer ring at the edge, or a bilayer cap at the
pole. In the active region, the outer layer is pink (see
Fig. 1c). After cross-linking (which occurs in about 20
minutes at room temperature), the pink elastomer is
left with residual, uncross-linked polymer chains. Thus,
in the bilayer region where the pink and green material
are in contact, there is a concentration gradient of free
polymer chains. To resolve this, chains flow from the
pink to the green elastomer. As such, the pink region
loses mass, or shrinks, while the green region grows.

When this differential swelling occurs in a beam,
the geometric mismatch between the length of the two
layers, which are bonded together, results in a natu-
ral curvature—this is analogous to heating a bimetallic
strip [18] or swelling a bilayer gel beam [31]. The beam
is free to bend into the shape that minimizes its total
potential energy, while remaining effectively stress-free.
When applied instead to a plate or shell, the same stim-
ulus attempts to bend the structure into a spherical sur-
face. The curvature of this desired configuration is again
referred to as the natural curvature. However, plates
and shells must satisfy the Gauss–Codazzi–Mainardi
compatibility equations. Bending into a sphere changes
the Gaussian curvature, which cannot be accomplished
without stretching the surface. This is energetically pro-
hibitive for slender structures, so the natural curvature
is not achieved everywhere, and a different configura-
tion that is residually stressed is realized instead. Thus,
while the magnitude of the natural curvature is essen-
tial for understanding the stable, equilibrium configura-
tions of a structure, it cannot be readily determined or
measured from the deformed shape. To determine the
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natural curvature in our experiments, we must examine
how a beam cut from the shell would deform.

To do so, we slice a small, bilayer beam from the
same materials that make up the active region of the
shell (see “Appendix A”; Fig. 6j), so that it has the
same bilayer cross section. In our spherical caps, the
bilayer region around the boundary curls upward (see
Fig. 1c,ii), forming a lip like that which appears when a
jumping popper toy is inverted [8,10]. Meanwhile, the
free, unconfined beam adopts a curvature κ̄, which is
the sum of the initial curvature −1/R and the natural
curvature κ. Thus, the evolving, natural curvature stim-
ulus is κ = κ̄+1/R [15,28,29]. We mount the shell and
beam side-by-side and use a Nikon D610 DSLR Cam-
era to take time-lapse images at a rate of one photo
per minute (maximum deformation is reached at about
two hours post-cure.) The critical curvature κc is iden-
tified in ImageJ by fitting a circle to the beam in the
image when snap-through occurs (see Fig. 1c,iii)—the
radius of curvature is 1/κ̄c. Residual swelling experi-
ments produce curvatures up to κ < 1

4h [28,29]. Deep
shells require higher curvatures for snap-through [15],
so the geometric range accessed in experiments is lim-
ited compared to simulations. We performed experi-
ments with h/R ∈ [0.02, 0.07], θ ∈ [0.58, 0.98] rad, and
θa/θ ∈ [0.3, 1].

2.4 Magneto-elastomer experiments

The magneto-active shells are fabricated using a sim-
ilar bilayer casting approach to the residual swelling
shells. In this case, the ferromagnetic active layer con-
sists of iron oxide (Fe3O4) nanoparticles (Sigma-Aldrich
637106) mixed with green PVS at a weight ratio of 20%.
A passive PVS cap is made first, followed by a ferromag-
netic edge ring. Then, an additional PVS layer is added
to join the two, resulting in a shell of relatively uniform
thickness with a passive bulk and active edge. We did
not study the active bulk configuration with magneto-
elastomer shells. A 25.4 mm cubic NdFeB magnet (N52
grade by SuperMagnetMan) is used to generate the
magnetic gradient. The strength is measured by the
magnetic flux density B, using a magnetometer (PCE
Instruments Inc). The relative permeability and rema-
nence of the NdFeB magnet are 1.04 and 1.45, respec-
tively, giving B = 0.562 T at the surface center of the
magnets.

We tested five magnetic shells with h/R ∈ [0.02, 0.04],
θ = 0.86 rad, and an active boundary region such that
θa/θ ∈ [0.07, 1]. The center of the magneto-active shell
is mounted on a PVS column (diameter 4.5 mm) to
support the shell when magnetic field is applied. The
NdFeB magnet is mounted vertically on Instron 5943
with a 5N load cell, then quasi-statically approaches the
shell at a rate of 0.1 mm/s using the software Bluehill3.
When the magnet reaches a critical distance from the
shell, the magnetic body force acting on the ferromag-
netic edge triggers snapping. The critical displacement
is retrieved from the force-displacement curve. In order
to find the corresponding critical B, we simulate the

Fig. 2 Comparison of the critical curvature κc compared
to that for a fully active shell, κfull

c = κc(θa = θ), for varied
active area fraction, i.e., the active area compared to the
total shell area, in the active bulk (blue triangles) and active
boundary (pink circles) configurations. Our results show a
clear preference for the active boundary configuration: Aa/A
can be reduced to as low as about 0.34 without requiring a
higher curvature stimulus for snap-through, whereas if the
bulk is active (and the boundary is passive), κc/κfull

c > 1
for any Aa/A < 1. Error bars correspond to one standard
deviation, and are smaller than markers in all cases except
the magneto-active experiments

magnetic field using the AC/DC module in COMSOL
5.6. This allows us to visualize the magnetic field and
obtain B at given spatial points. Although the magnetic
stimulus is non-homogeneous, we select the value of B
at the edge of the shell for our analysis. To relate B
to the curvature stimulus κ, we perform an additional
set of experiments in which we measure the curvature
in a ferromagnetic beam, oriented in the same direc-
tion as the edge of the shell, as the magnet approaches.
For details on the magnetic field visualization and the
magnetic flux-curvature calibration, see “Appendix B.”

3 Comparison of active bulk and boundary

The total area of a spherical cap is A = 2πR2[1−cos(θ)].
For the active bulk configuration, the active area Aa =
2πR2[1 − cos(θa)], and for shells with an active edge
region, Aa = 2πR2[cos(θ − θa) − cos(θ)]. In Fig. 2, we
compare the critical curvature κc to that for a fully
active shell, κfull

c ≡ κc(θa = θ), for varied proportions
of the active area to the total area of the shell, Aa/A—
that is, [1− cos(θa)]/[1− cos(θ)] for the active bulk and
[cos(θ−θa)−cos(θ)]/[1−cos(θ)] for the active edge con-
figuration. In the active bulk configuration, a reduction
of only 9 percent in Aa/A causes the critical curvature
κc to increase significantly above κfull

c . Meanwhile, we
observe that when the boundary is active and the pas-
sive region lies in the bulk, the active portion can be
reduced as much as 65 percent in some cases without
requiring κc/κfull

c > 1 for snap through.
As discussed in Sect. 2.1, it has been shown that

a stimulus that induces intrinsic curvature may be
treated as a curvature potential, which is decoupled
from Koiter’s elastic energy [15]. Pezzulla et al. demon-
strate that this curvature potential may be further
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decomposed into two work-like terms, one of which is
integrated over the bulk of the shell, and the other
around the boundary, i.e., Pκ = −Wbulk−Wedge. Exam-
ining the two terms offers an interpretation of the non-
mechanical curvature stimulus as analogous to com-
bined mechanical loading: The bulk term has the form
of an external pressure (mathematically, it is the normal
displacement multiplied by the homogeneous natural
curvature, which thus behaves as a hydrostatic pres-
sure), whereas the edge term is torque-like (the dot
product of a traction force and a rotation vector at the
boundary). Furthermore, the authors present a scaling
analysis to show that the normal, pressure-like term
scales as:

Wbulk ∼ h4κ2(1 − cos θ), (1)

and the torque-like term as:

Wedge ∼ h4κ2

(
R

h

)3/2

sin θ. (2)

Comparing the two contributions gives

∣∣
∣∣
Wedge

Wbulk

∣∣
∣∣ ∼ (R/h)3/2

tan(θ/2)
� 1, (3)

showing that the edge work dominates in thin shells.
In our experiments and simulations, as for those in
Ref. [15], we observe that bulk deformation is negligible
compared to boundary rotation in snapping, supporting
this finding.

The implication explains our findings in general:
removing a portion of active area from the edge weak-
ens the effect of the curvature stimulus more than if
the same amount of area were removed from the bulk,
as bulk deformation due to the curvature stimulus is
minimal to begin with. Conversely, the inequity sug-
gests that the active edge configuration is the more
efficient choice for the design of structures that will
snap with minimal energy needs. To clearly distinguish
between these regimes, henceforth we will refer to the
critical curvature in the active boundary configuration
as κedge

c , and that in the active bulk configuration as
κbulk
c . Despite this clear preference for an active bound-

ary, the optimal size of the active region is not clear
from the scattered data in Fig. 2. We investigate this
in the following section.

4 Optimal size of active boundary via
energy minimization

To discern the most efficient size of the active region
at the shell boundary, we minimize the total potential
energy in the system U , which consists of the internal
elastic energy, and the non-mechanical loading due to
curvature [14,15,23]. In the latter, the torque-like con-
tribution at the boundary dominates over the pressure-
like effect in the bulk. This effect is amplified in the

active edge configuration, as some or all of the bulk is
passive. Accordingly, we observe very small bulk defor-
mation compared to boundary rotation (see Fig. 5b) As
such, we neglect the pressure-like contribution in the
bulk. However, an additional torque-like effect arises at
the boundary between the active and passive regions.
This torque acts in the opposite direction to the one
acting at the free boundary (see Fig. 3a), thus bend-
ing the two boundaries of the active region toward one
another. Including this additional torque-like contribu-
tion at the active-passive interface gives:

U = UK −
∮

out

B(1 + ν)κ(Δβout) d̊s

−
∮

in

B(1 + ν)κ(−Δβin) d̊s

(4)

where UK is the Koiter shell energy [32], B is the bend-
ing rigidity, Δβout and Δβin are the angle change at
the boundary and the active-passive interface, respec-
tively, and d̊s is the line element. The second and third
terms quantify the torque-like contribution of the non-
mechanical loading induced by the natural curvature at
either end of the active edge region. Note that a pos-
itive angle change corresponds to a counter-clockwise
rotation.

Because we expect axisymmetric deformation up to
snap-through, these non-mechanical loading terms can
be collected into the free boundary line integral as

U = UK −
∮

out

B(1 + ν)κΔβeq
out d̊s (5)

where Δβeq
out = Δβout − Δβin

(
1 − θa

θ

)
. Physically, this

corresponds to transforming the shell into an equiva-
lent one that experiences only the angle change Δβeq

out
at the boundary, and is fully active, i.e., the natu-
ral curvature κ acts on the whole body (see Fig. 3b).
Then, from Ref. [15], we can postulate that the snap-
ping occurs when the colatitude-direction tangent vec-
tor at the boundary of the equivalent shell approxi-
mately becomes horizontal, i.e., at Δβeq

out ∼ θ. Note
that this does not imply that Δβout ∼ θ, which as we
discuss in Sect. 5, is not necessarily the case.

For thin surfaces where the non-mechanical stim-
ulus acts through-the-thickness, the contribution of
the mid-surface stretch induced by the stimulus can
be neglected [15,23]. Then, assuming the colatitude-
direction bending strain is much larger than the
azimuthal one, the shell energy U scales as

U ∼ B

2
(
b11

)2
p
Ap +

B

2
(
b11

)2
a
Aa

− B(1 + ν)κ
[
Δβout − Δβin

(
1 − θa

θ

)]
(2πRθ)

(6)
where b11 is the characteristic curvature in the
colatitude-direction and the subscripts p and a denote
the passive bulk and active edge regions. The curvature
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(a)

(b)

Fig. 3 a Schematic of the energy minimization scheme.
The partially active shell is shown in i, where κ delivers
a torque-like effect (pink arrows) along the free boundary
and at the active-passive interface, which drives the tan-
gent to the edge (black line) to rotate an amount Δβout

(to the dark gray line) and that at the interface a smaller
amount Δβin. The characteristic angular size of the natural
boundary layer,

√
h/R is labeled. ii The equivalent fully

active shell, which feels a torque from the curvature stimu-
lus only about the free edge. Fully active shells snap-through
when the tangent to the edge becomes approximately hor-
izontal [15]. b The normalized critical curvature for the
active edge configuration versus the active angular size θa
compared to the characteristic angular scale of the natu-
ral boundary layer,

√
h/R. The data collapse supports the

result Eq. (10), i.e., the optimal size for the active boundary
region θ∗

a scales with the geometry-endowed boundary layer
size

b11 can be estimated as the angle change along an arc
over its length, so that

(b11)p ∼ −(θ − θa − Δβin)
R(θ − θa)

(7a)

(b11)a ∼ −(θa + Δβin − Δβout)
Rθa

. (7b)

The passive area Ap scales as πR2θ2−Aa, and the active
area Aa scales as 2πR2θθa. Inserting these scalings and
minimizing Eq. (6) with respect to Δβin and Δβout

gives the solutions for these rotations in the deformed
configuration. Evaluating the result at the presumed
point of instability, Δβeq

out ∼ θ, gives the critical nat-
ural curvature of the partially active shell at snapping
as:

κedge
c ∼ θ

θa(1 + ν)R
. (8)

Assuming the minimum critical curvature occurs at
κc = κfull

c , where from Ref. [15]:

κfull
c ∼ θ

(1 + ν)
√

Rh
, (9)

we find that the optimal size of θa, which we denote as
θ∗
a , should scale as:

θ∗
a ∼

√
h/R. (10)

We note that this corresponds to an optimal active area
A∗

a ∼ 2πR2[1 − cos(
√

h/R)], placed at the edge of the
shell. The result in Eq. (10) is shown in Fig. 3b. We
see a promising collapse of our data, and a minimum
emerges at about 2.5 on the horizontal axis, indicat-
ing that the true optimal θ∗

a ≈ 2.5
√

h/R for our shells,
which vary in geometry, E, and ν. For moderately deep
shells, we observe critical curvatures even below the pre-
dicted κfull

c (as low as κc = 0.95κfull
c , for a shell depth

θ/
√

h/R = 5.3 when θa/θ = 0.5). We suspect that
this results from additional destabilizing effects deliv-
ered by the torque at the active-passive interface, which
tends to help flatten the bulk of the shell. We note
that magneto-elastomer shells carry more error than
the residual swelling experiments and simulations. This
is largely due to the non-uniform magnetic gradient
generated from the NdFeB magnet. Additionally, the
shells are highly sensitive to fabrication errors, which
can result in a non-uniform ferromagnetic boundary.

The result of our energy minimization scheme given
in Eq. (10) coincides with the angular scale of the
bending-dominated boundary layer [33,34] for a spheri-
cal cap,

√
h/R. In open shells, the characteristic length

of the boundary layer is that which is close enough to
the edge that the thickness “feels” relatively large in
comparison [35]. In this region, the energy balance shifts
(thin shells are nominally stretching energy-dominated,
preferring isometry), and so does the preferred defor-
mation mode. The boundary layer is readily observed
as the lip that curls upward when a spherical cap of
finite thickness, e.g., a tennis ball sliced in half, is
everted [8,36]. In this region, the shell “tries” to return
to its initial state, resolving some of the stress that
arises due to stretching above the midline and compres-
sion below it. Only if the boundary layer is large com-
pared to the shell depth is the everted shell unstable,
snapping back to its undeformed configuration. If the
boundary layer is relatively small, the shell is bistable
and can rest in its everted state indefinitely.

This scenario appears to be analogous to the non-
everted, partially active shells we study: if the bending
region is large, snap-through occurs easily, whereas a
shell with a small active region is stable even against a
higher stimulus. This points to an intuitive interpreta-
tion of our results: generally speaking, in the active edge
configuration, if the angular size of the active region
meets or exceeds that of the boundary layer θbl, the
region predisposed to bending may do so. As a result,
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(a) (b) (c) (d)

Fig. 4 a When the active portion of the shell is in the
bulk, the size of the effective boundary layer is reduced.
As a result, the critical curvature increases according to
Eq. (12a), and any reduction in θa (greater than 1 on the
x-axis) increases the curvature stimulus κbulk

c required for
snap-through, as shown in b. As Eq. (12b) predicts, the
stimulus increase scales linearly with θ/θa when the pas-
sive edge region is smaller than the boundary layer size
(darker blue points, θp/

√
h/R � 0.5; Fit corresponds to

points in this range.) c If instead the boundary of the shell
experiences the curvature stimulus, as long as θa exceeds
the boundary layer, the behavior follows that of the fully
active shell, i.e., Eq. (13a) [15] holds. d As such, θa can be
reduced to as much as 0.35θ before the critical curvature
increases above that for a fully active shell, κfull

c , in agree-
ment with Eq. (13b). In a–d, circular data points are from
simulations, and triangles are from experiments

snapping is unaffected compared to a fully active cap.
For θa < θbl, we interfere with the boundary layer—this
can be seen as reducing the size of the effective bound-
ary layer—and higher curvatures are required to drive
snap-through. The efficacy of the geometric design, in
sum, depends on how the effective boundary layer set
by θa, where we impose bending, relates to the natural
boundary layer that scales as

√
h/R, where the shell

prefers bending. In the active bulk configuration, any
θa < θ disturbs the boundary layer, forcing the critical
curvature upward. Thus, this interpretation also clari-
fies what we saw in Sect. 3. This prompts us to briefly
revisit our comparison of the active bulk and boundary
configurations.

5 Scalings for the critical curvature based
on fully active shells

In light of the importance of the boundary layer dis-
cussed in Sect. 4, we may add rigor to our claim that
the active boundary configuration is more efficient than
the active bulk (Sect. 3). To do so, we rely on the estab-
lished result [15] (from which we determined Eq. (9))
that the critical curvature for fully active shells scales
as:

κfull
c R ∼ θ

(1 + ν)
√

h/R
. (11)

This finding leans on the assumption that the pressure-
like effect of curvature in the bulk may be neglected due
to the dominant effect of curvature on the boundary,
which we have similarly employed in Sect. 4. Addition-
ally, it assumes based on empirical observations that the
tangent vector to the boundary becomes approximately
horizontal at the point of snap-through [14,15].

In the active bulk configuration, we reduce the size
of the effective boundary layer. Accordingly, we observe
that the tangent to the edge of the effective boundary

(b)(a)

Fig. 5 a When the active region is large enough compared
to the characteristic size of the boundary layer, the edge
tangent requires a rotation Δβout ∼ θ to snap through,
which results in an approximately horizontal tangent. Data
is from simulations of a fixed shell geometry with chang-
ing active area. For θa � 2

√
h/R in this case, the tan-

gent undergoes additional rotation to trigger instability.
Roman numerals correspond to b, which shows the initial
(dashed) and immediately pre-snap (solid) profile curves for
θa/θ = 0.95, 0.85, . . . , 0.45. The rotations Δβout and Δβin

are shown in v. The angle change Δβout increases from 0.35
rad in i to 0.82 rad in vi

layer—that is, the active-passive interface, and not the
edge of the shell—becomes approximately horizontal at
the point of snap-through. Assuming the effective angu-
lar scale of the boundary layer scales as (θa/θ)

√
h/R,

it follows from Eq. (11) that:

κbulk
c R ∼ θ2

θa(1 + ν)
√

h/R
, θp < θbl (12a)

κbulk
c

κfull
c

∼ θ

θa
, θp < θbl, (12b)
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where θp = θ − θa represents the passive portion of
the shell. Eqs. (12a) and (12b) are shown in Fig. 4a&b,
respectively, where indeed we see that the critical curva-
ture increases linearly with θ/θa until the passive region
reaches the approximate size of the boundary layer. At
this point, where the entire boundary layer is inactive,
the assumption that the edge work outweighs the bulk
work breaks down and the critical curvature diverges.

For completeness, we also study the implications of
Eq. (11) on shells with active boundaries. In Sect. 4,
we used the horizontal tangent assumption (Δβeq

out ≈ θ)
for the equivalent fully active shell. We observe that for
shells in the active edge configuration, this assumption
breaks down, i.e., Δβout > θ, if θa approaches the size
of the boundary layer (see Fig. 5). With this in mind, as
long as the coincident conditions that boundary layer
is in tact and the boundary tangent is approximately
horizontal at snap-through (θa � √

h/R), due to the
dominance of the edge work we expect no change to the
critical curvature from κfull

c . That is,

κedge
c R ∼ θ

(1 + ν)
√

h/R
, θa > θbl (13a)

κedge
c

κfull
c

= 1, θa > θbl. (13b)

Note that Eq. (13b) is complementary to the result
Eq. (8). Eqs. (13a) and (13b) are shown in Fig. 4c, d,
respectively. Comparing Eqs. (12b) and (13b) confirms
that for any small to moderate reduction to the active
region, the active bulk configuration requires a higher
curvature stimulus than the active boundary.

6 Conclusion

The aim of the present work was to guide the design
of efficient snapping structures, which simultaneously
minimize the active area and the magnitude of stimu-
lus needed. We studied partially active spherical caps in
two configurations—active bulk and active boundary—
with a combination of theory, 1D finite element sim-
ulations, and experiments. Shells respond to a non-
mechanical, curvature-inducing stimulus in the desig-
nated active region, but are passive elsewhere.

Our mechanics-informed approach uncovered an
analogy to the bending-dominated boundary layer in
inverted spherical caps. This offered an intuitive inter-
pretation of our work: Selectively applying curvature
amounts to setting the size of an effective boundary
layer. Like for inverted, passive spherical caps, the
size of the (effective) boundary layer is closely tied
to stability [8]. Further, the location and size of the
imposed bending region determines whether it com-
petes against or cooperates with the geometric bound-
ary layer, wherein the shell inherently “wants” to bend.
With this view, the design principles that follow are
straightforward. In the active cap configuration, some
or all of the boundary layer is made passive, making

snap-through harder to achieve. As a result, the active
edge configuration is preferred for efficient snapping.
The angular size of the optimal active region scales with
that of the natural boundary layer,

√
h/R (Eq. (10)),

with an empirical prefactor of about 2.5 for our shells.
We demonstrated the efficacy and generality of our

findings using residually swelling and magneto-active
shells. As we have shown, the curvature stimulus [15]
may be mapped to a broad range of non-mechanical
loads, so we expect that these principles will apply
widely to bistable actuators. While the homogeneous
curvature field assumed herein does not strictly apply
to the magnetic stimulus, we found sufficient agreement
with our experimental data. However, we expect that
these and future results would be improved by more
general theoretical framework that allows for a non-
homogeneous curvature stimulus [37].

In our energy minimization scheme (Sect. 4), we
assumed that the minimum curvature stimulus was that
for the fully active shell. This allowed us to identify
the optimal active angular size. However, we observed
critical curvatures even below this value. We specu-
late that depending on the geometry, the torque at
the active-passive interface can help to destabilize the
shell—despite that it ostensibly acts in opposition to
the edge torque. We leave investigation of this effect,
which may open the door to further reduction of the
critical curvature, for future work.
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A Fabrication of non-homogeneous residual
swelling shells

The shell fabrication procedure for the active edge configu-
ration is shown in Fig. 6. The process is as follows: To begin,
we coat a metal ball-bearing (Rsphere ∈ [12, 75] mm) with
viscous polydimethylsiloxane (PDMS), ensuring a relatively
uniform thickness [38]. Once the PDMS has cured, we use a
laser-cut (Epilog Laser Helix, 75W) ring (inner radius Rp ∈
[2, 65] mm) as a stencil to guide a circular cut, resulting in a
cap of opening angle θp = θ−θa = sin−1(Rp/Rsphere). Next,
we coat a ball bearing of the same size with green polyvinyl-
siloxane (PVS) (Fig. 6a) and again make a cap with opening
angle θp. This time, the cap remains in place and the excess
material is removed (Fig. 6d). Since the active section nec-
essarily has two layers of PVS, this additional passive layer
ensures a relatively homogeneous thickness throughout the
shell. With the green cap in place, a second layer of green
PVS is added in the same manner (Fig. 6e) and cut to the
edge angle, θ ≥ θp. It fuses completely to the first layer, so
in the bulk (the eventual passive region, up to θp) the mate-
rial is thicker than at the edge at this stage of fabrication.
After the second green PVS layer has cured, the PDMS cap
is centered at the north pole (Fig. 6f). It adheres to but does
not fuse with the PVS. Next, we deposit a layer of pink PVS
(Fig. 6g). As soon as the pink layer is cured, a shallow cut
is made around the edge of the PDMS cap (at θp) (Fig. 6h).
Since the PDMS prevents cross-linking in the region it cov-
ers, we can peel the pink layer and the PDMS from this

section (Fig. 6i). Another laser cut ring (R ∈ [6, 75] mm,
R > Rp) is used to guide a deeper cut through both layers,
forming the bottom boundary (Fig. 6j). This sets the total
opening angle of the shell to be θ = sin−1(R/Rsphere). We
are left with a spherical cap composed of only green PVS
(two layers thick) from opening angle 0 to θp, and a bilayer
ring of angular size θa = θ−θp at the edge. In order to quan-
tify the evolving curvature stimulus, we slice a small, vertical
(initially curved) beam from the material that remains on
the ball-bearing just below the cut (Fig. 6j). We mount the
shell and beam side-by-side and use a Nikon D610 DSLR
camera to take time-lapse images at a rate of one photo per
minute. As residual swelling is a diffusive process, the time
to deform scales with the square of the dimension across
which swelling occurs [28]. In our experiments, that is the
thickness h, and these shells reach maximum deformation
by about two hours post-cure.

A shell with an active cap region is made in much the
same way, except that the protective PDMS layer is a ring
around the edge of the cap. This method prevents exci-
sion of a reliable bilayer beam from the region beneath
the cut, so the curvature was not measured throughout the
swelling process. Instead, a beam was cut from the cap
region immediately following snapping, i.e., unlike in the
active boundary configuration wherein we track the natu-
ral curvature throughout deformation, only the critical cur-
vature κc is obtained for these experiments. Because the
curvature develops at a much slower rate than that of snap-
through, the difference between the curvature immediately
before and after snapping is negligible.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6 The fabrication process for a non-homogeneous
spherical cap with active edge: a A layer of viscous green
PVS is deposited over spherical metal ball-bearing. b After
curing, a ring of radius Rp is centered at the top of the
sphere and used as a stencil to mark θp. c A cut is made
and d. excess material is removed, leaving a green layer of
angular size 0 ≤ θ ≤ θp. e A second green layer is added.
f. Once the green layer is cured, a PDMS cap (cut from
a sphere of the same size, in the same manner as a–d) of

radius Rp is centered at the top of the sphere. g A pink
layer of PVS is added. After curing, a shallow cut h allows
for the removal i of the pink layer and the PDMS in the
region 0 ≤ θ ≤ θp. j A cut is made at θ (following a line
which was stenciled by a ring as in b) through all material
to free the shell from the ball bearing. Finally, a small beam
is cut vertically from just below the shell (in the direction
of the gray arrow)
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B Magnetic flux density as a curvature stim-
ulus

In order to visualize the magnetic field and obtain the mag-
netic flux density B at given spatial points, we simulate the
magnetic field using the AC/DC module in COMSOL 5.6
(see Fig. 7). The finite element model is calibrated with
experimental measurements and material properties pro-
vided by the manufacturer. The critical B = Bc at the
edge of the shell at the point of snapping was calculated
by inputting the critical displacement (measured from the
Instron experiments) to the FE simulation.

To obtain the relationship between the applied magnetic
flux density and corresponding natural curvature of the
shell, we fabricated a beam of length 6.1 mm, width 0.88
mm, and thickness h = 0.42 mm. The beam is cut from the
same spherical ball-bearing as the shells, so the initial cur-
vatures are equivalent (1/R = 0.0787 mm−1). The arch is
oriented at 0.639 rad with respect to the vertical centerline
to match the position of the corresponding ferromagnetic
layer in the magnetic field (see Fig. 7c, d.) The magnetic
field is generated using the same cubic NdFeB magnet as is
used for the shell. Digital image processing is used to mea-
sure the change of curvature as we vary the distance between
the magnet and the bottom edge of the beam. The distance
is then converted to magnetic flux density B using the COM-
SOL FE simulation. The response curvature as a function
of the applied magnetic flux density over the range relevant
to our experiments is shown in Fig. 7b. In our range, a first
order polynomial fits the data. We note that the intercept
of our empirical fit, which has a slope of 0.097, is not zero,
indicating that a linear fit would not be sufficient over a
larger range.

(a)

(c) (d)

(b)

Fig. 7 a Finite element simulation showing the axially
symmetric magnetic field generated from the NdFeB mag-
net. b Calibration curve for magnetic flux density B ver-
sus the curvature stimulus κ, based on measurements taken
from the beam in d. c Magneto-active shell in the magnetic
field. d Magneto-active beam the magnetic field, which is
oriented to match the edge of the shell and used to cali-
brate the κ–B relationship. In our range, the relationship is
approximately linear, and for our shells, we used the empir-
ical fit indicated by the dashed line
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