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Because the normal operation of the eye depends on sensitive morphogenetic processes for its eventual
shape, developmental flaws can lead to wide-ranging ocular defects. However, the physical processes and
mechanisms governing ocular morphogenesis are not well understood. Here, using analytical theory and
nonlinear shell finite-element simulations, we show, for optic vesicles experiencing matrix-constrained
growth, that elastic instabilities govern the optic cup morphogenesis. By capturing the stress amplification
owing to mass increase during growth, we show that the morphogenesis is driven by two elastic instabilities
analogous to the snap through in spherical shells, where the second instability is sensitive to the optic cup
geometry. In particular, if the optic vesicle is too slender, it will buckle and break axisymmetry, thus,
preventing normal development. Our results shed light on the morphogenetic mechanisms governing the
formation of a functional biological system and the role of elastic instabilities in the shape selection of soft
biological structures.
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Eye development is a complex, multiscale morphoge-
netic process that couples cell growth, division, and
biological signaling at cellular scales, with large deforma-
tion and shape changes. The eye organogenesis begins with
formation of the optic vesicles (OVs), nearly spherical
shells that undergo invagination—a process that locally
reverses the curvature of tissues from convex to concave
[1], to form the optic cup (OC), a cavity that eventually
houses the eye. It is well established that many congenital
eye disorders arise from disruptions in embryonic eye
development, including anophthalmia or microphthalmia
[2], aniridia [3], coloboma [4], retinal dysplasia [5], and
retinal detachment [6].
In the embryonic stage of eye development, the OV

bilaterally protrudes from the forebrain and contacts the
surface ectoderm (SE). The OV and the SE epithelium are
attached to each other through the stiff extracellular matrix
(ECM) secreted by both SE and OV, which thickens to form
the lens placode and retinal placode. These placodes
invaginate, such that curvature of the inner portion of
the OV (IOV) changes sign compared to its outer portion
(OOV) as shown in Fig. 1(a), to form the lens vesicle and
OC, respectively [7,8]. Despite recent efforts [9,10],
important questions remain open as to what mechanisms
govern OC morphogenesis during and after invagination
[5,11–17] and how growth of the IOV and OOV, and
evolution of their mechanical properties, impact the mor-
phogenetic processes.
In this Letter, we advance two novel points that

contribute to the physics of OC morphogenesis. First,
the morphogenetic process is driven by two elastic insta-
bilities that are analogous to snap-through instabilities in
spherical shells. These occur at different times during OC

development, corresponding to invagination and rapid
deepening observed in biological experiments [13,18].
Second, we demonstrate that the second morphogenetic
instability is sensitive to OC geometry. Specifically, for
certain geometries, the OC buckles rather than snaps during
the second instability, which breaks axisymmetry, and
prevents normal OC morphogenesis. This result suggests
that some congenital eye disorders, such as glaucoma in
newborn infants [19], may be due to OC geometry during
morphogenesis.
The OV geometry motivates a simplification of their

initial shape to a spherical shell. The ECM and IOV form a

(a)

(b) (c)

FIG. 1. (a) Simplified schematic of the OC morphogenesis.
(b) Thickness change ratio of IOV center wall λIOV as function of
the normalized time tn. (c) Invagination depth D normalized by
OC horizontal radius r as function of tn. (b) and (c) show
comparisons of our model with existing experimental data [9],
using R=h ¼ 5 and α ¼ 40° with primary and secondary invagi-
nation at t1stn and t2ndn .
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bilayer cap that subtends an opening angle α, while
the OOV is a monolayer covering the rest of the sphere
[Fig. 1(a)]. We modeled the mechanical response of the OC
as a multilayer Kirchhoff-Love (KL) shell [20], which
assumes the 3D shell may be represented by its 2D
midsurface. Each layer of the KL shell (ECM, IOV, and
OOV) is, in contrast to recent works using shells to study
biological morphogenesis [29–31], allowed to undergo
large strains and rotations and change thickness, via the
plane-stress condition, during deformation while being
modeled by a compressible neo-Hookean material
model [32,33], which takes the energy density form
Ψ0 ¼ ðλ=4ÞðJ2m − 1− 2 logJmÞþ ðμ=2ÞðIm1 − 3− 2 logJmÞ
with Lamé constants λ and μ, and invariants Im1 and Jm of
the elastic right Cauchy-Green tensor. To account for large
strains and rotations during growth, we utilize the well-
established multiplicative decomposition of deformation
gradient F into growth Fg and elastic deformation Fm parts
[34–37]. Each layer of the OC is subject to isotropic area
growth via Fg ¼ ðe; e; 1Þ where e is the in-plane expansion
factor due to growth [20]. We simulate the OC formation
process by solving two coupled balance equations: linear
momentum balance to determine elastic deformation via
Fm and mass balance to account for growth via Fg. These
equations are solved numerically using the isogeometric
analysis method, a modern finite-element-like method that
is well suited for shell problems due to its ability to provide
an accurate shell midsurface description [38].
We model the differential growth during OC

formation by imposing different mass sources on the
ECM, IOV, and OOV in the manner of density-
preserving growth [9], such that the three regions have
different (experimentally measured) growth rates [9], i.e.,
eECMðtnÞ ¼ 1, eIOVðtnÞ ¼ 1þ 5tn, and eOOVðtnÞ ¼
1þ 1.5tn as a function of the normalized time tn ¼ t=τ,
where τ ¼ 20 hours is the experimentally measured time-
scale for OC morphogenesis. The fluidlike components
surrounding the OV are neglected [39–41], based on
previous studies showing that instabilities of spherical
shells are not suppressed by the surrounding fluid envi-
ronment [42].
A critical, but often neglected, feature in morphogenetic

modeling is the effect that mass addition during growth
has on the state of stress of the growing body. We find that
[see Supplemental Material (SM) for detailed derivation
[20] ], if the added material during density-preserving
growth is the same as the existing material in the
body, the stress Σij generated in the growing body is
amplified as

Σij ¼ e2
∂Ψ0

∂ϵij ; ð1Þ

where Ψ0 is the neo-Hookean strain energy density, and ϵij
is the strain tensor. Thus, e2 acts as a stress amplification

factor on the internal stress due to mass change from
growth, in which ∂Ψ0=∂ϵij is the standard representation
for the internal stress [43]. This stress amplification factor
e2 generalizes previous works [44], as shown in the
SM [20].
First, we show that our computational model can capture

existing experimental data for OC morphogenesis in a
chick embryo [9,10], as shown in Figs. 1(b) and 1(c). The
geometric and material parameters for the chick OVs
followed previous experiments [9,10,45], i.e., opening
angle α ¼ 40°, initial radius (R) of 50 μm, and radius to
total thickness ratio (R=h) of 5. The bilayer cap has ECM
thickness ðhECMÞ of h=10 and IOV thickness ðhIOVÞ of
9h=10 whose ratio is m ¼ hECM=hIOV ¼ 1=9, and the
monolayer OOV has thickness ðhOOVÞ of h. The shear
moduli for the ECM and the IOV and OOV are 11 kPa
ðμECMÞ and 220 Pa (μIOV and μOOV), respectively, whose
ratio is n ¼ μECM=μIOV ¼ 50 on the bilayer cap. Poisson’s
ratio for all regions was set to ν ¼ 0.45 based on biologi-
cally observed data showing that eye tissue is not incom-
pressible [46,47].
Figures 1(b) and 1(c) show the simulation results of OC

formation with and without accounting for the effect of
mass change during growth on the stress, where neglecting
the mass change corresponds to taking e2 → 1 in (1). By
comparing to the experimental results [9], it is clear that our
model accurately captures the evolution of thickness
change ratio of the IOV center wall ðλIOVÞ as well as
invagination depth (D) normalized by OC horizontal radius
(r), which are geometric parameters that characterize the
OC size and shape. Therefore, the stress amplification from
mass addition significantly impacts the local and inhomo-
geneous growth and enables the accurate simulation of
experimentally observed OC growth. This also demon-
strates that there is no need to prescribe hypothetical
stiffness or growth property gradients as in previous OC
growth modeling [9,10].
The OV thickness is known to vary with diverse

biological cues, such as protein-2 alpha [48–50], which
implies that the radius-thickness ratio R=h of initial OC
shape also varies with different biological situations. To
account for these unknown thickness variations, we
performed numerical simulations at α ¼ 40° with different
R=h within the biologically relevant range (5 to 20)
[51–53]. This initial geometry is characterized using a
single, dimensionless parameter θ̄ ¼ α

ffiffiffiffiffiffiffiffiffi
R=h

p
, which

describes the depth and slenderness of the bilayer cap
region relative to the angular width of the boundary
layer [54].
For all values of θ̄ examined, the shells exhibit two

distinct shape–shifting events (Fig. 2). At early times, the
apex of the OC inverts, resulting in the formation of a
cuplike shape, which we refer to as primary invagination
(Fig. 2, i → ii, I → II). As tn increases, we observe a
second shape-shifting event that is sensitive to the initial
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geometry. For lower θ̄, i.e., thicker shells, we observe a
rapid deepening of the OC which preserves axisymmetry—
we refer to this as secondary invagination (Fig. 2, ii → iii).
For higher θ̄, i.e., thinner shells, we observe that the second
shape-shifting event consists of a loss of axisymmetry
(Fig. 2, II → III). We note that, for simulations that neglect
mass changes, the symmetry-breaking event (II → III)
occurred for all θ̄, which means the normal morphogenesis
process resulting in an axisymmetric OC cannot be
modeled without mass addition. See SM [20] for OC
formation movies.
To analyze, rationalize, and predict the qualitative

features underlying the different shape-morphing pathways
of OC morphogenesis, we used a shell model which
accounts for growth as a stimulus that changes the rest
length, i.e., natural stretch, and curvature, i.e., natural
curvature of the shell’s midsurface. The strain energy
stored in the shell during growth is estimated based on
updated rest midsurfaces. As a result, the natural curvature
in the cap acts like a torque along the intersection between
the cap and OOV to deform the OC [20]. When these
natural quantities are homogeneous over some segment of
shells, they can be represented by scalar values of Λ
(stretch) and κ (curvature) whose specific values are
calculated for each segment of the OC based on the
experimentally measured growth characteristics (see SM
for detailed derivation [20]), i.e., eECM and eIOV for the
bilayer cap, and eOOV for the OOV. As a result, the cap and
OOV have their own scalar values of natural stretch and
curvature. The presence ofΛ and κ imparts residual stresses
in the growing OC, and these quantities play a similar role
as external loads and torques do in classical mechanics,
which can destabilize shells [55,56]. This suggests that OC
morphogenesis may be governed by instabilities which
result from residual stress that builds up during growth.
In the cap region, experimental observations note that the

ECM and IOV grow at different rates. This through-
thickness differential growth induces a natural curvature

that changes the apex of the OC from convex to concave.
However, the inversion of this cap is resisted by the OOV
which is a monolayer growing homogeneously and has to
bend to accommodate the deforming cap. Open spherical
shells experiencing an evolving natural curvature may
exhibit a snap-through instability that everts the shell at
a critical curvature [55]. Here, the OC is not an open shell,
as the deformation of the cap will be resisted by the OOV.
However, since the OOV is resisting bending, and there-
fore, resisting rotations imparted by the growth-induced
torque along the intersection, we treated the OOV as an
effective rotational spring [Fig. 3(a)]. Therefore, by way of
a simple mechanical analogy, we model the full OC as an
open spherical shallow shell, whose geometry is the same
as the bilayer cap, experiencing an equivalent edge torque
as shown in Fig. 3(a). The natural curvature in the cap due
to differential growth, κcap, has to overcome the bending
rigidity of the effective rotational spring [20], resulting in
an equivalent natural curvature given by

κeq ∼ κcap − Γ
Δθffiffiffiffiffiffi
Rh

p ; ð2Þ

where Γ is a dimensionless ratio of bending rigidities, i.e.,
Γ ¼ BOOV=½2Bcapð1þ νÞ� (Γ ¼ 0.06 for the OC) with
bending rigidities Bcap and BOOV of the cap and OOV,
respectively, and Δθ is angle change along the OOV
boundary layer as shown in Fig. 3(b). Here, we assumed
most of the OOV deformation occurs within its boundary
layer as bending [57], and the second term on the rhs of (2)
describes the amount that acts to bend the OOV boun-
dary layer.
Open spherical shallow shells undergo snapping under

homogeneous positive natural curvature when the boun-
dary tangent vector in the colatitude direction becomes
approximately horizontal, which results in κeqR ∼ θ̄ at the
snapping [55]. Our numerical experiments here on closed
spherical shells exhibit qualitatively similar behavior when
the primary invagination occurs via snapping. That is, the
primary invagination occurs when the colatitude-direction
tangent vector at the intersection between the cap and OOV
becomes approximately horizontal, which leads to Δθ ∼ α
in (2) at the primary invagination. This results in a scaling
law of the critical natural curvature in the cap at the primary
invagination as

(a) (b)

FIG. 2. (a) Simulation results varying R=h at α ¼ 40°, consid-
ering mass changes. Diamond means the first instability point
while triangle and square are the second instability. At θ̄ ¼ 2.51
(θ̄b), the shape-morphing mechanism changes from secondary
invagination (triangle) to buckling (square). (b) Representative
OC formation process: normal OC (top row) and abnormal OC
shape due to buckling (bottom row).

FIG. 3. (a) Equivalent natural curvature. (b) Geometrical char-
acteristics on the OOV bending-dominated boundary layer.
(c) Characteristic span of each separated cap and OOV.
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κcap1 R ¼ a1ð1þ ΓÞθ̄ þ b1; ð3Þ

where a1 and b1 are scaling coefficients determined by our
numerical simulations, which confirms the linear scaling
with θ̄, and identifies the scaling coefficients as a1 ¼ 1.55
and b1 ¼ −0.95 [black solid line in Fig. 4(a)]. As with open
shells, the primary invagination via snapping will only
occur if θ̄ > θ̄sð¼ ½10=ð1 − ν2Þ�1=4Þ where θ̄s ¼ 1.88 for
the OC [20], in good agreement with prior work [55] as the
bending-dominated boundary layer covers the entire shell
for θ̄ < θ̄s.
Following this primary invagination, growth and devel-

opment of the OC continue until a second shape-shifting
event occurs, which appears to be strongly correlated to the
OC geometry. Thicker shells undergo a secondary invagi-
nation, forming a deep cup that facilitates normal eye
development, while slender shells lose axisymmetry, form-
ing a shape that may hinder normal OC morphogenesis.
First, we consider the onset of secondary invagination. The
magnitude of the torque at the intersection between the cap
and OOV continues to increase due to the continued
differential growth of the ECM and IOV. The OOV is
not rigid, and therefore, the torque can either bend the OOV
or further bend the cap. Building on the concept of a
geometric composite [58], we can consider the growing cap
and OOV as separate structures and, then, determine how
they will deform when combined together. The cap, when
removed from the OC, would form a shallow shell that
spans a characteristic distance Scap [Fig. 3(c)—yellow]. The
OOV, when removed from the OC, would form a deep
spherical shell of radius R0 ¼ eOOVR, which is current
radius as a result of growth. From our numerical simu-
lations, we note that the extent of the OOV boundary layer,
where bending deformations are concentrated, is constant
until the secondary invagination occurs. We can estimate

the characteristic span SOOVbl of the OOV from the extent of
its boundary layer [Fig. 3(c)—blue], and observe that,
during secondary invagination, the OOV boundary layer
increases in length and curvature. Therefore, we posit that
when the span of the cap exceeds the span of the OOV
boundary layer, the OC will undergo secondary invagina-
tion to account for this excess length.
The characteristic span of this OOV segment scales as

SOOVbl ∼ R0 sinðαþ θOOVbl Þ where θOOVbl is angle subtended
by the OOV boundary layer, which scales as θOOVbl ∼

ffiffiffiffiffiffiffiffiffi
h=R

p
for spherical shells [54]. The span of the cap scales as
Scap ∼ Rα½1þ χð1þ νÞhκcap�, where χ ¼ ½1þmð3n −
2Þ�=ð6mnÞ [20]. If we suppose that the critical point occurs
when the spans are equivalent, i.e., SOOVbl ¼ Scap, we obtain
that the critical natural curvature is proportional to the shell
geometry as κcapR ∝ R=h from which the critical natural
curvature in the cap at secondary invagination can be
estimated as

κcap2 R ∝
R
h
¼ a2

θ̄2

α2
þ b2; ð4Þ

where a2 and b2 are obtained from simulations to be
a2 ¼ 0.86 and b2 ¼ 0.22. These parameters capture well
the secondary invagination via the dashed color line in
Fig. 4(a). Notably, unlike the primary invagination given by
(3), the secondary invagination depends on opening angle α.
While our model predicts the morphogenetic process of

OC formation via the experimentally observed [9,10] two-
step (primary and secondary) invagination, it also indicates
that very slender initial OC geometries will undergo an
elastic instability that breaks axisymmetry, leading to
abnormal OC development. This loss of the OC axisym-
metry has been observed for glaucoma in newborn infants
[19]. Secondary invagination occurs when the OOV boun-
dary layer is flexible enough to bend to accommodate the
excess length of the growing cap. If the OOV is too stiff, the
cap must bend, instead. If we presume that the loss of
axisymmetry for slender optic cups is due to a buckling
instability, then the critical natural curvature can be
analytically calculated via a linear stability analysis, which,
for a circular plate with natural curvature κp and radius Rp,
gives κph ¼ �abðh=RpÞ2 with ab ¼ χð5þ 3νÞ=ð1 − ν2Þ at
the buckling instability (ab ¼ 4.17 for the OC) [20]. To
connect this critical natural curvature to open spherical
shallow shells, we substitute Rp → Rα. This gives us
κeqR ∼ ab=θ̄2 þ 1, which is similar to [55]. Furthermore,
the spherical shell’s geometry under a torque induced by
natural curvature leads to Δθ ∼

ffiffiffiffiffiffiffiffiffi
R=h

p
in (2) at the

buckling instability [20]. Then, the critical natural curvature
in the cap at the buckling instability is given by

κcapb R ¼ bb

�
ab
θ̄2

þ 1þ Γα2
θ̄2

α2

�
þ cb; ð5Þ

(a) (b)

FIG. 4. (a) Phase diagram of instabilities during OC formation
for varying R=h at α ¼ 40°. The blue region denotes the
invaginated cup shape, and the lime and red regions are the
normal (secondary invagination) and abnormal (buckling) OC,
respectively. (b) Phase diagram for varying R=h and α. For (a) and
(b), the symbols refer to simulation results, with diamonds
symbolizing primary invagination, triangles for secondary invagi-
nation, and squares for buckling. The lines represent the scaling
law of (3), (4), and (5). The black dotted line in (b) shows the
buckling transition point θ̄b of (6).
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where α2ð¼ π − αÞ is a prefactor to treat the deep
OOV shell, and bb and cb are scaling coefficients
which provide the best fit with our simulations through
bb ¼ 4.72 and cb ¼ −5.50 via the solid color line in
Fig. 4(a).

As our numerical experiments indicate that both secon-
dary invagination and symmetry-breaking buckling cannot
occur for the same initial geometry, the intersection
between (4) and (5) gives us the transition point from
secondary invagination to buckling as

θ̄b ¼

4α2bbabða2 − α2bbΓÞ þ α4ðcb − b2 þ bbÞ 2

p
þ α2ðcb − b2 þ bbÞ

2ða2 − α2bbΓÞ

s
; ð6Þ

where θ̄b ¼ 2.46 is calculated at α ¼ 40°, in agreement
with the numerical results ðθ̄b ¼ 2.51Þ.
Similar to the various R=h in biological situations, it is

natural to think that the opening angle will also vary with
diverse biological cues. The simulation results with various
opening angles for a wide range from 30° to 50° are plotted
on a phase diagram in Fig. 4(b) which fully characterizes
the instability-induced shape morphing of the OC during its
morphogenesis for a variety of initial geometries, showing
that the proposed scaling laws work well for all α. Above
the value of θ̄b, denoted as the dashed black line via (6), the
final OC shape is abnormal for each α.
In summary, we revealed the significant role that elastic

instabilities play during OC morphogenesis. Because our
model is predictive based on the initial geometry, we hope
that our study will motivate experimental efforts to measure
radius R, thickness h, and opening angle α of the initial OV
to investigate their effects on OC morphogenesis and to
verify the accuracy of our model predictions.
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