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ABSTRACT

We utilize atomistic simulations that account for point charges and dipoles to demonstrate that flexoelectricity, which arises from strain
gradients, can be exploited to generate electricity from crumpled graphene sheets. Indentation of a circular graphene sheet generates
localized developable (d)-cones, for which we verify the core radius and azimuthal angle with established theoretical models. We determine
the voltage that can be generated based on the resulting electrostatic fields and compare the voltage generation to previous theoretical
predictions that are scaled down to the nanoscale. In doing so, we find that the voltage generated from crumpling graphene exceeds, by
about an order of magnitude, the expected voltage generation, indicating the benefit of exploiting the large strain gradients that are possible
at the nanoscale. Finally, we demonstrate that crumpling may be a superior mechanism of flexoelectric energy generation as compared to
bending of two-dimensional nanomaterials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052482

I. INTRODUCTION

Two-dimensional (2D) nanomaterials have been widely studied
because of their novel physical properties.1–11 An emerging applica-
tion area for 2D materials is that of electromechanical energy
generation12–18 due to their potential for nanoscale energy harvesting
and generation.19,20 In this vein, piezoelectricity, the best-known
mechanism for converting mechanical deformation into electrical
energy, has been studied in 2D materials.21–23 In contrast, flexoelec-
tricity, for which the polarization of the material depends upon the
strain gradient, has been less studied as an energy generation and
conversion mechanism for 2D materials.23–29 Because flexoelectricity
depends on the strain gradient, it is, unlike piezoelectricity, theoreti-
cally possible in any material and has been recently studied in 2D
materials.

Graphene is a centrosymmetric material that does not exhibit
piezoelectricity.30,31 However, bending graphene can induce a change
in hybridization from sp2 to sp3, where the valence electrons of the
carbon atoms develop bonding interactions with the neighboring

bonded electrons (π � σ interactions).32 This change in bonding due
to strain gradients from bending leads to the generation of electrical
polarization via local electric fields and thus the emergence of flexoe-
lectricity.12 Flexoelectricity has also been reported in other 2D mate-
rials.17 For example, the monolayer transition metal dichalcogenides
(TMDCs) exhibit a flexoelectric response that is one order of magni-
tude higher than graphene.12 Furthermore, Janus TMDCs show
exceptional bending flexoelectric properties related to the initial
degree of asymmetry13 and exhibit flexoelectric constants that exceed
graphene and TMDCs. The flexoelectric properties of other recently
synthesized monolayers have also been investigated.16,33,34 These
recent studies have demonstrated the promising potential of 2D
materials for flexoelectric energy generation and conversion.

Here, we investigate the potential for generating electricity by
crumpling 2D materials, specifically graphene. This work is moti-
vated by recent experimental studies on electrical power generation
by crumpling thin polymer films35 and theoretical works on flexo-
electric energy generation by crumpling thin sheets, such as paper,36

in which electricity was produced via the flexoelectric effect by
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crumpling thin circular sheets supported on a hoop via central
forces created by a cone tip. Of specific interest is the formation of a
developable (d)-cone during the indentation, as the simplest example
of thin sheet crumpling, which generates strain gradients and thus
the development of electrical polarization and voltage. Here, we
examine the potential of crumpling atomically thin sheets, specifically
monolayer graphene, as a means of electromechanical energy genera-
tion at the nanoscale. We do this via classical molecular dynamic
simulations that account for point charges and dipoles to investigate
the mechanisms driving the voltage generated from the indentation,
and subsequent crumpling, of a monolayer graphene sheet.

II. SIMULATION METHOD

Figure 1(a) shows the simulation setup used to conduct the
atomistic simulations. We consider a circular graphene sheet (CGS)
of radius r p placed on top of a carbon nanotube (CNT) of radius rb
with height hb at a distance of db. This CNT acts as a supporting
hoop (called the hooper) for the CGS. Another CNT, which is used
to indent the CGS, with radius rt and height ht , is initially located
at a distance dt from the CGS. The interatomic forces acting on
each atom in the CGS were calculated using a combination of
short-range bonded interactions and long-ranged charge–dipole
(CD) interactions. The AIREBO potential37 was employed to
account for the short-range bonded interactions, while for the CD
interactions, each atom is assumed to carry a charge q and dipole
moment p.38,39 The minimization of charge–charge, charge–dipole,
and dipole–dipole interactions to the total system energy leads to
the governing equations for obtaining the charge and dipole
moments for each atom. The complete details about the implemen-
tation of the CD model in conjunction with a classical molecular
dynamics (MD) simulation can be found in our previous

works.12,31 All the simulations in this work were conducted using
the open-source MD code LAMMPS.40 The visual molecular
dynamics (VMD) package41 has been used to generate the atomic
snapshots.

The interactions between the CGS and both CNTs (the inden-
tor and hooper) were limited to van der Waals forces to avoid
bonded interactions between the CGS and CNTs, where the van der
Waals forces were modeled using a Lennard–Jones potential.42 In
the initial simulation setup, db and dt are set as 0.33 nm at which the
CGS and the CNTs have minimum potential energy and thus no
interaction forces. Both the CNT hooper and CNT indenter are
modeled as rigid bodies, while the CGS is allowed to slide, via the
van der Waals forces, over the CNT hooper in response to the CNT
indentor. The CNT hooper is fixed spatially throughout the indenta-
tion process.

The CGS was initially equilibrated using the Nosé–Hoover
thermostat43,44 for about 100 000 steps with a time step of 0.5 fs at
a temperature of 0.1 K to minimize thermal fluctuations. The
indenter CNT moves with a speed of 0.02 nm/ps toward the CGS,
where the atomic positions are integrated forward in time using a
standard velocity Verlet algorithm.45 The atomic coordinates along
with the charge and dipole data are collected at every 1000
steps during the time integration. We vary the CGS radius (r p)
from 7 to 10 nm to study the effect of the graphene sheet size
during the crumpling deformation and the resultant voltage gener-
ation. However, we varied the radius of both the indentor and
hooper CNTs to ensure the same percentage of the CGS is
indented, regardless of CGS diameter. About 25% of CGS atoms
are supported by the hooper and 0.025% of CGS atoms are
indented by the top CNT. The 100-fold reduction in the indented
atoms as compared to the supported atoms is to mimic a sharp
indenter tip.

FIG. 1. (a) Schematic of the circular graphene sheet supported on CNT for deformation by indentation. (b) In-plane view of the setup in (a). Region used for calculation
highlighted with red color. Within this region, several bin sectors were constructed to evaluate physical quantities of interest. (c) represents the d-cone formation under
indentation.
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We define several circular regions starting from the center of
the CGS. These regions have a width of about 1 nm and radius r
varying from 1 to r p-2 nm, as shown in Fig. 1(b). Furthermore,
each region is subdivided into 60 bin sectors as highlighted in
Fig. 1(b). For these sectors, we averaged the atomic coordinates,
potential energy, voltage, charges, and dipole moments at a series
of indentation steps. The local curvature κ of the bin sector is esti-
mated from the derivatives of spline interpolations with respect to
the averaged x and y coordinates of each bin. At each indentation
step, we consider the atoms with minimum z- coordinates near to
the core portion of the developable (d)-cone to define the center of
the CGS, which is labeled “O” in Fig. 2(c). Those atoms are used
for measuring the depth and inner voltage ΦO. The tip deflection is
the difference between the initial and indented z-coordinates for
atoms associated with O. Figure 1(c) represents the d-cone forma-
tion due to the indentation of CGS.

We define two dimensionless parameters to aid in the analysis.
The dimensionless parameter α1 is the ratio between depth and rb,
which can be interpreted as the dimensionless tip deflection.
Another dimensionless parameter α2 ¼ Rc=rb, where Rc is the core
radius, and so α2 can be interpreted as the dimensionless core
radius. Using these two parameters, we further compare our simu-
lation results with the earlier reported models,36 which were per-
formed at significantly larger length scales. Finally, we note that the
electromechanical energy density is defined as the sum of the dot
product between the polarization and the electric fields over the
CGS area, while the strain energy density is the scalar valued tensor
product of atomic stress and atomic strain over the same area of
the CGS. The electromechanical energy density is equal to the elec-
trical energy density stored in an energy harvester when subjected
only to mechanical loads.46–48

III. RESULTS AND DISCUSSION

A. Verification of crumpling simulations

We first demonstrate that our atomistic simulations of
graphene crumpling follow previous theoretical results.36,49,50

The initial thermally equilibrated atomic configuration of the CGS
in Fig. 2(a) shows small out-of-plane fluctuations near the edges, as
expected as the edges are not fixed. The low system temperature of
0.1 K suppresses large edge fluctuations or ripples, which have an
amplitude of 0.1 nm in the z-(out of plane) direction. The indenta-
tion induces deformation at the center of the CGS, which through
bond bending and stretching extends to deform the rest of the
CGS. Figure 2(b) clearly indicates a non-uniform change of
out-of-plane displacements in a confined portion of CGS. Further
indentation increases the deformation and the atomic configuration
in Fig. 2(c) clearly shows the formation of a developable cone
(d-cone) due to crumpling.

The deformation in the graphene sheet changes the local elec-
trostatic fields and thus induces polarization by altering the charges
and dipole moments through piezoelectricity and flexoelectricity.
However, due to the absence of piezoelectricity in graphene, the
only electrical response we can measure is due to flexoelectricity.
The governing equation for the charges q and dipoles p in the
charge–dipole model is12

Tq�q
ii qi þ

XN

j,i=j

Tq�q
ij qj �

XN

j,i=j

Tq�p
ij pj ¼ χi: (1)

From Eq. (1), the electrostatic potential Φ associated with each
atom is written as

Φi ¼ Tq�q
ii qi ¼ Φ p

i þ Φq
i þ χi

� �
, (2)

where Φq
i ¼ �PN

j,i=j T
q�q
ij qj is the electrostatic potential on atom i

due to the neighboring charges qj, Φ
p
i ¼ PN

j,i=j T
q�p
ij pj is the elec-

trostatic potential on atom i due to the neighboring dipoles pj,
Tq�q
ii is the self-electrostatic potential for atom i to create a charge

qi, and χi is the electron affinity of atom i. Equation (2) refers to
the generation of electric charge qi due to the various electrostatic
potentials Φi associated with atom i. From Eq. (2), we can calculate
the electrostatic potential associated with each atom. By noting the

FIG. 2. Atomic snapshots of the 9 nm CGS when the indentation depth is (a) 0, (b) 1.546, and (c) 2.541 nm. Atoms in (a)–(c) are colored using the electrostatic potential
Φ for 9 nm CGS. Note the development of the d-cone in (b) and (c). Labels O, A, B, and C represent the CGS center or d-cone core, the d-cone tip, and the edges of the
d-cone, respectively. D, E, F, and G denote the atom bins nearer to bin A. OA

�!
represents the bin sector with the largest z deflection and for this bin, we set θ as 0�. θ1

is the angle between OA
�!

and either OB
�!

or OC
�!

.
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time-history of Φ for every atom, we can estimate the voltage gen-
erated due to the crumpling deformation.

Figures 2(a)–2(c) show the atomic configuration colored using
Φ estimated from Eq. (2). In Fig. 2(a), initially, the inner atoms
have Φ ¼ 1:258 V and outer edge atoms have Φ ¼ 1:255 V. The
atoms near the boundary exhibit lower electrostatic fields than the
central atoms. The structural changes due to indentation alter the
local electric fields near the central portion of CGS, which results
in highly localized changes in Φ (about 4 mV reduction) from
Figs. 2(a) to 2(b) due to the flexoelectric effect. Specifically, the ini-
tiation of the d-cone formation and increased bending in Fig. 2(b)
leads to a change of hybridization (pyramidalization) from sp2 to
sp3 for the atoms near the center, leading to a change in the bond
angle from 120� to 117� with a 3% stretch in the bond lengths.
These changes in the bond length and bond angles induce the
observed inhomogeneity in Φ that extends across the d-cone.

In Fig. 2(c), the core portion of the d-cone (labeled as O)
shows a decrease of Φ from 1.258 to 1.249 V of about 9 mV when
compared to Fig. 2(a), where label A indicates the bin sector with
maximal outward deflection, where Φ rises 2 mV from 1.257 to
1.259 V. OA

�!
represents the connecting line between bins O and A,

which is used to define θ to identify the relative positions of the
other neighboring bins, as θ ¼ 0 corresponds to OA

�!
. From this

line, the atomic deformation as well as changes in Φ extends to the
bins labeled as B and C, where the region between lines OB

�!
and

OC
�!

covers the d-cone involved crumpled area. Near line OA
�!

, the
strain gradient-induced changes in the potential are clearly visible
with respect to the d-cone folding [in Figs. 2(b) and 2(c)].
However, outside of this region, there are only small changes in
potential due to the relatively small deformations of the graphene
atoms in response to the indentation.

This is further verified by plotting the local curvature κ and Φ
across the different bin sectors defined from line OA

�!
. The resulting

CGS curvature κ with θ is shown in Fig. 3(a). κ is nearly constant
for bins with small out-of-plane displacements, which occur for
bins away from the d-cone. However, κ changes rapidly near the
region where the d-cone forms. For r p=8 nm, κ shows an increase
from �63� to �30� [corresponding atom bins are marked as B and
D in Fig. 2(c) and in the inset of Fig. 4(a)]. The positive rise of κ
between B to D corresponds to the left portion of the d-cone,
where the out-of-plane (z) deflections increase rapidly. From there
κ decreases with increasing out-of-plane deflection and reaches a
negative maxima at 0�, labeled as A, which corresponds to the
d-cone region with the largest out-of-plane displacements [the
central line of the d-cone O-A in Fig. 2(c)]. As θ increases, an
effectively symmetric response of κ is observed, with similar
responses seen for CGS with radius 7, 9, and 10 nm.

Note that the choice of the calculation region radius r is 4 nm,
which keeps the distance of separation between the bins O and A
the same across the different sized CGS, while all atomic configura-
tions were analyzed at α1 ¼ 0:545 to enable a consistent comparison
for different CGS sizes. Importantly, we find that θ1 is about 62� for
all CGS we considered, which matches earlier theoretical and experi-
mental results where θ1 ranged from about 60�49 to 70�.50

To further validate our simulations, we explore the response
to indentation as a function of the dimensionless tip deflection α1.
The core radius Rc is estimated from the locations of the bin
sectors corresponding to the d-cone. The inset of Fig. 3(b) illus-
trates selected bins as red color dots. Note that we consider only
the x and y coordinates for these bins. We then established a
hyperbolic fitting51 across the coordinate set [shown as a blue line
in the inset of Fig. 3(b)], where Rc is the inverse curvature at the
vertex of the fitted hyperbola. This process is repeated for the
entire time-history of atomic configurations and all CGS systems.
The variation of α2 is nearly constant for α1 less than 0.243
[Fig. 4(a)], which means that the indentation does not yield a

FIG. 3. (a) The variation of curvature κ with bin angle θ for different r p when α1 ¼ 0:545, where the calculation region radius is 4 nm from O. (b) The variation of (a) α2
or Rc with α1 when r p varies from 7 to 10 nm. The inset in (b) indicates the scheme for calculating core radius Rc. The blue line represents the fitting hyperbola.
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significant deflection near the outer edges of the CGS. The initiation
of out-of-plane z deflection leads to a decrease in the distance of sep-
aration between hyperbolic asymptotes, which leads to a decrease in
the core radius. When α1 is above 0:25, α2 or Rc shows a decreasing
trend in Fig. 3(b), which matches observed trends previously
obtained for thin films.36 These observations (Fig. 3) suggest that
our MD simulation results for monolayer graphene match previous
studies on d-cone formation in crumpled thin sheets.

B. Flexoelectric voltage generation

Figure 4(a) shows the bin averaged potential difference
Φ� ΦO with respect to θ when α1 ¼ 0:545 and where the calcula-
tion region radius is 4 nm from O. For the 8 and 9 nm CGS, the
potential difference is constant for regions outside of the d-cone
due to the small deformations there. From bins represented by
labels B to D, there is a decrease in Φ�ΦO of about 1 mV. In this
region, the bond angle decreases by 0:110%, while the bond length
increases by 0:363%. This increase in bond separation decreases the
local electric fields, thus reducing the generated potential.

From region D to F, Φ� ΦO reaches 12.336 mV, despite the
average change in the bond length being only 0:033% and the
average change in angle being only 0:115%. Thus, the large poten-
tial difference is driven by pyramidalization,52–54 in which
increased interactions between π and σ electrons take place due to
increased curvature. Specifically, the changes in curvature tilt the σ
bonds and break the symmetry in the π orbitals, which induces an
electron transfer and creates local electric fields. The bond tilt
changes the pyramidalization angle between the σ bonds to the π
orbital axis vector, which is a function of bond angles between σ
bonds.55 The large in-plane electrical conductivity screens most of
the generated in-plane electric fields, whereas there exist the
out-of-plane electric fields that involve the generation of voltage

difference. For example, consider the CGS with r p¼ 9 nm at
α1 ¼ 0:462, where the total in-plane electric fields (Ex and Ey) are
about 30 times smaller than the out-of-plane electric field (Ez). In
total, the developed π � σ interactions increase the local electric
fields and thus the potential Φ for the associated atoms.

Between regions F and A, a 1.7 mV drop in the potential dif-
ference is observed. In this region, the large deformations increased
the bond length by 0:614% and decreased the bond angle by
0:488%. The increase in the bond length again reduces the local
electric fields and decreases the voltage in this region as shown in
Fig. 4(a). Because the deformation of the d-cone is symmetric
about OA

�!
, the changes in potential going from A to G and G to E

are similar to those previously discussed in going from D to F and
F to A.

For the 7 nm CGS, in addition to the above observations, the
atoms in the calculation region are impacted by edge atom effects,
which cause an increase and then a decay in the developed poten-
tial difference from the d-cone edges to the other portion of the
CGS. Overall, the variation of Φ�ΦO is significant within
θ � jθ1j, which again indicates that the largest potential differences
are confined to regions near the d-cone in Fig. 2(c). A zoom over
one side of the d-cone [the inset of Fig. 4(a)] visualizes the voltage
for bins A, B, D, and F more clearly.

For the 10 nm CGS, we found that the number of d-cones that
a form exhibits some sensitivity to the initial conditions. For the
10 nm CGS with a single d-cone (marked as 1 d-cone), Fig. 4(a)
shows that it exhibits similar behavior to the smaller CGS consid-
ered. However, the 10 nm CGS with multiple d-cones exhibits dif-
ferent behavior, which we now discuss. Specifically, for the 10 nm
CGS with two d-cones, Fig. 4(a) (labeled as 2 d-cones) shows a
2 mV reduction in Φ�ΦO between bins B to C, which is smaller
than for the smaller radii CGS. In addition, we note there is a
second rise in the potential difference starting from θ . 113�,

FIG. 4. (a) The variation of voltage Φ� ΦO with bin angle θ for different r p when α1 ¼ 0:545, where the calculation region radius is 4 nm from O. The inset in (a) indi-
cates one side of the d-cone. Atomic coloring follows the color scale bar in Fig. 2. (b) The variation of ΦA � ΦO with α1 when r p varies from 7 to 10 nm. The inset in (b)
represents the variation of Φ with α1 for 9 nm CGS.
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which represents the generation of a secondary d-cone for the
10 nm CGS. The associated curvature changes in Fig. 3(a) (labeled
as 2 d-cones) further supports this observation. The rise of the
second d-cone further reduces the deformation near to the central
portion of the CGS, which makes the average potential for O for the
10 nm CGS to be 1.251 V whereas it is 1.248 V for the other CGS at
the same α1. As a result, the total Φ� ΦO is smaller for the 10 nm
CGS with two d-cones as compared to the other CGS we considered.
Figures 5(a) and 5(b) visualizes the atomic configurations for 10 nm
CGS with the development of one and two d-cones. For the 10 nm
CGS with two d-cones, the atoms associated with the secondary
d-cone experienced enhanced charges, dipoles, and electrostatic
fields, which can be viewed as enhanced Φ for the atoms in the two
d-cones in Fig. 5(b) when compared to Fig. 5(a). This is quantified
using the comparison of energy densities between 9 and 10 nm CGS.
For the 10 nm CGS with two d-cones at α1 ¼ 0:545, the strain
energy density is 1:341� 10�6 J=m2 and the electrical energy
density is 9:927� 10�6 J=m2. At nearly the same strain energy
density, the 9 nm CGS yields 4:871� 10�6 J=m2 as the electrical
energy density, which is 32% smaller than that in 10 nm case, which
indicates the importance of the secondary d-cone. Although the
average potential for the 10 nm CGS is lower compared to the 9 nm
CGS, the increase of contribution from the secondary d-cone atoms
increase the total electrical energy density.

To understand why the voltage Φ� ΦO from the 10 nm CGS
is smaller than the 9 nm CGS despite the generation of more elec-
trical energy density due to the two d-cones, we consider atomic
insights from bond stretching and changes in the bond angle. The
average change in the bond length and bond angle for atoms
between bins O and A for atomic configuration with α1 ¼ 0:545 is
0.074 Å and 0:438�, respectively, for the 10 nm CGS with two
d-cones. For the 10 nm CGS with one d-cone, we find the average
change in the bond length as 0.113 Å and the bond angle as 0:673�.
For the 9 nm CGS at the same α1, these changes are 0.113 Å and
0:718�. The smaller changes in the atomic configuration for 10 nm
CGS with two d-cones results in smaller strain gradients, and thus
the resulting potential difference is lower as compared to the 10 nm
CGS with one d-cone and the 9 nm CGS.

Figure 4(b) shows the variation of potential difference ΦA � ΦO

with respect to α1. Here, we considered only the response of bin A,
which contains the maximum deflections due to the d-cone, for
studying the response with α1. For α1 less than 0.1, there is no differ-
ence in the electrostatic potential between bins A and O. For α1

between 0.1 and 0.3, as shown in the inset of Fig. 4(b), there is no
observable change in potential for bin A. However, because the
indenter deforms and stretches the atoms near the CGS center,
this results in a decrease of ΦO, leading to an increase in potential
difference ΦA �ΦO. Starting at α1 ¼ 0:3, ΦA begins increasing
due to the formation of the d-cone. While the edges of the d-cone
(bins B and C) show no changes in potential, this indicates the locali-
zation of deformation near the d-cone seen in Fig. 2(c). Further
indentation leads to larger potential differences ΦA � ΦO, though the
rate of potential increase decreases. These trends are observed for all
CGS we simulated.

The observed voltage variation shows a similar trend with
earlier theoretical predictions.36 We note that the potential differ-
ence from our simulations on monolayer graphene is about 100
times smaller than the generated flexoelectric part of voltage from a
poly vinyldenefluoride (PVDF) thin film. Thus, even though the
flexoelectric constant for graphene (0:003 nC/m12) is about 1000
times smaller than PVDF (13 nC/m20), there is a 10 fold increase
in the generation of voltage for crumpled graphene as compared to
the scaled analytic theory. There are at least two important implica-
tions of this. First, this is likely due to the larger strain gradients
that are possible at the nanoscale for a comparable deformation
mode (d-cone based crumpling), which implies benefits of
crumpling-based electromechanical energy conversion at the nano-
scale. Furthermore, nanoscale systems can sustain such large strain
gradients without creating atomic defects or cracks, which is benefi-
cial for longer duration stability and durability. Finally, because
other 2D materials such as the TMDCs have both a significantly
larger flexoelectric constants and non-zero piezoelectric response as
compared to graphene,12,13 there may be additional enhancements in
nanoscale flexoelectric energy generation through optimal material
choices. Introducing the dopant mediated asymmetry in a composite
material56,57 may further help one to improve the flexoelectric effect
under crumpling deformation.

C. Benefits of crumpling for nanoscale flexoelectric
energy generation

Finally, we discuss the potential benefits of crumpling gra-
phene for nanoscale flexoelectric energy generation by comparing
the response to the standard mode of flexoelectric energy genera-
tion, that of pure bending. To do so, we impose a displacement
field uz ¼ 1

2K(x
2 þ y2) to the atoms in the CGS, where K repre-

sents the strain gradient, and x and y represent the atom coordi-
nates in the x and y directions. In these simulations, only the CGS
is considered, i.e., there is no CNT indenter or hooper. A circular
region of atoms with a radius greater than r p-0.5 nm was selected
as the boundary atoms for the given CGS with radius r p; these
boundary atoms are fixed whereas all other atoms are allowed to
relax due to the prescribed deformation for 1000 time steps under
thermostat condition, the point charges and dipole moments are
found for each atom using the charge–dipole model, after which

FIG. 5. Atomic snapshots of the indented CGS of radius 10 nm with (a) one
d-cone (label 1 d-cone) and (b) two d-cones (label 2 d-cones). (c) Atomic view
of 9 nm CGS under bending deformation. The radial increment of displacement
field uz represent the applied bending deformation. The visualized atomic config-
urations collected at the same strain energy density of 1:341� 10�6 J=m2.
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the local electric field and electrostatic potentials are also deter-
mined. Figure 5(c) shows the graphene atomic configuration under
bending deformation.

Using this information, we compared the electrical energy
density for atomic configurations at the same strain energy density
for a 9 nm radius CGS deformed using crumpling and bending, fol-
lowing the bending methodology described in our previous works12,31

as well as in recent experiments.25 During the calculation of energy
densities, we note that only the non-fixed interior atoms are used and
the number of atoms is the same for both crumpling and bending
simulations. The atomic configuration under crumpling deformation
at α1 ¼ 0:545 gives an electrical energy density of 4:871� 10�6 J=m2

and a strain energy density of 1:341� 10�6 J=m2. Selecting an
atomic configuration for bending deformation of the 9 nm CGS with
nearly the same strain energy density (1:381� 10�6 J=m2) results in
an electrical energy density 1:5� 10�6 J=m2, which is about 70%
lower than for crumpling.

The main difference between crumpling and bending is
related to the strain gradients. For bending, the displacement field
uz is symmetric about the center of the CGS, which results in a
uniform strain gradient, and thus lower electric fields, charges and
dipole moments due to flexoelectricity. In crumpling, the out of
plane deformation uz is non-uniform about the CGS, and eventu-
ally results in the formation of a localized d-cone, which exhibits
significant and non-uniform strain gradients, resulting in enhanced
local electric fields and flexoelectric response yielding larger voltage
generation. To quantify this, we first note that the voltage difference
between bins A and O (ΦA � ΦO) in the bending case is 0.566 mV,
while it is 10.641 mV for crumpling. The average change in the
bond length (0.009 Å) and the bond angle (0:336�) in bending are
also lower compared to crumpling. We also calculated the potential
difference ΦR � ΦO, where ΦR represents the average potential for
all atoms besides the boundary atoms and those in bin O. This dif-
ference is 1.52 mV for bending and 8.41 mV for crumpling, again
demonstrating the significant increase in flexoelectric energy gener-
ation for crumpling compared to bending. Overall, this shows that
the uniform strain gradient from bending results in less localized
deformation, strain gradients, and thus generated flexoelectric
voltage than crumpling.

IV. CONCLUSION

We utilized classical molecular dynamics coupled with the
charge–dipole model to investigate the potential of flexoelectric
energy generation in graphene, the model 2D nanomaterial, due to
crumpling deformations. After verifying that our simulations quali-
tatively reproduced previous predictions for d-cone characteristics,
including core radius and non-dimensional indentation depth, we
examined the mechanisms controlling the flexoelectric energy con-
version. First, we found that the voltage generated by crumpling
graphene is about an order of magnitude higher than is expected
from scaling macroscale relationships down to the nanoscale, indi-
cating the benefit of exploiting large strain gradients that are possi-
ble in nanomaterials. Second, we found that the electrical energy
density and voltage generated in crumpling significant exceeds that
observed in bending, which implies the benefits of crumpling
rather than bending nanomaterials to maximize the flexoelectric

effect. Finally, we anticipate that other 2D materials, such as the
TMDCs, will exhibit superior flexoelectric energy generation under
crumpling as compared to graphene; we plan to present such com-
parisons in future work.
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