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a b s t r a c t

The coupling of momentum to strain in elastic metamaterials, known as the Willis coupling, has been
widely studied in recent years for its potential in enabling novel phenomena in wave propagation.
More recent work has shown that in piezoelectric composites, the momentum can also be coupled
to the electrical stimulus, resulting in a new form of electro-momentum coupling, which offers a
new approach to controlling elastic wave phenomena through a non-mechanical stimulus. In this
study, we present a topology optimization approach to maximize the electro-momentum coupling
in piezoelectric composites, where dynamic homogenization is utilized to obtain the effective me-
chanical, electrical, and electro-mechanical constitutive relations. We first validate the approach in
one-dimension, then demonstrate that the electro-momentum coupling can enable asymmetric wave
propagation in two-dimensions, both through mechanical and electrical loadings. This approach can
enable the design of piezoelectric composites that support novel wave phenomena that can be excited
through non-mechanical means.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The development of metamaterials in recent years has opened
ew research directions to simulate waves in acoustics [1,2],
ptics [3], electromagnetism [4,5], and elastodynamics [6–8]. Of
articular interest are the class of Willis metamaterials [9,10],
n which momentum is coupled to strain, which were found
o enable novel wave phenomena, including cloaking and non-
eciprocal wave propagation. Willis metamaterials are obtained
sing homogenization to connect the effects of microscale het-
rogeneities to the dynamic macroscale continuum response.
ne noticeable feature of the dynamic homogenization is the
ppearance of coupling terms, known as Willis couplings in
ffective constitutive relations. In particular, there have been
arious cross-couplings derived to connect strain and momentum
n elastodynamics [11–13], pressure and momentum in acoustics
14,15], or electric and magnetic fields in electromagnetism
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[16,17]. As a generalization of standard material properties, the
physical restrictions with respect to reciprocity, causality and
passivity must be enforced. These restrictions have developed in
elastodynamics by Srivastava et al. [18,19], Haberman et al. [20]
and Milton [21], or in elastic and acoustic materials by Achen-
bach [22]. Successive derivation on passivity is done to show
bounds on the Willis response of acoustics [15].

While classical Willis materials have been derived to highlight
their novel properties through cross-couplings between strain
and velocity, Shmuel and co-workers [23] recently developed a
new coupling, in addition to Willis coupling, between the mo-
mentum and non-mechanical field. Specifically, they found that
the macroscopic momentum for piezoelectric composites can be
additionally coupled with the electric field, while the velocity is
coupled to the electric displacement as described in Fig. 1, where
distinctions and connections to Willis coupling are illustrated.
The mathematical restrictions on such effective properties were
discussed in Ref. [24], while the authors recently developed a
scattering-based homogenization method [25] to analyze elas-
tic waves in 1D piezoelectric Willis materials and to highlight
the importance of electro-momentum coupling on their macro-
scopic description. An alternative homogenization method [26]
derived from plane wave expansions was also recently done for
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Fig. 1. Diagram of electro-momentum coupling in piezoelectric metamaterials, and its relationship with standard Willis coupling.
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uasi-2D generalized Willis materials. The emergence of electro-
omentum coupling has recently lead to works on maximizing

he coupling coefficient by derivation of theoretical bounds in
D [27], and by topology optimization in piezoelectric layers [28].
hile Shmuel et al. [23] presented an elegant analytical solution

or a one-dimensional problem with only mechanical loading,
he complexity of the theoretical formulation motivates the de-
elopment of a computational formulation to enable developing
nsights into the structure–property relationships that enable
aximizing this new electro-momentum coupling, particularly

n multiple dimensions. Since the classical Willis coupling has
een discovered to handle a nonreciprocal medium for acous-
ic waves [22,29], elastic waves [30], or to drive asymmetric
ave responses [31], it is an open question as to the potential
f electro-momentum coupling for similar applications, where
ue to the emergence of these new couplings in piezoelectric
etamaterials, a momentum bias can be produced via electric

ields to control elastic waves. Specifically, it is of interest to find
aterial distributions whose the electro-momentum coupling is
aximized to produce a sufficiently strong momentum bias.
The objective of the present work is to develop a numerical

ramework based on the ensemble averaging technique to ho-
ogenize periodic piezoelectric media, and to use the resulting
ffective constitutive relationships to design piezoelectric meta-
aterials which maximize the electro-momentum coupling. To
o so, we develop a genetic algorithm-based topology optimiza-
ion approach for periodic structures, and use the resulting opti-
ized unit cells to demonstrate asymmetric wave propagation

nduced by both mechanical and electrical loads in a two-dime-
sional piezoelectric composite metamaterial.
The paper outline is as follows. Section 2 shows the math-

matical model based on the ensemble average to homogenize
iezoelectric composites. Fundamental properties of the effec-
ive constitutive relations are briefly discussed in this section.
n Section 3, a 1D problem is examined to validate the present
omputational work in comparison with the analytical result
roposed by Salomón [23]. For two-dimensional problems, we
evelop a topology optimization algorithm to maximize the elec-
ro-momentum coupling, whose effects on wave propagation we

emonstrate through numerical examples.

2

2. Derivation of the effective electro-mechanical constitutive
relationships

In this section, we describe how we calculate the effective
constitutive relationships for the piezoelectric composites. To do
so, we begin by stating the equations of motion of the piezoelec-
tric medium, which are governed by the two following partial
differential equations

∇ · σ + f = ṗ (1)

∇ · D − q = 0 (2)

where σ is the stress, D is the electric displacement, p is the
omentum, f is the body force, and q is the prescribed free charge
ensity. The stress σ, electric displacement D and momentum
are related to the strain ϵ, gradient of electric potential ∇φ,

nelastic strain η and velocity u̇ through the following constitutive
elations as

σ
D
p

]
=

⎡⎣ C BT 0
B −A 0
0 0 ρI

⎤⎦[
ε − η
∇φ

u̇

]
(3)

here C is the elastic tensor, and ρ is mass density, while B and
are piezoelectric and dielectric tensors, respectively.
By applying the ensemble averaging into the double governing

qs. (1) and (2), the equations can be re-written as

· ⟨σ⟩ + f = ⟨ṗ⟩ (4)

∇ · ⟨D⟩ − q = 0 (5)

and the effective constitutive relations resulting from the homog-
enization approach, introduced by Shmuel et al. [23] are formed
as[

⟨σ⟩

⟨D⟩

⟨p⟩

]
=

⎡⎣ C̄ B̄T S̄
B̄ −Ā W̄
S̄† W̄† ρ̄

⎤⎦[
⟨ε⟩ − η
⟨∇φ⟩

⟨u̇⟩

]
(6)

where ⟨·⟩ denote ensemble averages, the overbars indicate effec-
†
tive tensors, and the indicates adjoint operator with respect to
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he spatial variable. The coupling terms S̄ and W̄ are responsible
or the Willis coupling and the electro-momentum coupling, re-
pectively. The structure for the coupled problem is illustrated by
ntroducing symbolic notations as

L =

⎡⎣ C BT 0
B −A 0
0 0 ρI

⎤⎦ , DT
=

[
∇· 0 −s
0 ∇· 0

]
, B =

[
∇ 0
0 ∇

s 0

]

m =

[
η
0
0

]
, h =

[
σ
D
p

]
, g =

[
f

−q

]
, andw =

[
u
φ

]
(7)

n which s represents the Laplace transform for the field variables
ith respect to derivative of time ∂/∂t .
To enable the ensemble averaging approach that is applied

ith the dynamic homogenization of the piezoelectric medium,
e follow the approach of Shmuel et al. [23] and define the
reen’s function and its boundary conditions as

DTLBG = −

[
Iδ

(
x − x′

)
0

0 δ
(
x − x′

) ]
G is periodic on ∂Ωw

(BG)TLN is anti-periodic on ∂Ωt

(8)

with NT
=

[
⊗n 0 0
0 ⊗n 0

]
.

Within use of the ensemble averaging, the effective operator
¯ is obtained in the following form

¯ = ⟨L⟩ −
⟨
LB(BG)TL

⟩
+

⟨
LBGT ⟩

⟨G⟩
−T ⟨

(BG)TL
⟩

(9)

Details of the derivation of Eq. (9) are shown in Ref. [23]. It
is important that operators of L̄ corresponding to components
n Eq. (6) are non-local operators in time and space. The con-
titutive operator L̄ provides finite terms L̄23 and L̄32 through
he so-called electro-momentum couplings, denoted by W̄ which
nable the average electric displacement ⟨D⟩ to be coupled with
u̇⟩ and the average momentum ⟨p⟩ to be coupled with ⟨∇φ⟩,
espectively. If a multi-dimensional piezoelectric material model
s examined, W̄ is a second-order tensor. It is analogous to prop-
rties of the original Willis couplings, mentioned in Refs. [4,32],
he electro-momentum couplings generally appear in complex
oefficients in which the imaginary part is due to asymmetric
icrostructures, and the real part is arising from non-local effects.
To numerically calculate the effective properties using the

nsemble averaging, the Green’s function defined in Eq. (8) is
irst numerically solved by deriving the Galerkin weak form over
he unit cell domain Ω . Then by taking numerical integration to
induce volume averages over terms in Eq. (9), the effective con-
stitutive operator in Eq. (6) is numerically obtained. Appendix A
shows details of the numerical algorithm in which the effec-
tive constitutive relations of periodic piezoelectric media are
extended to Bloch wave solutions.

3. Numerical examples

In this section, several examples are solved to elucidate the
nature of the electro-momentum coupling, and to verify the
ensemble averaging approach for the dynamic homogenization
of composite piezoelectric materials. Specifically, a 1D problem
is analyzed and compared with the analytical solution proposed
by Salomón and Shmuel [23]. Next, a 2D numerical homogeniza-
tion model based on the ensemble average is established for a
unit cell made from two different piezoelectric phases. A genetic
optimization algorithm is then designed to seek the optimal
material distributions such that the electro-momentum coupling
 o

3

Table 1
Material parameters.
Material C (GPa) ρ (kg/m3) B (C/m2) A (nF/m)

PZT4 115 7500 15.1 5.6
BaTiO3 165 6020 3.64 0.97
PVDF 12 1780 −0.027 0.067
SiO2 74 2160 0.066 0.02
Al2O3 300 3720 0 0.079
PMMA 3.3 1188 0 0.023

is maximized. Finally, the obtained unit cells are used to examine
how the electro-momentum coupling impacts wave propagation
in a piezoelectric metamaterial.

3.1. 1D validation

We first verify the ensemble averaging approach for a 1D
case. Specifically, we analyze the problem proposed by Shmuel
et al. [23], in which three unit cells with length l = 3mm
are composed of different 3-layered piezoelectric materials. Their
compositions are made from and are ordered in a lalblc ordering
as: PZT4-BaTiO3-PVDF (composition 1), Al2O3-PZT4-PMMA (com-
position 2), and PZT4-BaTiO3-SiO2 (composition 3). The length
distribution of microstructures is arranged in order la = 1mm,
b = 1.4mm and lc = 0.6mm. The material parameters of these
layers are provided in Table 1. Deformation of the composite
is induced by a body force, where the electric displacement D
and surface charge are set to be zero. Accordingly, the analytic
solution based on a single Green’s function is constructed to
calculate the effective properties. For the present numerical anal-
ysis, the idea of using single Green’s function is still employed
in the ensemble average framework. Due to the periodicity of
the structure, Bloch waves are admitted to produce numerical
solutions specified by the wave vector k and the frequency ω.

Fig. 2 shows the evolution of the electro-momentum coupling
computed for kl = 2 at low frequencies for composition 1
(PZT4-BaTiO3-PVDF). We note that the symmetric case given in
Fig. 2(b) is created with lb = 0, la = lc = 1.5mm. As shown
in Fig. 2, the electro-momentum couplings are activated when
ω > 0. Furthermore, the imaginary parts of W̄ and W̄ † are
qual while the real parts are opposite to each other. In other
ords, the relations satisfy the symmetric property W̄ (k, ω) =

conj
(
W̄ † (k, ω)

)
presented in Refs. [23,24], which is equiva-

ent to the expression of their Fourier transform. This feature
s identical to that of the original elasto-momentum couplings
¯ (k, ω) = −conj

(
S̄† (k, ω)

)
mentioned in Refs. [4,7,11,13]. It

hould be noted in Fig. 2(b) that Imag
(
W̄

)
and Imag

(
W̄ †

)
vanish

under the symmetry of the unit cell, due to the requirement that
the imaginary parts of the electro-momentum coupling arise from
geometric asymmetry. These results match well with the analytic
results shown in Ref. [23].

Fig. 3 illustrates the evolution of the electro-momentum cou-
pling W̄ against the frequency ω for the situation where waves
with wavelength kl = 0 and kl = 2 are imposed on piezo-
lectric cells with composition 2 (Al2O3-PZT4-PMMA). As for the
agnitude of Imag

(
W̄

)
, composition 1 generates maximal values

ith only about 20 and 7 µCs/m3 as shown in Fig. 2. While
omposition 2 with lower absolute values of the ratio between
he piezoelectric coefficient and the permittivity generates sig-
ificantly higher electro-momentum values of over 900 and 1400
Cs/m3 corresponding to the case kl = 0 and kl = 2, respectively.

Interestingly, this demonstrates that while the ratios of |B/A|

ver materials comprising composition 2 are significantly lower
han those comprising composition 1, the electro-momentum
oupling values of composition 2 is significantly higher than that

f composition 1.
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Fig. 2. Electro-momentum coupling of composition 1 at kl = 2, obtained from the numerical approach, and the analytical solution derived by Shmuel et al. [23].
Fig. 3. Electro-momentum coupling of composition 2, compared with that of composition 1.
A further examination of electro-momentum coupling W̄ at
kl = 0, and ω = 0.1MHz on the three compositions is carried
out by setting la = lc and 0 ≤ lb ≤ l. As shown in Fig. 4, Imag
W̄ ) would vanish at lb = 0mm and lb = 3mm correspond-
ngly where the unit cells are symmetric, and their materials
re uniform. Looking at the diagram of composition 1, there is
singularity around lb = 0.87mm, which arises from it being
omprised of piezoelectric materials with coefficients of different
ign. Furthermore, the electro-momentum from composition 2
hows a jump discontinuity at the right limit lb → 0+, which
corresponds to the point when all materials in the unit cell
are elastic, but not piezoelectric. These results agree well with
data from the analytical solution shown in Ref. [23]. As for the
appearance of composition 3, it shows much lower values than
the two first compositions, although its material components are
different from composition 1 in only SiO2 instead of PVDF. It
appears that the combination of materials with opposite polar-
ization coefficients like composition 1 can result in a singularity
in the electro-momentum coupling.
4

Fig. 4. Imag
(
W̄

)
with variation of lb while la = lc .
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Moreover, if the analogous examination is executed with kl ̸=
0, the trends of the electro-momentum for three compositions
here are similar to the case kl = 0. In particular, there are
still special points from composition 1 and composition 2. By
considering at kl = 2, ω = 0.1MHz, the singular point of
composition 1 is at lb = 0.9mm, while the vanishing point moves
to 0.75mm for composition 2.

3.2. Maximizing the electro-momentum coupling in 2D

Having verified the effective constitutive relations in 1D, we
now progress to developing a computational technique to design
a 2D microstructure comprising piezoelectric materials to max-
imize the electro-momentum coupling W̄†. Such computational
approaches are required because while layered structures are the
only possibility for composites in 1D, the design space for 2D
composites is significantly larger.

3.2.1. Topology optimization method to maximize the electro-mom-
entum coupling

To formulate the design problem, we begin with the consti-
tutive relations shown in Eq. (6), then re-write the macroscopic
momentum as compositions of the momentum due to strain ⟨pε⟩,
electric field ⟨pe⟩ and velocity ⟨pv⟩, in which the term ⟨pe⟩ is
expressed as⟨
p̃e⟩

= W̄† (∇ + ik)
⟨
φ̃
⟩

(10)

By applying the divergence theorem for φ̃, we have
∫

Ω
∇φ̃dΩ =∫

∂Ω
φ̃nda = 0. Consequently, Eq. (10) can be written in terms of

its components as[ ⟨
p̃e

⟩
x⟨

p̃e
⟩
y

]
=

[
W̄ †

xx W̄ †
xy

W̄ †
yx W̄ †

yy

][
ikx
iky

] ⟨
φ̃
⟩

(11)

In proceeding to optimize a unit cell to maximize W̄†, we work
at longer wavelengths/lower frequencies over the acoustic band.
The unit cells are assumed to satisfy Bloch periodicity, where
the mechanical and electrical fields can be written in terms of
the wavenumber k and the frequency ω, such that the effective
tensor W̄† is consequently related to (k, ω). For simplicity, we
ssume that we wish to maximize the electro-momentum cou-
ling only in the y-direction, which implies that W̄ †

yx and W̄ †
yy are

the components of W̄† that should be maximized. The equivalent
electro-momentum in the y-direction is as follows,

W̄ †
y =

(
W̄ †

yxkx + W̄ †
yyky

)
∥k∥

(12)

e aim to maximize the imaginary portion of W †
y that is needed

o generate wave propagation asymmetry resulting from the
lectro-momentum coupling. To do so, the discretization model
s employed to compute the overall constitutive properties and
he parameters for optimization as well. The design domain Ω

s first discretized into sub-domains ΩD. The objective function
s defined as a minimization problem via inversion of W̄ †

y at the
requency ω and wavenumber k

inimize J (α) =
1⏐⏐⏐Imag
(
W̄ †

y

)⏐⏐⏐ (13a)

ubject to:αe (x) ∈ [0, 1] , e ∈ ΩD

α
(
x ∈ ∂Ω l)

= α
(
x ∈ ∂Ω r) , and

α
(
x ∈ ∂Ωb)

= α
(
x ∈ ∂Ω t) (13b)

where Eq. (13b) shows constraints of the optimization prob-
lem. In detail, values 0 and 1 in the first line are represented
5

Fig. 5. Schematic of periodic 2D material with boundaries labeled for the design
domain.

Table 2
Material properties of PZT4.

C (GPa) B (C/m2) A (nF/m) ρ (kg/m3)

139 74.3 0 0 0 12.7 5.6 0 7500
74.3 115 0 −5.2 15.1 0 0 5.6
0 0 25.6

Table 3
Material properties of PVDF.

C (GPa) B (C/m2) A (nF/m) ρ (kg/m3)

6.5 4.3 0 0 0 0 0.067 0 1780
4.3 6.5 0 0.023 −0.033 0 0 0.067
0 0 1.08

for two-phase piezoelectric materials, and thus each phase will
be identified in a corresponding value of the elemental design
variable αe. The second line presents the constraint of periodic
material distributions on opposite edges of the unit cell whose
the boundaries are labeled in Fig. 5.

The design sensitivity of the objective function is solved using
a genetic algorithm (GA), which has previously been applied in
topology optimization problems [33–35], where further details
on the fundamentals of GAs can be found in Refs. [33,36]. The
GA population is in terms of a set of binary strings. The binary
digits in a string are mapped into the FE meshes where elements
are assigned with values of 1 responsible for the distributions
of material 1 while those with allele values of 0 correspond to
material 2, as shown in Fig. 6. Particularly, we use a structure
with only 8 × 8 pixels to clearly illustrate steps of decoding
binary string representation into a meaningful topology in a
esign domain. In the examples, the number of pixels used in
he analysis is 40 × 40 that is observed to be sufficient to
enerate a stable optimal topology. Following the present topol-
gy optimization, the level set method [37] is used to smoothly
rack interfaces between material phases. Details about the finite
lement formulation evolving the optimization computations are
rovided in Appendix A.
We set up calculations on a square unit cell with the size a =

mm that is made of PZT4 and PVDF, where the corresponding
aterial properties are given in Tables 2 and 3. Bloch waves are
ropagated in the plane with the form w = w̃ei(k0 cos θ+k0 sin θ−ωt)

here the angle θ which is defined counter-clockwise with re-
pect to x-direction is chosen to be 750, and the wavenumber is
anaged as k0 = 0.5/a, while the frequency was specified to be
0 kHz.
The GA-based optimization for the present work is run with

randomly generated initial population of 500 individuals con-
trained by identical material distributions on each pair of oppo-
ite edges. The solution to the optimization problem converges
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Fig. 6. Formation of a design domain: (a) Rearranged binary string with the binary digits assigned to the finite elements, (b) resulting topology where material 1
(in blue) corresponds to values of 1 and material 2 (in yellow) corresponds to values of 0, (c) refined topology that small disconnected components are removed.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
s
s
W
m
Fig. 7. Convergence rate of the objective function J .

at the rate shown in Fig. 7: the objective function falls below the
tolerance value after over 100 function evaluations of the defined
electro-momentum FE formulation (see Fig. 8).

The unit cell that results from the optimization process to
maximize W̄ †

y in Eq. (12) is shown in Fig. 8(a). We first observe
that the optimized microstructure is asymmetric, which is con-
sistent with the notion that the presence of the imaginary part
of the electro-momentum coupling arises from broken inversion
symmetry, as discussed in Ref. [23]. This feature is analogous
to the conventional Willis coupling arising from the asymmetry
in elasticity [14,32]. Fig. 8(b) shows the imaginary values of
components in W̄† in the range from 0 to 60 kHz. As expected,
the contribution of the imaginary parts of the y-directional com-

¯ † ¯ † ⟨
˜e

⟩

ponents, i.e. of Wyx and Wyy to p y, is much larger than the

6

imaginary parts of the electro-momentum coupling tensors re-
lated to the x-direction

⟨
p̃e

⟩
x. This demonstrates the optimized

unit cell in Fig. 8(a) demonstrates a strong electro-momentum
coupling in the y-direction, as expected from the optimization.

3.2.2. Modeling wave propagation
To determine the effect of the electro-momentum coupling on

wave propagation, we design a 2D metamaterial structure made
of optimized unit cells placed side by side into the middle of a
PVDF beam along the y-direction as shown in Fig. 9, where the
tructure containing 5 optimized unit cells serves as the reference
tructure of interest to examine the emergence of generalized
illis phenomena. We generate motion by applying displace-
ents with the amplitude |u0| = 2e−4 m at y = 0. For the case of

forward waves, the source is placed at the left-hand side of the
beam (y = 0) along x-direction and the forward displacement
amplitude uf

y is observed at a point located at 1e−2 m behind the
last optimized unit cell while the backward waves are conducted
in the same manner, where the same displacement amplitude is
applied at y = L, while the backward displacement amplitude
ub
y is observed at a point located at 1e−2 m behind the first

optimized unit cell. The amplitudes of forward and backward
waves are normalized by a factor 1.5umax

y , and correspond to t f

and tb. The percent difference between t f and tb, defined by
∆t =

⏐⏐⏐⏐t f ⏐⏐ −
⏐⏐tb⏐⏐⏐⏐ is used to measure the asymmetric level of

waves. We obtain these wave amplitudes by solving the coupled
field in Eqs. (4) and (5), where details on the finite element dis-
cretization for numerically solving these equations are included
in Appendix B. The simulations are examined within the 2D real

space, over the frequency domain from 50 to 60 kHz, and the
Fig. 8. (a) Optimized bi-material unit cell, (b) Imaginary part of components in W̄† .
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Fig. 9. Schematic of the metamaterial system: (a) supercell and boundary conditions imposed to generate forward/backward wave, and (b) displacement field uy of
forward/backward waves in order to study the effect of electro-momentum coupling on asymmetric wave propagation. At a frequency of 53 kHz, the normalized
amplitude of displacement in y-direction of the forward wave,

⏐⏐t f ⏐⏐ at observation point marked in black star is 0.36, while the normalized amplitude of displacement
in y-direction of the backward wave,

⏐⏐tb⏐⏐ at the point marked in black plus is 0.45.
Fig. 10. Amplitudes of waves where the constitutive relations of piezoelectric Willis materials that: (a) Account for both elasto-momentum (S̄) and electro-momentum
W̄) coupling; (b) Neglect elasto-momentum coupling (S̄); (c) Neglect electro-momentum coupling (W̄), and (d) Neglect both elasto-momentum (S̄) and electro-
omentum (W̄) coupling. The red and blue lines correspond to forward and backward waves. (For interpretation of the references to color in this figure legend, the

eader is referred to the web version of this article.)
avenumber specified at k0 = 0.5/a and θ = 75◦. The metama-
erial beam is fixed on the right-hand side, while the voltage is
rescribed to be grounded on the top of the beam for the case
f forward waves. Similarly, the beam displacements on the left-
and side are fixed while the voltage is grounded on the bottom
f the beam for the case of backward waves.
The amplitudes for forward and backward propagating waves

re plotted in Fig. 10, where we considered four different cases
7

for the effective constitutive relationships. In all cases, the ampli-
tudes of the waves are maximized at about 53.8 and 57.2 kHz.
Fig. 10(a) shows the amplitude of both forward and backward
waves when both electro-momentum (W̄) and elasto-momentum
(S̄) couplings are accounted for, where there are clear differences,
and thus asymmetry, in the amplitudes |t| of waves propagated
in forward and backward directions. To delineate the effect of
electro-momentum as compared to elasto-momentum coupling
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Fig. 11. Amplitudes of waves with the variation of wavenumber obtained with various angles θ . The red and blue lines correspond to forward and backward waves.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
n enabling the asymmetry, we considered cases where either
lasto-momentum (Fig. 10(b)) or electro-momentum (Fig. 10(c))
oupling were neglected. By neglecting elasto-momentum, we
ee in Fig. 10(b) that the asymmetry is largest at a frequency
f 57.2 kHz, with an asymmetric percentage ∆t = 6.7. In
ontrast, when electro-momentum is neglected as in Fig. 10(c),
he asymmetry is largest at a frequency of about 53.8 kHz, with
n asymmetric percentage ∆t = 9.8. Thus, while the wave
mplitude is larger at 53.8 kHz, the electro-momentum coupling
enerates a proportionally larger asymmetric response at 57.2
Hz. Finally, if both electro and elasto-momentum coupling are
eglected, there is no asymmetry in the wave propagation, as
hown in Fig. 10(d).
While the results in Fig. 10 were for a specific θ = 75◦, we now

xamine the effects of varying θ , which is a proxy for changing
he wavenumber. The wave amplitudes shown in Fig. 11 have the
ame trend at different values of θ , and are locally maximal at the
ame two frequencies, i.e. 53.8 and 57.2 kHz. Table 4 shows the
ifference of the asymmetric amplitudes ∆t , observed at the two
rominent points, along with the frequency of 50 kHz used for
he optimization. At the first key frequency 53.8 kHz, the largest
symmetry ∆t is achieved at θ = 75◦, which coincides with the
iven chosen value for the optimization computation, while the
symmetry for the second peak is maximized at θ = 15◦.
We next determine the effect of the number of asymmetric

nit cells in the piezoelectric metamaterial beam on the asym-
etry. Thus, we conducted simulations with θ = 75◦ on the
etamaterial beam using either 3 or 5 optimized unit cells to
xamine that effect on the asymmetric wave propagation. Fig. 12
hows amplitudes obtained from the metamaterial beam with 3
nd 5 optimized unit cells. The asymmetric amplitudes from the
-cell specimen are also prominent at two frequencies, though
heir values are different are shifted slightly to 53 and 56 kHz,
espectively, leading to difference of amplitudes ∆t of 6 and 12
8

Fig. 12. Amplitudes of waves over the beam with 3 optimized unit cells.

Table 4
Asymmetric wave propagation, as measured by percent difference in forward
and backward wave amplitudes ∆t =

⏐⏐⏐⏐t f ⏐⏐ −
⏐⏐tb⏐⏐⏐⏐ with respect to angle θ .

Freq θ

15◦ 30◦ 45◦ 60◦ 75◦ 90◦

50 0.3 0.3 0.3 0.4 0.4 0.4
53.8 3.5 6.3 7.3 8.5 9 8.7
57.2 8.7 8.1 7.5 6.9 6.4 6.1

percent at those frequencies. This is in contrast to the 5-cell
specimen, which had maximum percentage difference in am-
plitudes ∆t of 9 and 6.4 at 53.8 and 57.2 kHz. It is clear that
the asymmetric behavior is observed for different numbers of
optimized unit cells, though the specific frequencies at which it
is maximized may clearly shift as a result.

Finally, we examine the nature of the asymmetric wave propa-
gation when the stimulus to induce wave propagation is electrical
in nature, and not mechanical. To do so, we excited the long side
of the 5-cell beam using an electric potential φ = 5e5 V to drive
0
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Fig. 13. Amplitudes of waves excited by the electrical source. The red and blue
ines correspond to forward and backward waves. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

ave propagation. Fig. 13 shows the asymmetric wave ampli-
udes for both directions obtained at θ = 75◦. In comparison
ith the case of using mechanical excitation shown Fig. 10(a), the
resent investigation has only one prominent point at nearly 53.5
Hz. The use of the electrical excitation also produces asymmetric
aves with percent difference in amplitude of ∆t = 9 at 53.5
Hz. It is interesting that when electrical loading is utilized, we
bserve only one frequency maximum, rather than two as seen in
echanical loading. This is expected, as the electro-momentum
ouplings in Eq. (6) through the complex conjugates are not
ymmetric, and as such a different response may be expected
epending on the physical nature (mechanical vs. electrical) of
he loading.

. Conclusion

In this work, we have developed a numerical framework to
nable, through dynamic homogenization, the design of piezo-
lectric composites which demonstrate a novel form of Willis
oupling, the so-called electro-momentum coupling [23], in which
he macroscopic momentum is additionally coupled with the
lectric fields. In particular, we have developed a topology opti-
ization approach to maximize the electro-momentum coupling,
nd demonstrated that the obtained unit cells can be used to
rive asymmetric wave propagation in a 2D piezoelectric meta-
aterial that is excited by either mechanical or electrical stimuli.
ur examples demonstrated that the asymmetric wave propaga-
ion is driven by a combination of traditional elasto-momentum
oupling, as well as the new electro-momentum coupling, which
pens the door to designing novel materials that enable asym-
etric wave phenomena through electro-mechanical coupling
ffects.
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Appendix A. Numerical computation of the effective proper-
ties

To numerically perform the dynamic homogenization, the unit
cell domain is first discretized into 4-node quadrilateral finite
elements, which will contain information for the material dis-
tributions, which is important for the subsequent topology op-
timization.

Since the field variables w =

[
u
φ

]
are specialized to Bloch

waves assuming unit cell periodicity Ω , they are formed as
w (x) = w̃ (x) ei(k·x−ωt). Similarly, the Green’s function, as a
solution of Eq. (8) is also extended to the Bloch form. We develop
the numerical formulation by applying the weak form on Eq. (8)
in terms of G̃†. In detail, by multiplying by the test function δG̃T ,
aking integration over Ω , and applying Green’s theorem, we
obtain the numerical solution of the Green’s function as∫

Ω

(
δG̃T

)
(B + ik)TL (B − ik) G̃†(x − x′

)
dΩ

=

∫
Ω

(
δG̃T

)[
Iδ

(
x − x′

)
0

0 δ
(
x − x′

) ]
dΩ

(A.1)

The notation G̃†
(
x − x′

)
is simplified by G̃†, in which the term on

the left of G̃† depends on vector position x, and the term on the
right depends on x′. The development of Eq. (A.1) leading to the
matrix form of the finite element approach is given by

KG̃†
= I (A.2)

Within the finite element discretization, the local matrix Ke (the
superscript ‘‘e’’ corresponds to the eth element) is defined as

Ke
=

∫
Ωe

(B + ik)TL (B − ik)dΩ (A.3)

in which

Bi
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂N i

∂x
0

∂N i

∂y
0 0 sN i 0

0
∂N i

∂y
∂N i

∂x
0 0 0 sN i

0 0 0
∂N i

∂x
∂N i

∂y
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

,

B =
[

B1 B2 ... Bn
]

where n is the number of nodes of the current element, and
N i is the basis function of the node ith. Next, we follow the
definition to take the mean value of a periodic function h̃ within
the ensemble averaging, presented in Ref. [4] as⟨
h̃
⟩
(x) =

1
|Ω|

∫
Ω

h̃
(
x, x′

)
dx′

≡

⟨
h̃
⟩
x′

(A.4)

ote that notation ⟨•⟩x′ is represented for the average-over-Ω
perator in the vector position x′. The above equation is applied
nto relation h (x) = L (Bw − m) (x), and its mean value is
obtained by

⟨h⟩ = L̄ (⟨Bw⟩ − m) (A.5)

From the resultant ensemble averaging definitions of Eq. (A.5),
the overall constitutive operator in Eq. (9) is finally obtained by

L̄ = ⟨L⟩x −

⟨⟨
L (B + ik)

(
(B − ik) G̃†

)T
L
⟩
x′

⟩
x

+

⟨⟨
L (B + ik)

(
G̃†

)T
⟩
x′

⟩
x

⟨⟨
G̃†

⟩
x′

⟩−T

x

⟨⟨(
(B − ik) G̃†

)T
L
⟩
x′

⟩
x

(A.6)
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ppendix B. Numerical computation of the macroscopic ef-
ects

From the obtained effective properties in Eq. (6), these rela-
ions are taken into the governing Eqs. (4), (5) to model electro-
echanical effects on the structures. With the domain of the
tructure, sub-divided into quadrilateral finite elements, the
alerkin method is employed in solving Eq. (4) and (5). The

umerical solution for the field variables
[

⟨u⟩

⟨φ⟩

]
in terms of the

eriodicity is defined as[
Kuu − ω2M Kuφ

Kφu Kφφ

][ ⟨
ũ
⟩⟨

φ̃
⟩ ]

=

[
ru
rφ

]
(B.1)

The local contributions of components in Eq. (B.1) correspond-
ng to element eth are given by

e
uu =

∫
Ωe

[
(Bu − ik)T C̄ (Bu + ik) + s(Bu − ik)T S̄N u

+ sN T
u S̄

† (Bu + ik)
]
dΩ (B.2a)

e
uφ =

∫
Ωe

[
(Bu − ik)T B̄† (

Bφ + ik
)
+ sN T

uW̄
† (

Bφ + ik
)]
dΩ

(B.2b)

Ke
φu =

∫
Ωe

[(
Bφ − ik

)T B̄ (Bu + ik) + s
(
Bφ − ik

)TW̄N u

]
dΩ

(B.2c)

Ke
φφ = −

∫
Ωe

(
Bφ − ik

)T Ā (
Bφ + ik

)
dΩ (B.2d)

Me
=

∫
Ωe

N T
u ρ̄N udΩ (B.2e)

reu =

∫
Ωe

N T
ufdΩ +

∫
∂Ωe

t

N T
utda (B.2f)

reφ = −

∫
Ωe

N T
φqdΩ −

∫
∂Ωe

w

N T
φweda (B.2g)

Within the Galerkin method, the field variables
⟨
w̃

⟩
are approxi-

mated by the product of a set of basis functions N i multiplying
by the nodal variables

⟨
w̃

⟩i, the mechanical displacement field and
electric potential are expressed as

⟨
ũ
⟩
(x) =

n∑
i=1

N i
u (x)

[ ⟨
ũx

⟩⟨
ũy

⟩ ]i

,
⟨
φ̃
⟩
(x) =

n∑
i=1

N i
φ (x)

⟨
φ̃
⟩i

(B.3)

in which the superscript i corresponds to the ith node of the
mesh, and n is the number of nodes of an element. Consequently,
the operators in Eq. (B.2) at the ith node can be written by

N i
u =

[
N i 0
0 N i

]
, N i

φ = N i

Bi
u =

⎡⎢⎢⎢⎢⎢⎢⎣

∂N i

∂x
0

0
∂N i

∂y
∂N i

∂y
∂N i

∂x

⎤⎥⎥⎥⎥⎥⎥⎦ , Bi
φ =

⎡⎢⎢⎣
∂N i

∂x
∂N i

∂y

⎤⎥⎥⎦
ote that coupling tensors including S̄, S̄†, W̄, and W̄† in Eq. (B.2)

are available over the presence of Willis unit cells, and they are
set to be zeros over normal structures.
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