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Nonlinear buckling behavior of a complete spherical shell under uniform external
pressure and homogenous natural curvature
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In this work, we consider the stability of a spherical shell under combined loading from a uniform external
pressure and a homogenous natural curvature. Nonmechanical stimuli, such as one that tends to modify the rest
curvature of an elastic body, are prevalent in a wide range of natural and engineered systems, and may occur
due to thermal expansion, changes in pH, differential swelling, and differential growth. Here we investigate how
the presence of both an evolving natural curvature and an external pressure modifies the stability of a complete
spherical shell. We show that due to a mechanical analogy between pressure and curvature, positive natural
curvatures can severely destabilize a thin shell, while negative natural curvatures can strengthen the shell against
buckling, providing the possibility to design shells that buckle at or above the theoretical limit for pressure alone,
i.e., a strengthening factor. These results extend directly from the classical analysis of the stability of shells under
pressure, and highlight the important role that nonmechanical stimuli can have on modifying the membrane state
of stress in a thin shell.
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I. INTRODUCTION

One of the great engineering challenges of the 18th cen-
tury was the accurate determination of a ship’s longitudinal
location during long maritime voyages. At the heart of this
challenge was the lack of a clock that could keep accurate
time while remaining unaffected by variations in temperature,
pressure, and humidity. This problem was eventually solved
by John Harrison, a clockmaker, who compensated for tem-
perature changes with his Thermometer Kirb, an invention
well known to today’s engineers as the bimetallic strip. The
now classical understanding of how a nonmechanical stim-
ulus, such as temperature, imparts curvature of a bimetallic
strip was not understood mechanically for another 160 years
following Harrison’s invention, when the bimetal was ana-
lyzed by Timoshenko [1]. Timoshenko’s result is now familiar
to all mechanical engineers: under a homogenous temperature
change, the two metals expand by different amounts, and the
bimetal bends to adopts a natural curvature with residual
thermal stresses in three dimensions [2]. It is now well un-
derstood that environmental conditions, such as changes in
temperature, pH, and humidity may induce a nonmechanical
stimulus in most engineering materials, and these effects
can significantly alter the shape of a structure. For example,
elastomers and gels, cross-linked either chemically or through
entanglement, will swell in a favorable solvent, and this
swelling can cause a significant increase in their volume—
sometimes surpassing several hundred percent [3,4]. The dif-
ferential swelling of a bilayer gel provides an extension of
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Timoshenko’s analysis of a heated bimetallic strip to include
nonlinearities that emerge from the large stretching strains [5].
Although the physics behind swelling and thermal expansion
are quite different from each other, the similarities in these
phenomena highlight the underlying geometric connection
of nonmechanical stimuli to local volume changes within a
material.

The effect that residual stress has on thin elastic structures
also has a long and rich history. Stoney analyzed the stress in
the deposition of thin metallic films [6,7], a phenomenon that
leads to the bowing of the silicon wafers these films are be
deposited on. Perhaps unsurprisingly, these affects amount to
an extension of Timoshenko’s bimetal analysis from beams to
plates, but of course the geometric differences between a beam
and a plate are not insignificant. Homogenous heating of a
bimetal plate will endow the plate with a homogenous natural
curvature, causing it to bend into the segment of a spherical
cap, and thus adopting a positive Gaussian curvature. This
change in Gauss curvature comes at the cost of stretching
the plate’s middle surface. Eventually, the energetic cost for
the plate to bend into a cylinder becomes lower than the
cost to continue bending into a spherical cap, and so the
bowing wafer will buckle into a cylindrical shape [8–13]. This
phenomenon is perhaps familiar to those who have cooked
in the oven with a metallic baking sheet, as it may buckle
and warp when heated above a certain temperature. Similar
warping plagued the curing of laminated, fiber-reinforced
composites [14–17]. Recently, researchers have targeted this
bilayer buckling instability as a means for creating mor-
phable, shape-shifting structures [18–24]. In general, these
prestressed bodies have no stress-free configuration, and mod-
eling the static and dynamic shapes of such structures led to
an alternate formulation of elasticity theory built on a different
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FIG. 1. A schematic of a spherical shell (inset) along with a shell segment denoting the curvilinear coordinates ηα at a point a distance r̊
from some origin in space.

definition of the strain tensor—one that did not measure
strain from the original configuration of the elastic body, but
rather from a configuration that would render the elastic body
stress-free. Termed incompatible or non-Euclidean elasticity,
theoretical development began in the mid-twentieth century
to describe incompatibility resulting from material defects,
such as disclinations, dislocations, and point defects [25–28].
Building on ideas from plasticity theory, where modeling of
incompatible elasticity began with a multiplicative decom-
position of the deformation gradient [29,30], classical shell
mechanics was extended recently to model bodies that do
not possess a stress-free configuration [31–33], leading to
the so-called non-Euclidean plate [34] and shell models [35].
This approach to describe bodies that remain stressed even
in the absence of externally applied mechanical forces has
been used to study growth [33,36], thermal expansion [2],
humidity-induced expansion and drying [37], and gel swelling
[21,38–44].

In looking beyond engineered materials, it quickly be-
comes apparent that Nature uses nonmechanical and inter-
nal stimuli to locally and globally change the curvature of
thin and soft materials in a variety of ways—a process that
generates natural or spontaneous curvature, which we will
denote throughout the text as κ . This natural curvature acts
to alter the curvature of an object, and in its most general
form it may be a tensor that varies spatially along the body.
Here we will focus on a homogenous natural, or spontaneous,
curvature that acts to uniformly change the curvature of a
spherical shell from 1/R to 1/R + κ (Fig. 1). Lipids induce
a global spontaneous curvature in the formation of vesicles
[45–49], they couple with the cytoskeleton of red blood cells
to influence their shape [50], and they interact with proteins to
locally cause curvature changes in the cellular membrane [51].
Differential growth rates in plant stems, branches, and roots
induce curvature changes that provide the main mechanism
responsible for their gravitropic response, i.e., their ability
to redirect their growth direction vertically [52–57]. The

coupling of local curvature and local stress may be necessary
to enable the stable, elongating growth of cylindrical shells,
such as Escherichia coli [58]. Internal curvature changes in
the leaves of the Venus flytrap trigger their rapid closure, en-
abling the plant to capture prey [59]. Local curvature changes
enable the ventral furrow formation in Drosophila embryos
(small fruit flies) [60] and the eversion of Volvox embryos
[61,62]—drastic morphological changes that are essential to
their morphogenesis. Such curvature changes can be actively
triggered, as is seen with the blooming of a lily [63], and in
the active stresses that underlie the gyrification of the cerebral
cortex [64]. Many of these naturally occurring structures are
both thin and curved, raising the question of how an evolving
natural curvature effects the stability of thin shells. Indeed,
the coupling of membrane stresses with curvature or twisting
stresses was recently found to alter the fracture properties of
thin rods, such as in the fracture cascades of dry spaghetti [65],
calling further attention to the question of how these stresses
may affect the instabilities of shells.

The stability of thin shells under mechanical loads such
as pressure and compression was an incredibly active area
of research throughout the 20th century, in part because of
an apparent disconnect between theoretical predictions and
experimental evidence that arose from the extreme imperfec-
tion sensitivity of thin shells [66,67]. No attempt to survey
the vast literature that lay in the wake of this controversy is
made here, other than to note the excellent recent overview
by Hutchinson [68]. This review begins by recalling Koiter’s
contributions to the field in developing a nonlinear shell theory
that will be used extensively in this paper [69–72]. Recent
work on the pressure buckling of shells has aimed to connect
the geometric role of imperfections on the critical buckling
pressure [73], and ways to probe these imperfections and
energy barriers to shell buckling [74–78]. Pezzulla et al.
first drew an analogy between pressure and natural curvature
when considering the affects of natural curvature on open and
closed elastic shells [44]. This analogy enables one to consider
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this internal stimulus in a mechanical way by means of a
curvature potential, which captures the deformation of a shell
in its fundamental state under an evolving natural curvature.
Stability, of course, must not be analyzed by the character of
this potential, but rather by the character of the stress state
of deformed shell [79]. That work showed that an evolving
natural curvature in the absence of pressure affects both the
membrane and bending states of stress, the latter of which is
typically neglected when considering a spherical shell loading
by a uniform external pressure [80]. In contrast, in the absence
of an evolving natural curvature, the buckling of a spherical
shell is characterized by the familiar, classical result from
Zoelly for the critical buckling pressure as [81]

pc = 2E√
3(1 − ν2)

(
h

R

)2

, (1)

where E is Young’s elastic modulus, ν is Poisson’s ratio, h is
shell thickness, and R is the radius of curvature of the shell.
As we will show in this paper, for a spherical shell under
both a uniform external pressure and a stimulus that induces
a homogenous natural curvature, the buckling pressure is
modified such that

pκ = 2E

(
h

R

)2
⎡⎣√

1

3(1 − ν2)
− κ2h2(1 + ν)2

36(1 − ν2)

− κh(1 + 2ν)

12(1 − ν)

]
, (2)

where κ is the magnitude of natural curvature, a quantity that
can be either positive or negative. It is immediately clear that
in the absence of a natural curvature stimulus, i.e., κ = 0, we
recover the classical buckling pressure of a spherical shell
obtained by Zoelly. As we will see, the consequences of
a shell under combined pressure and curvature loading are
compelling—natural curvature can act to destabilize a shell, or
strengthen it against buckling providing the possibility to de-
sign pressure vessels with a strengthening factor. Since natural
curvature can be imparted by differential swelling or through
the heating of bimetal shells, it may become an intriguing
design parameter in the processing and characterization of
thin elastic shells.

We outline the paper as follows: Sec. II contains a brief
review of the stability criteria for elastic bodies under conser-
vative loading, and in Sec. III we derive Koiter’s equations for
the strain energy of a spherical shell. In Sec. IV we identify the
total potential energy of a spherical shell in the fundamental
state when loaded by a combination of uniform pressure
and homogenous natural curvature, taking care to retain the
contribution of the natural curvature to the membrane and
bending prestress. In Sec. V we reduce the total potential
energy by decomposing the tangential displacement field of
the shell, focusing our efforts on the additional contributions
from the presence of a nonzero natural curvature. Finally,
in Sec. VI we expand the total potential energy in spherical
harmonics, perform linear stability analysis, and arrive at the
critical buckling pressure for shells under combined pressure
and curvature loading. We compare these analytical results
of Sec. VI to numerical results from a one-dimensional (1D)

axisymmetric shell model (A), and a two-dimensional (2D)
model that allows for nonaxisymmetric deformations (B).

II. STABILITY CRITERIA

In this section, we will outline the stability criteria for
elastic bodies under conservative loading. We will closely
follow the mathematical treatment by Koiter [82]; however, if
a more conceptual understanding of the fundamental theorems
of elastic stability are desired, we recommend the works by
Hunt and Thompson [83,84]. Consider a three-dimensional
(3D) body B = R(x1, x2, x3) embedded in R3. We adopt the
standard notation, letting Latin indices i, j, . . . ∈ (1, 2, 3) and
Greek indices α, β, . . . ∈ (1, 2). The potential energy func-
tional of an elastic body V is composed of the elastic potential
per unit volume W (γ ) integrated over the material volume
plus the potential of the external loads P[�(x)],

V[�(x)] =
∫

V
W (γ ) dV + P[�(x)]. (3)

To better understand the problem of stability, we will con-
sider each term in this energy functional more carefully by
expanding them in a Taylor series about their value in the
fundamental, deformed state I. Beginning with the elastic
potential per unit volume, we find

W (γ ) =
(

∂W

∂γi j

)
I

γi j + 1

2

(
∂2W

∂γi j∂γkl

)
I

γi jγkl + · · · , (4)

where the first term can be further examined by virtue of its
first variation as

δW = 1

2

(
∂W

∂γi j
+ ∂W

∂γ ji

)
I

δγi j ≡ Si jδγi j . (5)

Here we have introduced a symmetric stress tensor Si j = S ji,
i.e., the second Piola-Kirchhoff stress tensor, and the Green-
Lagrange strain tensor γi j , which is given in terms of the
displacement vector �(x) as

γi j = 1
2

(

i, j + 
 j,i + 
h,i


h
, j

) = εi j + ξi j . (6)

For mathematical convenience, we will write the Green-
Lagrange strain tensor in Sec. III using notation from differ-
ential geometry, rather than derivatives of the displacement
vectors; however, these two forms are equivalent. For conve-
nience, we have introduced the notation εi j = 1

2 (
i, j + 
 j,i )
for the linear stretching strains and ξi j = 1

2 (
h,i

h
, j ) for the

nonlinear stretching strains. Next we expand the potential of
the external loads as

P[�(x)] = P1[�(x)] + P2[�(x)] + · · · , (7)

where P1[�(x)] is linear in �, and P2[�(x)] is quadratic in �,
and so on. We now write the potential energy as

V[�(x)] =
∫

V

[
Si j (εi j + ξi j ) + 1

2

(
∂2W

∂γi j∂γkl

)
I

γi jγkl + · · ·
]

× dV + P1[�(x)] + P2[�(x)] + · · · . (8)

Since the fundamental state is an equilibrium state, the first
variation of the potential energy must be stationary for all
admissible displacement displacement fields. Without loss
of generality, we will consider variations around �0(x) = 0,
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such that δV[�0(x) + δ�(x)] = δV[δ�(x)], and therefore we
can write variations in displacements and strains without the
δ notation, i.e., δεi j ≡ εi j . The first variation contains only the
leading order, linear terms of Eq. (8), therefore [82,84,85]

δV[�(x)] =
∫

V
Si jεi j dV + P1[�(x)] = 0. (9)

Accounting for Eq. (9), the total potential energy becomes

V[�(x)] =
∫

V

[
Si jξi j + 1

2

(
∂2W

∂γi j∂γkl

)
I

γi jγkl

]
dV

+ P2[�(x)]. (10)

Since the primary focus of this paper will be to address the
buckling of a spherical shell under the combined loading
of pressure and curvature, it will be adequate to follow the
approach of Koiter and limit our focus to dead loading.
Therefore, we will retain only the potential of external loads
that are linear in the displacement field; i.e., we will retain
P1[�(x)] which is necessary for establishing equilibrium
through Eq. (9) and will neglect P2[�(x)], allowing us to write
the total potential energy as

V[�(x)] =
∫

V

[
Si jξi j + 1

2

(
∂2W

∂γi j∂γkl

)
I

γi jγkl

]
dV. (11)

As is typical in the theory of elasticity, the second derivative
of the elastic potential per unit volume is defined as the tensor
of elastic moduli:

Ai jkl |I ≡
(

∂2W

∂γi j∂γkl

)
I

. (12)

Here we have written the elastic moduli tensor evaluated in
the fundamental state as opposed to the undeformed state,
which is typically used in the theory of elasticity. The tensor
of elastic moduli for a homogenous, isotropic material is given
as

Ai jkl = G

(
◦gik ◦gjl + ◦gil ◦gjk + 2ν

1 − ν

◦gi j ◦gkl

)
, (13)

where G is the shear modulus, ν is Poisson’s ratio, and
◦gi j denotes the contravariant components of the 3D metric
tensor, with the overcircle decoration on a variable denoting
a parameter in the undeformed, reference configuration. The
metric tensor measures the distances between material points
within the undeformed, or reference configuration, of the 3D
shell. This approximation introduces an error of O(ε), which
corresponds to the difference in the metric tensors in the
fundamental state gi j |I and the undeformed state described
by Kronecker’s delta δi j , i.e., gi j |I − δi j = O(ε), where ε is
the largest principal extension in the fundamental state [82].
In what follows, we will use Eq. (13), as the relative error
O(ε) introduced will not affect the positive-definite character
of the potential energy [82]. Following Eqs. (11) and (13), let
us define the strain energy per unit volume of the undeformed
body � and the prestress ϒ as

� = 1

2
Ai jklγi jγkl , (14a)

ϒ = Si jξi j, (14b)

such that we can write the total potential energy as

V =
∫

V
[ϒ + �]dV. (15)

According to the general theory of elastic stability, this
equilibrium state is stable if the potential energy functional
is positive definite. A positive-definite energy functional re-
quires that δ2V + δ3V + δ4V � 0. The third and fourth vari-
ations contain only higher-order terms, and so it is usu-
ally sufficient to restrict our attention to the character of
the second variation, i.e., δ2V � 0. The stability limit for a
material that follows the generalized Hooke’s law which is
subjected to conservative, dead-weight loading is determined
by the character of the second variation of its potential energy
functional, δ2V . By virtue of the calculus of variations, the
second variation will contain only terms of second order in the
displacements [84,85], which corresponds to terms containing
ξi j and the linear terms in the product γi jγkl , i.e., εi jεkl . These
terms can be readily identified from Eq. (10), leading to the
stability criteria

δ2V[�(x)] =
∫

V

[
Si jξi j + 1

2
Ai jklεi jεkl

]
dV > 0. (16)

The character of Eq. (16) will determine the stability of the
shells under investigation. Equivalently, we may check to see
if the third variation is stationary, which is done in Sec. VI.

III. SHELL THEORY—STRAIN ENERGY
OF A DEFORMED STATE

The stability of thin elastic shells subjected to a combi-
nation of pressure and curvature loading is an inherently 3D
problem; however, great strides can be made by reducing the
dimensionality to 2D problem that is posed on the middle
surface of the shell. This will require us to approximate the
total potential energy of the 3D material given by Eq. (16)
with a 2D energy. As noted above, we will assume the material
is elastic, homogenous, and isotropic. Additionally, we will
assume that the state of stress is approximately plane and
parallel to the middle surface, and that the strains are small
everywhere. These assumptions are effectively equivalent to
the Kirchhoff-Love assumptions, and they enable us to write
the elastic energy of the shell as the sum of stretching and
bending energies, as was shown qualitatively by Koiter [86],
later rigorously proven by John [87], and discussed again
recently by Efrati [34]. With the approximation of plane
stress, the transverse shear strains are zero, γα3 = 0, and the
transverse normal strain is given by

γ33 = − ν

1 − ν

◦gαβγαβ. (17)

To make additional progress we need to evaluate ◦gαβ , and
we will accomplish this by investigating the geometry of the
middle surface of the shell.

A point in the 3D space of a shell will be identified
from its distance η3 to the middle surface and by the surface
coordinates of its projection onto the middle surface. If the
shell has a constant thickness h, the inner and outer faces of
the shell, i.e., η3 = z = ± 1

2 h, will be parallel to the midsur-
face. Formally, we can say that our 2D surface S = ◦

r(x1, x2)

023003-4



NONLINEAR BUCKLING BEHAVIOR OF A COMPLETE … PHYSICAL REVIEW E 102, 023003 (2020)

is embedded in R3 and is parameterized by y = (η1, η2).
With this parametrization we can define the covariant tangent
vectors to the surface as

◦
aα = ◦

r,α ≡ ∂
◦
r

∂ηα
, (18)

where the comma denotes partial differentiation. The first
fundamental form of the surface is determined by the distance
ds between two neighboring points on the surface,

d ◦s2 = ◦
aα · ◦

aβ dηαηβ = ◦aαβdηαηβ, (19)

where ◦aαβ is the metric tensor of the surface. The metric tensor
is symmetric such that ◦aαβ = ◦aβα , and the inverse metric is
defined by ◦aαγ ◦aγ β = δα

β , where δα
β is Kronecker’s delta. The

metric tensor of the middle surface contains all information
about lateral distance between points on the midsurface of the
shell. To quantify how the shell curves as you move between
points on the midsurface, we can project a vector normal

◦
n to

the surface at a given point onto the metric tensor. The unit-
length normal vector is defined by

◦
n ≡ ◦

a3 =
◦
a1 × ◦

a2

| ◦
a1 × ◦

a2| . (20)

Projecting this vector onto the surface enables us to construct
a covariant tensor of second order,

◦
bαβ = ◦

n · ◦
aα,β , which

measures local curvature on the middle surface of the shell.
More formally, the distance of a point on the surface of the
shell to a plane tangent to a nearby origin is given by the
second fundamental form

◦
II = 1

2

◦
bαβdηαdηβ, (21)

where
◦
bαβ are the covariant coefficients of the second fun-

damental form; with a mild abuse of terminology, we will
refer to

◦
bαβ as the curvature tensor of the surface. With the

definitions of the first and second fundamental forms in hand,
we can define the two surface invariants of the shell—the
mean curvature

◦
H and the Gaussian curvature

◦
K as

◦
H = 1

2
◦aαβ

◦
bαβ = 1

2

◦
bα

α, (22a)

◦
K =

◦
b
◦a

= ◦
b1

1

◦
b2

2 − ◦
b1

2

◦
b2

1, (22b)

where the determinant is introduced by ◦a = | ◦aαβ | = ◦a11
◦a22 −

( ◦a12)2 and
◦
b = | ◦

bαβ | = ◦
b11

◦
b22 − (

◦
b12)2 [88]. Returning to

Eq. (17), we can now specify the covariant components of
the spatial metric tensor ◦gi j in terms of the metric tensor
and curvature tensor of the middle surface. Conceptually, we
treat the 3D body as a stack of surfaces that remains normal
to the middle surface. Formally, this means that a vector
that parameterizes the 3D body

◦
R(η1, η2, z) can be written

in terms of our surface parametrization as
◦
R(η1, η2, z) =

◦
r(η1, η2) + z

◦
n(η1, η2). The metric tensor ◦gαβ is then directly

calculated, as shown in Eq. (19), by ◦gαβ = ◦
R,α · ◦

R,β = (
◦
r,α +

z
◦
n,α ) · (

◦
r,β + z

◦
n,β ). Utilizing an identity for the curvature ten-

sor,
◦
bαβ = −◦

r,α · ◦
n,β , and the formula of Weingarten,

◦
n,α =

− ◦
bκ

α

◦
r,κ , we arrive at [88]

◦gαβ = ◦aαβ − 2z
◦
bαβ + z2 ◦

bκ
α

◦
bκβ, (23a)

◦g13 = ◦g23 = 0, (23b)
◦g33 = 1, (23c)

noting that ◦aαβ ≡ ◦gαβ |z=0, while Eqs. (23b) and (23c) come
from the plane stress approximation. We are now in position
to reduce the integral over the volume of the shell given by
Eq. (15) into an integral over the shell’s surface area. We note
that the volume element of the shell is given by

d
◦

V =
√ ◦g dη1dη2dz =

√ ◦a dη1dη2

√ ◦g
◦a

dz, (24)

where, using Eqs. (22a), (22b), and (23a), we can write√ ◦g
◦a

= 1 − 2z
◦
H + z2 ◦

K. (25)

Inserting Eq. (25) into Eq. (14a) allows us to write the strain
energy per unit volume of the undeformed shell as

U [�(η)] =
∫
S

√ ◦a dη1dη2
∫ h/2

−h/2
(1 − 2z

◦
H + z2 ◦

K)

× �[ηα, z] dz. (26)

The strain energy density �[ηα, z] can be expanded in a
Taylor series with respect to the coordinate normal to the
middle surface

�[ηα, z] = �[ηα, 0] + z∇3�[ηα, 0] + z2

2
∇33�[ηα, 0] + · · · ,

(27)
where ∇α represents covariant differentiation with respect to
ηα , and ∇αβ is the second order covariant differential operator.
The covariant derivatives of the elastic moduli tensor vanish,
leading us to write

�[ηα, z] = 1

2
Ai jkl

(
γi j + z∇3γi j + z2

2
∇33γi j + · · ·

)
×

(
γkl + z∇3γkl + z2

2
∇33γkl + · · ·

)
. (28)

Here we apply the assumption of plane strain, thus setting

γ33 = 0. (29)

This plane strain approximation is clearly in contradiction
with the plane stress assumption that led to a nonzero γ33 in
Eq. (3.1). However, as discussed in detail by Koiter [70,86],
neglecting γ33 relative to unity does not introduce errors that
are larger than those that are inherent to shell theory. The plane
strain approximation hastens the derivation, but the under-
lying equations can apparently be derived without invoking
it [86]. From the plane strain assumption, and recalling that
γα3 = 0, the strain energy density becomes

�[ηα, z] = 1

2
Aαβγμ

(
γαβ + z∇3γαβ + z2

2
∇33γαβ + · · ·

)
×

(
γγμ + z∇3γγμ + z2

2
∇33γγμ + · · ·

)
. (30)
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With Eq. (30) we can now integrate the right-hand side of
Eq. (26) over the thickness. Due to the symmetry of integrat-
ing z between −h/2 and h/2, the even powers of h will vanish.
Following integration through the thickness, we note that
higher order terms, including terms that multiply −2z

◦
H and

z2
◦
K from Eq. (26), are neglected, as the order of magnitude of

these terms is negligible compared with the terms describing
the membrane and bending energy. A careful evaluation of the
magnitude of these neglected terms was done by Koiter [86],
and later quantified by John [87]. These assumptions reduce
the approximate strain energy per unit area to

U0 = h

2
Aαβλμγαβγλμ + h3

24
Aαβλμ∇3γαβ∇3γλμ, (31)

where the assumption of a plane state of stress resulted in
a decoupling of the membrane or stretching energy density
which is linear in h and the bending energy density which
is preceded by h3. In this approximate strain energy per unit
area, the tensor of elastic moduli on the middle surface is
given by

Aαβλμ = E

2(1 + ν)

[
◦aαλ ◦aβμ + ◦aαμ ◦aβλ + 2ν

1 − ν

◦aαβ ◦aλμ

]
.

(32)

Natural choices for the middle surface strain tensor and the
tensor of changes of curvature are

γαβ = 1
2 (aαβ − ◦aαβ ), (33a)

�αβ = bαβ − ◦
bαβ, (33b)

where aαβ and bαβ represent the metric tensor and curvature
tensor of the deformed shell, respectively. Finally, we can
write the strain energy per unit area as

U0 = h

2
Aαβλμγαβγλμ + h3

24
Aαβλμ�αβ�λμ, (34)

and we integrate Eq. (34) over the area of the shell to get the
strain energy. We note that if E and h are homogenous, the
tensor of elastic moduli can greatly simplify the strain energy
of the shell into the familiar form

U = Y

2

∫ [
(1 − ν)γ αβγαβ + ν

(
γ α

α

)2]
dω

+ B

2

∫ [
(1 − ν)�αβ�αβ + ν

(
�α

α

)2]
dω, (35)

where we have introduced dω = √
a dη1η2, and with the

stretching and bending rigidities given by Y = Eh
(1−ν2 ) and

B = Eh3

12(1−ν2 ) , respectively.

IV. SHELL THEORY—STRAIN ENERGY IN THE
FUNDAMENTAL STATE

Stability of the shell must be evaluated in the fundamental
state—a deformed configuration that retains the shell’s initial
symmetries. In the fundamental state, the shell has deformed
in response to a combination of internal and externally ap-
plied forces and moments, represented by the prestress ϒ

in Eq. (14b). We will next reduce the contribution of ϒ to

the membrane and curvature stresses on the middle surface
of the shell. From the strain energy we can define the stress
resultants and stress couples as partial derivatives of the strain
energy per unit area of the middle surface with respect to
the middle surface strains and the changes of curvature [86].
Therefore, the corresponding symmetric contravariant tensors
are given by

Nαβ = ∂U0

∂γαβ

= hAαβλμγλμ

= Eh

2(1 + ν)

(
◦aαλ ◦aβμ + ν

1 − ν

◦aαβ ◦aλμ

)
(aλμ − ◦aλμ),

(36a)

Mαβ = ∂U0

∂�αβ

= h3

12
Aαβλμ�λμ

= Eh3

12(1 + ν)

(
◦aαλ ◦aβμ + ν

1 − ν

◦aαβ ◦aλμ

)
(bλμ − ◦

bλμ).

(36b)

From Hooke’s law, we can write Sαβ = Aαβλμγλμ. Using
the definition of ◦gαβ from Eq. (23a) and the membrane and
curvature stresses given by Eqs. (36a) and (36b), respectively,
we can rewrite the second Piola-Kirchhoff stress tensor fol-
lowing the Kirchhoff-Love assumptions as [82]

Sαβ = 1

h
Nαβ − 12

z

h3
Mαβ. (37)

From Eq. (14b), we note that Sαβ multiplies only the non-
linear terms in the Green-Lagrange strain tensor, i.e., ξi j =
1
2 (
h,i


h
, j ). On the middle surface of the shell the partial

derivatives in ξ are replaced with covariant derivatives, as
ξαβ ≡ 1

2∇α
κ∇β
κ . Now we can evaluate the stress in the
fundamental state as

ϒ = 1

2

∫
V

Sαβ∇α
κ∇β
κdV

=
∫
S

√
a dx1dx2

∫ h/2

−h/2

[
1

h
Nαβ − 12

z

h3
Mαβ

]
× (ξαβ − zζαβ )dz, (38)

where ζαβ are the nonlinear bending strains. Finally, recalling
Eq. (11), we can write the total potential energy in the funda-
mental state as

V[�] =
∫ [

Nαβξαβ + Mαβζαβ + h

2
Aαβλμγαβγλμ

+ h3

24
Aαβλμ�αβ�λμ

]
dω. (39)

Utilizing Eq. (32), we may rewrite Eq. (39) as

V[�] =
∫

Eh

2(1 − ν2)

{
(1 − ν)γ αβγαβ + ν

(
γ α

α

)2

+ h2

12

[
(1 − ν)�αβ�αβ + ν

(
�α

α

)2]} + Nαβξαβ

+ Mαβζαβ dω. (40)

It is at this point that we will deviate from the classical
treatment of the stability of thin, elastic shells. It is common
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to simplify Eq. (39) further by making two assumptions:
(1) linear curvature strains are sufficient to characterize the
strain energy of the shell in the fundamental state and (2)
the curvature stress Mαβ can be neglected. Indeed, we find the
validation for these approximations in Ref. [71], where Koiter
writes:

If we restrict our attention to fundamental states I in which
bending stresses do not exceed the membrane stresses in
order of magnitude, we may therefore presumably neglect the
nonlinear terms in the changes in curvature. The restriction
implied by this simplification is not at all serious. We are
not aware of any significant shell buckling problem in which
the fundamental state involves membrane stresses which are
small in comparison with the bending stresses. Moreover,
if we restrict out attention to “small finite deflections” in
the sense of [70], the changes of curvature may always be
represented by their linear approximation without any loss in
accuracy within the framework of shell theory. Finally, the
most important shell buckling problems are those in which
the fundamental state I is (approximately) a membrane state
of stress, and the tensor resultants Mαβ may then be neglected
everywhere.

Recent work by the authors have demonstrated that retaining
the contribution from the curvature stress is essential when
analyzing the buckling of thin elastic shells subjected to an
evolving natural curvature [44]. Neglecting Mαβζαβ when
calculating the critical buckling curvature leads to a result
that is erroneous in magnitude. Since this result confirms that
bending stresses are at least of the same order of magnitude
of the membrane stresses, we will also retain the nonlinear
curvature strains in Eq. (39). The presence of these higher
order terms will facilitate the investigation of the stability of
the critical points, through the character of the third variation
δ3V which the authors will leave to future work. Retaining
all the terms in Eq. (39), we can now turn to the question of
stability in the presence of both an externally applied pressure
and an internally varying natural curvature.
From the theory of elastic stability, we know that the character
of the second variation of the total potential energy will
characterize the stability of the system. Recalling that we
write the stretching strain γαβ as the superposition of the linear
strains εαβ and the nonlinear stretching strains ξαβ , we will
similarly write the curvature strains �αβ as the superposition
of the linear curvature strains ραβ and the nonlinear curvature
strains ζαβ . Therefore, utilizing Eq. (16), the second variation
of V is given by

δ2V =
∫

Eh

2(1 − ν2)

{
(1 − ν)εαβεαβ + ν

(
εα
α

)2

+ h2

12

[
(1 − ν)ραβραβ + ν

(
ρα

α

)2]} + Nαβξαβ

+ Mαβζαβ dω, (41)

where we split the second variation into contributions from
the strain energy in the shell δ2U , the energetic contribution
from the membrane prestress δ2Pm, and the bending prestress
δ2Pb. Recall that we will consider variations around �0(x) =
0, such that δV[�0(x) + δ�(x)] = δV[δ�(x)], and therefore,
with a slight abuse of notation, we can write the variation
of changes in displacement without the δ notation. In the

subsequent analysis, we will closely follow Koiter’s treatment
of the buckling behavior of a spherical shell under uniform
external pressure, which was recently collected as part of a set
of lecture notes on elastic stability [82]. While we are indebted
to these notes, we caution the reader that there are numerous
typographical errors in the analysis, which we have done our
best to remedy here. Our addition to Koiter’s classical treat-
ment is the incorporation of a stimulus that induces a change
in the shell’s natural curvature. As we will see, the natural
curvature contributes to both the membrane and bending stress
in the fundamental state, and has a significant affect on the
classical result for the critical buckling pressure. The result of
the forthcoming analysis will be the critical buckling pressure
of a shell exposed to both uniform external pressure p and an
evolving natural curvature κ .
We outline our approach to identifying the critical buckling
pressure as follows: (1) We will write the stretching and
bending strains in Eq. (41) in terms of the displacement vector
�, and apply these general equations to a complete spherical
shell, (2) we will split the tangential displacement field into
two invariants that will aid in simplifying the functional given
by Eq. (41), (3) we will then expand the two remaining dis-
placement vectors in a series of spherical surface harmonics,
and finally (4) we will perform linear stability analysis and
determine the critical buckling pressure by noting that the
wave number of the buckling pattern will be large.
We begin with the strain fields γαβ and �αβ defined by
Eqs. (33a) and (33b), respectively. It is helpful to define the
2D deformation gradient χαβ , the rotation in the tangent plane
to the shell ωαβ , and the rotation of the normal vector

◦n as ϕα

in terms of the displacement vector � as [82,89]

χαβ = ∇α
β − ◦
bαβ
3, (42a)

ωαβ = 1
2 (∇β
α − ∇α
β ), (42b)

ϕα = 
3,α + ◦
bκ

α
κ. (42c)

We can now write the strain tensor of the middle surface γαβ

and the curvature strain tensor �αβ as [82,89]

γαβ = 1

2
(∇β
α + ∇α
β ) − ◦

bαβ
3 + 1

2
(ελ

α − ωλ
α )

× (ελβ − ωλβ ) + 1

2
ϕαϕβ, (43a)

�αβ =
√ ◦a

a

[(
1 + χλ

λ + χ
◦a

)( ◦
bαβ + ∇βϕα + ◦

bγ

βχαγ

)
− (ϕμ + εμηεγ δϕγ χδη )(∇βχαμ − ◦

bβμϕα )

]
− ◦

bαβ,

(43b)

where εμη is introduced as the 2D Levi-Civita permutation
tensor, and the determinant of χαβ is again written as χ = |χ |.
The linear parts of the stretching and curvature strains are then
identified as

εαβ = 1
2 (∇β
α + ∇α
β ) − ◦

bαβ
3, (44a)

ραβ = ∇βϕα + ◦
bγ

βχαγ . (44b)

It is at this point that we apply these results to the specific case
of a spherical shell under uniform pressure and a homogenous
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natural curvature. The basic property of a spherical shell is
that the first and second fundamental tensors are proportional
to each other through the radius of curvature of the shell’s
middle surface, R:

◦
bαβ = − 1

R
◦aαβ. (45)

The negative sign used in Eq. (45) is chosen such that the
positive direction of the normal vector

◦n points outward. This
sign convention is consistent with the work of Niordson [89],
but opposite of what was used by Koiter [80]. With this
definition in hand, we can rewrite Eqs. (44a) and (44b) as

ϕα = 
3,α − 1

R

α. (46a)

εαβ = 1

2
(∇β
α + ∇α
β ) + 1

R
◦aαβ
3, (46b)

ραβ = ∇αβ
3 − 2

R
εαβ + 1

R2
◦aαβ
3. (46c)

The potential of the uniform pressure is nonlinear because
pressure acts on the change of volume of the shell. At leading
order, the potential is linear in �, and this contribution is
referred to as the dead pressure, which can be expressed as
[82]

Pp = p
∫

ω


3 dω. (47)

As discussed in Sec. II, considering only the dead-weight
loading terms will be sufficient to establish the stability limit.
To progress further, we need to incorporate the natural cur-
vature into the total potential energy of the shell. In general,
changes in the natural or spontaneous curvature of a thin shell
may arise through differential swelling, heating, or growth,
or may be induced, for example, by proteins within the cell
membrane. As is common to problems in thermoelasticity,
natural curvature will often leave the shell in a state of resid-
ual stress due to an incompatibility between the geometric
changes prescribed by the stimulus and the ability for these
geometries to be embedded in R3. This discrepancy motivated
theoretical advances aimed at modeling so-called incompati-
ble elasticity, which introduced the multiplicative decompo-
sition of the deformation gradient—a concept stemming from
models in plasticity theory—to model the growth in 3D elastic
bodies [29,30]. These same ideas later motivated modeling
incompatible plates and shells, through the so-called theory
of non-Euclidean plates and shells [34,35,90]. This reduced
order model followed the same approximations Koiter used in
developing the theory reproduced in Sec. III, with the main
distinction being the choice of stretching and bending strains
of the middle surface. In these incompatible shell models,
strains are measured with respect to the configuration that
would make the shell stress-free as opposed to the initial,
undeformed configuration of the shell. This introduces a
new geometry of the middle surface, described by the first
and second fundamental tensors a and b. A key distinction
between a and b and

◦a and
◦
b is that a and b are generally

not embeddable in Euclidean space. Further complicating the
matter, the choice of metric used to raise and lower indices
for these incompatible shells is not necessarily obvious, as
pointed out by Hanna [91]; however, the discrepancies that

can emerge are important for determining the bending energy
of a shell in the presence of middle surface stretching. Within
this framework, new measures of stretching and bending
strains are introduced as

γ αβ = 1
2 (aαβ − aαβ ), (48a)

�αβ = bαβ − bαβ. (48b)

These measures of stretching and curvature strains enable
an alternate formulation of the strain energy, one in which
the nonmechanical stimuli are incorporated into to the strain
tensors. However, we can utilize the classical strain energy,
given by Eq. (40), by carefully considering the effect of a
curvature inducing stimulus acting through the thickness of
a thin body. For thin bodies undergoing differential swelling
or heating through their thickness, the curvature inducing
stimulus will not stretch the shell’s middle surface [44],
meaning a = ◦a, and so we will continue to use the reference
metric tensor to raise and lower indices. Since the stimulus
does not stretch the middle surface, that enables an additive
decomposition of the curvature tensor, in the form [35]

bαβ = ◦
bαβ + κ

◦aαβ. (49)

As shown by Pezzulla et al. [44], the potential of the natural
curvature can then be written as

Pκ = − Eh

2(1 − ν2)

∫
ω

1 + ν

6
h2κ�α

α dω. (50)

Having identified the potentials of the uniform pressure and
homogenous natural curvature, we can now derive the rela-
tionship between the displacement of the shell in response
to curvature and pressure in the fundamental state. Defor-
mations to the shell from uniform pressure or homogenous
natural curvature that preserve the shell’s spherical symmetry
satisfy the conditions 
1 = 
2 = 0, with 
3 = f (p; κ ). This
makes it fairly straightforward to evaluate the relationship
between normal displacement, pressure, and curvature. In the
fundamental state, strains are small everywhere, and Eq. (46b)
for εαβ and (46c) for ραβ simplify significantly due to the
constraints on 
α . As a result, and in combination with
Eqs. (47) and (50), we can write the total potential energy in
the fundamental state as

V[
3]| f = Eh

2(1 − ν2)

∫
ω

2(1 + ν)

(

3

R

)2

+ 1 + ν

6

h2
2
3

R4

+ 1 + ν

3

h2

R2
κ
3 + 2(1 − ν2)

Eh
p
3 dω. (51)

If we denote the integrand as L[ηα; 
3], we see that is depen-
dent only on position and normal displacement. Therefore, the
Euler-Lagrange equations are simply L,
3 = 0, such that

(1 + ν){Eh[h2(κR2 + 
3) + 12R2
3]

+ 12(1 − ν)pR4} = 0. (52)

Solving for the normal displacement, we find that


3[p; κ] = − h2

12
κ − (1 − ν)

pR2

2Eh
+ O

(
h4

R4

)
. (53)

It is clear that in the absence of either a natural curvature (i.e.,
κ = 0) or a uniform pressure (i.e., p = 0), Eq. (53) reduces to
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the classical result from Hutchinson [66] or the recent result
by Pezzulla et al. [44], respectively. Since both stimuli act to
change the normal displacement of the shell, there is a direct
analogy between pressure and curvature [44]. This analogy
can be determined by taking p = 0 in Eq. (53), neglecting
the higher order terms, and solving for the natural curvature
that will yield Hutchinson’s result [66], i.e., 
3[p] = −(1 −
ν) pR2

2Eh . The resulting analogy between pressure and natural
curvature is [44]

κh = 6(1 − ν)

(
R

h

)2 p

E
. (54)

This implies that a positive curvature stimulus κ > 0 is anal-
ogous to a positive external pressure p > 0, and both will
result in the compression of the sphere. This foreshadows the
results to come—in the limit of small displacements and small
strains, applying a positive κ and positive p simultaneously
will act to destabilize the shell, while oppositely signed stim-
uli may act to stabilize the shell.
Turning to the question of stability, we need to evaluate the
membrane and bending stress terms in Eq. (41). First, we will
consider the uniform external pressure, which will contribute
only to the membrane state of stress. The contravariant tensor
of stress resultants from a uniform pressure is given by [82]

Nαβ |p = σh ◦aαβ = 1
2 pR ◦aαβ. (55)

By using the pressure-curvature analogy given by Eq. (54), we
can write the contribution from pressure and curvature to the
membrane stress resultants as

Nαβ = Eh

2(1 − ν2)

[
(1 − ν2)

p

E

R

h
+ 1 + ν

6
κh

h

R

]
◦aαβ, (56)

where the terms have been rearranged in accordance with
Eq. (41). Recalling Eq. (41), and that ξαβ can be determined

by ξαβ = γαβ − εαβ using Eqs. (43a) and (44a), we can write∫
ω

Nαβξαβ dω = Eh

2(1 − ν2)

∫
ω

(
1 − ν2

2

p

E

R

h
+ 1 + ν

12
κh

h

R

)
× [(εαβ − ωαβ )(εαβ − ωαβ ) + ϕαϕα] dω,

(57)

where ◦aαβ from Eq. (56) was used to raise the indices of the
nonlinear portion of the strain tensor.
The remaining term to identify in Eq. (41) is the bending stress
of the middle surface Mαβ . Since stability must be evaluated
in the fundamental state, meaning the strain measure given by
Eq. (48b) is the relevant choice in determining Mαβ , such that

Mαβ = h3

12
Aαβλμ�λμ. (58)

Because of Eqs. (49) and (53), the bending strain becomes

�αβ = �αβ − κ
◦aαβ =

(
1

12

h2

R2
+ 1 − ν

2

1

κh

p

E
− 1

)
κ

◦aαβ

� −κ
◦aαβ, (59)

since the assumptions used in deriving the governing shell
equations require that p/E � 1 and h2/R2 � 1. Now, all that
is needed is the trace of the bending strains,

Mαβζαβ = − Eh3

12(1 − ν)
κζ α

α , (60)

which is given by [92]

ζ α
α = 1

R2

α∇α
3 − 1

R
|∇
3|2 + 1

R

α	
α − ∇α
3	
α,

(61)
where |∇
3| denotes the absolute value. We note that the
Laplace operator is defined by ∇α∇α (·) = 	(·), and the bi-
laplacian or biharmonic operator is 		(·) = 	2(·). We can
now write the contribution of bending stresses to the second
variation of the total potential energy as

∫
ω

Mαβζαβ dω = − Eh

2(1 − ν2)

∫
ω

1 + ν

6
κh2

(
1

R2

α∇α
3 − 1

R
|∇
3|2 + 1

R

α	
α − ∇α
3	
α

)
dω. (62)

Equations (57) and (62), along with the definitions in
Eqs. (46b) and (46c), provide a complete description of the
stability of a complete spherical shell under uniform pressure
and homogenous natural curvature, as defined by the second
variation of the total potential energy given by Eq. (41).

V. REDUCTION OF SECOND VARIATION ENERGY

In the following section, we will greatly simplify the strain
energy in the fundamental state, transforming the equations
into a form that can be readily analyzed by linear stability
analysis. In particular, we will reformulate Eq. (41) in a
coordinate-free form, relying on a combination of invariant
operators. Through the application of the generalized Stokes’
theorem on a closed surface, the resulting equations are sig-
nificantly simplified. The reduction of the second variation of
the total potential energy is a rather lengthy endeavor, and
much of it can be found in Ref. [82]. Here we highlight the

salient properties of the reduction, and show the contribution
of natural curvature to the membrane and bending prestresses.

Van der Neut was the first to recognize that it is useful
to apply the Helmholtz decomposition to the tangential dis-
placement field of a spherical shell [93]. This analysis was
used extensively by Koiter [80,82], in his subsequent analysis
of the nonlinear buckling behavior of spherical shells under
pressure, as well as by Niordson in studying the vibrations of
complete spherical shells [94]. This decomposition allows the
representation the tangential displacement field as the sum of a
solenoidal (divergence-free) and irrotational (curl-free) vector
field,


α = φ,α + εαλ∇λψ, (63)

where φ and ψ are a scalar potentials. The advantage of
expressing 
α in terms of φ and ψ is that for a closed
spherical shell we can obtain an equation in which ψ appears
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uncoupled from both φ and 
3, and that ultimately ψ will
vanish from the second variation of the total potential energy
δ2V . The equations that result from this reduction share many
similarities with those found by Koiter [80,82], such that so
we will highlight only how the presence of a nonzero natural
curvature alters the second variation of the total potential
energy in the main text. The strain energy in stretching and
bending the shell remain unchanged from Koiter’s results
[82], leading to

δ2Um = Eh

2(1 − ν2)

∫
(	φ)2 + 1 − ν

R2
φ	φ + 2(1 + ν)

R

3	φ

+ 2(1 + ν)

R2

2

3 dω, (64a)

δ2Ub = Eh

2(1 − ν2)

∫
h2

12
(	
3)2 dω. (64b)

As we will show, the presence of a natural curvature inducing
stimulus will alter both the membrane and bending prestress.
The contribution from the natural curvature for a spherical
shell in the absence of a uniform external pressure was re-
cently discussed by Pezzulla et al. [44], and we utilize some
of that analysis here.

If we first consider the membrane prestress given by
Eq. (56), we can make use of the pressure-curvature analogy
first presented by Pezzulla et al. [44] and given again here
by Eq. (54). With this analogy, we can directly use Koiter’s
results for the reduction of the membrane prestress [80,82] to
rewrite that equation as a linear superposition of contributions
from both pressure and natural curvature. From Koiter [82],
the membrane prestress was written

δ2P̃m = pR

2

∫
ω

(	φ)2 + 4

3

R
	φ + 
3	
3

+ 2

R2

2

3 + (	ψ )2 dω, (65)

where we note that the difference in sign in Eq. (65) comes
from the different convention used by Koiter regarding the
orientation of the normal vector on the spherical shell. Koiter
then only retained terms whose magnitudes are of the same
order as those retained in moderate rotation shell theory.
Specifically, to be in the elastic range we must ensure that
σ/E � 1, which introduces a relative error of O(σ/E ) ∼
1. Terms containing h2/R2 can also be neglected, as this
introduces a a relative error of O(h2/R2), which is smaller
than the error in the underlying shell theory. In addition,
it is demonstrated in Ref. [82] that 	ψ = 0. Thus, Koiter
neglected all terms in Eq. (65) except 
3	
3, by comparing
them with similar ones in the elastic energy and showing that
they are smaller by at least a factor h/R. We shall do the same
here, and using Eq. (54), we write the second variation of the
membrane prestress as

δ2Pm = Eh

2(1 − ν2)

∫ [
1 + ν

6

h

R
κh
3	
3

+ (1 − ν2)
R

h

p

E

3	
3

]
dω. (66)

Turning our attention to the bending prestress, we have to
apply the decomposition of 
α to Eq. (62), which is helpful
to do term by term. Let us start with the first term in Eq. (62),
and rewrite it by using the chain rule

1

R2

∫

α∇α
3 dω = 1

R2

∫
∇α (
α
3) − 	φ
3 dω

= − 1

R2

∫
	φ
3 dω, (67)

where we utilized the symmetry of ∇αβψ to write ∇α
α =
	φ, and then applied the generalized Stokes’ theorem on the
term containing ∇α (
α
3), which of course vanishes on a
closed spherical shell. Application of the generalized Stokes’
theorem is helpful once again for the second term in Eq. (62),
allowing us to write

− 1

R

∫
|∇
3|2 dω = − 1

R

∫
∇α (∇α
3) − 
3	
3 dω

= 1

R

∫

3	
3 dω , (68)

where again the divergence term disappears by use of the
generalized Stokes’ theorem on a closed surface. For the third
term in Eq. (62) we have

1

R

∫

α	
α dω = 1

R

∫
∇αφ∇αβ

··β φ + εαλ∇λψ∇αβ

··β φ

+ ∇αφεα
γ ∇γ ·β

·β ψ + εαγ ∇γ ψεα
λ∇λβ

··β ψ dω .

(69)

As we noted earlier, the advantage of this vector field de-
composition is that all terms coupling ψ and φ and ψ and

3 vanish. To see how these terms disappear, we point the
reader to the derivation of similar terms found in Ref. [82].
As a consequence of this relation, the second and third in (69)
terms are zero. For the first term, we can change the order
of covariant differentiation, taking care to account for the
inequality of the covariant derivatives, i.e., ∇αβ

..β φ �= ∇α.β

.β φ.
The difference in the covariant derivatives is accounted for
through the Riemann-Christoffel curvature tensor [89], which
is related to the Gaussian curvature K = R−2 in the fundamen-
tal state by

Rκ
.αβλ = Kεκ

.αεβλ, (70)

such that

1

R

∫
∇αφ∇αβ

··β φ dω = − 1

R

∫
ω

(	φ)2 + 	φ

R2
φ dω, (71)

where we utilized the relation between the Levi-Civita symbol
and the metric tensor, i.e., εκαεβ

.α = ◦aκβ , used the chain rule,
and then applied the generalized Stokes’ theorem on each of
the terms. By analogy, the fourth term can be rewritten as

1

R

∫
εαγ ∇γ ψεα

λ∇λβ

··β ψ dω

= − 1

R

∫
ω

(	ψ )2 + 	ψ

R2
ψ dω = 0, (72)
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which vanishes due to the identity 	ψ = 0 [82]. Finally, for
the fourth term in Eq. (62) we find

−
∫

∇α
3	
α dω =
∫

∇αβ
3∇αβφ dω

=
∫

	φ

(
	
3 + 
3

R2

)
dω . (73)

Using these simplifications, the contribution of the bending
moments in the fundamental state becomes

δ2Pb = − Eh2

12(1 − ν)
κh

∫
1

R

3	
3 + 	φ	
3

− (	φ)2

R
− 	φ

R3
φ dω . (74)

Now, since the term proportional to (	φ)2 in Eq. (74)
has a smaller prefactor than it does in Eq. (65), which
Koiter neglected, it can be neglected here as well. More-
over, the term coupling φ and 	φ has a much smaller
prefactor than the term in Eq. (64a), i.e., (h/R)3 � h/R,
and it too can be neglected. Finally, the contribution of
the bending moments in the fundamental state can be
reduced to

δ2Pb = Eh

2(1 − ν2)

∫
−1 + ν

6
κh2

[
1

R

3	
3 + 	φ	
3

]
dω.

(75)

Here it is important to note the distinction between this result
and classical shell theory. When a curvature stimulus does
not stretch the middle surface of the shell, it allows for an
additive decomposition of the curvature tensor, as given by
Eq. (49). However, when this stimulus is accounted for in the
fundamental state of the shell, it contributes to both the second
variation of the membrane and bending stresses of the shell,
as seen in Eqs. (66) and (75). These terms containing κ are of
the same order as those retained in Koiter’s model, as specified
below Eq. (65).

Additional subtleties regarding the terms retained in
Eqs. (64a) and (64b) below are discussed in detail in Ref. [82],
and these results are unaffected by the natural curvature
stimulus considered in this paper. Finally, the second variation
of the total potential energy in the fundamental state consists
of the four functionals given by Eqs. (64a), (64b), (66), and
(75), such that we may write

δ2V[�; κ, p] = δ2Um[�] + δ2Ub[�]

+ δ2Pm[�; κ, p] + δ2Pb[�; κ]. (76)

The distinction between these equations and those found
by Koiter [80,82] are evident by the presence of κ and p
altering the membrane prestress, and the contribution of the
natural curvature κ to the bending prestress, a term typically
neglected.

VI. LINEAR STABILITY ANALYSIS—CRITICAL
BUCKLING PRESSURE

The necessary condition for a minimum of δ2V[�; κ, p] =
δ2Um + δ2Ub + δ2Pm + δ2Pb is that its first variation with
respect to φ and 
3 vanishes. For example, let us consider

the first term of Eq. (64a). The first variation of the term∫
(	φ)2 dω is found by application of the chain rule, followed

by successive integration by parts, yielding the result

2
∫

ω

	φ	δφ dω = 2
∫

ω

	φ∇α∇αδφ dω = 2[	φ∇αδφ]|�

− 2
∫

ω

∇α (	φ)∇αδφ dω

= −2[∇α (	φ)δφ]|�
+ 2

∫
ω

∇α∇α (	φ)δφ dω

= 2
∫

ω

	2φ δφ dω. (77)

The integration by parts results in boundary terms to be
evaluated on the boundary �, which of course is a boundary
of zero length for a closed spherical shell, and so these
terms disappear. This analysis can be applied term by term
in Eqs. (64a), (64b), (66), and (75)—a tedious, but straight-
forward exercise that is not shown here for the sake of brevity.
Collecting terms with δφ and δ
3 separately, we arrive at the
following two equations that must be satisfied to be in neutral
equilibrium:

h2

12
	2
3 + 1 + ν

R
	φ + 2(1 + ν)

R2

3 + 1 − ν2

2

R

h

p

E
	
3

−1 + ν

12

h

R
κh	
3 − 1 + ν

12
κh2	2φ = 0, (78a)

	2φ + 1 − ν

R2
	φ + 1 + ν

R
	
3 − 1 + ν

12
κh2	2
3 = 0.

(78b)

Since the displacement vectors exist on the surface of a com-
plete spherical shell, our analysis will be aided by expanding
φ and 
3 in a series of spherical surface harmonics

φ(ηα ) = R
∞∑

n=0

DnSn(ηα ), (79a)


3(ηα ) =
∞∑

n=0

CnSn(ηα ), (79b)

where Sn(ηα ) is a spherical surface harmonic of degree n,
described by the differential equation

�Sn(ηα ) = − 1

R2
n(n + 1)Sn(ηα ). (80)

Expanding the equations of neutral equilibrium in a series of
spherical harmonics leads to the following eigenvalue prob-
lem for the critical buckling pressure in terms of the natural
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FIG. 2. (a) A plot of externally applied pressure p normalized by the Young’s modulus E as a function of eigenmodes written as n(n + 1)
for several values of h/R. This plot is the classical result in the absence of natural curvature κ . (b) A plot of natural curvature κ normalized by
h as a function of eigenmodes written as n(n + 1) for several values of h/R. This plot is in the absence of external pressure, and recreates the
results from Ref. [44]. (c) A plot illustrating the coupling of pressure and curvature. Here the pressure is normalized by the classical buckling
pressure given by Eq. (86) and is plotted against eigenmodes written as n(n + 1) for several values of natural curvature normalized by the
critical buckling curvature κc = 4/

√
7. These curves are plotted from Eq. (83).

curvature, material properties, and shell geometry

−(1 + ν)

[
1 + κh

12

h

R
x

]
Cn + [x − (1 − ν)]Dn = 0 ,[

1

12

(
h

R

)2

x2 + 1 + ν

12

h

R
κhx − 1 − ν2

2

R

h

p

E
+ 2(1 + ν)

]
Cn − (1 + ν)

[
x + κh

12

h

R
x2

]
Dn = 0 , (81)

where x = n(n + 1). The result of this eigenvalue problem is

p

E
= 1

72

h

R

{[
6x

1 + ν
+ 2x(3 − κ2h2)

1 − ν

](
h

R

)2

+ (2 − x)
(
12 + κhx h

R

)2

x(1 − x − ν)
− 36κh

1 − ν

h

R

}
. (82)

Recalling the stress in a thin-walled pressure vessel, as given
by Eq. (55), the normalized stress in the shell is σ/E =
pR/2Eh. As is true for pressure buckling of shells in the
absence of natural curvature, values of n of O(1) would lead
to stresses in the shell of σ/E = O(1), which would take
the shell outside of the elastic range. To be consistent with
the small strain approximation used in developing the shell
equations, staying in the elastic range requires that σ/E � 1,
which will occur only if n  1, and therefore x  1. We can
therefore simplify Eq. (82) to yield

p

E
= 1

72

h

R

{(
12 + h

Rκhn
)2

n
− 2

[
18κh + h

R n(κ2h2 − 3)
]

1 − ν

h

R

+ 6n

1 + ν

(
h

R

)2
}

, (83)

which gives an equation that is quadratic in x (Fig. 2). To
obtain the critical value of p/E we now minimize Eq. (83)
with respect to x, which yields

n(n + 1) = 12

(
R

h

) √
1 − ν2√

12 − κ2h2(1 + ν)2
. (84)

Finally, the critical buckling pressure for a shell with a natural
curvature stimulus is found by inserting the eigenmode from

Eq. (84) into Eq. (83) and rearranging the result to find

pκ = 2E

(
h

R

)2
⎡⎣√

1

3(1 − ν2)
− κ2h2(1 + ν )2

36(1 − ν2)
− κh(1 + 2ν )

12(1 − ν )

⎤⎦.

(85)

It is immediately clear that in the absence of a natural cur-
vature stimulus, i.e., κ = 0, Eq. (85) reduces to the classical
buckling pressure of a spherical shell obtained by Zoelly [81]

pc = 2E√
3(1 − ν2)

(
h

R

)2

. (86)

With a little bit of algebra, it can also be shown that when
p = 0, we recover the critical buckling curvature obtained by
Pezzulla et al. [44]:

κc = 4

h

√
3

1 − ν

(1 + ν)(5 + 4ν)
. (87)

Additional insight into Eq. (85) can be gleaned by considering
the shell incompressible, e.g., ν = 1/2, and linearizing the
result:

pκ

pc
≈ 1 − κ

2κc
. (88)
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FIG. 3. (a) Plots of the pressure normalized by pc as a function of the normal displacement of the shell at its apex. The critical pressure pc
is given by Eq. (86) and the normal displacement along the x axis is given according to Eq. (53). As normalized, the slope of the fundamental
state is given by

√
3(1 − ν2). We not that the slope of the post buckling curve becomes very steep for large, negative values of κh, and is

nearly flat, but still decreasing, for large, positive values of κh. (b) The theoretical curve from Eq. (85), along with its linearized form given
by Eq. (88). The x axis is normalized by the critical buckling curvature, given by Eq. (87). Numerical results from the 1D axisymmetric model
( ) and the 2D model ( ) coincide directly with the analytical prediction. (c) Postbuckling shapes from the 1D model at 
3/h = 20 for three
different values of κh. (d) Profiles of the the postbuckling shapes that have been magnified near the shell’s apex.

This result is instructive for three reasons. First, we imme-
diately see that a positive natural curvature (e.g., a bilayer
shell with an outer layer that is shrinking) acts in concert
with the positive externally applied pressure to destabilize
the shell. Second, as noted in Ref. [44], the curvature strains
needed to buckle a complete spherical shell are not small.
Indeed, curvature strains for Volvox eversion are often cited
to be between 1.5 < κh < 3 [61,95], and while these shells
are often analyzed using a Helfrich model, it is reasonable
to expect that finite strain constitutive shell models may be
needed to fully quantify curvature induce buckling and its
analogous limit point instabilities with full spherical shells.
We expect that the linearized result given by Eq. (88) will
remain valid in the small strain range. Third, and rather
intriguingly, this result suggests that when a negative natural
curvature stimulus is applied it should strengthen the shell
against pressure buckling. To check the analytical prediction,
we performed numerical simulations with a 1D axisymmetric
shell model (Appendix A), and a 2D model allowing for non-
axisymmetric deformations (Appendix B). In Fig. 3(a) we plot
numerical results from the 1D model of p/pc as a function of
the normalized normal displacement of the shell [see Eq. (53)]
for a wide range of κh values. In these simulations, Poisson’s
ratio was taken to be ν = 1/2, and R/h was varied slightly,
but always remained above R/h = 90 (Appendix A). We see
in Fig. 3(b) that the critical buckling pressure from both the
1D and 2D models coincide directly with the theoretical pre-
diction from Eq. (85). Figure 3(b) represents the key finding
of this work, i.e., that a negative natural curvature stimulus
should strengthen a shell against pressure buckling. The slope
of the postbuckling curve appears to be strongly dependent on
the value of κh, indicating that while negative values of κh
appear to increase the pressure required to buckle a shell, they
simultaneously may be making the shell significantly more
sensitive to imperfections. Indeed, the postbuckling shape of
the shells is appears qualitatively different as κh decreases
[
3/h = 20, Fig. 3(c)]. From the 1D model, we see that
for κh = 1.4 (κ/κc = 0.926) the dimple at the apex has a

curvature that slowly varies along the arc length, while for
κh = −1.4 (κ/κc = −0.926), the apex of the shell is nearly
flat, and there is a high curvature at the inflection point
and dimple ridge [Fig. 3(d)]. Both postbuckling shapes are
qualitatively different than the classical dimple shape of a
shell under uniform pressure.

VII. CONCLUSIONS

In summary, we have presented an analytical study of the
buckling of a complete spherical shell under the combined
loading of external pressure and a nonmechanical stimulus
that induces a change in the shells natural curvature. We
extended the classical results found by Koiter [80,82] to
include the effects of the bending prestress, and we showed
that an evolving natural curvature can significantly increase
or decrease the pressure required to induce buckling. The
analytical model was verified numerically using a 1D ax-
isymmetric model and a 2D model allowing for nonaxisym-
metric deformations. The theory and numerics suggest that
a negative natural curvature could produce a strengthening
factor in the buckling of spherical shells and caps. This
could be achieved experimentally by preparing thin shells
out of bimetals and studying shell buckling under different
temperatures, e.g., complementing and extending work from
Rutgerson et al. [96]. These results also indicate that the
presence of a positive curvature-inducing stimulus will act
as an additional imperfection, which will further increase the
anticipated knock-down factor from geometric imperfections
as quantified by Lee et al. [73,97]. We anticipate these re-
sults being useful for a broad range of shells designed for
shape-shifting applications, for example, shells loaded by a
combination of pressure and electrical stimuli [98,99], which
in certain circumstances will generate both membrane and
curvature stresses. Additionally, the active, lateral growth that
occurs during the morphogenesis of plant an animal cells is
analogous to elastic shells passively loaded via pressure [100],
and these growing, active shells will be under a combined
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pressure and curvature loading when they interact with lipids
and proteins [50,51]. In the study of shells on the microscale
and below, it is necessary to incorporate the effects of thermal
fluctuations on shell stability [101–103]. On this small scale,
the contributions from thermal fluctuations increase as h/R
decreases, and when the relative ratio of thermal energy to
bending rigidity is high [104]. Thermal fluctuations in thin
shells will apply an effective external pressure, such that
large radii shells exposed to sufficient thermal fluctuations
will buckle and collapse in a manner similar to pressure
buckling [105]. Košmrlj and Nelson show that these shells
can be stabilized by an outward osmotic pressure [105], which
suggests that a stimulus that modifies the natural curvature of
these shells could act to either stabilize or destabilize them
depending on the sign of the natural curvature. Understanding
the role of thermal effects on shells experiencing combined
pressure and curvature loads remains an interesting open
question.

Within theoretical and applied mechanics, these results
motivate further study into two areas. First, the numerical
analysis should be extended into a fully 3D nonlinear model.
To complement this analysis, additional theoretical contribu-
tions should expand upon Steigmann’s work that connected
Koiter’s shell theory to 3D nonlinear elasticity [106]. In
this context, it would be interesting to include the presence
of a curvature-inducing stimulus. Second, the imperfection
sensitivity and postbuckling behavior of shells under a com-
bined pressure and curvature loading should be considered,
especially noting the complementary results from Rutgerson
et al., who found that “Instabilities associated with structures
subjected to pressure loading were seen to become more
severe when the effects of temperature change were included”
[96]. In particular, we would advocate for following the work
established by Hutchinson in this regard [66,68]. In addition,
we note that in the absence of pressure, or in the presence of
pressures p/pc < 1, the model suggests that curvature strains
on the order of κh ∼ O(1) are needed to induce buckling.
So, this implies that while strains that measure the stretching
of the middle surface are small, as is consistent with the
formulation of shell theory, the bending strains may in fact
be finite. This implies that we might expect material nonlin-
earity at large positive and negative values of κ/κc. These
implications motivate further work to examine the buckling
of a spherical shell with a neo-Hookean or Mooney-Rivlin
constitutive model to see if there is any stiffening in the shell at
large values of κh. Nevertheless, the linearized results given
by Eq. (88) suggest that natural curvature will augment the
critical buckling pressure of shells well before these large cur-
vature strains are reached. In addition, the curvature stimulus
appears to lead to different shapes shapes of the postbuckled
dimple [Fig. 3(c)]. This geometric difference resulting for
an applied natural curvature could provide a mechanism for
smoothing geometric imperfections in thin shells, as initially

proposed by Lee et al. [107]. Since for these the magnitude
δ imperfections are often small, e.g., 0.1 � δ/h � 0.4, the
magnitude of the natural curvature stimulus needed to alter
the geometric imperfections will be quite small.
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APPENDIX A: 1D MODEL

To test the analytical results found in this paper, we imple-
ment an 1D, axisymmetric shell model in COMSOL Multi-
physics, using its nonlinear, Weak Form PDE solver. To follow
the shell’s deformation through the instability, an arc-length
method is implemented through the inclusion of a Domain
Point Probe at the apex of the shell that moves vertically. A
stationary sweep of the vertical displacement was performed
in increments of at least −h/3000. Example parameters are
given in Table I. To construct the equations to be used within
COMSOL, we begin by parametrizing the shell. The surface
of a sphere of radius R in spherical coordinates denoted by its
inclination φ and azimuth ψ is parameterized by

◦r(φ,ψ ) = (R cos ψ sin φ, R sin ψ sin φ, R cos φ), (A1)

and we will look for deformed shapes with rotational symme-
try parameterized by

r(φ,ψ ) = ( f (φ) cos ψ, f (φ) cos ψ, g(φ)). (A2)

In the absence of pressure and a curvature stimulus, i.e., p =
κ = 0, r → ◦r when f (φ) = R sin φ and g(φ) = R cos φ. The
unit vectors on the surface

◦aφ and
◦aψ , and the outward normal

vector n are given by Eqs. (18) and (20), respectively. From
here the metric tensor can be derived as

◦a = ◦aα · ◦aβ , and the
curvature tensor is derived as

◦
b = ◦aα,β · ◦n, such that the metric

and curvature tensors of the reference and deformed spherical
shells are

◦a =
(

R2 0
0 R2 sin2 φ

)
,

◦
b =

(−R 0
0 −R sin2 φ

)
,

a =
(

f 2
,φ + g2

,φ 0
0 f 2

)
,

b = 1√
f 2
,φ + g2

,φ

(
g,φφ f,φ − f,φφg,φ 0

0 f g,φ

)
. (A3)

With these definitions, the dimensionless stretching and
bending energies can be written as

U s =
∫ {

(1 − ν)
[ ◦a−2

11 (a11 − ◦a11)2 + ◦a−2
22 (a22 − ◦a22)2

] + ν
[ ◦a−1

11 a11 + ◦a−1
22 a22 − 2

]2}√ ◦a11
◦a22 dA, (A4a)

Ub = �2 h2

3

∫ {
(1 − ν)

[ ◦a−2
11 (b11 − ◦

b11)2 + ◦a−2
22 (b22 − ◦

b22)2
] + ν

[ ◦a−1
11 b11 + ◦a−1

22 b22 − 2
◦

H
]2}√ ◦a11

◦a22 dA, (A4b)
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TABLE I. Example parameters used in COMSOL model. The mode number nn and imperfection amplitude Amp are chosen arbitrarily and
can be changed as desired.

Name Expression Description

thick 1 Shell thickness
theta pi Angle from pole to pole
ni 1/2 Poisson’s ratio
n 20 Mode number at buckling
kappa 1.4 Natural curvature
R n∗(n+1)∗sqrt(12-(kappa∗h∗(1+ni))̂ 2)/(12∗sqrt(1-nî 2)) Shell radius [calculated from Eq. (84)]
Rh R/thick Radius to thickness ratio
V 4/3∗pi∗Rˆ3 Initial enclosed volume
Amp 12 Amplitude of eigenmode imperfections
c sqrt(3∗(1-niˆ2)) Constant used in pb
pb 2/(c∗Rhˆ2) Critical buckling pressure (Zoelly)
Lambdao 1 Stimuli-induced stretching
p 0 Initial pressure
disp 0 Initial displacement at north pole

where
◦

H is the mean curvature as defined by 2
◦

H = ◦
bα

α , the
energies are integrated over the area of the sphere, and the
energies have been nondimensionalized as

U = 8(1 − ν2)

Eh
U . (A5)

Likewise, the dimensionless potential of the dead pressure and
natural curvature are nondimensionalized in the same manner
as Eq. (A5) and are given by

P p = 8(1 − ν2)

h

p

E

∫

3

√ ◦a11
◦a22 dA, (A6a)

Pκ = −2(1 + ν)

3
h2κ

∫
◦a−1

11 (
◦
b11 − ◦

b11)

+ ◦a−1
22 (b22 − ◦

b22)
√ ◦a11

◦a22 dA, (A6b)

where since E is not a given parameter in Table I, the model
instead calculates the dimensionless pressure p = p/E . The
normal deflection 
3 is calculated from the unknown compo-
nents of the deformed shell, f1 and g1:


3 = g1 cos φ + f1 sin φ. (A7)

The shell is seeded with imperfections using a superposition
of several eigenmodes of the buckling pattern, such that the
initial shell shape is given by

f0 = R

[
sin φ + h

βR
sin(nφ) sin φ + h

βR
sin(2nφ) sin φ + h

2βR
sin(3nφ) sin φ

]
, (A8a)

g0 = R

[
cos φ + h

βR
sin(nφ) cos φ + h

βR
sin(2nφ) cos φ + h

2βR
sin(3nφ) cos φ

]
, (A8b)

where β is the amplitude Amp and n is the mode number nn
found in Table I, and the deformed shell shape is found using

f (φ) = f0 + f1, (A9a)

g(φ) = g0 + g1. (A9b)

The two components of the shell shape are only a function
of the unknown variable φ, so φ and its first and second
partial derivatives compose the weak form of the total
potential energy that is minimized with COMSOL. To close
the problem, we specify no boundary conditions such that
there is no horizontal displacement at the north pole, no
horizontal or vertical displacement at the south pole, and no
slope in either direction at each pole.

APPENDIX B: 2D MODEL

The 2D simulations were carried out using an isogeometric
analysis (IGA)-based discretization of Kirchhoff-Love shell
theory under large deformations for the sphere in which the
thickness was 2 mm and the radius was 5 cm. The IGA is well
suited to modeling shell problems as it naturally incorporates
higher order field approximations, which satisfies the C1
continuity requirement that arises due to the second deriva-
tives that are present in the Kirchhoff-Love shell formulation.
Additionally, nonuniform rational B splines, which are used
as the shape function in the IGA, can be used for curved-shell
problems since they exactly model all conic sections such as
circles, spheres, and ellipsoids [108]. Details of the Kirchhoff-
Love shell formulation under large deformations including the
IGA computational formulation are omitted here, but can be
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FIG. 4. (a) The one-eighth symmetric geometry model with brown arrows denoting its symmetry planes. (b) The critical points during
multiple pressure steps due to the buckling.

found in Refs. [109,110]. The weak form is given with the
admissible variation δr ∈ V by

Gin + Gint − Gext = 0 ∀δr ∈ V, (B1)

Gin =
∫

S0

δr · ρ0v̇ dA, (B2)

Gint =
∫

S0

1

2
δaαβταβdA +

∫
S0

δbαβMαβ

0 dA, (B3)

Gext =
∫

S0

δr · f da +
∫

∂t S
δr · t ds

+
∫

∂mS
δn · mτν ds + [δr · mνn], (B4)

where v̇ is the acceleration vector, ρ0 is the density of the ini-
tial configuration, ταβ and Mαβ

0 are second Piola-Kirchhoff-
like membrane stress and bending moment tensors, f and t are
the body force and the traction, respectively, mτ and mν are the
normal and tangential components of the physical moment,
and ν is the normal vector to a parameterized curve cutting
the surface at r.

In this 2D simulation, the aforementioned Koiter model of
non-Euclidean shells given in Eqs. (B5) and (B6) below was
used to calculate the membrane stress and bending moment
tensors as well as the tangent tensors that are required in the
consistent linearization of the weak form in Eq. (B1). Here we
used silicone-based vinylpolysiloxane as the sphere material,
with E = 1.3 MPa and ν = 0.49 to impose the material
incompressibility,

U = h

2
Āαβλμγ̄αβ γ̄λμ + h3

24
Āαβλμ�̄αβ �̄λμ, (B5)

Āαβλμ = E

2(1 + ν)

[
āαλāβμ + āαμāβλ + 2ν

1 − ν
āαβ āλμ

]
,

(B6)

where U is the strain energy per unit area, and Ā is the tensor
of elastic moduli of the non-Euclidean Koiter model.

The sphere was modeled as a bilayer shell in which the
swelling ratio of the outer and the inner layers was different,
i.e., differential swelling, but the value of natural curvature
stimulus was calculated using the linear projection proposed
in Ref. [35] as below in Eqs. (B7) and (B8) such that the
natural curvature stimulus was controlled via the difference
between the swelling ratio of the outer and the inner layers
and was imposed on the midsurface of the sphere.

�0 =
√

m

(1 + m)
s2

out + 1

(1 + m)
s2

in, (B7)

κ = − 1

�3
0

3

h

m

(1 + m)2

(
s2

out − s2
in

)
, (B8)

where m is the thickness ratio between the outer and inner
layers, i.e., m = hout

hin
, and sout and sin are the swelling ratios of

the outer layer and the inner layer, respectively (in the case
without any swelling, sout = sin = 1).

Due to the symmetry shown in Fig. 4(a), one eighth of
the sphere was modeled in the IGA simulation, which was
discretized by 13 × 13 NURBS cubic elements. The sym-
metry boundary conditions were applied on X = 0, Y = 0,
and Z = 0 in Fig. 4(a) using the Lagrange multiplier method
proposed in Ref. [110] for the rotation constraints described
as follows:

�n =
∫
L0

q(ḡc + ḡs) dS, (B9)

ḡc = 1 − cos(θ − θ0), ḡs = sin(θ − θ0), (B10)

where q is the Lagrange multiplier, and θ and θ0 are the angles
between the target geometry and the symmetry plane along
the surface edge L, for the current and initial configuration,
respectively. The pressure was applied as a live pressure using
the unit normal vector of the area element of the current
configuration.

In order to perform the nonlinear, quasistatic buckling anal-
ysis, the simulation was divided into two parts with “multiple”
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stimulus or load steps: first, the natural curvature stimulus was
applied in the absence of pressure; and, second, the pressure
was imposed with the final value of natural curvature stimulus
of the first part. The increments of swelling ratio and pressure
for the multiple steps were −0.05 and pc/200, respectively.
Here the increment of swelling ratio was added to the inner
layer with sout = 1 in the case of outward-pressure stimulus

while it was added to the outer layer for inward-pressure
stimulus with sin = 1. To close the 2D simulation discussion,
when the calculated value of the slope of strain energy of
Eq. (B5) corresponding to the stimulus or load step has critical
points, the value of stimulus or load for the first critical point
was determined as the critical buckling stimulus or pressure
pκ as shown in Fig. 4(b).
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