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ABSTRACT

We demonstrate that large apparent converse flexoelectric properties can be obtained in piezoelectric composites using theoretical
approaches. To do so, we first present a numerical homogenization method accounting for all electromechanical terms related to strain and
the electric field gradient. We then evaluate the coefficients of the model by numerical simulations on periodic piezoelectric composites.
After combining the homogenization approach with topology optimization to enhance the converse properties of the composite, we present
numerical results that reveal that the apparent converse flexoelectric coefficients, as well as those associated with the higher order coupling
terms involving the electric field gradient, are of the same order as the direct flexoelectric properties of the local constituents. These results
suggest that both converse and higher order electromechanical coupling effects may contribute strongly to the flexoelectric response and
properties of piezoelectric composites. Finally, we show that it is theoretically possible to obtain optimized designs of composites with
apparent converse flexoelectric properties 1–2 orders of magnitude larger than ones obtained with naïve guess designs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051062

I. INTRODUCTION

Direct flexoelectricity is a phenomenon whereby electrical
polarization can be induced by generating a strain gradient or an
inhomogeneous deformation on the sample. This so-called direct
flexoelectric effect has been widely studied in ferroelectric materi-
als1 and complex oxide ceramics2–5 as the effects are much larger
in these materials but more recently, in several polymers6,7 as well
as in biological membranes.8 Kogan9 formulated the first phenome-
nological theory of flexelectricity and estimated the range of values
for flexoelectric coefficients. Tagantsev10 developed a microscopic
theory for the bulk contributions using the rigid-ion approximation
as well as a phenomenological description. Promising applications
of direct flexoelectricity have been studied like the possibility
of building a piezoelectric composite with nonpiezoelectric
materials,11–16 energy harvesters,17,18 or new field-gradient-based

sensors.19 In Ref. 20, it was demonstrated that piezocomposites
with designed microstructures could exhibit apparent enhanced
flexoelectric properties of the same order as oxide ceramics or
ferroelectrics.

In contrast to direct flexoelectricity, the converse flexoelectric
effect describes a mechanical strain induced by an electric field gra-
dient. Studies on converse flexoelectricity have only emerged very
recently and remain limited.2,21–27 As noted in Ref. 21, understand-
ing and modeling of the converse flexoelectric effect may help not
only in understanding unexplained enhanced piezoelectricity in
dielectrics and ferroelectrics but also in designing and developing
new electromechanical devices. The inverse and converse flexoelec-
tric effects have been experimentally demonstrated by applying a
voltage to a capacitor and measuring its bending13,28 and by
applying a voltage to a truncated pyramid so as to generate an
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inhomogeneous electric field, thus allowing the sample to
deform.1,2,29 Fu et al.2 reported experimental observations of the
converse flexoelectric effect in a Ba0:67Sr0:33TiO3 (BST) trapezoidal
ceramic block under an inhomogeneous electric field. In Ref. 26,
Shu et al. measured converse flexoelectric coefficients in BST.
Wang et al.21 showed the important role of converse flexoelectricity
on asymmetric structures surrounding domain walls in PbTiO3.
Abdollahi et al.23 demonstrated a large effective piezoelectric response
in nonpiezoelectric materials such as SrTiO3 and demonstrated that
converse flexoelectricity may have non-negligible effects in thin films.
In Ref. 24, converse flexoelectric effects were generated by the design
permittivity gradient with BST powder and a substrate. Shen and
Chen25 demonstrated the converse flexoelectric effect in a lead zirco-
nate titanate microbeam. Tian et al.22 provided explicit solutions for
physical fields around a microhole with simultaneous consideration of
the strain gradient elasticity, direct flexoelectricity, and converse piezo-
electricity. Shu et al.27 provided relationships between converse and
direct flexoelectric coefficients. Mawassy et al.30 developed an extended
flexoelectric framework involving electric field gradient coupling terms
and proposed a finite element framework for their evaluation. Finally,
Wang et al.31 conducted an extensive survey on theoretical and experi-
mental approach to determine the direct and converse flexoelectric
values in several ferroelectric oxides.

Therefore, two key issues related to flexoelectricity that we
attempt to resolve in the present work are, first, to enable calcula-
tions of the converse flexoelectric effect for general situations and,
second, to determine the importance of higher order electric field
gradient effects on the flexoelectric response. Therefore, in this
paper, we employ a homogenization method to predict the appar-
ent converse flexoelectric properties of piezoelectric composites.
Following our previous work,20 where the homogenized direct
flexoelectric properties were provided, we propose here an extended
effective model accounting for all coupling terms between strain,
electric field, strain gradient, and electric field gradient. We provide
expressions for all of the coupling tensors in a fully anisotropic
context and demonstrate via numerical examples that these cou-
pling terms, as well as the converse flexoelectric effect, are of the
same order as the direct flexoelectric constants of the constituent
materials. Finally, we combine this model with topology optimiza-
tion to obtain tailored microstructures with converse flexoelectric
properties that exceed those obtained with naïve guesses.

II. AN EXTENDED FLEXOELECTRIC MODEL

We define the total energy density W for an electromechanical
system where all couplings between strains ε, stress σ, electric field
E, strain gradient ∇ε, and electric field gradient ∇E are taken into
account,

W ¼ 1
2
Cijklεijεkl � 1

2
αijEiEj � eijkEiε jk

þ 1
2
Gijklmn∇εijk∇εlmn þ FijklEi∇ε jkl þMijklmεij∇εklm

�TijkEi∇E jk � Kijklεij∇Ekl � 1
2
Lijkl∇Eij∇Ekl �Hijklm∇Eij∇εklm:

(1)

In Eq. (1), C, α, and e denote the effective forth-order elastic,
second-order dielectric, and third-order piezoelectric tensors,
respectively. The term F denotes the effective fourth-order flexo-
electric tensor, while M and G correspond to higher order strain
gradient elastic tensors (see Ref. 32). The term K is the so-called
converse flexoelectric tensor.

We note that there are several new coupling tensors in the
above energy density expression, whose interpretation is as follows:
T denotes the relation between an additional polarization (electric
field) and an electric field gradient; L denotes the relation between
a polarization gradient (or electric field gradient) and an electric
field gradient, and H denotes the relation between a polarization
gradient (or electric field gradient) and a strain gradient. A similar
expression has also been provided in Ref. 30.

The effective stress tensor σ, effective electric displacement d,
effective hyperstress tensor S, and hyper-electric displacement P
associated with the energy density function (1) are defined as

σ ij ¼ @W
@εij

, di ¼ � @W

@Ei
, Sijk ¼ @W

@∇εijk
, Pij ¼ � @W

@∇Eij
: (2)

The corresponding expressions for the stress σ, the electric
displacement d, the hyperstress S, and hyper-electric displacement
P are provided by

σ ij ¼ Cijklεkl � ekijEk þMijklm∇εklm � Kijkl∇Ekl , (3)

di ¼ eijkε jk þ αijEj � Fijkl∇ε jkl þ Tijk∇E jk, (4)

Sijk ¼ Mlmijkεlm þ FlijkEl þ Gijklmn∇εlmn þ Hlmijk∇Elm, (5)

Pij ¼ Kklijεkl þ TkijEk �Hijklm∇εklm þ Lijkl∇Ekl: (6)

The corresponding equilibrium equations relating these quan-
tities are given by

σ ij,j � Sijk,jk ¼ 0, (7)

di,i � Pij,ij ¼ 0: (8)

A complete description of boundary conditions for such
model can be found in Ref. 33.

III. MICROSCALE EQUATIONS

We consider a periodic composite [see Fig. 1(a)] assumed to
be characterized by a 2D representative volume element (RVE) [see
Fig. 1(b)]. The RVE is defined in a domain Ω [ R2 whose external
boundary is denoted by @Ω. The characteristic size of the RVE is ‘.
The RVE is subjected to a macroscopic strain ε, a macroscopic
strain gradient ∇ε, a macroscopic electric field E, and a macro-
scopic electric strain gradient ∇E. The different phases of the mate-
rial are assumed to be linear piezoelectric and characterized by an
elastic tensor C(k), a dielectric tensor α(k), and a piezoelectric tensor
E(k), where k ¼ 1, . . . , Np, with Np the number of phases. For the
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sake of simplification, we only consider bi-phasic composites
(k ¼ 2) in the present work. The local equations are given by

σ ij,j ¼ 0 in Ω, (9)

di,i ¼ 0 in Ω, (10)

with

σ ij ¼ Cijklεkl � ekijEk, (11)

di ¼ eijkε jk þ αijEj, (12)

where εij ¼ (1=2)(ui,j þ u j,i). Assuming that interfaces between the
different material phases are denoted collectively by Γ, we assume
perfectly bonded interfacial conditions, i.e.,

[[σ ijnj]] ¼ 0, [[ui]] ¼ 0 on Γ, (13)

[[dini]] ¼ 0, [[f]] ¼ 0 on Γ, (14)

where [[ � ]] denotes the jump across Γ. We define the macroquanti-
ties as (�) ; �h i ¼ (1=V)

Ð
Ω (�)dV with V being the volume (area in

2D) of Ω. The effective electric field can be computed by prescribing
the following electric quadratic boundary conditions over the RVE
(see Ref. 20):

f ¼ �Eixi � 1
2

∇E
� �

ijxixj þ ~f on @Ω, (15)

where f is the electric potential such that Ei ¼ �f,i and ~f is either
zero or a periodic fluctuation on @Ω. Mechanical quadratic boundary
conditions are introduced to prescribe an effective strain and strain
gradient,34,35

ui ¼ εijxj þ 1
2
gijkxjxk þ ~ui on @Ω, (16)

where ui is a displacement vector related to strain through εij
¼ ui,j þ u j,i

� �
and

gijk ¼ ∇εijk þ ∇εikj � ∇ε jki (17)

and ~ui is either zero or periodic on @Ω. Equations (9) and (10)
are completed with the boundary conditions (15) and (16).
These equations are here solved by the finite element method
(see details in Ref. 20).

It is worth noting that in the case of a homogeneous domain,
using (15) and (16) to compute εij and Ei and introducing them in
Eqs. (9) and (10) does not lead to nonvanishing right-hand terms.
This is a well-known issue in the strain gradient homogenization
problem, which can cause a dependence to the number of unit cells
within the RVE and to nonvanishing higher order properties in the
case of materials which do not have local gradient effects (see a dis-
cussion in Ref. 32). In our previous work,36 we have introduced
appropriate body forces to balance these nonequilibrated terms. It
has also been shown in the context of purely mechanical gradient
effects that such procedure is consistent with asymptotic homoge-
nization.37 However, it has also been discussed in Ref. 32 that such
body forces can lead to spurious over predicted effective gradient
properties when one of the phases has very low properties. For this
reason, we did not adopt this approach in the present paper, which
focuses on the development of the homogenization model and on
the topology optimization problem. One potential solution to
address the above-mentioned issues could be the use of Lagrange
multipliers to enforce homogeneous strain gradient and electric
field gradients within a homogeneous RVE to extend the method
proposed in Ref. 38.

IV. EFFECTIVE TENSORS

The explicit expressions for tensors C, α, e, G, F, and M can
be found in Ref. 20. Following the procedure described in the same
reference, the expressions of the new coupling terms including the
converse flexoelectric tensor K are provided by

Tijk ¼ hB0
ipqCpqrsB

1
rsjk � h0ipe pqrB

1
qrjk � B0

ipqe pqrh
1
rjk � h0ipα pqh

1
qjki,
(18)

FIG. 1. (a) Periodic piezoelectric structure and (b) representative volume
element (RVE). Both matrix (phase 1) and inclusion (phase 2) phases are
made of the same piezoelectric material but rotated by a mismatch angle θ.
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Kijkl ¼ h�A0
ijpqCpqrsB

1
rskl þD0

ijpe pqrB
1
qrkl þ A0

ijpqe pqrh
1
rkl þD0

ijpα pqh
1
qkli,
(19)

Lijkl ¼ hB1
ijpqCpqrsB

1
rskl � 2h1ijpe pqrB

1
qrkl � h1ijpα pqh

1
qkli, (20)

Hijklm ¼ h�B1
ijpqCpqrsA

1
rsklm þ B1

ijpqE pqrD
1
rklm

þ h1ijpe pqrA
1
qrklm þ h1ijpα pqD

1
qklmi: (21)

In the above equations, the fields B0, B1, h0, h1, D0, D1, A0,
and A1 are local fields that are obtained by solving the RVE prob-
lems (9)–(16) by finite elements. The definition for these tensors
can be found in Ref. 20 and are provided for convenience in the
supplementary material.

The strong strain or electric field localizations within the
medium due to the heterogeneities may lead to a violation of the
small perturbation assumption in realistic applications. In that case,
extensions to nonlinear formulations of flexoelectricity are available
in the literature (see Refs. 39 and 40). However, in the nonlinear
case, the effective properties depend on the local fields and identi-
fying the related models can be challenging. Even though this task
is out of the scope of this paper, possible strategies for this purpose
could rely on data-driven approaches based on artificial intelli-
gence, such as in Refs. 41 and 42.

V. SIMP TOPOLOGY OPTIMIZATION FOR CONVERSE
FLEXOELECTRIC COMPOSITES

In this section, we formulate the topology optimization
problem to maximize the absolute values of the converse flexoelec-
tric tensor components in (19). First, the periodic unit cell is dis-
cretized with a regular mesh of Ne four-node quadrilateral finite
elements. We define the inclusion material density ρe in each
element e, e ¼ 1, 2, . . . , Ne, such that ρe ¼ 1 is associated with the
inclusion phase and ρ ¼ 0 is associated with the matrix phase. The
topology optimization is formulated as follows:

Maximize : jKijkl(ρ)j
subject : KU ¼ F

:
PNe

e¼1 ρeve=(
PNe

e¼1 ve) ¼ f
0 � ρe � 1, e ¼ 1, 2, . . . , Ne,

(22)

where KU ¼ F is the discrete system obtained when discretizing
Eqs. (9)–(16) by the finite element method (see details in Ref. 20).
In the above equation, ve is the volume of an element e and f is the
inclusion volume fraction.

We use the SIMP (Solid Isotropic Material with Penalization)
method43–45 to solve the problem. In this framework, the local
material properties are interpolated with respect to the local density
in a continuous manner, using penalty exponents to enforce local
densities to converge to values close to 0 or 1. For composites

made of two phases, we use following expressions:

[Cijkl(ρ)] ¼ ρ pc[C2
ijkl]þ (1� ρ pc)[C1

ijkl],

[αij(ρ)] ¼ ρ pa[α2
ij]þ (1� ρ pa)[α1

ij],

[ekij(ρ)] ¼ ρ pe[e2kij]þ (1� ρ pe)[E2
kij],

(23)

where the superscripts 1 and 2 are associated with matrix and
inclusion phases, respectively, and pc, pa, and pe are penalty expo-
nents. In the numerical examples, these values are chosen as
pc ¼ pa ¼ pe ¼ 3.

The above problem (22) requires evaluating the gradient of
the objective function with respect to the local densities (subse-
quently referred to as sensitivities). The adjoint method has been
widely used for sensitivity analysis of gradient-based optimization
algorithm46,47 and is also employed here. The corresponding
Lagrangian function for the optimization problem (22) is formed
by introducing an adjoint vector λ as

L ¼ Kijkl þ λ � (KU� F), (24)

where KU� F ¼ 0 holds for arbitrary adjoint vectors λ.
Differentiating the Lagrangian function L with respect to the design
variable ρ, we have

@L
@ρ

¼ @Kijkl

@ρ
þ λ � @(KU� F)

@ρ
: (25)

The detailed expression can be found following the procedure
described in our previous work on the topology optimization of
direct flexoelectric properties.36 The optimization problem (22) is
solved by the conservative convex separable approximations
(CCSAs) optimizer48 based on the adjoint sensitivity.

VI. NUMERICAL INVESTIGATIONS

A. Composite with the piezoelectric phase

In this section, we investigate through numerical simulations
the significance of the converse flexoelectric and other higher order
electromechanical coupling terms in a piezoelectric composite. The
geometry of the RVE is depicted in Fig. 1(b), and the triangular
inclusion is chosen so as to increase the strain and polarization
gradient effects. The characteristic size of the RVE is ‘ ¼ 1 mm.
The position of points A, B, and C in Fig. 1(b) is defined according
to A ¼ �a; af g, B ¼ a; 0f g, and C ¼ �a; � af g with
a ¼ ‘

ffiffiffiffiffiffiffiffi
0:8‘

p
=2 and corresponds to a volume fraction of inclusions

equal to f ¼ 0:4. Each phase is made of lead zirconium titanate
(PZT) ceramics, but the main orientation of the crystal in both
phases is rotated by a mismatch angle θ [ [0, 2π] to create a het-
erogeneity. The matrix and inclusion phases are denoted by the
superscripts 1 and 2, respectively, in Fig. 1(b) and in the following
equations. The mechanical, dielectric, and piezoelectric properties
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of the PZT matrix phase are given in this 2D configuration by49,50

[C1] ¼
131:39 83:237 0
83:237 154:837 0

0 0 35:8

2
4

3
5(GPa), (26)

[α1] ¼ 2:079 0
0 4:065

� �
(Cm�2), (27)

[e1] ¼ �2:120582 �2:120582 0
0 0 0

� �
(nCm�1 V�1): (28)

The properties of the inclusion phase are defined with respect
to the angle θ according to

α2
ij ¼ RipR jqα

1
pq, (29)

e2ijk ¼ RipR jqRkre
1
pqr , (30)

C2
ijkl ¼ RipR jqRkrRlsC

1
pqrs, (31)

with

R ¼ cos(θ) �sin(θ)
sin(θ) cos(θ)

� �
: (32)

In Fig. 2(a), we compute the evolution of the components of
the converse flexoelectric tensor K with respect to the mismatch
angle θ. The values are normalized with respect to the flexoelectric
component F1221 of PZT to evaluate their significance. We can
notice that the components K1111, K1112, K2211, and K1212 are of the
same order (or higher) than the direct flexoelectric coefficients of its
constituents for almost all mismatch angles. The components K1111,
K2211, and K1212 exhibit an extremum of 0:1860� 10�3 Cm�1,

FIG. 2. Evolution of the components of the effective converse flexoelectric tensor: (a) K , (b) higher order electromechanical coupling term T , (c) L, and (d) H with respect
to the mismatch angle in the piezoelectric composite with triangular inclusions. (a) Evolution of K tensor components, (b) evolution of T tensor components, (c) evolution
of L tensor components, and (d) evolution of H tensor components.
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0:1181� 10�3 Cm�1, and 0:0504� 10�3 Cm�1, respectively,
around θ ¼ π, while for K1112 this extremum is 0:111� 10�3 Cm�1

around θ ¼ π=2, 3π=2. These results clearly demonstrate that the
converse flexoelectric coefficients in piezoelectric composites can
make an important contribution to the electromechanical response
of the structure and cannot be ignored.

The evolution of the components of the other higher order
electromechanical terms T , L, and H with respect to the mismatch
angle θ are computed and shown in Figs. 2(b)–2(d), respectively.
Here again, these values are normalized with respect to the
flexoelectric properties of PZT to evaluate their significance. The
extremum of components T111, T222, T112, and T212 is comparable
to the direct flexoelectric coefficient of PZT. For H, the extrema of
the components H11221, H12112, H22112, and H12221 are close to the
half of the direct flexoelectric coefficient of PZT. However, the
effective tensor L has much smaller component values as compared
to local flexoelectric properties and only plays a negligible role
here. Therefore, these results demonstrate that the higher order
electromechanical terms H and T can make a significant contribu-
tion to the electromechanical response of piezoelectric composites.
More specifically, the coefficients Tijk are associated with additional
polarization/electric displacement induced by the electric field gra-
dient and thus characterize the importance of these additional
effects on the flexoelectric behavior. Taking these new terms into
account in the modeling and simulation of flexoelectric structures
may help us to design new flexoelectric-based sensors and actuators
based on the mechanical and electrical gradient effects.

B. Topology optimization of the ceramic/ceramic
piezoelectric composite

Having established that the converse flexoelectric effect makes
a significant contribution to the overall flexoelectric response of the
PZT/PZT composites, we now perform topology optimization to
determine topologies that maximize the converse flexoelectric con-
tributions. We thus consider the topology optimization of a two-
phase composite made of piezoelectric phases. Each phase is made
with lead zirconium titanate (PZT) ceramics as in the previous

example. Here, the crystal lattice is oriented by a mismatch angle of
θ ¼ π in the inclusion phase. Then, via (31) and (32), the proper-
ties of the inclusion phase can be obtained as [C2] ¼ [C1] given by
(26), [α2] ¼ [α1] given by (27), and

[e2] ¼ 2:120582 2:120582 0
0 0 0

� �
(nCm�1 V�1): (33)

We perform the topology optimization of the inclusion shape
with respect to the converse flexoelectric coefficients K1111, K2211,
and K1212 and set the inclusion volume fraction to f ¼ 0:4. As a
first guess, the design variables are uniformly set to ρe ¼ 0:4
(e ¼ 1, . . ., Ne ¼ 6400). The guess design with triangular shape
which is illustrated in Fig. 1(b) has been investigated in Sec. VI A,
recalling that the reference solutions are taken as the extremum values
of K1111, K2211, and K1212 for the triangular microstructure at θ ¼ π
in Fig. 2(a) and will serve as a comparison solution with respect to

optimized topological designs, i.e., K
ref
1111 ¼ 0:1860� 10�3 Cm�1,

K
ref
2211 ¼ 0:1181� 10�3 Cm�1, and K

ref
1212 ¼ 0:0504� 10�3 Cm�1.

However, for the components K1112, K2222, and K1222, the reference
solutions obtained by microstructure with triangular inclusion are all
zero at θ ¼ π, as shown in Fig. 2(a). Therefore, we do not consider
topology optimization for those components in the present case of
PZT/PZT composites.

The final optimized unit cell topologies are shown in Fig. 3,
where the copper and black colors refer to the inclusion and
matrix phases, respectively. The iteration histories for K1111, K2211,
and K1212 are shown in Fig. 4. It is noted that the present opti-
mization procedure leads to stable and convergent optimal solu-
tions. The final values for the optimized microstructures are
K1111 ¼ 0:3525� 10�3 Cm�1, K2211 ¼ 0:2241� 10�3 Cm�1, and
K2112 ¼ 0:0955� 10�3 Cm�1, which represent a significant
improvement as compared to the reference triangular solutions
by a factor of 1.89 for the components K1111, K2211, and K1212.
From Fig. 3, we can see that the three optimized unit cells obtained
by K1111, K2211, and K1212 have similar topologies. Finally, we note
that the optimized microstructures are similar to the ones obtained

FIG. 3. Optimal topology for K for the PZT/PZT composite: (a) K1111, (b) K2211, and (c) K1212.
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by optimizing the direct flexoelectric constants F1221 and F2112 for
the PZT/PZT case.36

C. Topology optimization of the ceramic/doped
piezoelectric polymer composite

In this example, we replace the stiff PZT inclusion with a soft,
dielectric, polymer inclusion (polyvinylidene fluoride, PVDF).
The elastic, piezoelectric, and dielectric properties for the polymer
are given below. In comparison to the PZT properties, all of the
polymer properties are 1–2 orders in magnitude lower than for
PZT. The material parameters of matrix PZT are expressed in
(26)–(28),49,50 while the material properties of PVDF are described
in (34)–(36),51

[C2] ¼
6:066 3:911 0
3:911 6:066 0
0 0 1:078

2
4

3
5(GPa), (34)

[α2] ¼ 0:025 0
0 0:084

� �
(Cm�2), (35)

[e2] ¼ 0:1272 0:0873 0
0 0 0

� �
(nCm�1 V�1): (36)

We perform topology optimization of the PVDF inclusion
with respect to the converse flexoelectric coefficients K1111, K2211,
K1212, K2222, K2212, and K1211. To ensure that these results can be
compared against the previous PZT/PZT results, we set the volume
fraction of the PVDF inclusion to be f ¼ 0:4 for all cases. Similarly,
the initial guess is set by ρe ¼ 0:4, e ¼ 1, 2, . . . , Ne ¼ 6400. The
final optimal unit cells of the converse flexoelectric coefficients
K1111, K2211, K1212, K2222, K2212, and K1211 are shown in Fig. 5.
In these figures, the cyan and black colors refer to the inclusion
PVDF and matrix PZT, respectively. The reference solutions
calculated by a triangular PVDF inclusion as in Fig. 1(b) are shown
for each case. The reference values obtained are K1111 ¼ 0:0432
�10�3 Cm�1, K2211 ¼ 0:0139� 10�3 Cm�1, K1212 ¼ 0:0073
�10�3 Cm�1, K2222 ¼ 0:0262� 10�3 Cm�1, K2212 ¼ 0:0033
�10�3 Cm�1, and K1211 ¼ 0:0004� 10�3 Cm�1 for the PZT/
polymer composites with triangular inclusion.

We obtained six different optimized unit cells and a signifi-
cant improvement can be found as compared to the reference
triangular solutions. The optimal absolute values are
K1111 ¼ 0:3420� 10�3Cm�1, K2211 ¼ 0:2054� 10�3Cm�1, K1212

¼ 0:0923� 10�3Cm�1, K2222 ¼ 0:1218� 10�3Cm�1, K2212

¼ 0:3267� 10�3Cm�1, and K1211 ¼ 0:0821� 10�3Cm�1, which
represent increases by factors of 7.92, 14.78, 12.64, 4.65, 99, and
205.25 times, respectively. Interestingly, despite being composed of
a polymer inclusion whose (elastic, piezoelectric, and dielectric)
properties are all about two orders of magnitude smaller than the
PZT matrix, the flexoelectric constants are quite similar to those
obtained for the optimized PZT/PZT composites discussed previ-
ously, with significantly larger percentage enhancements.

In Figs. 6 and 7, we depict the local electric gradient and
strain components of the optimized microstructures that are

FIG. 4. Topology optimization process with respect to normalized flexoelectric
components and volume fractions for the PZT/PZT composite: (a) K1111,
(b) K2211, and (c) K1212.
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FIG. 5. Optimal topology for K for the PZT/PVDF composite: (a) K1111, (b) K2211, (c) K1212, (d) K2222, (e) K2212, and (f ) K1211.

FIG. 6. (a) Electric field gradient component rE22 and (b) strain component ε22 within the PZT-PVDF microstructure corresponding to the optimized coefficient K2222.
(a) Electric gradient rE22-component and (b) strain ε22-component.
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associated with the converse flexoelectric coefficients K2222 and
K1211, respectively. In the different cases, we can note that the opti-
mized geometry favors the localization of these fields near the
interfaces, which may be expected due to the problem being one of
a soft inclusion within a stiff matrix.

VII. CONCLUSIONS

We have proposed an extended flexoelectric model that takes
into account not only converse flexoelectric effects but also all other
higher order electromechanical coupling terms. A homogenization
procedure has been introduced to evaluate numerically these appar-
ent properties in piezoelectric composites. Then, we have combined
this model with topology optimization to design microstructures
with enhanced converse flexoelectric properties. The numerical
investigations revealed that the apparent converse flexoelectric coeffi-
cients in a composite made of periodic triangular inclusions have the
same order of magnitude as the direct flexoelectric properties of the
local constituents. Furthermore, we showed that the other higher
order coupling terms, i.e., that relate the electric field to an applied
electric field gradient and the strain gradient (bending) to the electric
field gradient have non-negligible values as compared to the flexo-
electric coefficients. Finally, we show that optimized designs can lead
to effective converse flexoelectric properties which can be improved
by 1–2 orders of magnitude as compared to guess designs for ceram-
ics/ceramics or polymer/ceramics composites.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on finite
element discretization of the microscale RVE problem and numeri-
cal calculation of effective flexoelectric properties.
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