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Abstract

We present a topology optimization framework to design periodic composites comprised of piezoelectric constituents
hat exhibit large flexoelectric constants. The novelty of the approach is that it leverages a representative volume element
RVE)-based computational homogenization approach that enables the analysis of periodic composites where the characteristic
imensions of the microstructure are significantly smaller than those of the structure, and as such requires only the optimization
f a single RVE rather than that of the entire structure. We utilize this approach to analyze the enhancement in flexoelectric
onstants that can be achieved in different types of PZT-based composites, including hard–hard (PZT–PZT), and hard–soft
PZT–polymer composite, and porous PZT) structures. In all cases, significant enhancements are observed, with improvements
etween 2 and 15 times those of a naive guess, with some designs reaching a factor of one order of magnitude larger than
TO. We identify different mechanisms governing the enhanced electromechanical couplings, which can arise either from an
nhancement of effective piezoelectricity in the RVE for PZT–PZT composites, or from a more subtle interplay involving
he enhancement of effective piezoelectric and dielectric properties coupled with a reduction in mechanical compliance for
ZT–polymer and porous PZT RVEs.

c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Flexoelectricity is the property of an insulating material to polarize when subjected to strain gradient (inhomo-
eneous deformation). Even though flexoelectric effects are much larger in ferroelectric materials [1] and complex
xide ceramics [2–5], the flexoelectricity of several polymers has recently been investigated in [6,7] as well as in
iological membranes in [8]. Kogan [9] formulated the first phenomenological theory of flexelectricity and estimated
he range of values for flexoelectric coefficients. Tagantsev [10,11] developed a microscopic theory for the bulk
ontributions, using the rigid-ion approximation as well as a phenomenological description.
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The flexoelectric effect has been widely studied in recent years due to potential applications in soft robotics,
nergy harvesters, stretchable electronics, sensors and actuators as additional apparent piezoelectric effects can be
nduced. The fourth-order partial differential equations of flexoelectric coupling systems have been approached with
nalytical solutions on simplifying assumptions and simple structural geometries [12–17]. Recently, a computational
ramework to calculate the flexoelectric effect in dielectric solids using a meshfree approach was proposed [18–20].

B-spline approach has been proposed in [21].
Reviews and discussions on flexoelectricity can be found e.g. in [7,22–27].
An ongoing challenge for exploiting flexoelectricity is that the effect is usually quite low in homogeneous (bulk)

aterials. The flexoelectric constants can be relatively high in stiff ceramics such as BaTiO3 (BTO), while it
is typically negligible in soft materials such as polymers. There have been various approaches to enhancing the
flexoelectric constants of solids. One approach has been to consider electrets, i.e. by embedding fixed charges in
the material [28]. Another approach has been to use architected materials comprised of piezoelectric phases [29],
where the effective flexoelectric properties of the piezoelectric composites are obtained using homogenization
[30–34]. More recently, topology optimization [35–42], which has a lengthy and successful history of determining,
using inverse homogenization methods [43] the optimal material distribution to maximize a specific property
[43–46], has been applied to increase the apparent flexoelectricity and energy conversion in piezoelectric structures
[47–50].

However, to fully exploit the possibility of designing structures to maximize their flexoelectric properties, ad-
vances beyond analytical homogenization theories or computational topology optimization of macroscale structures
are required. In particular, what has not been achieved to-date is a reliable approach to tailoring the microstructure
of a composite to enhance the flexoelectric properties, particularly if the microstructure exists at a scale that is
significantly smaller than that of the structure.

One appealing tool for this task is the use of Topology Optimization (TO). Firstly proposed by Bendsøe and
Kikuchi [51], TO has since been applied to a large variety of problems in engineering. TO methods can be broadly
categorized into three families: (a) the Solid Isotropic Material with Penalization (SIMP) method [52–54], (b) the
level set method [55,56], and (c) the Evolutionary Structural Optimization (ESO) method [57]. Review of these
methods can be found in [58–61]. A comparison review on these techniques, with advantages and drawbacks, can be
found in [40]. A survey on the applications of TO to a broad variety of problems including mechanical and thermal
loads of structures, fluid flow, dynamics, acoustics and biomechanics can be found in [61]. Recently, Ganghoffer
et al. [62] used TO together with the concept of topological derivative for designing auxetic microstructures
exhibiting strain gradient behavior.

In the present work, we propose a topology optimization framework to design periodic composites comprised
of piezoelectric constituents that exhibit large flexoelectric constants. The approach leverages a recently-developed
computational homogenization framework for effective flexoelectric materials [63] that enables the estimation of
the (apparent) effective flexoelectric properties of a periodic composite made of piezoelectric phases. The different
associated sensitivity expressions are derived in this context and a SIMP (Solid Isotropic Material with Penalization)
topology optimization framework is developed. A novel aspect of this approach is that it allows us to restrict the
analysis to a single representative volume element (RVE) that describes the microstructure, and importantly does
not require the optimization of the fully detailed structure. This presents significant advantages when there is scale
separation, i.e. when the characteristic dimensions of the heterogeneities are negligible as compared to those of the
structure. We utilize this approach to analyze the enhancement in flexoelectric constants that can be achieved in
different types of PZT-based composites, including hard–hard (PZT–PZT), and hard–soft (PZT–polymer composite,
and porous PZT) structures. In all cases, significant enhancements are observed, with improvements between 2 and
15 times those of a naive guess, with some designs reaching a factor of one order of magnitude larger than BTO.
We identify different mechanisms governing the enhanced electromechanical couplings, which can arise either from
an enhancement of effective piezoelectricity in the RVE for PZT–PZT composites, or from a more subtle interplay
involving the enhancement of effective piezoelectric and dielectric properties coupled with a reduction in mechanical
compliance for PZT–polymer and porous PZT RVEs.

The reminder of this paper is as follows. In Section 2, we introduce the homogenization theory which is

employed in the optimization process. The topology optimization problem for maximizing the effective flexoelectric
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coefficients of the material is provided in Section 4. Section 5 presents numerical examples to investigate the
potential of the approach for several representative cases, including PZT/PZT composites, PZT/polymer composites
and voided PZT materials. Conclusion and perspectives are provided in Section 6.

2. Homogenization framework

In this section, we review the computational homogenization framework proposed in our previous work [63] for
iezoelectric composites with effective flexoelectric behavior.

.1. Micro scale problem

We consider a periodic composite (see Fig. 1(a)) assumed to be characterized by a Representative Volume
lement (RVE) (see Fig. 1(c)). The RVE is defined in a domain Ω ∈ Rd whose external boundary is denoted by ∂Ω .
he characteristic size of the RVE is ℓ. The RVE is assumed to be subjected to three homogeneous fields: a strain ε̄,

a strain gradient ∇ ε̄ and an electric field Ē. The different phases of the RVE are assumed to be linear piezoelectric
and characterized by an elastic tensor Ck , a dielectric tensor αk and a piezoelectric tensor E k , k = 1, . . . , Np, with
Np the number of phases.

The energy density function (electrical enthalpy density) of a piezoelectric material is defined by:

W =
1
2
ε(x) : C(x) : ε(x) − E(x) · E (x) : ε(x) −

1
2

E(x) · α(x) · E(x) (1)

here C is the fourth-order elastic tensor, α is the second-order dielectric tensor, E is the third-order piezoelectric
ensor and x denotes coordinates. Then the Cauchy stress σ and the electric displacement d are defined by:

σ (x) =
∂W
∂ε

= C(x) : ε(x) − E (x) · E(x) (2)

d(x) = −
∂W
∂E

= E (x) : ε(x) + α(x) · E(x) (3)

The effective electric field can be computed by prescribing the following boundary conditions over the RVE:

φ(x) = −Ē · x + φ̃(x) on ∂Ω (4)

here φ̃(x) is either zero or a periodic fluctuation on ∂Ω . A quadratic boundary condition (QBC) has been introduced
o prescribe an effective strain and strain gradient [64,65]:

u(x) = ε̄ · x +
1
2
Ḡ : x ⊗ x + ũ(x) on ∂Ω (5)

here

Ḡi jk = ∇εi jk + ∇εik j − ∇ε jki (6)

nd ũ(x) is either zero or periodic on ∂Ω . However, quadratic boundary conditions alone can induce spurious
radient terms and a non-convergence of the higher order effective coefficients with respect to RVE characteristic
ize. These issues can be eliminated by introducing body forces to enforce a constant strain gradient within the
VE when the material is homogeneous [66].

Then, local equations are substituted by

∇ · σ (u(x)) = f (∇ε) x ∈ Ω (7)

∇ · d(x) = r (∇ε) x ∈ Ω (8)

here

fi = C0
i jkl∇εkl j (9)

r = E 0
i jk∇ε jki (10)

are body forces added to remove spurious fluctuations in the case of homogeneous RVEs (see [66] and [63] for
more details). Above, σ and d are given by Eqs. (2), (3).
3
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Fig. 1. (a) Periodic heterogeneous structure; (b) Equivalent piezo-flexoelectric homogeneous structure; (c) RVE model.

Eqs. (7)–(8) are completed with the boundary conditions (4)–(5).
Solving the linear localization problem (7)-(8)-(4)-(5) by using the superposition principle, the local strain field

(x) and the local electric field E(x) can be obtained as:

ε(x) = A0(x) : ε̄ + B0(x) · Ē + Ã1(x)
... ∇ε, (11)

E(x) = D0(x) : ε̄ + h0(x) · Ē + D̃1(x)
... ∇ε (12)

here

Ã1(x) = A1(x) − A0(x) ⊗ x (13)

D̃1(x) = D1(x) − D0(x) ⊗ x (14)

are corrected terms to remove local spurious fluctuations in the case of homogeneous RVEs [63,66].
The strain solutions are calculated by:

(i) A0(x), B0(x) and A1(x) are the strain solution ε(x) obtained by solving the problems (7)-(8)-(4)-(5) with
ε̄ =

1
2 (ek ⊗ el + el ⊗ ek), Ē = ek , ∇ε =

1
2 (ek ⊗ el + el ⊗ ek) ⊗ em , respectively.

(ii) D0(x), h0(x) and D1(x) are the electric field solution E(x) obtained by solving the problems (7)-(8)-(4)-(5)
with ∇ε =

1
2 (e j ⊗ ek + ek ⊗ e j ), Ē = e j , ∇ε̄ =

1
2 (e j ⊗ ek + ek ⊗ e j ) ⊗ el , respectively.

he terms ei are unitary basis vectors.

. Finite element discretization of local RVE equation

In the following, we present the Finite Element discretization for localization problem defined in Section 2.1.
he 2D plane strain condition is considered.

The weak form associated with the coupled problem (7)-(8)-(4)-(5) is to find u ∈ {u = ū∗ on ∂Ωu, u ∈ H1(Ω )}
nd φ ∈ {φ = φ̄

∗
on ∂Ωφ, φ ∈ H1(Ω )} such that [63]∫

Ω

∇(d) · δφdΩ = −

∫
Ω

{Ē : ∇ε̄x} · ∇(δφ)dΩ (15)∫
∇(σ ) : δudΩ =

∫
{C̄ : ∇ε̄x} · ε(δu)dΩ (16)
Ω Ω

4
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for all δu ∈ {δu = 0 on ∂Ωu, δu ∈ H1(Ω )} and δφ ∈ {δφ = 0 on ∂Ωφ, δφ ∈ H1(Ω )}. Substituting Eqs. (2) and (3)
into Eqs. (15) and (16) yields:∫

Ω

(E : ε(u) + α · E(φ)) · ∇(δφ)dΩ = −

∫
Ω

{Ē : ∇εx} · ∇(δφ)dΩ (17)∫
Ω

(C : ε(u) − E T
· E(φ)) : ε(δu)dΩ =

∫
Ω

{C̄ : ∇εx} · ε(δu)dΩ (18)

We adopt the same finite element discretization for the approximation of the displacement field u and of the
lectric field φ. Using 8-node element, the two finite element approximate field (uh , φh) can be expressed as:

uh(x) = Nu(x)ui; φh(x) = Nφ(x)φ i (19)

δuh(x) = Nu(x)δui; δφh(x) = Nφ(x)δφ i (20)

nd their derivatives as,

∇uh(x) = Bu(x)ui; ∇φh(x) = Bφ(x)φ i (21)

∇δuh(x) = Bu(x)δui; ∇δφh(x) = Bφ(x)δφ i (22)

By substituting the above discrete approximation in Eqs. (17) and (18), we obtain the linear system of coupling
quations: [

Kφφ Kφu

−Kuφ Kuu

] [
φ

u

]
=

[
Fφ

Fu

]
(23)

ith

Kφφ =

∫
Ω

(Bφ)T [α]BφdΩ , (24)

Kφu = −

∫
Ω

(Bφ)T [E ]BudΩ , (25)

Kuu =

∫
Ω

(Bu)T [C]BudΩ , (26)

Fφ =

∫
Ω

(Bφ)T [E ][κ]dΩ , (27)

Fu =

∫
Ω

(Bu)T [C][κ]dΩ , (28)

nd

[κ] =

⎡⎣x∇ε111 + y∇ε112

x∇ε221 + y∇ε222

x∇ε121 + y∇ε122

⎤⎦ (29)

.1. Effective piezo-flexoelectric tensors

In our previous work [63], a general energy density function for an effective piezo-flexoelectric material was
roposed, extending a Mindlin strain gradient model with electromechanical terms as:

W̄ =
1
2
ε̄ : C̄ : ε̄ −

1
2

Ē · ᾱ · E − Ē · Ē : ε̄

+
1
2
∇ε̄

... Ḡ
... ∇ε̄ + Ē · F̄

... ∇ε̄ + ε̄ : M̄
... ∇ε (30)

here Ḡ is the sixth-order effective strain gradient elastic tensor, F̄ is the fourth-order effective flexoelectric tensor
coupling electric field and strain gradient, and M̄ is a fifth-order effective tensor coupling strain and strain gradient.
5
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Above, (·)
... (·) denotes triple contraction of indices. Perfect interfaces between different phases are assumed. Note

hat the above model neglects terms related to electric strain gradient, e.g. associated with the converse flexoelectric
radient (see e.g. [67–69]). Such extension could be included in the present topology optimization framework and
ill be the topic of future studies.
The effective stress tensor σ̄ , effective electric displacement d̄ and effective hyperstress tensor S̄ associated with

energy density function (30) are defined as:

σ̄ =
∂W̄
∂ ε̄

, d̄ = −
∂W̄
∂Ē

, S̄ =
∂W̄

∂∇ε
(31)

Taking the spatial average of (1) we obtain:

W̄ =
1
2
⟨ε(x) : C(x) : ε(x)⟩ − ⟨E(x) · E (x) : ε(x)⟩ −

1
2
⟨E(x) · α(x) · E(x)⟩ (32)

here ⟨·⟩ =
1
Ω

∫
Ω · dΩ denotes the volume average over Ω . Then substituting Eqs. (11) and (12) into Eq. (32), and

omparing the different terms with Eq. (30), the effective operators are obtained:

C̄ =⟨(A0(x))T
: C(x) : A0(x)

− 2(D0(x))T
· E (x) : A0(x) − (D0(x))T

· α(x) · D0(x)⟩ (33)

ᾱ =⟨−(B0(x))T
: C(x) : B0(x)

+ 2(h0(x))T
· E (x) : B0(x) + (h0(x))T

· α(x) · h0(x)⟩ (34)

Ē =⟨−(B0(x))T
: C(x) : A0(x) + (h0(x))T

· E (x) : A0(x)

+ (B0(x))T
: E (x) · D0(x) + (h0(x))T

· α(x) · D0(x)⟩ (35)

F̄ =⟨(B0(x))T
: C(x) : Ã1(x) − (h0(x))T

· E (x) : Ã1(x)

− (B0(x))T
: E T (x) · D̃1(x) − (h0(x))T

· α(x) · D̃1(x)⟩ (36)

Note that the expressions for M̄ and Ḡ in (30), which are not used in the present paper, can be found in [63].
hese tensors are only used if we perform structure calculations using the homogenized model (30)–(31) (see
.g. [18,19] for FEM related formulations). The complete expressions for these tensors can be found in [63]. The
nite element evaluations and matrix forms for the effective tensors are presented in Appendix A. The matrix form
f the flexoelectric tensor is given in 2D by:

[F̄] =

[
F̄1111 F̄1221 F̄1122 F̄1222 F̄1112 F̄1121

F̄2111 F̄2221 F̄2122 F̄2222 F̄2112 F̄2121

]
(37)

.2. The electromechanical coupling

A useful parameter to compare different piezoelectric and flexoelectric materials is the electromechanical
oupling coefficient denoted as K . The coupling coefficient is a measure of the conversion efficiency between
echanical and electrical energy using the piezoelectric material. It takes the same indices as the piezoelectric

oefficient E and is formulated as [70]

¯Ki J =
D̄i J√
ē S̄

(38)

i i J J

6
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with

[D̄] = [Ē ] : [C̄]−1, [ē] = ([Ē ] : [C̄]−1
: [Ē ]T

+ [ᾱ]) : [C̄]−1 [S̄] = [C̄]−1, (39)

here D̄ , ē and S̄ denote the piezoelectric coefficient, dielectric constant and compliance matrix, respectively.

. SIMP topology optimization for flexoelectric composites

.1. Topology optimization problem formulation

Here we formulate the topology optimization problem to maximize the absolute values of the flexoelectric tensor
omponents in (A.6) and (36). First, the periodic unit cell is discretized into Ne finite elements which match the mesh
sed for solving the electromechanical problem defined in the previous section. We define the inclusion material
ensity ρe in each element e, e = 1, 2, . . . , Ne such that ρe = 1 is associated with the inclusion/void phase and

ρ = 0 is associated with the matrix phase. The topology optimization is formulated as follows:

Maximize : |F̄i jkl(ρ)|
subject : KU = F

:
∑Ne

e=1 ρeve/(
∑Ne

e=1 ve) = f
0 ≤ ρe ≤ 1, e = 1, 2, . . . , Ne

(40)

The discrete system KU = F is defined in Eqs. (23)–(28). Above, ve is the volume of an element e and f is the
nclusion volume fraction.

We use the SIMP method [71–73] to solve the problem. In this framework, the local material properties are
nterpolated with respect to the local density in a continuous manner, using penalty exponents to enforce local
ensities to converge to values close to 0 or 1. Selection of exponents have been investigated in [74]. For composites
ade of two phases, we use the following expression:

[Ci jkl(ρ)] = ρ pc[C1
i jkl] + (1 − ρ pc)[C2

i jkl]

[αi j (ρ)] = ρ pa[α1
i j ] + (1 − ρ pa)[α2

i j ]

[Eki j (ρ)] = ρ pe[E 1
ki j ] + (1 − ρ pe)[E 2

ki j ] (41)

here the superscripts 1 and 2 are associated with phase 1 and phase 2, respectively and pc, pa and pe are penalty
xponents. In most of the numerical examples, these values are chosen as pc = pa = pe = 3, except in a few
ases where pe = 4 is sometimes used to improve the convergence.

In the special case of porous materials, the following expression is usually preferred [73]:

Ci jkl(ρ) = Cvoid
i jkl + ρ pc

× Cm
i jkl

αi j (ρ) = αvoid
i j + ρ pa

× αm
i j

Eki j (ρ) = E void
ki j + ρ pe

× E m
ki j

(42)

here void refers to a fictitious material with small values of the (stiffness, dielectric, piezoelectric) properties to
imic the void.
The above problem (40) requires evaluating the gradient of the objective function with respect to the local

ensities (subsequently referred to as sensitivities). The objective function, i.e. the effective flexoelectric tensor, is
ritten in matrix form as (see Appendix A):

[F̄(ρ)] = ⟨(B0)T
: C : Ã1

− (h0)T
· E : Ã1

− (B0)T
: E T

· D̃1
− (h0)T

· α · D̃1
⟩ (43)

here we have omitted the dependence to the coordinates x and design variable ρ to alleviate the notations. The
eveloped expressions for the sensitivities are given the next section. The optimization problem (40) is solved by

he Conservative Convex Separable Approximations (CCSA optimizer [75].

7
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4.2. Numerical analysis of sensitivity

The gradient of flexoelectric tensor [F̄] with respect to ρ, is expressed as:

∂[F̄]
∂ρ

=
∂((B0)T [C(ρ)]Ã1)

∂ρ
−

∂((h0)T [E (ρ)]Ã1)
∂ρ

−
∂((B0)T [E (ρ)]T D̃1)

∂ρ
−

∂((h0)T [α(ρ)]D̃1)
∂ρ

=
∂{(VT

u )BT
u [C(ρ)]Bu(Wu − Wu

x )}
∂ρ

+
∂{(Vφ

T )BT
φ [E (ρ)]Bu(Wu − Wu

x )}

∂ρ

+
∂{(VT

u )BT
u [E (ρ)]T Bφ(Wφ − Wφ

x )}
∂ρ

−
∂{(Vφ

T )BT
φ [α(ρ)]Bφ(Wφ − Wφ

x )}

∂ρ

(44)

Expanding Eq. (44), we have

∂[F̄]
∂ρ

={
∂(VT

u )
∂ρ

BT
u [C(ρ)]Bu(Wu − Wu

x ) + (Vu)T ∂(BT
u [C(ρ)]Bu)

∂ρ
(Wu − Wu

x )

+ (VT
u )BT

u [C(ρ)]Bu
∂(Wu − Wu

x )
∂ρ

} + {
∂(Vφ

T )
∂ρ

BT
φ [E (ρ)]Bu(Wu − Wu

x )

+ (Vφ)T ∂(BT
φ [E (ρ)]Bu)

∂ρ
(Wu − Wu

x ) + (Vφ
T )BT

φ [E (ρ)]Bu
∂(Wu − Wu

x )
∂ρ

}

+ {
∂(VT

u )
∂ρ

BT
u [E (ρ)]T Bφ(Wφ − Wφ

x ) + (Vu)T ∂(BT
u [E (ρ)]T Bφ)

∂ρ
(Wφ − Wφ

x )

+ (VT
u )BT

u [E (ρ)]T Bφ

∂(Wφ − Wφ
x )

∂ρ
} − {

∂(Vφ
T )

∂ρ
BT

φ [α(ρ)]Bφ(Wφ − Wφ
x )

+ (Vφ)T ∂(BT
φ [α(ρ)]Bφ)

∂ρ
(Wφ − Wφ

x ) + (Vφ
T )BT

φ [α(ρ)]Bφ

∂(Wφ − Wφ
x )

∂ρ
}

(45)

After rearranging Eq. (45), we obtain

∂[F̄]
∂ρ

=
∂(VT

u )
∂ρ

{
BT

u [C(ρ)]Bu(Wu − Wu
x ) + BT

u [E (ρ)]T Bφ(Wφ − Wφ
x )

}
+

∂(Vφ
T )

∂ρ

{
BT

φ [E (ρ)]Bu(Wu − Wu
x ) − BT

φ [α(ρ)]Bφ(Wφ − Wφ
x )

}
+

{
(VT

u )BT
u [C(ρ)]Bu + (Vφ

T )BT
φ [E (ρ)]Bu

} ∂(Wu − Wu
x )

∂ρ

+
{
(VT

u )BT
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ

} ∂(Wφ − Wφ
x )

∂ρ

+ (Vu)T ∂(BT
u [C(ρ)]Bu)

∂x
(Wu − Wu

x ) + (Vφ)T ∂(BT
φ [E (ρ)]Bu)

∂x
(Wu − Wu

x )

+ (Vu)T ∂(BT
u [E (ρ)]T Bφ)

∂ρ
(Wφ − Wφ

x ) − (Vφ)T ∂(BT
φ [α(ρ)]Bφ)

∂ρ
(Wφ − Wφ

x )

(46)

The adjoint method has been widely used for sensitivity analysis of gradient-based optimization algorithms
76,77], and is employed here. The corresponding Lagrangian for the optimization problem (40) is formed by
ntroducing an adjoint vector λ as:

L = F + λ(KU − F) (47)

As KU − F = 0 holds, then λ = [λi , µi ](i = 1, 2, 3) can take arbitrary values. Differentiating the Lagrangian L
ith respect to the design variable ρ gives:

∂L
=

∂F
+ λ

∂(KU − F)
(48)
∂ρ ∂ρ ∂ρ

8
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e

a

The vector KU = F is defined in Eqs. (23)–(28). Substituting these equations into (48), then splitting the
xpression (46) into 4 parts, denoted by I, I I, I I I, I V , we have:

∂[FI
]

∂ρ
=

∂(VT
u )

∂ρ

{
BT

u [C(ρ)]Bu(Wu − Wu
x ) + BT

u [E (ρ)]T Bφ(Wφ − Wφ
x )

}
+

∂(Vφ
T )

∂ρ

{
BT

φ [E (ρ)]Bu(Wu − Wu
x ) − BT

φ [α(ρ)]Bφ(Wφ − Wφ
x )

}
+

{
∂(Vφ

T )
∂ρ

Kφφ + (Vφ
T )

∂Kφφ

∂ρ
+

∂(VT
u )

∂ρ
KT

φu + (VT
u )

∂KT
φu

∂ρ

}
λ1

+

{
−

∂(Vφ
T )

∂ρ
Kφu − (Vφ

T )
∂Kφu

∂ρ
+

∂(VT
u )

∂ρ
Kuu + (VT

u )
∂Kuu

∂ρ

}
µ1

=
∂(VT

u )
∂ρ

{
BT

u [C(ρ)]Bu(Wu − Wu
x ) + BT

u [E (ρ)]T Bφ(Wφ − Wφ
x ) + KT

φuλ1 + Kuuµ1
}

+
∂(Vφ

T )
∂ρ

{
BT

φ [E (ρ)]Bu(Wu − Wu
x ) − BT

φ [α(ρ)]Bφ(Wφ − Wφ
x ) + Kφφλ1 − Kφuµ1

}
+

{
(Vφ

T )
∂Kφφ

∂ρ
+ (VT

u )
∂KT

φu

∂ρ

}
λ1 +

{
−(Vφ

T )
∂Kφu

∂ρ
+ (VT

u )
∂Kuu

∂ρ

}
µ1

(49)

As Eq. (49) holds for arbitrary vectors λ1 and µ1, the adjoint vectors λ1 and µ1 can be chosen as the solution
of the following adjoint equation to eliminate the implicit terms ∂(VT

u )
∂ρ

and ∂(Vφ
T )

∂ρ
. Then the corresponding adjoint

problem is defined as,

∂(VT
u )

∂ρ

{
BT

u [C(ρ)]Bu(Wu − Wu
x ) + BT

u [E (ρ)]T Bφ(Wφ − Wφ
x ) + KT

φuλ1 + Kuuµ1
}

= 0
∂(Vφ

T )
∂ρ

{
BT

φ [E (ρ)]Bu(Wu − Wu
x ) − BT

φ [α(ρ)]Bφ(Wφ − Wφ
x ) + Kφφλ1 − Kφuµ1

}
= 0

(50)

nd written in matrix form, gives[
Kφφ −Kφu

KT
φu Kuu

] [
λ1
µ1

]
= −

[
BT

φ [E (ρ)]Bu(Wu − Wu
x ) − BT

φ [α(ρ)]Bφ(Wφ − Wφ
x )

BT
u [C(ρ)]Bu(Wu − Wu

x ) + BT
u [ξ (ρ)]T Bφ(Wφ − Wφ

x )

]
(51)

Part I I of (49) is given by

∂[FI I
]

∂ρ
=

{
(VT

u )BT
u [C(ρ)]Bu + (Vφ

T )BT
φ [E (ρ)]Bu

} ∂Wu

∂ρ

+
{
(VT

u )BT
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ

} ∂Wφ

∂ρ

+ λT
2

{
∂Kφφ

∂ρ
Wφ + Kφφ

∂Wφ

∂ρ
+

∂Kφu

∂ρ
Wu + Kφu

∂Wu

∂ρ
−

∂Fφ

∂ρ

}
+ µT

2

{
−

∂KT
φu

∂ρ
Wφ − KT

φu
∂Wφ

∂ρ
+

∂Kuu

∂ρ
Wu + Kuu

∂Wu

∂ρ
−

∂Fu

∂ρ

}
=

{
VT

u BT
u [C(ρ)]Bu + Vφ

T BT
φ [E (ρ)]Bu + λT

2 Kφu + µT
2 Kuu

} ∂Wu

∂ρ

+
{
(VT

u )BT
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ + λT

2 Kφ,φ − µT
2 KT

φu

} ∂Wφ

∂ρ

+ λT
2

{
∂Kφφ

∂ρ
Wφ +

∂Kφu

∂ρ
Wu −

∂Fφ

∂ρ

}
+ µT

2

{
−

∂KT
φu

∂ρ
Wφ +

∂Kuu

∂ρ
Wu −

∂Fu

∂ρ

}

(52)
9
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r

o

The derivatives of body forces with respect to ρ must also be evaluated. Using the same method as for Part I ,
after eliminating the displacement derivatives, the adjoint problem for Eq. (52) reads:[

Kφφ −Kφu

KT
φu Kuu

] [
λ2
µ2

]
= −

[
BT

φ [E (ρ)]BuVu − BT
φ [α(ρ)]BφVφ

BT
u [C(ρ)]BuVu + BT

u [E (ρ)]T BφVφ

]
(53)

Similarly:

∂[FI I I
]

∂ρ
=

{
(VT

u )BT
u [C(ρ)]Bu + (Vφ

T )BT
φ [E (ρ)]Bu

} (
−

∂W x
u

∂ρ

)
+

{
(VT

u )BT
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ

} (
−

∂Wφ
x

∂ρ

)
+ λT

3

{
∂Kφφ

∂ρ
Uφ + Kφφ

∂Uφ

∂ρ
+

∂Kφu

∂ρ
Uu + Kφu

∂Uu

∂ρ

}
+ µT

3

{
−

∂KT
φu

∂ρ
Uφ − KT

φu
∂Uφ

∂ρ
+

∂Kuu

∂ρ
Uu + Kuu

∂Uu

∂ρ

}
=

{
−VT

u BT
u [C(ρ)]Bu x − Vφ

T BT
φ [E (ρ)]Bu x + λT

3 Kφu + µ3Kuu
} ∂Uu

∂ρ

+
{
−VT

u BT [E (ρ)]T Bφx + (Vφ
T )BT

φ [α(ρ)]Bφx + λT
3 Kφφ − µT

3 KT
φu

} ∂Uφ

∂ρ

+ λT
3

{
∂Kφφ

∂ρ
Uφ +

∂Kφu

∂ρ
Uu

}
+ µT

3

{
−

∂KT
φu

∂ρ
Uφ +

∂Kuu

∂ρ
Uu

}

(54)

The adjoint problem for Part I I I is written as:[
Kφφ −Kφu

KT
φu Kuu

] [
λ3
µ3

]
= −

[
−BT

φ [E (ρ)]BuVux + BT
φ [α(ρ)]BφVφx

−BT
u [C(ρ)]BuVux − BT

u [E (ρ)]T BφVφx

]
(55)

From Eq. (46), we can obtain Part I V , which is explicit and can be easily calculated in terms the interpolation
unction Eq. (41).

∂[FI V
]

∂ρ
=(Vu)T BT

u
∂([C(ρ)])

∂x
Bu(Wu − Wu

x ) + (Vφ)T BT
φ

∂([E (ρ)])
∂x

Bu(Wu − Wu
x )

+ (Vu)T BT
u

∂([E (ρ)])
∂ρ

Bφ(Wφ − Wφ
x ) − (Vφ)T BT

φ

∂([α(ρ)])
∂ρ

Bφ(Wφ − Wφ
x )

(56)

After solving all the above adjoint problems, we can get the whole explicit sensitivity of flexoelectric tensor with
espect to density ρ as:

∂[F]
∂ρ

=

{
(Vφ

T )
∂Kφφ

∂ρ
+ (VT

u )
∂KT

φu

∂ρ

}
λ1 +

{
−(Vφ

T )
∂Kφu

∂ρ
+ (VT

u )
∂Kuu

∂ρ

}
µ1

+ λT
2

{
∂Kφφ

∂ρ
Wφ +

∂Kφu

∂ρ
Wu −

∂Fφ

∂ρ

}
+ µT

2

{
−

∂KT
φu

∂ρ
Wφ +

∂Kuu

∂ρ
Wu −

∂Fu

∂ρ

}

+ λT
3

{
∂Kφφ

∂ρ
Wφ

x
+

∂Kφu

∂ρ
Wu

x
}

+ µT
3

{
−

∂KT
φu

∂ρ
Wφ

x
+

∂Kuu

∂ρ
Wu

x

}

+ (Vu)T ∂(BT
u [C(ρ)]Bu)

∂ρ
(Wu − Wu

x ) + (Vφ)T ∂(BT
φ [E (ρ)]Bu)

∂x
(Wu − Wu

x )

+ (Vu)T ∂(BT
u [ξ (ρ)]T Bφ)

∂ρ
(Wφ − Wφ

x ) − (Vφ)T ∂(BT
φ [α(ρ)]Bφ)

∂ρ
(Wφ − Wφ

x )

(57)

The body forces are non-zero for the third adjoint problem. The interested readers can also calculate the derivative
f body forces with respect to design variables by the presented adjoint method. Here we obtain 3 adjoint problems to
10
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compute the adjoint vectors λ1 and µ1, λ2 and µ2, as well as λ3 and µ3, respectively. So we must choose 3 boundary
onditions for the adjoint problems. Usually, we can define the same boundary conditions as the corresponding to
quivalent finite element equations. However the numerical simulations indicate that prescribing one or two adjoint
roblems as zero Dirichlet boundary conditions leads to better numerical stability and larger absolute value of
ptimized components.

. Numerical examples

In this section, the proposed computational homogenization framework is applied to optimize the components
f the effective flexoelectric tensor of a two-phase composite. More specifically, we investigate the optimization
f the F̄1221, F̄2221, F̄1112 and F̄2112 coefficients, as these coefficients characterize polarization under the action of
ending. The other coefficients of the flexoelectric tensor, i.e. F̄1111, F̄2111, F̄1222, F̄2222 are not investigated here, as

they correspond to polarization under more complex strain gradient modes. The homogenization and optimization
are performed on a periodic heterogeneous material composed of piezoelectric phases. We consider three cases:
(1) a composite made of two stiff piezoelectric phases; (2) a composite made of a stiff piezoelectric matrix and
soft polymer inclusion; (3) a porous piezoelectric material. In all numerical examples, the RVEs are discretized by
60 × 60 8-node quadratic finite elements.

5.1. Ceramic/ceramic piezoelectric composite

We first consider a two-phase composite made of piezoelectric phases. Each phase is made with PZT (lead
zirconium titanate ceramics). To induce a heterogeneity, the crystal lattice is oriented by a mismatch angle of θ = π

in the inclusion phase. The related properties of the matrix and inclusion are indicated in matrix form in (58)–(61),
in which the subscript m and i refer to the matrix and inclusion, respectively [78].

[Cm] = [Ci ] =

⎡⎣131.39 83.237 0
83.237 154.837 0

0 0 35.8

⎤⎦ (GPa), (58)

[αm] = [αi ] =

[
2.079 0

0 4.065

]
(C m−2) (59)

[E m] =

[
−2.120582 −2.120582 0

0 0 0

]
(nC m−1 V−1) (60)

[E i ] =

[
2.120582 2.120582 0

0 0 0

]
(nC m−1 V−1) (61)

We perform the topology optimization of the inclusion shape with respect to the flexoelectric coefficients F̄1221
nd F̄2112, and set the inclusion volume fraction to f = 0.4. As a first guess, the design variables are uniformly set
o ρe = 0.4 (e = 1, . . . , Ne = 3600). The guess design with triangular shape which is illustrated in Fig. 2a has
een investigated in [63] and will serve as a comparison solution with respect to optimized topological designs.

The final optimized unit cell topologies are shown in Figs. 4a and 7a, where the optimization process converges
n about 60 iterations for F̄1221 and F̄2112. In all figures, the copper and black colors refer to the inclusion and matrix
hases, respectively. Iteration histories are shown in Fig. 3, where Normalized Flexoelectric F refers to F i jkl/F

Ref
i jkl ,

here F
Ref
i jkl is the guess solution obtained on a unit cell with triangular shape inclusion.

The final values for the optimized microstructures are F̄1221 = 1.365 × 10−4 C m−1 and F̄2112 = 2.689 × 10−4 C
m−1, which represents a significant improvement of the values as compared to the reference triangular solutions of
79.61% and 83.55% for F̄1221 and F̄2112, respectively. It should be noticed that the obtained values are higher than
naturally flexoelectric materials, such as BaTiO3 and PMN-PT [7] whose flexoelectricity is reported as of the order
of 10−5 C m−1. It is worth noting that the present SIMP framework allows initiating the topology as uniform, with
densities equal to the required volume fraction. This explains why the flexoelectric coefficients are initially zero.

In the next example, we analyze the size effects related to varying the length ℓ of the unit cell. We consider the
optimized RVE of Fig. 4a and use the same material parameters as in (58)–(61). Here again, the RVE is composed
of 1 × 1 unit cell. The dimensions of the RVE are varied according to ϵ = ℓ/ℓ0, where ℓ0 = 1 mm. We can see

in Fig. 6 that the present model can capture the size effects of flexoelectric effective properties.

11
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Fig. 2. Unit cells with triangular inclusions with inclusion volume fraction of f = 0.4, polarization P and the mismatch angle θ between
matrix and inclusion phases; (a) guess design used for computing F1221 and F2112; (b) guess design used for computing F1112 and F2221.

Fig. 3. Topology optimization process with respect to normalized flexoelectric components and volume fractions for the PZT/PZT: (a) F̄1221,
1 × 1 cells; (b) F̄2112, 1 × 1 cells; (c) F̄1221, 2 × 2 cells; (d) F̄2112, 2 × 2 cells.

The electromechanical coefficients for the reference RVE with triangular inclusion are ¯K re f
31 = 0.0929 and

¯K re f
32 = 0.0736. For the optimized F̄1221, the coupling coefficients are found as ¯K31 = 0.1141 and ¯K32 = 0.0903,

increasing respectively by 22.8% and 22.7%. Similarly, for the optimized F̄2112, the coupling coefficients are found
as ¯K31 = 0.1183 and ¯K32 = 0.0937, with each increasing by 27.3%.

To gain more insight into the mechanisms driving the increase in the flexoelectric constants, we plot in Fig. 5
the local electric field component E2 and local strain gradient component ∇ε112 within the optimized F2112 unit cell

¯ −1
shown in Fig. 7(a) for a prescribed strain gradient ∇ε112 = 1 m . This is done as the value of the flexoelectric

12
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Fig. 4. Optimal topology for F̄1221: (a) PZT/PZT, 1 × 1 cells; (b) PZT/PZT, 2 × 2 cells; (c) PZT/polymer, 1 × 1 cells; (d) PZT/void,
1 × 1 cells.

Fig. 5. Electric field (E2-component) and strain gradient (∇ε112)-component within the PZT–PZT-optimized microstructure corresponding to
the optimized F̄2112 in Fig. 7(a).

constant Fajkl depends on the polarization direction a, and the strain gradient ∇ ε̄ jkl . We can observe that both the
electric field and strain gradient are localized within the microstructure, roughly at the interface between the PZT
matrix and PZT inclusion. Furthermore, the electric field is asymmetric with respect to the polarization direction,
which is required to obtain non-zero flexoelectric constants. While the strain gradient and electric field are both
13
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Fig. 6. Size-dependent effective flexoelectric properties F1221 for the RVE with topology of Fig. 4a.

ocalized at the interface, the enhancements are not as large as for later examples using a hard/soft interface, and
hus the enhancement in the optimized F̄2112, while excellent at 83.5%, is smaller than the later optimized hard/soft
tructures.

To understand the enhancement in electromechanical coupling coefficient ¯K , we examine the different terms
contributing to it in Table 2. There, we find that for the PZT/PZT case, because the matrix and inclusion are
comprised of the same material, the compliance S̄ and dielectric matrices ē have the same values. Therefore, the
increase in electromechanical coupling ¯K for the hard/hard composite is entirely driven by the enhancement in
effective RVE piezoelectric constants D̄ .

Next, we investigate the influence of the volume fraction f on the obtained geometries obtained by optimizing
F̄1221 and F̄2112 in Figs. 8 and 9, respectively. We first note that the volume fraction has a direct influence on
the obtained geometry. When f is around 0.5, a simple layered structure is obtained. However, more asymmetric
geometries with respect to the y-axis are induced for other volume fractions. In addition, the corresponding values
of the optimized coefficients do not increase monotonically with the volume fraction, but reach the largest value
around f = 0.5, leading to F̄1221 = 1.43 (×10−4 C m−1) and F̄2112 = 2.767 (×10−4 C m−1). When the unit cell
is homogeneous ( f = 0 and f = 1), the flexoelectric coefficients vanish.

It has been shown in [63,66] that in the present computational framework, the convergence of effective
flexoelectric properties quickly converges with respect to the number of unit cells. Next, a 2 × 2 periodic repetition
of unit cells is investigated to determine the influence of using more cells within the RVE for the calculations. Each
unit cell is composed of 60 × 60 elements, thus 4 × 60 × 60 elements are used in the 2 × 2 unit cells.

The optimized structures of the 2 × 2 periodic unit cell are obtained in Figs. 4b and 7b for f = 0.4. In that
ase, the maximum values of the flexoelectric coefficients are F̄1221 = 1.616 (×10−4 C m−1) and F̄2112 = 3.298
×10−4 C m−1). The coupling coefficients are obtained as ¯K31 = 0.1449 and ¯K32 = 0.1147 for optimized F̄1221,
nd ¯K31 = 0.1169 and ¯K32 = 0.0925 for optimized F̄2112. Then, a notable change is obtained as compared to the

1 × 1 unit cell. However, the obtained topologies are very similar, which suggest that the topology optimization can
be conducted on a single unit cell, while the effective properties can be estimated using more repeated unit cells.
In our previous work [66] focusing on the homogenization of strain gradient elastic problems, we have shown that
the present formulation leads to convergent properties with respect to the number of unit cells.

5.2. Ceramic/doped piezoelectric polymer composite

In our second example, we replace the misoriented and mechanically stiff PZT inclusion with a soft, dielectric,
polymer inclusion (polyvinylidene fluoride, PVDF). The elastic, piezoelectric and dielectric properties for the
polymer are given below. In comparison to the PZT properties in Eqs. (58)–(61), all of the polymer properties are
14
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Fig. 7. Optimal topology for F̄2112: (a) PZT/PZT, 1 × 1 cells; (b) PZT/PZT, 2 × 2 cells; (c) PZT/polymer, 1 × 1 cells; (d) PZT/void,
1 × 1 cells.

Fig. 8. Optimal values of flexoelectric coefficient F̄1221 and corresponding topologies with respect to volume fraction of inclusion.
15
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Fig. 9. Optimal values of flexoelectric coefficient F̄2112 and corresponding topologies with respect to volume fraction of inclusion.

1–2 orders in magnitude lower than for PZT. Despite this, we shall demonstrate in this example that the potential
of increased strain gradients that may be possible by using hard/soft composites can lead to effective flexoelectric
constants and electromechanical coupling constants that can exceed those of the PZT/PZT composite in the previous
example. The material parameters of matrix PZT are expressed in (58)–(60), while the material properties of PVDF
are described in (62)–(64) [79].

[Ci ] =

⎡⎣6.066 3.911 0
3.911 6.066 0

0 0 1.078

⎤⎦ (GPa) (62)

[αi ] =

[
0.025 0

0 0.084

]
(C m−2) (63)

[E i ] =

[
0.1272 0.0873 0

0 0 0

]
(nC m−1 V−1) (64)

We perform topology optimization of the PVDF inclusion with respect to the flexoelectric coefficients F̄1221,
F̄2221, F̄1112 and F̄2112. To ensure that these results can be compared against the previous PZT/PZT results, we
set the volume fraction of the PVDF inclusion to be f = 0.4 for all cases. Similarly, the initial guess is set by
ρe = 0.4, e = 1, 2, . . . , Ne = 3600. The periodic density conditions are considered here. The final optimal unit
cells of the flexoelectric coefficients F̄1221, F̄2221, F̄1112 and F̄2112 are obtained in Figs. 4c, 10a, 11a and 7c. In these
figures, the cyan and black colors refer to the inclusion PVDF and matrix PZT, respectively. Iteration histories are
shown in Fig. 12. The reference solutions calculated by a triangular PVDF inclusion as in Fig. 2 are shown in all
cases.

We obtained four different optimized unit cells, and a significant improvement can be found compared to the
reference triangular solutions. The optimal absolute values are F̄1221 = 1.484×10−4 C m−1, F̄2221 = 3.49×10−5 C
m−1, F̄1112 = 7.33×10−5 C m−1 and F̄2112 = 2.006×10−4 C m−1, which imply increases by 1462%, 113%, 254%
and 1431%, respectively. Interestingly, despite being comprised of a polymer inclusion whose (elastic, piezoelectric,
and dielectric) properties are all about two orders of magnitude smaller than the PZT matrix, the flexoelectric
constants are quite similar to those obtained for the optimized PZT/PZT composites discussed previously, with
significantly larger percentage enhancements.

To test the influence of the mesh, we compare the optimal topology configurations of PZT/PVDF composites with
respect to F2221 using a regular mesh and an unstructured mesh. Both meshes contain 4-node elements and similar
mesh densities. We can note from Fig. 13 that both topologies are almost identical, showing the mesh-independence
16
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Fig. 10. Optimal topology for F̄2221: (a) PZT/polymer; (b) PZT/void.

Fig. 11. Optimal topology for F̄1112: (a) PZT/polymer; (b) PZT/void.

of the present formulation. The only slight differences come from the lack of periodicity in the unstructured mesh,
leading to small perturbations near the boundaries.

We then illustrate the flexoelectric effects on the optimized microstructures in Fig. 14, where the topology was
optimized with respect to F̄2112 (geometry in Fig. 7(c). We then apply an electric field along y and allow the nodes
along the boundary to move, except for one node that is constrained to avoid rigid-body motion. The deformations
in the figure are exaggerated by a factor of 10 for ease of viewing, which demonstrates the bending deformation
induced by the applied electric field.

The mechanisms for this effects can be seen in Fig. 15, where the electric field and strain gradient of the optimized
unit cell for F̄2112 previously shown in Fig. 7(c) are shown. In comparing the magnitudes of the electric field and
strain gradient for the PZT/polymer RVE in Fig. 15 and the PZT/PZT RVE in Fig. 5, both the electric field and strain
gradient for the hard/soft PZT/polymer case are 1–2 orders of magnitude larger than in the PZT/PZT case, which
is reasonable given the curved hard/soft material boundary that exists within the RVE. Because the flexoelectric
constants are dependent on the product of the electric field and strain gradient, this explains how the flexoelectric
constants of the PZT/polymer case can rival and/or exceed those of the PZT/PZT case. as summarized in Table 1,
despite being comprised of constituents with smaller physical properties.

The electromechanical coupling coefficients are also improved in the optimized designs. We obtain ¯K31 = 0.409
and ¯K32 = 0.2694 for optimized F̄1221, ¯K31 = 0.1059 ¯K32 = 0.2444 for optimized F̄2221, ¯K31 = 0.4981 and

¯K32 = 0.3226 for optimized F̄1112, while ¯K31 = 0.0337 and ¯K32 = 0.3136 for optimized F̄2112. In contrast with
¯K31 = 0.3151 and ¯K32 = 0.067 for triangular PVDF, the values of ¯K32 for the optimal unit cells are improved by

302.1%, 264.8%, 381.5%, 368.1%, respectively, while ¯K for the optimal unit cells increases by 29.8%, −66.4%,
31
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Fig. 12. Topology optimization process with respect to normalized flexoelectric components and volume fractions for the PVDF/PZT: (a)
F̄1221; (b) F̄2221; (c) F̄1112; (d) F̄2112.

Fig. 13. Optimal topology for F2221 on PZT/polymer: (a) with regular meshing; (b) with irregular meshing.

58.1% and −89.3%. We can note that the value of ¯K31 for optimized F̄2221 and F̄2112 decreases. However ¯K32 for
ll other optimized unit cells increase. For optimized F̄1221 and F̄1112, both electromechanical coefficients can be

improved.
The mechanisms underlying the enhancement in electromechanical coupling coefficients corresponding to the

PZT/polymer composites that maximize F̄2112 differ from those previously discussed for the PZT/PZT composites.
n examining the contributions to the coupling coefficient ¯K in Table 2, we see that due to the multiple materials

¯ ¯ ¯
hat comprise the RVE, all of the effective properties, i.e. compliance S, dielectric e and piezoelectric D change
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Fig. 14. Deformation and strain ε22 of optimized unit cell in Fig. 7c induced by electric field E2.

Fig. 15. Electric field (E2-component) and strain gradient (∇ε112-component) within the PZT–PVDF-optimized microstructure shown in
Fig. 7(c).

Table 1
Optimized flexoelectric coefficients for PZT/PZT, PZT/PVDF and porous PZT composites.

F̄1221 F̄2112 F̄2221 F̄1112

PZT/PZT 136 µC/m 268 µC/m
PZT/PVDF 148 µC/m 200 µC/m 35 µC/m 73 µC/m
Porous PZT 80 µC/m 38 µC/m 11 µC/m 23 µC/m
BaTiO3 [80] 10–50 µC/m

during the RVE optimization. For the ¯K31 constant, a significant decrease during optimization is found, which is
riven by the significant decrease in the corresponding piezoelectric D̄31 constant.

For the ¯K32 constant, a nearly five-fold increase is observed during optimization. Some of this is due to the
oubling of the D̄32 piezoelectric constant. However, the optimization also leads to an increase in the dielectric
roperties ē, and a decrease in the compliance S̄, as shown in Table 2. The increase in effective piezoelectric and
ielectric properties is related to the enhanced localized electric field shown in Fig. 15, while the enhanced strain
radient shown in Fig. 15 is connected to the reduction in compliance. Thus, for the PZT/polymer RVE, it is this
19
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Table 2
Electromechanical coupling and effective tensors for initial (guess) designs and optimized geometries, all corresponding to the F̄2112
flexoelectric constant.

¯K D̄ ē S̄

PZT/PZT

Guess
design

[
−0.0929 −0.0736 0
0 0 0

] [
−0.0023 −0.0015 0
0 0 0

] [
2.1083 0
0 4.0650

] ⎡⎣0.0115 −0.0062 0
−0.0062 0.0098 0
0 0 0.0279

⎤⎦
Optimized

[
−0.1183 −0.0937 0
0 0 0

] [
−0.0029 −0.0019 0
0 0 0

] [
2.1053 0
0 4.065

] ⎡⎣0.0115 −0.0062 0
−0.0062 0.0098 0
0 0 0.0279

⎤⎦
PZT/PVDF

Guess
design

[
−0.3151 −0.0670 0
0 0 −0.0723

] [
−0.0085 −0.0023 0
0 0 −0.0060

] [
1.0951 0
0 1.1765

] ⎡⎣0.0245 −0.0109 0
−0.0109 0.0316 0
0 0 0.0705

⎤⎦
Optimized

[
0.0337 −0.3136 0
0 0 0.0107

] [
0.0007 −0.0047 0
0 0 0.0013

] [
1.064 0
0 2.6898

] ⎡⎣0.0204 −0.0082 0
−0.0082 0.0141 0
0 0 0.0467

⎤⎦
PZT/Void

Guess
design

[
−0.378 −0.1034 0
0 0 −0.0987

] [
−0.0110 −0.0049 0
0 0 −0.0079

] [
1.0808 0
0 1.0365

] ⎡⎣0.0270 −0.0099 0
−0.0099 0.0435 0
0 0 0.0775

⎤⎦
Optimized

[
−0.2940 −0.2833 0
0 0 −0.0226

] [
−0.0105 −0.0057 0
0 0 −0.0028

] [
0.928 0
0 1.8637

] ⎡⎣0.0383 −0.0126 0
−0.0126 0.0216 0
0 0 0.0658

⎤⎦

subtle interplay between the electrical, mechanical, and electromechanical properties that leads to the increase in
electromechanical coupling.

5.3. Heterogeneous porous microstructure

In our final example, we consider a unit cell composed of a piezoelectric material with properties described
y Eqs. (58)–(60), while the second phase is void. The flexoelectric coefficients F̄1221, F̄2221, F̄1112 and F̄2112

are considered. To model the void phase, soft properties are chosen for the void as [Cvoid ] = 10−9
× [Cm],

[E void ] = 10−9
× [E m] and [αvoid ] = 10−9

× [αm].
The optimization is performed with respect to the different flexoelectric coefficients independently. In each

case, the optimization process converges in roughly 80 iterations. Here, the volume fraction of the solid phase
is constrained to f = 0.6, such that the void (inclusion) volume fraction is 0.4, the same as for the PZT/PZT and
PZT/polymer composites. The initial design is a homogeneous unit cell with densities ρe = 0.6 (e = 1, . . . , Ne =

3600). Periodic density conditions are used here. The final optimal design for the coefficients F̄1221, F̄2221, F̄1112 and
F̄2112 are summarized in Figs. 4d, 7d, 11b and 10b, while their iteration histories are shown in Fig. 16. The reference
solutions obtained by a triangular void as in Fig. 2 are reported in each case. We can see that four different optimized
design are obtained for the different coefficients. It is interesting to note that the obtained geometries obtained by
optimizing F̄1221 and F̄2112 have the same symmetry, as well as F̄2221 and F̄1112. In addition, we can note that even
though the materials are different, the topologies obtained for the same optimized component can show significant
similarities (see e.g. Figs. 10a and 10b)

The obtained absolute values are F̄1221 = 7.99 × 10−5 C m−1, F̄2112 = 3.85 × 10−5 C m−1, F̄1112 = 2.36 × 10−5

C m−1 and F̄2221 = 1.15 × 10−5 C m−1. In contrast with the flexoelectric properties of the unit cell with triangular
void, we get a very large gain in the optimized structures for the components of F̄1221, F̄2112 and F̄1112, which are
improved by 924%, 293% and 145%, respectively. However, only an increase by 15% for F̄2221 is obtained, and
it has the similar topology as the reference triangular unit cells. We obtain ¯K = 0.4175 and ¯K = 0.2226 for
31 32
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Fig. 16. Topology optimization process with respect to normalized flexoelectric components and volume fractions for the PZT/void: (a)
F̄1221; (b) F̄2112; (c) F̄1112; (d) F̄2221.

optimized F̄1221, ¯K31 = 0.2086 and ¯K32 = 0.2064 for optimized F̄2221, ¯K31 = 0.3038 and ¯K32 = 0.1657 for
optimized F̄1112, while we have ¯K31 = 0.2940 and ¯K32 = 0.2833 for optimized F̄2112.

We show in Fig. 17 the electric field and strain gradient for corresponding to the optimized PZT/void
icrostructure in Fig. 7 that maximizes F̄2112. Similar to the PZT/polymer case in Fig. 15, the electric field and strain

radient are largest around the PZT/void interface, though the magnitude of each is smaller than in the PZT/polymer
ase. For that reason, the resulting flexoelectric constants for the PZT/void RVEs are smaller than the PZT/polymer
nd PZT/PZT RVEs, as summarized in Table 1. The mechanism for the changes in electromechanical coupling
s also similar to the PZT/polymer case. Specifically, localized electric field-driven increases along the PZT/void
oundary lead to enhancements in the effective piezoelectric and dielectric properties, while the enhanced strain
radient is related to the reduction in compliance, with the interplay resulting in an increase in ¯K31 and an increase

in ¯K32.

5.4. Summary of results

We summarize in Table 1 the optimal values for flexoelectric coefficients found in the different composites. For
reference, the values are compared with the flexoelectric coefficient of BaTiO3 [80]. As can be seen, the RVE-based
topology optimization approach leads to unit cells whose effective flexoelectric constants can exceed, by significant
amounts, the flexoelectric properties of BaTiO3, as driven by the different electromechanical mechanisms discussed
previously.

6. Conclusion

In this work, a topology optimization framework has been proposed to maximize the effective flexoelectric proper-
ties of composites made of piezoelectric phases. The originality of the present work is the use of a homogenization
21
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Fig. 17. Electric field (E2-component) and strain gradient (∇ε112)-component within the PZT-void-optimized microstructure in Fig. 7(d).

method to estimate the flexoelectric properties from the distribution of local phases in a Representative Volume
Element (RVE), which precludes the necessity of optimizing the entire structure. A SIMP method was used to
solve the topology optimization problem, where the absolute values of the flexoelectric tensor are maximized under
the constraint of a constant volume fraction of inclusion. Results show that on several cases (piezo–piezo, piezo-
polymer and porous piezo-composites), the present scheme allows increasing the effective flexoelectric properties
between 2 and 15 times as compared to a naive “guess” design.

We found different mechanisms to enhancing the flexoelectric properties, and the electromechanical coupling.
Specifically, piezo–piezo (hard/hard) composites generated an enhanced electromechanical response through en-
hancement of their effective piezoelectric properties. In contrast, piezo-polymer (hard/soft) composites generated
an enhanced electromechanical response through an interplay of enhanced electromechanical (piezoelectric) and
electrical (dielectric) properties, and reduced mechanical compliance, which result from significantly enhanced local
electric fields and strain gradients along the hard/soft interface. We believe that the present framework has the
potential to design high-performance flexoelectric components for use e.g. in energy harvesting systems, sensors or
actuators without the need for materials exhibiting intrinsically high flexoelectricity.
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Appendix A. Numerical calculation of the effective tensors

The 2D vector form associated with the components of strain gradient tensor ∇ε can be defined as:

[∇ε] =

⎡⎢⎢⎢⎢⎢⎢⎣
∇ε111
∇ε221

2∇ε122
∇ε222
∇ε112

2∇ε121

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2u1
∂x2

1
∂2u2

∂x1∂x2
∂2u1
∂x2

2
+

∂2u2
∂x1∂x2

∂2u2
∂x2

2
∂2u1

∂x1∂x2
∂2u1 +

∂2u2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.1)
∂x1∂x2 ∂x1
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Table A.3
Elementary solution corresponding to the activated strain, electric potential and strain gradient
components.

Field (ε̄11, ε̄22, ε̄12) (Ē1, Ē2) (∇ε111, ∇ε221, ∇ε122, ∇ε222, ∇ε112, ∇ε121)

u1, φ1 (1,0,0) (0,0) (0,0,0,0,0,0)
u2, φ2 (0,1,0) (0,0) (0,0,0,0,0,0)
u3, φ3 (0,0, 1

2 ) (0,0) (0,0,0,0,0,0)
u4, φ4 (0,0,0) (1,0) (0,0,0,0,0,0)
u5, φ5 (0,0,0) (0,1) (0,0,0,0,0,0)
u6, φ6 (0,0,0) (0,0) (1,0,0,0,0,0)
u7, φ7 (0,0,0) (0,0) (0,1,0,0,0,0)
u8, φ8 (0,0,0) (0,0) (0,0,1,0,0,0)
u9, φ9 (0,0,0) (0,0) (0,0,0,1,0,0)
u10, φ10 (0,0,0) (0,0) (0,0,0,0,1,0)
u11, φ11 (0,0,0) (0,0) (0,0,0,0,0,1)

where the symmetries of effective tensors [ᾱ], [Ē ], [C̄], [F̄], [M̄] and [Ḡ] are taken into account from

Ēi jk = Ēik j , F̄i jkl = F̄ik jl (A.2)

M̄i jklm = M̄ j iklm = M̄i jlkm (A.3)

C̄i jkl = C̄kli j = C̄ j ikl = C̄i jlk (A.4)

Ḡi jklmp = Ḡlmpi jk = Ḡ j iklmp = Ḡi jkmlp (A.5)

The flexoelectric tensor is written in matrix form as

[F̄] =

[
F̄1111 F̄1221 F̄1122 F̄1222 F̄1112 F̄1121

F̄2111 F̄2221 F̄2122 F̄2222 F̄2112 F̄2121

]
(A.6)

The matrix forms for the other effective tensors can be found in [63]. After discretization, the local strain and
electric fields defined respectively in Eqs. (11) and (12) can expressed as:

[ε(x)] = A0(x) : ε̄ + B0(x) · Ē + {A1(x) − A0(x) ⊗ x}
... ∇ε, (A.7)

E(x) = D0(x) : ε̄ + h0(x) · Ē + {D1(x) − D0(x)}
... ∇ε (A.8)

We define the above displacement and electric fields matrices as:

Uu = [u1, u2, u3]; Vu = [u4, u5]; Wu = [u6, u6, u7, u8, u10, u11] (A.9)

Uφ = [φ1, φ2, φ3]; Vφ = [φ4, φ5]; Wφ = [φ6, φ7, φ8, φ9, φ10, φ11] (A.10)

nd

W x
u = [xu1, yu1, xu2, yu2, xu3, yu3]

Wx
φ = [xφ1, yφ1, xφ2, yφ2, xφ3, yφ3] (A.11)

The displacement fields ui and the electric fields φi are the vector columns containing respectively the nodal
isplacement and electric potentials solution of the localization problems Eqs. (7)-(8)-(4)-(5) with the boundary
onditions described in Table A.3.

In terms of the above definition and finite element discretization, we obtain:

A0(x) = Bu(x)Uu; B0(x) = Bu(x)Vu (A.12)

A1(x) = Bu(x)Wu; A0
x (x) = Bu(x)Wx

u (A.13)

nd

D0(x) = −Bφ(x)Uφ; h0(x) = −Bφ(x)Vφ (A.14)
0 0 x
D (x) = −Bφ(x)Wφ; Dx (x) = −Bφ(x)Wφ (A.15)
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By introducing Eqs. (A.7) and (A.8) into Eqs. (33)–(36), we can obtain the discretization forms of the six effective
ensors. In the following, only the interesting fourth-order effective flexoelectric tensor is presented. The effective
exoelectric tensor is expressed as:[

F̄
]

=⟨(B0(x))T
: C(x) : Ã1(x) − (h0(x))T

· E (x) : Ã1(x)

− (B0(x))T
: E T (x) · D̃1(x) − (h0(x))T

· α(x) · D̃1(x)⟩ (A.16)

ppendix B. Expressions of body forces in the localization problem

One obvious issue with condition (5) arises when considering a homogeneous RVE characterized by elastic and
iezoelectric tensors C1 and E 1. In that case, and for ε = 0 and E = 0, it is expected that the local strain solutions

within the RVE should be equal to:

ε(x) = ∇ε · x ∀x ∈ Ω . (B.1)

However generally (B.1) is not a statically admissible solution for boundary conditions (5) since:

∇ ·
(
C1

:
[
∇ε x

])
̸= 0 (B.2)

and

∇ ·
(
E 1

:
[
∇ε x

])
̸= 0. (B.3)

The inequalities (B.2)–(B.3) hold because in the present work ∇ε can be chosen arbitrarily. Therefore, as
observed in [81,82], fluctuations remain even when the local continuum is homogeneous, leading to persistent
non-physical gradient effects. Indeed, when the local medium is Cauchy homogeneous, there is no dependence on
an internal length and the overall medium cannot be of generalized type. To cure this problem, and following the
analysis conducted in [83,84], we propose to prescribe body forces in addition to QBC (5) to enforce a constant
strain-gradient within the RVE when the material is homogeneous. The new localization problem involves solving
the equilibrium equation:

∇ · σ (x) = f(∇ε) ∀x ∈ Ω , (B.4)

and

∇ · d(x) = r(∇ε) ∀x ∈ Ω , (B.5)

where

f(∇ε) = ∇ ·
(
C0(x) : (∇ε · x)

)
(B.6)

and

r (∇ε) = ∇ ·
(
E C0(x) : (∇ε · x)

)
. (B.7)

In the definition of f and r , C0(x) and E 0(x) are arbitrary elastic and piezoelectric tensor fields which have to be
specified. At this point, and without loss of generality, we assume a two-phase composite whose elastic properties
are described by C1 and C2, and where piezoelectric properties are defined by E 1 and E 2; in which the phase 1 has
the highest volume fraction. The RVE is piezoelectric — homogeneous if either (a) the volume fraction of phase
2 goes to zero, i.e. f 1

→ 1, or (b) if the contrast between phase properties goes to one, i.e. ∥C2
∥ → ∥C1

∥ and
∥E 2

∥ → ∥E 1
∥. For each of these two conditions, the tensors C0(x) and E 0(x) should satisfy:

C0(x) → C1 if
{

f 1
→ 1,

or ∥C2
∥ → ∥C1

∥
(B.8)

nd

E 0(x) → E 1 if
{

f 1
→ 1,

2 1 (B.9)
or ∥E ∥ → ∥E ∥.
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Several choices are possible to respect conditions (B.8)–(B.9), such as (among others): pointwise body force
orrection, C0(x) = C(x) and E 0(x) = E (x), effective body force correction, C0(x) = C and E 0(x) = E , or
ull body force (standard QBC) C0(x) = O and E 0(x) = O. These different choices have been compared in the
lastic case in [84], and there is still no definitive answer to the best choice. The standard solution is simple but
nduces the mentioned spurious strain gradient effects in the case of homogeneous domains, as discussed in [84].
he effective body forces solution is consistent with asymptotic analysis [83] and removes these spurious effects
ut induces divergence of effective properties in case of infinite contrasts of properties between phases. A more
etailed discussion can be found in [84]. In spite of these remaining issues, we adopt the effective body forces
olution in the present work. Then, defining C0

= C and E 0
= E (defined respectively by Eqs. (33) and (35)) and

introducing them in (B.6) and (B.7), we obtain Eqs. (9) and (10).
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