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Abstract

Gels are a mixture of cross-linked polymers and solvents, and have been widely studied in recent years for a diverse range
f biomedical applications. Because gels can undergo large, reversible shape changes due to swelling, their complex physical
esponse must be modeled by coupling large reversible deformation and mass transport. An ongoing challenge in this field is the
bility to capture swelling or residual swelling-induced of such stimuli-responsive gels from initially flat two-dimensional (2D)
o three-dimensional (3D) curved shapes. Specifically, because such shape changes typically involve large deformations, shape
hanges, and the exploitation of elastic instabilities, it remains an open question as to what external stimulus should be prescribed
o generate a specific target shape. Therefore, we propose a novel formulation that tackles, using both nonlinear kinematics
nd material models, the coupling between elasticity and solvent transport using Kirchhoff–Love shell theory discretized using
sogeometric analysis (IGA). Second, we propose an inverse methodology that chemomechanically couples large deformation
nd mass transport to identify the external stimuli prescribed to generate a specific target shape. Our numerical examples
emonstrate the capability of identifying the required external stimuli, with the implication that the reconstructed target shapes
re accurate, including cases where the shape changes due to swelling involve elastic instabilities or softening. Overall, our
tudy can be used to effectively predict and control the large morphological changes of an important class of stimuli-responsive
aterials.
2022 Elsevier B.V. All rights reserved.

eywords: Inverse analysis; Isogeometric analysis; Kirchhoff–Love shells; Stimuli-responsive polymer gels; Instability shape changes

1. Introduction

Elastomeric materials have recently been used extensively in a wide range of biomedical applications. This is
ecause the skeletal network of the elastomeric materials enable them to absorb a large amount of fluid without
ailure. Instead, elastomers exhibit significant volumetric swelling resulting from insertion of fluid molecules into a
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polymer network to form so-called elastomeric gels. Elastomeric gels can be found in food processing, drug delivery
and employed in biomedical applications valves for microfluidic devices and tissue engineering. Furthermore, several
body parts in humans and animals are likely constituted from the gel materials, see [1].

The interest in elastomeric gels has led to many studies to investigate their behavior. Experimentally, indentation
nd compression tests which are combined with a modified Biot linear poroelastic theory have been performed
o account for the mechanical and transport properties of the materials, see [2–5]. In addition, swelling kinetics
ave been used to examine material and transport properties of gels. For instance, measuring tip displacement of
swollen cantilever beam including a substrate and a gel, and monitoring planar deformation fields of a swelling

el using fluorescence imaging technique as reported by [6–10].
Furthermore, theoretical and numerical simulations of the elastomeric gels have also been performed to elucidate

heir behavior in response to external stimuli. These simulations are non-trivial, with challenges in both modeling
he large deformation of membranes, as well as their stimuli-responsiveness, as shape changes of soft structures
nduced by multiple non-mechanical stimuli [11] involve additional complexities. Since an elastomeric gel can be
onsidered as a model system where solvent transport and elasticity are coupled, diffusion of the fluid through
he network and resultant deformation of the polymer system should be simulated to account for the behavior of
he responsive materials accurately. Tanaka et al. [12] presented kinetics of the materials in an early study. Since
hen, the response of gels, i.e. the swelling, drying and squeezing phenomena of fluid, due to mechanical stimuli or
orced permeation has been studied through coupled diffusion–deformation models, see [11] for instance. Nonlinear
odeling of the materials where the fluid–solid mixture is assumed as a homogeneous medium so that a mass flux

f the fluid can be considered has been studied, see [1,13–15].
Gels are fabricated in the membrane forms which can particularly [16,17] be transformed into three-dimensional

3D) curved shapes, e.g in self-shaping materials. Upon small variation of environmental conditions, wettability and
dhesion of different species in the gels can be changed. Chemical and biochemical signals can also be converted into
ptical, electrical, thermal and mechanical signals, and vice versa. Therefore, these materials become more important
n several applications such as tissue engineering, ‘smart’ optical system and bisensors, microelectromechanical
ystems. It is known that there are two distinct processes, i.e. concurrent deformation and solvent transport, involved
n gels [18]. For instance, when subjected to an external stimuli (e.g. temperature change, change in the concentration
f an enzyme) a drug loaded in a gel can migrate out [18]. For instance, when subjected to an external stimuli
e.g. temperature change, change in the concentration of an enzyme) a drug loaded in a gel can migrate out [19].
lastic instabilities in gels have also been a widely studied topic as reported in [18,20,21], i.e. patterns of crease are
bserved on the surface [22,23] together with several other forms of buckling [12,24–26]. The shape changes occur
s a result of the coupling between in-plane solvent transport and out-of-plane bending. Furthermore, transport
roperties of solvent on surface differ from those in bulk material [27] that affect spreading and absorption of
iquids on surfaces. Another important application of NURBS to soft hyperelastic active media is shown by Nitti
t al. [28]. It reported that an electrophysiologic stimulus propagating over a thin cardiac tissue is simulated using
irchhoff–Love shell theory. However, this interplay between in-plane solvent transport and surface deformations

n the context of thin shell structures has not been studied. In order to model the coupling between in-plane solvent
ransport and surface deformations so that swelling material surfaces can be described accurately, suitable numerical

ethods are requested.
Several computational models have been developed to study the shape changes, such as buckling of swelling

esponsive gels in response to external stimuli. The deformation mechanisms of thin shells undergone mechanical
timuli was studied by Non-Euclidean shell theory, see [29]. Kirchhoff–Love shell theory is widely used for
odeling thin shell structures as reported in [30,31]. Although avoiding rotational degrees of freedom leads to the

ower computational expense, C1 continuous discretizations are required within the finite element (FE) method of the
irchhoff–Love shells. NURBS-based FE discretizations are thus employed to fulfill the C1-continuity requirement
f the Kirchhoff–Love shell theory as well as plate theory [32–36]. To the best of our knowledge, this study presents
he first formulation used to tackle, using both nonlinear kinematics and material models, the coupling between
lasticity and solvent transport using Kirchhoff–Love shell theory.

Furthermore, although shape changes and the associated behavior of the soft materials in response to various
rescribed stimuli have been studied, see [37–39], little work upon determining the external stimuli needed to
enerate the desired shapes from which the morphological changes can be controlled. Therefore, an inverse analysis
aradigm is proposed in this study, which also couples nonlinear kinematics and material response, to identify the
xternal stimuli and reconstruct a specific target shape where instability/elastic softening shape changes are allowed.
2
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Fig. 1. Mapping from the parameter domain to the reference and spatial configurations. Schematic description for multiplicative decomposition
F = Fel Fsw. The covariant basis vectors and the corresponding normal vectors denoted by {Gα, N} for the reference, { g̃α, ñ} for the
ntermediate and {gα, n} for the spatial configurations are shown respectively.

In what follows, we review the thin shell kinematics and the multiplicative decomposition which is an essential
inematical ingredient. In the next section, we briefly present the local force balance and the balance law for
uid content. The free energy based on the Flory–Huggins theory [40,41] characterizing mixing of the fluid
ith the polymer network is discussed subsequently. The constitutive equations for the free energy, elastic stress,

nd chemical potential are then summarized. In Section 9, numerical examples are examined to demonstrate the
erformance of the proposed model. Finally, we close with concluding remarks in Section 10.

otations

In this study, both index notation and absolute notation are used to express vectors and tensors. Generally, scalars
re printed italics, bold face italic letters indicate vectors and tensors, while the discretized quantities at the element
evel are printed as bold face letters. Latin indices take values 1, 2, 3 and Greek indices take values 1, 2. Quantities
ssociated with the reference and current configurations are denoted by uppercase and lowercase letters, respectively.
tandard characters indicate operators. General equations are expressed in terms of the compact matrix notation,
hile index notation is used to show detailed derivations. The operators “·” refers the scalar product, “×” denotes

he vector product and the tensor product (or dyadic product) is denoted by “⊗”. Furthermore, Einstein’s summation
onvention is also applied.

The scalar product and tensor product of two vectors a and b are given by

a · b = ai bi ,

(a ⊗ b)i j = ai b j .

et denote A and B as second-order tensors, then

(A · B)i j = Aik Bk j .

. Thin shell kinematics

Considering a general fluid-free homogeneous surface, the spatial coordinates x can be described by the following
apping (see Fig. 1)

α
x = x(ξ ), (1)

3
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with ξα = (ξ 1, ξ 2) denoting coordinates in the parameter domain P. Let introduce the kinematical referential
uantities x, aα , aα , aαβ , and bαβ are associated with S, and X , Aα , Aα , Aαβ , and Bαβ are the spatial ones associated

with S0. The respective covariant basis vectors aα and Aα are given by

aα =
x
ξα
,

Aα =
X
ξα

(2)

On the midsurfaces S and S0, the unitary normal vectors are expressed respectively as

n =
a1 × a2

∥ a1 × a2 ∥
,

N =
A1 × A2

∥ A1 × A2 ∥
,

(3)

nd the respective covariant metric coefficients are provided by

aαβ = aα · aβ,
Aαβ = Aα · Aβ .

(4)

he corresponding tensors of contravariant metric represented by [Aαβ] = [Aαβ]−1 and [aαβ] = [aαβ]−1 are then
etermined. The contravariant bases are given by Aα = Aαβ Aβ and aα = aαβaβ . The curvature coefficients yield

Bαβ = N · Aα,β,
bαβ = n · aα,β .

(5)

hat leads to the mean, Gaussian curvatures of the deformed configuration S under the following forms

H =
1
2

aαβbαβ, κ =
det[bαβ]
det[aαβ]

, κ1/2 = H ±

√
H 2 − κ. (6)

nd the principal curvatures of S as follows

κ1/2 = H ±

√
H 2 − κ. (7)

iven the mapping in Eq. (1), the respective surface gradient and the surface divergence denoted by ∇s(•) and
s · (•) follow as

∇sµ := µ;α aα,
∇s · v = divsv := v;α · aα,

(8)

here µ and v denote general scalars and vectors with vα := v · aα . Note that for general scalar and vector, the
ovariant derivative and the parametric one of µ and v coincide, i.e. µ;α = µ,α and v;α = v,α , see [42]. Other
inematical quantities such as the mean H , Gaussian κ and principal κ1/2 curvatures can be found in [30]. The
urface deformation gradient characterizing the mapping X → x = ϕ(X) reads

F := aα ⊗ Aα. (9)

he right surface Cauchy–Green tensor results from the surface deformation gradient F

C := FT
· F = aαβ Aα ⊗ Aβ . (10)

ntroducing

εαβ :=
1
2

(
aαβ − Aαβ

)
,

καβ := bαβ − Bαβ,
(11)

he Green Lagrange strain and the curvature tensors at a material point on the mid-surface, see [43,44], are then
efined by

E = εαβ Aα ⊗ Aβ,
α β

(12)

K = καβ A ⊗ A .

4
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2.1. Variation of kinematical quantities

In order to address the formulations in the subsequent sections, the variation of various kinematic variables are
ntroduced here. Let us consider an kinematical variation in the direction of x, denoted by δx, we have then the

variations δaα = δx,α and δaα,β = δx,αβ . The variation of the covariant components from Eqs. ((4).1) and ((5).1)
ollows

δaαβ = aα · δaβ + δaα · aβ,
δbαβ = aα,β · δn + n · δaα,β

(13)

with

δn = − (aα ⊗ n) δaα. (14)

Further variation of other kinematical quantities can be found in [45].

2.2. Kinematics of the multiplicative decomposition split

The theory is based on the multiplicative decomposition of the total surface deformation gradient shown by [46]

F = Fel · Fsw. (15)

Fsw and Fel denote the respective swelling and elastic deformation gradients with the swelling being considered
as isotropic

Fel = aα ⊗ ãα

Fsw = ãα ⊗ Aα.
(16)

At the intermediate configuration, the covariant and contravariant bases yield

ãα = F−1
el aα,

ãα = FT
el aα.

(17)

Generally, the decomposition shown by Eq. (15) is not unique due to an arbitrary rigid-body rotation imposed
upon S̃ in the stress-free state [47]. However, the uniqueness of the decomposition can be enforced by additional
constraint of the material model employed. For instance, the intermediate configuration S̃ can be defined uniquely,
if swelling occurs without rotation. Once isotropic swelling is assumed, the surface swelling deformation gradient
is characterized by a scalar λsw and the referential surface identity tensor I , that follows

Fsw = λsw I, λsw > 0 (18)

where I = Aα ⊗ Aα is the referential surface identity tensor. Here, we assume that long polymer chains and small
molecules subjected to large deformation are individually incompressible as stated by [13]. The gel is considered
as condensed matter, i.e. voids existing in the gel are neglected, the molecular incompressibility constraint is then
enforced by

1 + Ω cR = dets Fsw = Jsw, (19)

with cR representing the fluid content which is defined as the number of fluid molecules absorbed by the polymer
per unit volume of the reference configuration at dry state, and Ω being the volume of a mole of fluid molecules,
see [1]. The swelling surface stretch λsw is thus given by

λsw = (1 + Ω cR)1/2. (20)

The right surface Cauchy–Green deformation tensor C is pushed forward to the intermediate configuration using
Eq. (17)

Cel = FT
el · Fel = aαβ ãα ⊗ ãβ . (21)

Likewise the left surface Cauchy–Green tensor B is pulled back to the intermediate configuration, that is
−1 −T
Bsw := Fel · B · Fel (22)

5
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The area change due to the swelling deformation is determined by Eq. (19) and the covariant and contravariant
basis vectors associated with S̃ read

ãα = λsw Aα, ãα = λ−1
sw Aα, (23)

he elastic surface deformation gradient Fel and the corresponding surface change Jel are obtained from Eq. (15)

Fel = F · F−1
sw = aα ⊗ ãα. (24)

Note that the elastic surface deformation gradient Fel will be employed in the elastic free-energy computation. If
we introduce the strain tensor associated with the intermediate configuration,

ẽ := εαβ ãα ⊗ ãβ . (25)

This strain results from the pull-back of the surface Euler strain e, i.e.

ẽ := FT
sw E F−1

sw = FT
el e Fel. (26)

Noticing that E :=
1
2 (C − I) and e :=

1
2

(
i − B−1) with i = aα ⊗ aα denoting the spatial surface identity

tensor, we obtain

ẽ :=
1
2

(
Cel − B−1

sw

)
. (27)

We then define

ẽel :=
1
2

(
Cel − ĩ

)
ẽsw :=

1
2

(
ĩ − B−1

sw

)
.

(28)

with ĩ = ãα⊗ãα being the intermediate surface identity tensor. The surface Green–Lagrange strain tensor in Eq. (26)
can be written in terms of an additive decomposition as

ẽ = ẽel + ẽsw. (29)

The decomposition of the components thus can be expressed as

εαβ = εel
αβ + εsw

αβ (30)

ith

εel
αβ :=

1
2

(
aαβ − ãαβ

)
,

εsw
αβ :=

1
2

(
ãαβ − Aαβ

) (31)

imilarly, we can write

καβ = κel
αβ + κsw

αβ (32)

ith

κel
αβ := bαβ − b̃αβ
κsw
αβ := b̃αβ − Bαβ,

(33)

he decomposition shown in Eq. (15) leads to

J = Jel Jsw (34)

n which

Jel = dets Fel =

√
det[aαβ]
det[ãαβ]

,

Jsw = dets Fsw =

√
det[ãαβ]

.

(35)
det[Aαβ]

6
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Remark. In the case of isotropic swelling, an infinitesimal unit cube expands uniformly in all directions. In contrast,
the unit cube changes to a rectangular prism shape for anisotropic swelling. While the anisotropic swelling case
is clearly more complex than the isotropic one, in case of swelling-induced deformations in bilayer thin plates or
in fiber-reinforced materials where expansion takes place in a privileged direction, anisotropic models have to be
taken into account.

3. Balance laws

The coupled governing partial differential equations (PDEs) including the local force balance for the Cauchy
tress and the local balance for the fluid concentration will be presented briefly in this section.

.1. Balance of momentum

The equilibrium equation of the thin shell at a spatial point x ∈ S in the presence of a body force f is given
y [44] as follows

ρ v̇ = Tα
;α + f , (36)

here ρ is the total density and v := ẋ is the material velocity at x; Tα
;α represents the covariant derivative of Tα .

he internal traction Tα exerting upon the cross-sectional plane normal to aα is expressed by

Tα
= σ T aα = Nαβ aβ + Sα n. (37)

ere we define the surface Cauchy stress tensor

σ = Nαβ aα ⊗ aβ + Sα aα ⊗ n, (38)

here the in-plane membrane and the out-of-plane shear components of the sectional force are shown respectively
y

Nαβ
= σ αβ + bαγ Mγβ,

Sα = −Mβα

;β .
(39)

We introduce the stress in the configuration S̃ using the pull-back formula

σ̃ := Jel F̃
−1
el σ F̃

−T
el , (40)

nd insert Eq. (38) into Eq. (40) that leads to

σ̃ := Ñαβ ãαβ ⊗ ãβ + S̃α ãα ⊗ ñ (41)

here F̃el := Fel + n ⊗ N . Likewise, the bending moment tensor1

µ = −Mαβ aα ⊗ aβ . (42)

n the same manner as σ , µ can be pulled back from S to S̃

µ̃ = Jel F̃
−1
el µ F̃

−T
el = −M̃αβ ãα ⊗ ãβ (43)

n which M̃αβ
:= Jel Mαβ .

.2. Balance law for the fluid concentration

The governing equation for the fluid content on surface is shown by [48] as

∂cR

∂t
= −J jα

;α (44)

1 Non-italic moment µ should not be confused with italic chemical potential field µ and nodal chemical potential µ .
e

7
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where jα
;α is the covariant derivative of jα = j · aα , with j being spatial surface fluid flux. The fluid flux is related

to the spatial surface chemical potential gradient ∇µ by a “Darcy-type” law as

jα = −m aαβ µ;β, (45)

with m being a mobility coefficient for an isotropic material. Introducing the polymer volume fraction defined by

φ :=
1

1 + Ω cR
= λ−2

sw , 0 < φ ≤ 1, (46)

ote that φ = 1 represents the dry state, and φ < 1 shows a swollen state. We can then rewrite the above equation
s follows

φ̇

J Ω φ2 − jα
;α = 0. (47)

s mentioned above, we have the important swelling constraint (kinematical constraint) between cR and Jsw shown
y Eq. (19). Here, we consider a permeable shell in which a pure solvent (a small molecule) and a solution (a
ong polymer chain) are separated so that the solvent can diffuse through the membrane until the solution exerts
he so-called osmotic pressure, that follows

µ =
∂ψ

∂cR
+ p Ω (48)

The osmotic pressure can be interpreted by the Lagrange multiplier, see [1]. The pressure enhances the chemical
potential that results in movement of the fluid solvent into the gel. The chemical potential is given by [48]

µ = µ0
+ kBϑ

[
ln(1 − φ) + φ + χφ2

−
ΩK
kBϑ

ln(Jφ) +
1
2
ΩK
Rϑ

ln(Jφ)2
]
. (49)

here kB is the Boltzmann’s constant, ϑ is the constant temperature, χ denotes Flory–Huggins interaction parameter,
nd K is the bulk modulus. The Dirichlet and Neumann boundary conditions for the displacement and surface
raction read

u = ū on ∂uS,

t = t̄ on ∂tS.
(50)

oundary conditions for the chemical potential and the fluid flux read

µ = µ̄ ∂µS,

− j · ν = j̄ on ∂ jS
(51)

.3. Balance of surface energy

We consider here a spatial computational domain R subjected to the external body force f and the surface
raction vector T on the boundary ∂R normal to ν = να aα . If we ignore the kinetic energy and assume that inertial
ffects are negligible, the surface energy balance can be written as

d
dt

∫
R

ψ da =

∫
R

υ · f da +

∫
∂R

υ · T ds −

∫
∂R

µ jν ds, ∀R ⊂ S. (52)

here υ := ẋ denote the current surface velocity. The last term in Eq. (52) accounts for the flux of energy entered
nto R across ∂R (i.e. fluid energy of a boundary influx jν). Introducing the surface fluid flux vector j = jα aα
hrough

jν = − j · ν = − jα να. (53)

hen applying the surface divergence theorem to the terms in Eq. (52) and noticing the surface balance laws shown
y Eqs. (36) and (44), we have

d
dt

∫
R

ψ da =

∫
R

(
1
2
σ αβ ȧαβ + Mαβ ḃαβ

)
da +

∫
R

(
µ ċR − jα µ;α

)
da, ∀R ⊂ S. (54)

Making use of the localization theorem upon Eq. (54) leads to

ψ̇ =
1
σ αβ ȧαβ + Mαβ ḃαβ + µ ċR − jα µ;α, ∀x ∈ S. (55)
2
8
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Fig. 2. A schematic of structure of the gel [18].

4. Constitutive equations

Elastomeric materials can absorb a large amount of fluid molecules which aggregate into a gel as shown in Fig. 2.
The small molecules within the gel can migrate over a long distance and interact by weak physical bonds, see [18].
We notice that the swelling induced volume change per unit reference volume is characterized by Jsw − 1 = Ω cR .
t is assumed that this change results from the change in fluid solvent (small molecules in the gel). The swelling
onstraint can be then shown by Eq. (19). Within the scope of the thermodynamics of swelling, a free-energy
unctional form for polymeric gels where the entropy of stretching the polymer network is combined with the
ntropy of mixing the polymers with the solvent was proposed by Flory et al. [49]. In this way, the coupling
etween the fields of deformation of the polymer network and the fluid concentration is through the constitutive
quations.

.1. Surface Helmholtz free energy

In this study, we consider a coupled fluid diffusion and large deformation of elastomeric gels. Therefore, the
elmholtz free energy density ψ depends on the elastic strains εel

αβ and κel
αβ and the fluid concentration cR .

ψ = ψ(εel
αβ, κ

el
αβ, cR). (56)

It can be written in additive chemical, mixing and mechanical contributions as follows

ψ = µ0 cR + ψmix(cR) + ψmech(εel
αβ, κ

el
αβ), (57)

where µ0 is the chemical potential of the fluid, ψmix is the free energy change resulting from mixing of the fluid
with the polymer network, and ψmech is the free energy change due to the elastic stretching of the polymer network.
The surface Cauchy stress, moment and the chemical potential at the deformed configuration take the form

σ αβ =
∂ψ

∂εel
αβ

,

Mαβ
=

∂ψ

∂κel
αβ

,

µ =
∂ψ

(58)
∂c
9
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Introducing the Helmholtz free energy density at the intermediate configuration ψ̃ as proposed by [46], the Cauchy
stress and moment can be rewritten as

σ
αβ

el =
1
Jel

∂ψ̃

∂εel
αβ

,

Mαβ

el =
1
Jel

∂ψ̃

∂κel
αβ

(59)

f we introduce the referential density by ρ0
= J ρ, the total energy can be written as

Ψ =

∫
S0

ρ0 ψ dA (60)

Similarly, if we define ρ̃ = Jel ρ to be the density associated with S̃ and notice dã = Jsw dA, the free energy
ensity associated with the intermediate configuration reads

Ψ =

∫
S0

ρ̃ ψ dã (61)

n which

Ψ = ρ̃ ψ (62)

The elastic stress and moment components σ αβ and Mαβ can be rewritten in alternative form as follows

σ̃
αβ

el =
∂ψ̃

∂εel
αβ

=
∂ψ̃

∂εαβ
,

M̃αβ

el =
∂ψ̃

∂κel
αβ

=
∂ψ̃

∂καβ
,

(63)

.2. Free energy due to mixing

As mentioned above a gel is the mixture of a 3D network of polymer chains and a species of small molecules
hat forms a liquid solution. The free energy of mixing is adopted from Flory [40]

ψmix =
kB ϑ

Ω

1
φ
((1 − φ) ln(1 − φ) + χ φ (1 − φ)) . (64)

In the parenthesis, the entropy of mixing is represented by the first term while the second term represents the
enthalpy of mixing [40]. The enthalpy of mixing infers the gel swells, i.e. the fluid molecules to enter the gel, if χ
is decreased resulting and vice versa, see [1,40]. The mixing energy can be rewritten as a function cR as follows

ψmix = kB ϑ cR

(
ln
(

Ω cR

1 + Ω cR

)
+ χ

(
1

1 + Ω cR

))
(65)

4.3. Free energy due to elastic stretching

The constitution using Kirchhoff–Love shell theory is formulated from classical 3D constitutive model as
presented by [50]. Hence, the stored surface energy density ψ = ψ(εαβel , κ

α,β

el , c) can be derived from the 3D
ree energy density ψ̂ = ψ̂(Ĉel, c) in which Ĉel is the 3D elastic right Cauchy–Green tensor. This is performed
y projecting 3D models upon the intermediate surface S̃. According to Chester et al. [1], most of elastomeric
olymers are incompressible materials from mechanical point of view. As standard consideration, the permeating
uid behaves as incompressible. Hence, the elastomeric gels are treated as incompressible homogeneous materials
uch that the constraint

g := 1 − Ĵ = 0 (66)
L el

10
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is included in the free energy [31]. The free energy takes the functional form of the 3D incompressible Neo-Hookean
material model as follows

ψ̂mech( Î el
1 , Ĵel, p) =

Ĝshear

2

(
Î el
1 − 3

)
+ p

(
1 − Ĵel

)
(67)

here the invariants Î el
1 := Ĉel : 1 and Ĵel :=

√
det Ĉel with Ĉel being the 3D elastic Cauchy–Green tensor, 1

denoting the identity tensor in R3, Ĝshear denoting the 3D shear modulus. The Lagrange multiplier p appearing in
the last term is used to apply the area-incompressible constraint. Consequently, the 3D Kirchhoff stress components
can be stated by

ˆ̃τ αβ = ˆ̃σ
αβ

el = Ĝshear

(
g̃αβ −

1
J ⋆2el

gαβ
)
. (68)

here gαβ and g̃αβ are the respective spatial and intermediate contravariant metric components at an arbitrary point
P) in the shell continuum, J ⋆el is the invariant of C⋆ and defined as

J ⋆el :=

√

det C⋆
=

√
g
g̃

(69)

with C⋆
= gαβ g̃α ⊗ g̃β , g := det[gαβ] and g̃ := det[g̃αβ]. Here, g̃α denotes the contravariant base vector and gαβ ,

g̃αβ denote the spatial and intermediate covariant metric components at P, respectively.
In this shell theory the 2D material equations with all the involved variables on the midsurface are addressed.

However, it is noted that they are derived from the 3D incompressible Neo-Hookean material model. In this way,
numerical through-the-thickness integration of the 3D elasticity matrix has to be used to obtain the nonlinear material
law. Projecting the 3D Kirchhoff stress ˆ̃τ αβ on surface and using numerical integration result in the projected elastic
Kirchhoff stress and moment

τ̃ αβ =

∫ T
2

−
T
2

s̃
(
1 − ξ 2κ

)
ˆ̃τ αβ dξ,

M̃αβ
=

∫ T
2

−
T
2

s̃
(
−ξ + Hξ 2) ˆ̃τ αβ dξ,

(70)

here

s̃ = 1 + 2H̃ξ + κ̃ξ 2. (71)

ere, κ and H can be referred in Section 2, T denotes the shell thickness and the coordinate in thickness direction
∈ [−T/2 T/2]. More details of the projection technique and description of the kinematical quantities such as

gαβ , gαβ , g̃αβ , g̃αβ , and H̃ , κ̃ can be found in [31,50].

emark. According to Beatty [51], Neo-Hookean material and Mooney–Rivlin material models are ideally used
o describe behavior of soft materials. The Neo-Hookean material, which is a particular kind of Mooney–Rivlin

aterial, was established based on the statistical mechanics of the amorphous structure of rubberlike materials. The
eo-Hookean model has been widely used to describe the incompressible hyperelastic material model in modeling

he morphological changes of soft materials, e.g. [1,37,52]. The Neo-Hookean material model, Eq. (67) is chosen
ue to its convexity that ensures stable characteristic in large deformation. In particular, the second derivative of
he free energy with respect to (w.r.t.) the strain, i.e. the material tangent tensor, is positive definite. As such,
he Neo-Hookean model is widely used to represent the nearly incompressible, large deformation behavior of soft

aterials.

. Weak forms

.1. Mechanical model

Multiplying the strong form Eq. (36) with the admissible variation δx and taking integration upon the domain
result in the weak form of the mechanical model
G int − Gext = 0 ∀δx ∈ U0, (72)

11
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with δx selected to be zero on the Dirichlet boundary, but non-zero on the surface, i.e. U0 = {δx ∈ H2 (S(x)) |

x = 0 on ∂xS}, where H2 is C1 continuous. The internal and external virtual works can be expressed as

G int =

∫
S

1
2
δaαβ σ αβ da +

∫
S

δbαβ Mαβ da,

Gext =

∫
S

δx · f da +

∫
∂tS

δx · t ds.
(73)

If noticing da = J dA = Jel Jsw dA, the internal virtual work at the reference configuration can be expressed as

G int =

∫
S0

1
2
δaαβ τ̃ αβ Jsw dA +

∫
S0

δbαβ M̃αβ Jsw dA. (74)

5.2. Fluid content

The weak form of fluid content is obtained by contracting the strong form Eq. (44) with the test function δµ as
follows

Ḡ in + Ḡ int − Ḡext = 0, ∀δµ ∈ V0. (75)

imilarly, V0 = {δµ ∈ H1 (S(µ, t)) | δµ = 0 on ∂µS} where H1 is C0 continuous. Multiplying the governing ODE
47) for the fluid concentration with an admissible variation δµ and using the surface divergence theorem yields∫

S

δµ
φ̇

J Ω φ2 da −

∫
S

δµ;α jα da +

∫
∂ jS

δµ j · ν ds = 0. (76)

ith

Ḡ in =

∫
S

δµ
φ̇

J Ω φ2 da,

Ḡ int = −

∫
S

δµ;α jα da,

Ḡext = −

∫
∂ jS

δµ j · ν ds.

(77)

Inserting Eq. (45) into Eq. (77).2 and adopting the relations shown in Eq. (8)

Ḡ int =

∫
S

m ∇s(δµ) · ∇sµ da. (78)

Applying the relationships ∇s• = F−T
∇s0• and noticing da = J dA lead to

Ḡ int =

∫
S0

J m C−1
∇s0δµ · ∇s0µ dA. (79)

where ∇s(•) and ∇s0(•) denote the surface gradient following from Eq. ((8).1) w.r.t. the spatial and material
oordinates, respectively.

. Linearizations

The solution of a coupled diffusion–deformation system is solved by using a Newton–Raphson iteration. It
equires the linearizations of the two equilibrium equations (72) and (75). The linearizations of the internal virtual
orks shown by Eqs. ((73).1) and ((77).2) take the following forms.

∆G int = ∆x G int + ∆µG int,

¯ ¯ ¯ ¯
(80)
∆G int = ∆x G int + ∆µG in + ∆µG int,

12
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where ∆x (•) and ∆µ(•) are the respective changes of quantity (•) in the direction of increments ∆x and ∆µ. The
linearization of G int from Eq. ((80).1) gives

∆G int =

∫
S0

(
c̃αβγ δ

1
2
δaαβ

1
2
∆x aγ δ + d̃αβγ δ

1
2
δaαβ ∆x bγ δ + τ̃ αβ

1
2
∆xδaαβ

+ẽαβγ δ
1
2
δbαβ ∆x aγ δ + f̃ αβγ δ δbαβ ∆x bγ δ + M̃αβ ∆xδbαβ

)
Jsw d A

+

∫
S0

[(
1
2
δaαβ τ̃ αβ + δbαβ M̃αβ

)
∆µ Jsw +

(
1
2
δaαβ ∆µτ̃

αβ
+ δbαβ ∆µM̃αβ

)
Jsw

]
dA.

(81)

with

c̃αβγ δ := 2
∂τ̃ αβ

∂aγ δ
, d̃αβγ δ :=

∂τ̃ αβ

∂bγ δ
,

ẽαβγ δ := 2
∂ M̃αβ

∂aγ δ
, f̃ αβγ δ :=

∂ M̃αβ

∂bγ δ
.

(82)

he external mechanical virtual work, Eq. ((73).2), is linearized by

∆x Gext =

∫
∂S

mτ δaα ·
(
νβn ⊗ aα + ναaβ ⊗ n

)
∆x aβ ds. (83)

here mτ denotes bending moment component acting on ∂S. From Eq. ((80).2) the Ḡ int is linearized as follows

∆Ḡ int =

∫
S0

m ∆x J C−1
∇s0δµ · ∇s0µ dA +

∫
S0

J m ∆x C−1
∇s0δµ · ∇s0µ dA

+

∫
S0

J δµ ∆µ

(
φ̇

J Ω φ2

)
dA −

∫
S0

J ∆µm C−1
∇s0(δµ) · ∇s0µ dA

−

∫
S0

J m C−1
∇s0(δµ) · ∆µ (∇s0µ) dA.

(84)

Here, linearizations of the kinematical quantities and their variations such as ∆x J , ∆x C−1, ∆x aαβ , ∆x bαβ , ∆x aαβ ,
x bαβ , and ∆xδaαβ , ∆xδbαβ can be found in [31,45]. The linearizations ∆µ ãα , ∆µ ãα , ∆x ãαβ , ãαβ , ∆µb̃αβ , ∆µb̃αβ ,
µ Jsw, ∆µτ̃

αβ , and ∆µM̃αβ , etc. are presented in Appendix.

. Finite element discretization

.1. FE approximation

The coupled governing PDEs (72) and (75) are solved by the finite element (FE) method. We consider here
ets of elements Ω e

0 , Ω e and Ω̃ e with ne nodes discretized from the corresponding surface domains S0, S and S̃.
ccordingly, Xe, xe, x̃e and µe are defined as nodal position vectors and chemical potential at FE nodes, respectively.
ll primary variable fields (i.e geometry and chemical potential) within Ω e and Ω e

0 can be then approximated using
URBS interpolation

X ≈ N Xe, x ≈ N xe and x̃ ≈ N x̃e (85)

nd

µ ≈ N̄ µe, (86)

here N(ξ 1, ξ 2) := [N11, N21, ..., Nne 1] is an array shape functions and N̄(ξ 1, ξ 2) := [N1, N2, . . . , Nn] is an
rray shape functions. The discretization of covariant bases follows from Eq. (2) as

Aα =
∂X
∂ξα

≈ N,α Xe, aα =
∂x
∂ξα

≈ N,α xe and ãα =
∂ x̃
∂ξα

≈ N,α x̃e. (87)

he respective variations are discretized in the same fashion

δX ≈ N δXe, δx ≈ N δxe, δ x̃ ≈ N δx̃e,
(88)
δAα ≈ N,α δXe, δaα ≈ N,α δxe, δ ãα ≈ N,α δx̃e,

13
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and

δµ ≈ N̄ δµe. (89)

here the derivatives of shape function N,α := ∂N/∂ξα . The discretized surface gradients of the chemical potential
eld and its variation then follow

∇sµ = µ,α aα ≈ aα N̄,α µe, ∇s̃µ = µ,α ãα ≈ ãα N̄,α µe, ∇s0µ = µ,α Aα ≈ Aα N̄,α µe,

∇sδµ = δµ,α aα ≈ aα N̄,α δµe, ∇s̃δµ = δµ,α ãα ≈ ãα N̄,α δµe, ∇s0δµ = δµ,α Aα ≈ Aα N̄,α δµe.

(90)

ith N̄,α := ∂N̄/∂ξα and ∇s̃(•) denotes the surface gradient w.r.t. the coordinate system associated with S̃. Further
rucial kinematic variations can be found in [50].

.2. Discretized weak forms

The two weak forms for the mechanical and the fluid content components are then discretized using the above
pproximations. From Eq. (72) it follows that

δxT [fint − fext] = 0 ∀δx ∈ U0 (91)

nd the discretization of Eq. (75) can be written as

δµT [
f̄in + f̄int − f̄ext

]
= 0 ∀δµ ∈ V0 (92)

ith

fint =

nel∑
e=1

fe
int, and fext =

nel∑
e=1

fe
ext (93)

nd

f̄in =

nel∑
e=1

f̄e
in, f̄int =

nel∑
e=1

f̄e
int, and f̄ext =

nel∑
e=1

f̄e
ext. (94)

he mechanical internal force vector at the element level can be expressed as

fe
int =

∫
Ωe

0

τ̃ αβ NT
,α aβ Jsw dA  
fe
intτ

+

∫
Ωe

0

M̃αβ
(
N,αβ − Γ

γ

αβ N,γ

)
n Jsw dA  

fe
intM

, (95)

ith fe
intτ and fe

intM denoting the elastic membrane stress τ̃ αβ and bending moment M̃αβ , respectively, given by

fe
intτ :=

∫
Ωe

0

τ̃ αβ NT
,α aβ Jsw dA,

fe
intM :=

∫
Ωe

0

M̃αβ
(
N,αβ − Γ

γ

αβ N,γ

)
n Jsw dA,

(96)

here N,αβ(ξ ) := [N1,αβ1, N2,αβ1, . . . , Nn,αβ1] and Γ
γ

αβ = aγ · aα,β . The external force vector is split into three
omponents as follows

fe
ext0 :=

∫
Ωe

0

NT f 0 dA,

fe
extq :=

∫
Ωe

NT q n da,

fe
extt :=

∫
NT t ds.

(97)
∂tΩe
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where f 0, q and t are the body force, the external pressure prescribed on the surface and the traction, respectively.
The discretization of the three force components in Eq. (92) is given by

f̄in =

∫
Ωe

0

N̄T
(

φ̇

Ω φ2

)
dA,

f̄int = −

∫
Ωe

0

J m
[

Aα N̄,α

]T C−1 [Aα N̄,α µe
]

dA,

f̄ext = −

∫
∂ jΩe

N̄T j · ν da =

∫
∂ jΩe

N̄T j̄ ds.

(98)

. Inverse analysis

In order to determine the external stimuli, i.e. chemical potential and out-of-plane pressure (or displacement),
rescribed to generate a target shape of the soft, thin shells, an inverse analysis is employed. A brief description
f an inverse analysis framework for the coupled chemohyperelastic model is summarized in this section. From the
athematical expression, inverse problems can be stated as follows:

minimize L
(

s,u(s),µ(s)
)

h
(

s,u(s),µ(s)
)

= 0

sl ≤ s ≤ su,

(99)

here s represents the design variables, while u(s) and µ(s) represent the state variables. The inverse solution
s solved through a gradient-based optimization technique where the loss function L subjected to the equality
onstrains h. The state variable s is restricted by the lower and the upper bounds sl, su, respectively. Generally,
f the measured data at discrete points on the surface are available, the design variables s can be identified. Making
se of the forward operator shown by

F : X → Y, (100)

s ↦→ {u,µ}
T , (101)

mapping of the design variables to the measured data can be conducted. Here, X denotes a finite dimensional
arameter space where the design variables are defined, while Y denotes the one for measurement. Given
easurements umeas and µmeas, inverse problem is performed to determine the design variables s, that reads

F(s) =

{
umeas

µmeas

}
. (102)

he system of equations (102) may be ill-posed for complex problems. Therefore, we intend to employ a regularized
east-squares technique to obtain the solution through an iterative minimization of

L(s, u(s)) =
1
2

∫
Ω

⏐⏐⏐⏐umeas
− u(s)

umax(s)

⏐⏐⏐⏐2 dΩ +
1
2

∫
Ω

⏐⏐⏐⏐µmeas
− µ(s)

µmax(s)

⏐⏐⏐⏐2 dΩ + R(q) (103)

here umax and µmax refer the maximum values of displacement and solvent fields, respectively. R(q) is defined as
regularization term, see [31]. The objective function is discretized by means of finite element (FE), which yields

L =
1
2

umeas
− u

umax

2

+
1
2

µmeas
− µ

µmax

2

+ β
γ − γ 0

2
, (104)

with umax and µmax being the respective maximum values of the nodal displacement and chemical potential. The
measured values of the displacement and the chemical potential are given by umeas and µmeas, respectively. Here, we
take γ 0 as priori estimates of the external stimuli, while β denote the regularization parameters that are determined
using the residual L-curve technique as reported by [31]. The moving asymptotes (MMA) method is adopted to
obtain the optimal solution in this study. As a gradient-based optimization technique, MMA requires the sensitivity
of the objective function L w.r.t. the design variables s. Here, we use the finite difference method to estimate the
15
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sensitivity, which follows

dL
dsi

≈
L(u, s + ∆si ) − L(u, s)

∆si
, (105)

where L(u, s + ∆si ) represents a perturbation of the objective function in direction of the variable si . According
to [53], we select ∆si = 0.01 × si so that the truncation error is reduced to acceptable value.

For ill-posed problems which may occur for inverse analysis, Tikhonov regularization is employed together with
a residual L-curve criterion. Making use of the L-curve technique, Nanthakumar et al. [54] show a log–log of the
residual norm w.r.t. a regularized solution. Hence, a proper regularization parameter whose optimal value can be
chosen as an intersection point (knee point) of two flat regions on the curve. It is noted that the two flat regions
result from under and over regularization, see [31] for details.

9. Numerical examples

The shape morphing of geometric composite shells induced by the solvent transport is studied in this section.
Large deformations on the thin shells induced by swelling of the responsive gels are examined via three numerical
examples: (1) free-swelling of a gel; (2) squeezing of an already swollen gel; and (3) swelling of different
shell structures driven by fluid concentration gradient. In the representative examples, the nonlinear behavior is
represented by the hyperelastic constitution. Lateral pressure (or displacement) is prescribed to trigger out-of-plane
deflection. Here we assume the material properties are independent of the temperature. The temperature is also
considered uniformly distributed through the thickness. For the sake of convenient discussion hereafter, we denote
the shear modulus, the mobility, the diffusion coefficient as Gshear, m, and D.

The proposed method is validated using experiment-like data that represent measurements obtained by ex-
periments. The procedure is summarized by the following steps: (1) A NURBS-based FE [55] is implemented
to analyze thin shell problems under prescribed external stimuli. The experiment-like data are then obtained by
umeas

= uforw (1 + 0.01η), with η ∈ [−0.5, 0.5] being randomly generated. The random vector 1 + 0.01η is used to
reflect the noise data affected by different measuring factors; (2) The inverse analysis is employed to reconstruct
the shape corresponding to the experiment-like data. This step is conducted using the above-mentioned iterative
optimization method. The inverse solution can be obtained once the convergence criterion err. = Li

−Li−1

L0 ≤ 10−3

is satisfied. It should be noted that the target configurations are recovered where the shape changes due to
instabilities/elastic softening are allowed.

9.1. One-dimensional transient swelling

In order to examine the presented formulations, we consider at first the one-dimensional (1D) transient swelling
of responsive gel as shown in Fig. 3.1. A planar sheet with dimensions L × H = 2 cm × 1 cm is pinned at the
bottom X1 = 0 while the top is taken to be traction-free. At the top X1 = H the polymer sheet is in contact with
the solvent. Therefore, the initial condition for the chemical potential of the dry polymer yields

µ(X, t = 0) = µ0. (106)

At the top the temperature-dependent chemical potential follows

µ̄(t) = µ0
+ µ0 exp(−t/td ), (107)

where µ0
= 0 J denotes the chemical potential of the solvent and td = 300 s is taken. At the initial dry state

φ = 0.9999 is assumed. Fluid flux-free is also prescribed on the top surface. The incompressible Neo-Hookean
model is employed for this study. The material properties at room temperature: Gshear = 0.1 MPa, ν = 0.5,
Ω = 1 × 10−4 m3/mol , D = 5 × 10−9 m2/s , χ = 0.1. The computational domain is discretized by 20 × 10
quadratic NURBS elements.

Figs. 3(b) and 3(c) show plots of the volume fraction φ and the inelastic stretch λsw over the normalized axial
coordinate X1/H0, respectively. Both quantities show similar behavior with results reported in [1]. The polymer
volume fraction φ and the inelastic stretch λsw approach the equilibrium values φeq ≈ 0.3217 and λeq,sw ≈ 3.1080

t the steady state represented by the dashed lines. Furthermore, snapshots of the deformation of the sheet w.r.t.
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Fig. 3. Transient free-swelling response of 1D gel sheet: (a) the initial setup, (b) the polymer volume fraction φ, and (c) the inelastic stretch
sw w.r.t. the normalized coordinate in X1-direction.

he time evolution are shown in Fig. 4. The contour plots of the polymer volume fraction φ are also plotted in the
ame figure to provide a physical intuition of the swelling process.

Inverse analysis is then conducted using the experiment-like data corresponding to the target shape shown in
ig. 6(c). The regularized parameter β is obtained from the residual L-curve. The optimal value of β is chosen at

he corner point on the curve, see Fig. 5. The convergences of the objective function and the L2 error norm w.r.t. the
iteration are shown in Fig. 6. The reconstructed shape after 25 iterations is illustrated in Fig. 6(d). Good agreement
between the numerically identified chemical potential µinv

= −14398 J and the desired value µtar
= −14392 J

resulting in the target shape can be realized. We have examined the two different probability density functions
(PDFs) representing the two different random noise vectors, i.e. η1 ∈ [−0.5, 0.5] and η2 ∈ [−1, 1]. The obtained
results in Fig. 6(a+b) show that the convergences of the objective function and the L2 error norm w.r.t. the number
of iterations are independent of the PDF used to model the random noise. Furthermore, we have used another
perturbation value 5 × 10−3. The convergence of the objective function and the L2 error norm w.r.t. iteration steps

are shown in Figs. 6(c+d). It can be concluded that the convergence is independent of the perturbation value.
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Fig. 4. Transient free-swelling response of 1D gel sheet: the deformed structure after (a) 1 h, (b) 2 h, (c) 4 h, (d) 5 h, and (e) 6 h of free
swelling. The contour plots of the polymer volume fraction φ are shown on the deformed structure at different instances of time.
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Fig. 5. Transient free-swelling response of 1D gel sheet: Residual L-curve represents the objective function versus the regularization parameter
.

.2. Two-dimensional transient swelling

In the next example, we examine the transient free-swelling of two-dimensional polymer gel sheet. The problem
etup is described in Fig. 7. Since the model is symmetric about the x- and y-axes, a quarter of the sheet (ABCD)
s simulated by a quadratic NURBS mesh consisting of 10 × 10 elements. All FE nodes on the edge AB are fixed

in X1-direction while all FE nodes along the edge AD are fixed in X2-direction to ensure the symmetry constraint.
he edges BD and CD are traction-free and they are prescribed by a zero fluid flux. The edges BD and CD are in
ontact with the solvent and the chemical potential is prescribed in the same manner as presented in Eq. (107). The
ncompressible Neo-Hookean model with the material properties Gshear = 0.1 MPa, ν = 0.5, Ω = 1×10−4 m3/mol,
D = 5 × 10−9 m2/s, χ = 0.1 being adopted. φ = 0.9999 is taken at the dry state.

Plots of the volume fraction and the inelastic stretch w.r.t the normalized x-coordinate at different instances of
ime are illustrated in Fig. 7. The results show that the volume fraction and the inelastic stretch tend to approach
he equilibrium values φeq ≈ 0.2870 and λeq,sw ≈ 3.4848 at the steady state.

Contour plots of the polymer volume fraction φ on the deformed shape over the time history are illustrated by
igs. 8. The swelling process can be described as follows: (1) at first the area near the corners is swollen faster due

o the arisen fluid flux from the two outermost surfaces, see Fig. 8(a); (2) over time the middle is swollen and the
quare shape is fulfilled gradually as shown from Fig. 8(b) to Fig. 8(d). It is noted that the swelling process shows
he same behavior as the one shown in [15].

Having obtained the experiment-like data from the target shape shown in Fig. 8(e), we then find the inverse
olution. Again, the L-curve is plotted in Fig. 9 from which the optimal regularization parameter β = 1 1/J can
e determined. Convergence histories of the objective function and the L2 error norm over iterations are described
n Fig. 10(a,b), respectively. The inverse solution µinv

= −14412 J is obtained after 20 iterations that is in good
greement with the initial value µtar

= −14392 J used to obtain the measured data. The corresponding shape
esulting from the inverse solution is indicated in Fig. 10(d), while the target shape is shown in Fig. 10(c).

.3. Simply supported curved beam is in contact with the solvent

Next, transient swelling of a simply supported curved beam with L × W × T = 20 mm × 10 mm × 1 mm shown
n Fig. 11(a) is studied. The curvature in vertical direction represented by δ = 0.25 mm is chosen in the dry state.
he material parameters are adopted similarly to the first two examples. The mesh consists of 20 × 10 elements.
he two ends of the beam are in contact with the solvent and fluid flux-free. The time evolution of the chemical
otential µ(t), Eq. (107), is applied at the boundaries for chemical potential.

The volume fraction and the inelastic stretch as functions of the normalized coordinates X1/L are plotted in

ig. 11. The equilibrium values φeq ≈ 0.3666 and λeq,sw ≈ 2.7277 are obtained at the steady state. It can be seen
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Fig. 6. Transient free-swelling response of 1D gel sheet: Convergence of (a) the objective function, and (b) L2 error norm during optimization
process, (c) the target shape, (d) the reconstructed shape at the final iteration.
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Fig. 7. Transient free-swelling response of 2D gel sheet: (a) the initial setup; (b) the polymer volume fraction φ, and (c) the inelastic stretch
λsw w.r.t. the normalized coordinate in X2-direction.

that the curved beam has been buckled under solvent stimulation. The swelling-induced deformations of the beam
at different instances of time are shown in Fig. 12.

The chemical potential value needed to generate the target shape shown in Fig. 12(f) is then identified via the
inverse analysis. The residual L-curve is plotted in Fig. 13 whose corner point refers the optimal regularization
parameter β = 0.1 1/J. As shown in Fig. 13, the objective function and the L2 error norm are converged after
25 iterations. Accordingly, the inverse solution µinv

= −14406 J is obtained that agrees well with the initial value
µtar

= −14392 J prescribed to generate the target shape. The resulting shape, see Fig. 14(b), is then reconstructed

that is almost identical to the target shape shown in Fig. 14(a).
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Fig. 8. Transient free-swelling response of 2D gel sheet: the deformed structure after (a) 1 h, (b) 2 h, (c) 4 h, (d) 5 h, and (e) 6 h of free
swelling. The contour plots of the polymer volume fraction φ are shown on the deformed structure at different instances of time.
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Fig. 9. Transient free-swelling response of 2D gel sheet: Residual L-curve represents the objective function value versus the regularization
parameter β.

9.4. Dome-shaped disk subjected to the combination of solvent stimulation and a prescribed displacement at the
center

The final example studies transient swelling of a circular disk. The geometrical and material parameters, radius
R = 10 mm, thickness T = 1 mm, shear modulus Gshear = 0.1 MPa, Poisson’s ration ν = 0.5 and the solvent
molecule Ω = 1 × 10−4 m3/mol are taken. The remaining parameters are taken as D = 5 × 10−9 m2/s, χ = 0.1,
respectively. The disk is clamped at the outermost boundary which is in contact with the solvent while a zero
fluid flux is prescribed. The chemical potential approaches µ0 follows Eq. (107). The computational domain is
discretized using 16 × 16 quadratic, C1-continuous NURBS elements as depicted in Fig. 15(a). As a consequence,

1-continuity has been lost at the center where the NURBS discretization degenerates, see [56]. Displacement u is
prescribed on both the central point and the closest ring of control points around the center. In this way, the tangent
plane at the tip is kept horizontally unchanged so that the C1-continuity is saved.

Fig. 15 shows the buckling of swelling disk. The buckling (elastic softening) of the disk during swelling
rocess can be realized according to the force–displacement curves measure at B (the reaction force) and A (the
isplacement) shown in Fig. 15(b). The force–displacement curves correspond to different prescribed displacement
t the center, i.e. u = 3.2 mm, 3.6 mm and 4 mm, respectively. Furthermore, the transient morphology of the
wollen disk after a few different times is shown in Fig. 15

Subsequently, inverse analysis is applied upon the displacement and the chemical potential measured from the
arget shape. The optimally regularized parameter for the out-of-plane displacement β = 103 1/mm is obtained

from the corresponding L-curve shown in Fig. 16. Convergent solutions of the chemical potential and the out-
of-plane displacement are obtained after 25 optimization steps. The solutions, i.e. the applied chemical potential
µinv

= −14388 J and the out-of-plane displacement uinv
= 1.796 mm are identified inversely. The resulting shape is

hown in Fig. 17(b). Obviously, the reconstructed shape is in agreement with the target shape shown in Fig. 17(a).

.5. Dome-shaped disk subjected to the combination of solvent stimulation and a lateral disturbing pressure

In this example, transient swelling of a geometric composite disk composed of an inner circular disk and an outer
nnulus is modeled. The respective outer annulus radii are taken as Ri = 5 mm and Re = 12 mm and the inner
adius r = 5 mm is chosen in the dry state. These sizes make them compatible each other without pre-stretch. The
hickness h = 1 mm of both the disk and the annulus is designed. The material properties of the incompressible
eo-Hookean model are taken similarly to those used in the fourth example. The geometry is composed of nine
ézier patches numerically. To fulfill C1-continuity at the patch interfaces, Lagrange multiplier method presented

n [30,31] is employed. The geometry, boundary conditions and discretized mesh are described in Fig. 18(a). The
utermost boundary of the composite disk is in contact with the solvent while a zero fluid flux is prescribed so that
23
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Fig. 10. Transient free-swelling response of 2D gel sheet: Convergence of (a) the objective function, and (b) L2 error norm during optimization
process, (c) the target shape, (d) the reconstructed shape at the final iteration.

the chemical potential approaches µ0 following Eq. (107). A lateral pressure q = 5 × 10−3 N/mm2 is applied on
the inner disk during the swelling process to mimic load imperfection occurring in reality.

The swelling-induced deformations of the disk are shown in Fig. 18 at different time steps. Buckling behavior
(elastic softening) is also shown by the reaction force measured at B versus the displacement of the center A in
Fig. 18(b).

Inverse analysis using the displacement and the chemical potential resulting from the target shape represented
by Fig. 18(f) is employed to determine the chemical potential applied on the boundary and the lateral pressure.
Making use the L-curve plot, see Fig. 19, we can obtain the optimal regularization parameter for the lateral pressure
β = 5 × 109 mm2/N. Figs. 20(a–b) show the convergence histories of the objective function and the L2 error norm
over the iterations. The optimal solutions which are the prescribed chemical potential µinv

= −14408 J and the
lateral pressure q inv

= 1.0007 × 10−6 N/mm2 are solved inversely. After 20 iterations, the corresponding observed
in Fig. 20(d) shows excellent agreement with the target shape depicted by Fig. 20(c).
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Fig. 11. Transient free-swelling response of simply supported beam: (a) the initial setup, (b) the polymer volume fraction φ, and (c) the
inelastic stretch λsw w.r.t. the normalized coordinate in X1-direction.

10. Conclusion

Hydrogels are one of the most widely studied and investigated forms of stimuli-responsive soft matter.
Furthermore, it has been a challenge to identify the external loads and stimuli that are required to actuate these
complex materials to achieve desired 3D forms. To resolve this, we have developed a novel formulation that,
by utilizing both nonlinear kinematics and material models, captures the coupling between elasticity and solvent
transport using an isogeometric analysis-based numerical discretization of Kirchhoff–Love shell theory. Second,
we developed a novel inverse methodology that chemomechanically couples large deformation and mass transport
to identify the external stimuli prescribed to generate a specific target shape. We use these new formulations to
study the shape morphing of 2D thin sheets to 3D shapes driven by swelling, which is governed by the coupling
between mass transport and large deformation. By being based on nonlinear field theories, the formulation is
able to describe the swelling induced morphing of responsive materials from 2D flat shells to 3D curved shapes
involving instabilities/elastic softening. Furthermore, the numerical examples involving the inverse analysis based
isogeometric analysis were shown to accurately identify the prescribed external stimuli required to reconstruct a
specific target shape. As a result, this formulation can play a role in enabling the design and analysis of user-defined

stimuli-responsive soft matter.
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Fig. 12. Transient free-swelling response of simply supported beam: the contour plots of the polymer volume fraction φ shown on the
deformed structure at (a) 1 h, (b) 2 h, (c) 4 h, (d) 5 h, and (e) 6 h of free swelling.
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Fig. 13. Transient free-swelling response of simply supported beam: Residual L-curve represents the objective function versus the
regularization parameter β.

Fig. 14. Transient free-swelling response of simply supported beam: Convergence of (a) the objective function, and (b) L2 error norm during
optimization process, (c) the target shape, (d) the reconstructed shape at the final iteration.
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v

Fig. 15. Disk is subjected to the combination of solvent stimulation and a vertical displacement at the center: (a) the initial setup, (b) the
force–displacement curves corresponding to different prescribed displacement u at the center A, and (c) the contour plots of the polymer
olume fraction φ shown on the deformed structure at (c) 20 min, (d) 40 min, (e) 50 min, and (f) 1 h.
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Fig. 16. Disk is subjected to the combination of solvent stimulation and a vertical displacement at the center: Residual L-curve represents
he objective function value versus the regularization parameter β.

Fig. 17. Disk is subjected to the combination of solvent stimulation and a vertical displacement at the center: Convergence of (a) the
bjective function, and (b) L2 error norm during optimization process, (c) the target shape, (d) the reconstructed shape at the final iteration.
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Fig. 18. Disk is subjected to the combination of solvent stimulation and a lateral disturbing pressure: (a) the initial setup, (b) the force–
isplacement curve, and the contour plots of the polymer volume fraction φ shown on the deformed structure at (c) 30 min, (d) 40 min,
e) 50 min, (f) 1 h.
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Fig. 19. Disk is subjected to the combination of solvent stimulation and a lateral disturbing pressure: Residual L-curve represents the
objective function value versus the regularization parameter β.

Fig. 20. Disk is subjected to the combination of solvent stimulation and a lateral disturbing pressure: Convergence of (a) the objective
function, and (b) L2 error norm during optimization process, (c) the target shape, (d) the reconstructed shape at the final iteration.
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ppendix. Linearization of kinematical quantities

.1. Linearization of ãα and ãα in the direction ∆µ

From Eq. (23), we thus arrive

∆µ ãα = −
1
2
φ−3/2 Aα

∂φ

∂µ
∆µ,

∆µ ãα =
1
2
φ−1/2 Aα

∂φ

∂µ
∆µ.

(A.1)

A.2. Linearization of ãαβ , ãαβ and b̃αβ , b̃αβ in the direction ∆µ

Using Eqs. ((4).1) and ((17).1), we have

ãαβ = Jsw Aαβ =
1
φ

Aαβ, ãαβ =
1

Jsw
Aαβ = φ Aαβ . (A.2)

The corresponding linearizations of ãαβ and ãαβ take the form

∆µãαβ = −
1
φ2 Aαβ

∂φ

∂µ
∆µ,

∆µãαβ = Aαβ
∂φ

∂µ
∆µ.

(A.3)

and

∆µb̃αβ = −
1
2
φ−3/2 Bαβ

∂φ

∂µ
∆µ,

∆µb̃αβ =
1
2
φ−1/2 Bαβ

∂φ

∂µ
∆µ.

(A.4)

A.3. Linearization of Jsw in the direction ∆µ

As shown in Eq. (19), then follows

∆µ Jsw =
∂ Jsw

∂φ

∂φ

∂µ
∆µ = −

1
φ2

∂φ

∂µ
∆µ, (A.5)

A.4. Linearization of J ⋆el in the direction ∆µ

The change of J ⋆ in the direction of ∆µ can be formulated as

∆µ J ⋆ =
J ⋆el
(
ω̃αβ ∆µãαβ + ω̃

αβ
∆µb̃αβ

)
(A.6)
el 2 a b
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with

ω̃αβa := ξ 2 κ̃ m̃a ãαβ − ξ 2 m̃b b̃αβ + g̃a g̃αβ,

ω̃
αβ

b := −ξ 2 m̃a
˜̃bαβ + ξ 2 m̃b ãαβ + g̃b g̃αβ .

(A.7)

where m̃a = g̃γ δãγ δ and m̃b = g̃γ δ b̃γ δ are introduced.

A.5. Linearizarion of s̃ in the direction ∆µ

Linearizing s̃ shown by Eq. (71), we obtain

∆µs̃ = 2ξ ∆µ H̃ + ξ 2 ∆µκ̃ . (A.8)

with

∆µ H̃ =
∂ H̃
∂ ãαβ

∆µãαβ +
∂ H̃

∂ b̃αβ
∆µb̃αβ

∆µκ̃ =
∂κ̃

∂ ãαβ
∆µãαβ +

∂κ̃

∂ b̃αβ
∆µb̃αβ .

(A.9)

Here the derivatives of H̃ and κ̃ w.r.t. ãαβ and b̃αβ , i.e. ∂ H̃
∂ ãαβ

, ∂ H̃
∂ b̃αβ

, ∂κ̃
∂ ãαβ

, and ∂κ̃

∂ b̃αβ
, are given in [31]. We thus obtain

∆µs̃ = ξ
(
−b̃αβ ∆µãαβ + ãαβ ∆µb̃αβ

)
+ ξ 2

(
−κ̃ ãαβ ∆µãαβ +

˜̃bαβ ∆µb̃αβ
)
. (A.10)

A.6. Linearization of τ̃ αβ and M̃αβ in the direction of ∆µ

We can derive the following linearizations

∆µτ̃
αβ

=

∫ T
2

−
T
2

(
1 − ξ 2κ

) [
∆µs̃ ˆ̃τ αβ + s̃ ∆µ

ˆ̃τ αβ
]

dξ,

∆µM̃αβ
=

∫ T
2

−
T
2

(
−ξ + ξ 2 H

) [
∆µs̃ ˆ̃τ αβ + s̃ ∆µ

ˆ̃τ αβ
]

dξ,

(A.11)

where ˆ̃τ αβ is given by Eq. (68). Its linearization yields

∆µ
ˆ̃τ αβ = Ĝshear

(
∆µg̃αβ + 2

∆µ J ⋆el

J ⋆el
3 gαβ

)
, (A.12)

A.7. Linearization of g̃αβ and g̃αβ in the direction ∆µ

The change of g̃αβ in the direction ∆µ is given by

∆µg̃αβ = g̃a ∆µãαβ + g̃b ∆µb̃αβ + ãαβ ∆µg̃a + b̃αβ ∆µg̃b (A.13)

in which

∆µg̃a = ξ 2κ̂ ãγ δ ∆µãγ δ − ξ 2 ˘̃bγ δ ∆µbγ δ,

∆µg̃b = −ξ 2 b̃γ δ ∆µãγ δ − ξ 2 ãγ δ ∆µbγ δ.
(A.14)

˘̃bγ δ = κ̃ b̃γ δinv = 2 H̃ ãγ δ − b̃γ δ . Likewise, the change

αβ αβγ δ αβγ δ ˜
∆µg̃ = g̃a ∆µâγ δ + g̃b ∆µbγ δ (A.15)
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can be derived, with

g̃αβγ δa := s̃−2
(

ãαβ ϵ̃γ δa + b̃αβ ν̃γ δa

)
+ g̃a ãαβγ δ + g̃b b̃αβγ δ,

g̃αβγ δb := s̃−2
(

ãαβ ϵ̃γ δb + b̃αβ ν̃γ δb

)
− g̃b ãαβγ δ,

(A.16)
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