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Highlights
• An inverse analysis is used to reconstruct deformations of geometric composites.
• A multiplicative decomposition of the surface deformation is formulated.
• Thermal expansion induced shape changes involving elastic softening are considered.

Graphical Abstract

Abstract

Soft, active materials have been widely studied due to their ability to undergo large, complex shape changes in response to
both mechanical and non-mechanical external stimuli. However, the vast majority of such studies has focused on investigating

∗ Corresponding author.
E-mail address: timon.rabczuk@tdtu.edu.vn (T. Rabczuk).

https://doi.org/10.1016/j.cma.2019.03.011
0045-7825/ c⃝ 2019 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2019.03.011
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2019.03.011&domain=pdf
mailto:timon.rabczuk@tdtu.edu.vn
https://doi.org/10.1016/j.cma.2019.03.011


N. Vu-Bac, T.X. Duong, T. Lahmer et al. / Computer Methods in Applied Mechanics and Engineering 350 (2019) 480–510 481

the forward problem, i.e. determining the shape changes that result from the applied stimuli. In contrast, very little work has
been done to solve the inverse problem, i.e. that of identifying the external loads and stimuli that are needed to generate desired
shapes and morphological changes. In this work, we present a new inverse methodology to study residual thermal expansion
induced morphological changes in geometric composites made of soft, thin shells. In particular, the method presented in this
work aims to determine the prescribed external stimuli needed to reconstruct a specific target shape, with a specific focus and
interest in morphological changes from two-dimensional (2D) to three-dimensional (3D) shapes by considering the external
stimuli within a thermohyperelastic framework. To do so, we utilize a geometrically exact, rotation-free Kirchhoff–Love shell
formulation discretized by NURBS-based shape functions. We show that the proposed method is capable of identifying the
stimuli, including cases where thermal expansion induced shape changes involving elastic softening occur in morphing from
the initially flat 2D to non-planar 3D shapes. Validation indicates that the reconstructed shapes are in good agreement with the
target shape.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: Soft materials; Inverse analysis; Isogeometric analysis; Large shape changes; Nonlinear mechanics; Coupled thermohyperelastic model

1. Introduction

Non-mechanical stimuli such as heating, swelling or differential growth have noticeable effects on the morphol-
ogy of slender structures. Especially, soft materials in the form of membranes [1,2] can be mechanically deformed
in response to these stimuli. As the membranes are thin, even small volume changes can cause a drastic shape
change, i.e. the fast closure mechanism of the Venus flytrap’s leaves after osmotic swelling [3] or the ventral
furrow formation in Drosophila [4]. Furthermore, mechanical instabilities can be induced by these stimuli that
lead to structural failure [5]. Since mechanical instabilities and shape changes are crucial during the morphogenesis
of biological structures [6,7], it is critical to understand how these stimuli lead to specific shape changes.

It was realized by Pezzulla et al. [8] that residual swelling-induced large deformation in a thin structure has
significant potential as a technique for shape-morphing design. In this technique, if specific areas within a thin
membrane are subject to local swelling, the membrane can morph into a new shape. By suitably preparing geometric
composite membranes and locally adjusting their intrinsic geometry, growth-like morphing of 2D membranes to
nontrivial 3D shapes under residual swelling can be controlled. Geometric composites refer to combinations of
different intrinsic geometries, like an annulus or circular disk, that are different from individual components [9].
They describe the swelling dynamics as a diffusive processes with a Fourier-like differential equation (e.g. Fick’s
law), and thus the morphing of geometric composites is governed by both swelling and geometry. While the former
is induced and controlled by diffusion, the latter dictates deformation of the body (membrane). As reported in [10],
flat membranes can be deformed to adopt dome-like [11] or saddle-like shapes [8] when swelling develops within
the mid-surface of the membranes. Alternatively, when swelling acts through the thickness, the membranes can
bend into cylindrical shapes [12].

Various theories have been developed to study the morphing of thin, soft structures such as buckling of
swelling gels [13] and sheets [14,15]. Non-Euclidean shell theory has been extended recently to describe the
deformation mechanism of thin, soft objects subjected to external stimuli [16]. Kirchhoff–Love shell theory is ideal
for modeling thin shell structures. However, since Kirchhoff–Love shell formulations cannot be solved with standard
finite elements that are only C0-continuous, NURBS-based finite element discretizations are employed [17,18].
Furthermore, because of their ability to model complex geometries and to avoid rotational degrees of freedom,
NURBS-based discretizations have recently been used in shape and topology optimizations [19–22].

A well known problem in computational shell formulations is locking. According to Bischoff et al. [23], locking
occurs when a finite element formulation is unable to represent certain deformation modes without undesirable
parasitic strains or stresses. Several types of locking exist: (1) Poisson thickness locking, (2) membrane locking,
(3) volume locking, (4) curvature thickness locking, (5) shear locking as reported in [24]. Due to a negligible effect
of the related mechanical phenomena, specific plate or shell models may be unaffected by locking. For example,
Kirchhoff–Love shells do not experience transverse shear-locking occurring in solids and shear-deformable shells
in the limit of vanishing thickness, see [25]. Echter et al. [26] developed a new class of NURBS-based shell and
solid finite elements. Their formulation is based on the discrete shear gap (DSG) method. Examples of locking
problems are examined and it is shown that the resulting NURBS DSG elements are completely locking-free. Then,
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a hierarchic family of NURBS-based shell finite elements was proposed where the curvature thickness locking is
removed. By applying two sequential approaches, DSG and hybrid-mixed method derived from the Hellinger–
Reissner variational principle to prevent parasitic membrane strains, membrane locking and in-plane shear locking
are eliminated in [27]. Leonetti et al. [28] proposed a method where the Green–Lagrange strains are linearized
through the thickness so that a modified generalized constitutive matrix can be adopted. Consequently, thickness
locking is prevented and accurate results are obtained without introducing additional degrees of freedom.

Along with the challenges in modeling the deformation of thin structures, there are additional complexities
involved in modeling soft materials, as shape changes of soft structures can be induced by swelling, drying,
squeezing and permeation [29]. Therefore, a fully coupled deformation-diffusion theory is required to account for
the response of the soft materials more accurately [30]. Early studies of swelling of soft matter were carried out
by Tanaka et al. [31]. Following this, several studies of swelling-induced deformations in responsive material have
been developed [30,32,33] for understanding the physical mechanisms governing shape-morphing.

However, most studies on soft active materials have focused on the forward problem, i.e. determining the shape
changes in response to different applied stimuli [5,8,12,16,34]. In contrast, there has been little work done to solve
the inverse problem, i.e. determining the external loads and stimuli that are necessary to generate desired shape
and morphological changes. Therefore, we propose in this work an inverse methodology to determine the non-
mechanical loads and stimuli that are needed to generate a specific 3D shape from an initially flat 2D thin sheet. The
approach combines NURBS-based FE discretizations to capture the higher order surface continuity requirements for
Kirchhoff–Love shells with a thermohyperelastic framework accounting for non-mechanical stimuli. Our formulation
is the first thermomechanical FE formulation for shells based on a multiplicative decomposition of the surface
deformation. We demonstrate the ability to reconstruct the target shapes of geometric composite shells where the
shape changes occur via swelling (or thermal expansion) induced softening.

The article is organized as follows. In Section 2 the kinematics and the thermomechanical multiplicative
decomposition of the deformation gradient are briefly summarized. In the next section, the governing partial
differential equations, constitutive equations, weak form and linearizations for the thermomechanical coupled model
are presented. The FE formulation follows in Section 4. Rotational constraints are described in Section 4.3. Section 5
describes the inverse analysis using gradient-based methods with analytical sensitivities. The proposed formulation
is verified and illustrated through numerical examples in Section 6. In particular, swelling (or thermal expansion)
induced softening like buckling is taken into consideration. Finally, the article closes with concluding remarks.

2. A brief description of thin shell theory

2.1. Thin shell kinematics and deformation

A general surface S, shown in Fig. 1, is described by the parametric mapping of the 2D coordinates (ξ 1, ξ 2) to
point x in the spatial domain as follows

x = x(ξα), α = 1, 2, (1)

where ξα with α = 1, 2 denotes the coordinates in the parameter domain P . Lower case symbols are used to denote
kinematical quantities, like x, in the current configuration S, while upper case symbols are used for the reference
configuration S0. The respective covariant base vectors are then defined by differentiation of x and X with respect
to ξα as

aα =
∂x
∂ξα

and Aα =
∂X
∂ξα

. (2)

The corresponding unit normal vectors are determined by n = (a1 ×a2)/∥a1 ×a2∥ for S and N = (A1 × A2)/∥A1 ×

A2∥ for S0. From the covariant base vectors, the covariant metric of the midsurface

Aαβ = Aα · Aβ,
aαβ = aα · aβ,

(3)

and the contravariant metric [Aαβ] = [Aαβ]−1 and [aαβ] = [aαβ]−1 can be evaluated. Then, the contravariant base
vectors are determined by Aα = Aαβ Aβ and aα = aαβaβ . The covariant components of the curvature tensor are



N. Vu-Bac, T.X. Duong, T. Lahmer et al. / Computer Methods in Applied Mechanics and Engineering 350 (2019) 480–510 483

Fig. 1. The definition of reference (S0) and deformed (S) surfaces. Mapping of the surface parameters (ξ1, ξ2) to material points X and
spatial points x. The covariant base and the unit normal vectors at X̃ and x̃ in the shell continuum are denoted by Gα, G3 and gα, g3,
respectively.
Source: The figure is adopted from [37].

given by

Bαβ = N · Aα,β,
bαβ = n · aα,β .

(4)

With this, the respective mean, Gaussian and principal curvatures of surface S are provided by

H =
1
2

aαβbαβ, κ =
det[bαβ]
det[aαβ]

, κ1/2 = H ±

√
H 2 − κ. (5)

The mapping X → x, denoted x = φ(X), is characterized by the surface deformation gradient

F := aα ⊗ Aα, (6)

The Green–Lagrange strain and the curvature tensors of the mid-surface are provided in [35,36] as follows

E = Eαβ Aα ⊗ Aβ =
1
2

(
aαβ − Aαβ

)
Aα ⊗ Aβ,

K = Kαβ Aα ⊗ Aβ =
(
bαβ − Bαβ

)
Aα ⊗ Aβ .

(7)

2.2. Multiplicative decomposition F = FM Fθ

The Kirchhoff–Love shell shown in Fig. 1 is subjected to mechanical loads and temperature variation. The
steady-state thermohyperelastic response is described by the full coupling of the nonlinear mechanical equilibrium
equation with the heat transfer equation. The coupling is also manifested in the total surface deformation gradient
F consisting of mechanical and thermal terms. Furthermore, the heat transfer equation is solved on the current
configuration that also contributes to the coupling. The total surface deformation gradient F of Eq. (6) can be
multiplicatively decomposed into a purely mechanical FM and a purely thermal Fθ portion [38] as

F = FM Fθ . (8)

Here, the thermal part is assumed to be isotropic so that the thermal deformation gradient Fθ can be described by

Fθ = ϕ I, (9)

with I = Aα ⊗ Aα being the surface identity tensor on S0 and

ϕ := 1 + αθ (θ − θ0) , (10)
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Fig. 2. Sketch of multiplicative decomposition F = FM Fθ .
Source: This figure is adopted from [39].

where αθ is the thermal expansion coefficient, θ0 is a reference temperature and θ is the temperature in the current
configuration. The area change associated with free thermal expansion is characterized by

Jθ = dets(Fθ ) = ϕ2
= (1 + αθ (θ − θ0))2 . (11)

Here, dets denotes the surface determinant. The total deformation gradient can be expressed as

J =
Ja

JA
=

√
det[aαβ]√
det[Aαβ]

= JM Jθ . (12)

The mechanical surface deformation gradient FM and the mechanical area change JM can then be computed from
the total surface deformation gradient and the temperature as

FM = F F−1
θ = aα ⊗ âα and JM =

J
Jθ

=
J

[1 + αθ (θ − θ0)]2 , (13)

which will be adopted in the definition of the mechanical free-energy. Here we have introduced base vectors
âα = ϕAα, âα = (1/ϕ)Aα associated with the intermediate configuration Ŝ , see Fig. 2. Other quantities such
as the metric tensors âαβ , âαβ , b̂αβ and b̂αβ are computed in the same manner as their counterparts presented in
Section 2.1. The right surface Cauchy–Green tensors are determined as

C = FT F = aαβ Aα ⊗ Aβ, CM = FT
M FM = aαβ âα ⊗ âβ . (14)

Furthermore, the mechanical surface Green–Lagrange strain and the mechanical relative curvature tensors can be
defined by

EM =
1
2
(CM − I) = εM

αβ âα ⊗ âβ =
1
2

(
aαβ − âαβ

)
âα ⊗ âβ,

K M = κM
αβ âα ⊗ âβ =

(
bαβ − b̂αβ

)
âα ⊗ âβ,

(15)

in which we have defined

εM
αβ :=

1
2

(
aαβ − âαβ

)
,

κM
αβ := bαβ − b̂αβ .

(16)
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3. A thermomechanical coupled theory

3.1. Governing partial differential equations

In this section, the coupled governing partial differential equations consisting of the balance of forces and the
balance of thermal energy are briefly recalled.

3.1.1. Balance of forces
Considering the prescribed body force f , the strong form equilibrium equation of the thin shell at x ∈ S,

see [36], is given by

Tα
;α + f = 0, (17)

where Tα
;α denotes the covariant derivative of Tα with Tα being the internal traction acting on the cross section

normal to aα , defined by

Tα
= σ T aα = Nαβaβ + Sαn, (18)

with σ being the Cauchy stress tensor. The in-plane and shear stress components on the cross section can be
expressed as

Nαβ
= σ αβ + bαγ Mγβ,

Sα = −Mβα

;β ,
(19)

in which membrane stress and moment components σ αβ and Mαβ are given in Section 3.2. On the boundary
∂S = ∂xS ∪ ∂tS ∪ ∂mS, the Dirichlet and Neumann boundary conditions are

x = φ̄, on ∂xS,
t = t̄, on ∂tS,

mτ = m̄τ , on ∂mS,
(20)

where φ̄, t̄ = t̄αaα , and m̄τ are prescribed boundary deformations, tractions and bending moments parallel to
boundary ∂S, respectively.

3.1.2. Balance of energy
According to Sahu et al. [40], the local form of the internal surface energy balance is generally described by

Ξ̇ = −qα
;α + Q +

1
2
σ αβ ȧαβ +

1
2

Mαβ ḃαβ, (21)

where Ξ is the stored energy, qα
;α is the covariant derivative of qα , which is the contravariant component of the

heat flux q on S and Q denotes the heat source per unit time. The last two terms on the right hand side denote
the internal stress power. Since this study is interested in steady-state solutions, the governing equation for heat
conduction on surface can be rewritten as:

qα
;α = Q (22)

The boundary conditions consist of the prescribed temperature θ̄ on ∂θS and the prescribed heat flux q̄ on ∂qS as

θ = θ̄ on ∂θS, (23)

qν = −qανα = q̄ on ∂qS (24)

where να = ν · aα denotes the covariant component of the boundary normal ν.

Remark. The transport equation for the concentration is given by

∂c
∂t

+ jα
;α = S (25)
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where jα
;α is the covariant derivative of jα , which is the contravariant component of the molar flux j , t denotes

time and S is the surface source term. The transport equation is independent of the stress power. The molar flux
due to diffusion can be described by Fick’s law as follows

jα = −D aαβ c;β (26)

with c being the concentration and D being the diffusion coefficient. The hygroscopic swelling stretch is given by

ϕc = 1 + αc(c − c0), (27)

where αc is coefficient of hygroscopic swelling and c0 is the initial concentration in the system. The transport
equation governing concentration gradients, Eq. (25), is then solved for the concentration in the system (like the
geometric composite disk of Section 6) and then the concentration gradient provides a thermal-like strain. Note that
the strain rate does not affect the transport equation.

Due to the similarity between the heat conduction, Eq. (21), and diffusion, Eq. (25), swelling is analogous to a
thermal strain, but driven by a concentration gradient instead of a temperature gradient.

3.2. Constitutive equations

This study focuses on the quasi-static behavior of soft materials that can be described by a thermohyperelastic
model. We assume there exists a corresponding Helmholtz free energy of the form W = W (EM , KM , θ) defined
per unit intermediate area. The constitutive equations for the Kirchhoff stress and the bending moment associated
with the intermediate configuration Ŝ are then defined by [38]

τ
αβ

M :=
∂W
∂εM

αβ

= 2
∂W
∂aαβ

,

Mαβ

M :=
∂W
∂κM

αβ

=
∂W
∂bαβ

.

(28)

Pushing forward τ αβM and Mαβ

M from Ŝ to S, leads to the Cauchy stress σ αβ and moment Mαβ given by

σ αβ =
1
JM
τ
αβ

M

Mαβ
=

1
JM

Mαβ

M .

(29)

In the following, the Koiter material model and an incompressible Neo-Hookean model are used to account for
the mechanical energy and the Fourier law is used within the heat equation. It should be noted that the material
properties are taken as independent of the temperature in this study.

3.2.1. Koiter material model
The Koiter material model [41] describes the surface strain energy, corresponding to FM , as follows

W =
1
8

(
aαβ − âαβ

)
ĉαβγ δ

(
aγ δ − âγ δ

)
+

1
2

(
bαβ − b̂αβ

)
f̂ αβγ δ

(
bγ δ − b̂γ δ

)
, (30)

with the material tangents

ĉαβγ δ = Λâαβ âγ δ + µ
(
âαγ âβδ + âαδ âβγ

)
,

f̂ αβγ δ =
T 2

12
ĉαβγ δ,

(31)

where T denotes the shell thickness at the intermediate configuration Ŝ; Λ and µ are the Lamé constants. The
Kirchhoff stress and moment follow from Eq. (28) as

τ
αβ

M =
1
2

ĉαβγ δ
(
aγ δ − âγ δ

)
,

Mαβ

M = f̂ αβγ δ
(

bγ δ − b̂γ δ
)
.

(32)

Alternative stress measures σ αβ and Mαβ shown in Eq. (29) can be then obtained.
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3.2.2. Shell constitutive model derived from 3D material models
In this section, the formulation of Kirchhoff–Love shell constitution is established by projecting a 3D model

onto the surface S as depicted in Fig. 1. By doing so, an arbitrary point P in 3D continuum can be expressed as

X̃(ξα, ξ ) = x(ξα) + ξN(ξα)
x̃(ξα, ξ ) = X(ξα) + ξd(ξα),

(33)

with ξ ∈ [−T/2 T/2] being the thickness coordinate and T denoting the shell thickness. If we denote λ3 as the
stretch in the normal direction, the director vector can be written as d := λ3n. Hence, the metric tensors at point
P now can be written in terms of their counterparts on the mid-surface as follows:

gαβ = ga aαβ + gb bαβ, ĝαβ = ĝa âαβ + ĝb b̂αβ,

gαβ = ga aαβ + gb bαβ, ĝαβ = ĝa âαβ + ĝb b̂αβ .
(34)

Here,

ga := 1 − ξ 2κ, gb := 2ξ + 2Hξ 2,

ĝa := 1 − ξ 2κ̂, ĝb := 2ξ + 2Ĥξ 2,

ga
:= s−2(ga + 2Hgb), gb

:= −s−2gb,

ĝa
:= ŝ−2(ĝa + 2Ĥ ĝb), ĝb

:= −ŝ−2ĝb,

(35)

in which

s = 1 + 2Hξ + κξ 2, ŝ = 1 + 2Ĥξ + κ̂ξ 2. (36)

The projected Kirchhoff stress and moment now yield

τ αβ =

∫ T
2

−
T
2

ŝ
(
1 − ξ 2κ

)
τ̃ αβ dξ,

Mαβ

0 =

∫ T
2

−
T
2

(
−ξ + Hξ 2) τ̃ αβ dξ,

(37)

where τ̃ αβ are the 3D Kirchhoff stress components. More details of the projection technique can be found in [37,42].

3.2.3. Incompressible Neo-Hookean material

Introducing the invariants of the 3D Cauchy–Green tensor C̃M such that ĨM1 := C̃M : 1 and J̃M :=

√
det C̃M with

1 being the identity tensor in R3, the continuum free energy function (per intermediate volume) of the incompressible
Neo-Hookean model has the following form

W̃ ( ĨM1, J̃M , p) =
µ̃

2

(
ĨM1 − 3

)
+ p

(
1 − J̃M

)
, (38)

with p being the Lagrange multiplier adopted to enforce the incompressibility constraint

g := 1 − J̃M = 0. (39)

The 3D Kirchhoff stress components associated with Ŝ thus become

τ̃
αβ

M = µ̃

(
ĝαβ −

1
J ⋆2M

gαβ
)
. (40)

which are then inserted into Eq. (37) to obtain the projected Kirchhoff stress τ αβM and moment Mαβ

M through
numerical integration. The Cauchy stress σ αβ and moment Mαβ can be obtained using Eq. (29). Hereafter, we
will use Koiter model to refer to the Koiter material model and the incompressible Neo-Hookean model for the
projected incompressible Neo-Hookean model for the sake of simplicity.
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3.2.4. Constitutive equation for the heat flux
Assuming Fourier’s law, the spatial surface heat flux q is related to the spatial surface gradient of the temperature

θ;β by

qα = −k aαβ θ;β, (41)

where k, the scalar surface thermal conductivity, is taken as constant.

3.3. Weak form

3.3.1. Weak form for the mechanical part
The mechanical weak form for the steady-state shell equation (17) is written as: Find x ∈ U such that

δWx = δWint − δWext = 0 ∀δx ∈ U0, (42)

with

δWint =

∫
S

1
2
δaαβ σ αβ da +

∫
S
δbαβ Mαβ da,

δWext =

∫
S
δx · f da +

∫
∂tS
δx · t ds +

∫
∂mS

δn · mτν ds.
(43)

Alternatively, using Eq. (29) and noting that da = J dA, we can rewrite the internal virtual work δWint as follows

δWint =

∫
S0

1
2
δaαβ τ

αβ

M Jθ dA +

∫
S0

δbαβ Mαβ

M Jθ dA. (44)

3.3.2. Weak form for the heat equation
Assuming the heat transfer is quasi-static as shown in Eq. (22). The weak form for the steady-state solution in

the deformed surface S can be stated as: Find θ (x) ∈ V such that

δWθ = δWintθ − δWextθ = 0, ∀δθ ∈ V0 (45)

with

δWintθ =

∫
S

k ∇Sθ · ∇Sδθ da

δWextθ = −

∫
∂qS

q̄ δθ ds +

∫
S

Q δθ da.
(46)

where ∇S• denotes surface gradient of quantity • on S, i.e.

∇Sθ = θ,αaα,
∇Sδθ = δθ,αaα.

(47)

3.4. Linearizations

The two weak forms in Eqs. (42) and (45) are solved simultaneously. This results in a coupled system of nonlinear
equilibrium equations. To solve these equations, the Newton–Raphson method is employed which requires the
linearization of the two equilibrium equations. Linearizing Eq. ((42).1) and Eq. ((45).1) in the direction ∆x and
∆θ , we have

∆δWint = ∆xδWint + ∆θδWint,

∆δWintθ = ∆xδWintθ + ∆θδWintθ ,
(48)
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in which ∆x• and ∆θ• denote the linearizations of quantity • with respect to (w.r.t.) x and θ , respectively. The
linearization shown by Eq. ((48).1) can be written as

∆xδWint =

∫
S0

(
ĉαβγ δ

1
2
δaαβ

1
2
∆x aγ δ + d̂αβγ δ

1
2
δaαβ ∆x bγ δ + τ

αβ

M
1
2
∆xδaαβ

+êαβγ δ
1
2
δbαβ ∆x aγ δ + f̂ αβγ δ δbαβ ∆x bγ δ + Mαβ

M ∆xδbαβ

)
Jθ d A

+

∫
S0

[(
1
2
δaαβ τ

αβ

M + δbαβ Mαβ

M

)
∆θ Jθ +

(
1
2
δaαβ ∆θτ

αβ

M + δbαβ ∆θ Mαβ

M

)
Jθ

]
dA,

(49)

in which the material tangents are introduced as

ĉαβγ δ := 2
∂τ

αβ

M

∂aγ δ
, d̂αβγ δ :=

∂τ
αβ

M

∂bγ δ
,

êαβγ δ := 2
∂Mαβ

M

∂aγ δ
, f̂ αβγ δ :=

∂Mαβ

M

∂bγ δ
,

(50)

Furthermore, the respective surface gradient of temperature and its variation w.r.t. x and X are related by

∇Sθ = F−T
∇S0θ

∇Sδθ = F−T
∇S0δθ.

(51)

with ∇S0• being surface gradient of quantity • on S0. Noticing Eq. (14), the linearization shown by Eq. (48) can
be expressed by

∆θδWintθ =

∫
S0

k ∆x J C−1
· ∇S0θ · ∇S0δθ dA +

∫
S0

k J ∆x C−1
· ∇S0θ · ∇S0δθ dA

+

∫
S0

k J C−1
· ∇S0 (∆θθ) · ∇S0δθ dA,

(52)

The expressions for ∆xδaαβ and ∆xδbαβ can be found in [41]. Also, the expressions for ∆x J , ∆x C−1 are presented
in Appendix A and ∆θ Jθ , ∆θτ

αβ

M , ∆θ Mαβ

M are shown in Appendix B. The linearization of the external virtual works
in the equilibrium equation ((43).2) is given by [37,42] as follows

∆xδWext =

∫
∂S

mτ δaα ·
(
νβn ⊗ aα + ναaβ ⊗ n

)
∆x aβ ds. (53)

4. Finite element discretization

4.1. FE approximation

The discretization of the surface domain is performed using NURBS-based shape functions, see [43]. The
geometry and temperature field within each element domain are approximated using a nodal interpolation as

X ≈ N Xe, x ≈ N xe, (54)

in which N(ξ 1, ξ 2) := [N11, N21, ..., Nne 1] denotes a (3 × 3ne) array shape function, with ne being the number
of nodes, defined on the master element Ω e in the parametric domain. The covariant tangent vectors of the surfaces
are then approximated by

Aα =
∂X
∂ξα

≈ N,α Xe, aα =
∂x
∂ξα

≈ N,α xe and âα =
∂ x̂
∂ξα

≈ N,α x̂e. (55)

Then, the corresponding unit surface normal vectors can be evaluated. The variation of x and the tangent vector aα
are written as

δx ≈ N δXe, δaα ≈ N,α δxe, (56)
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with N,α(ξ 1, ξ 2) := [N1,α1, N2,α1, . . . , Nn,α1]. Furthermore, the variation of all kinematical quantities shown in
Section 2 can be found in [37]. Using the nodal interpolations within element domain Ω e, the temperature field is
approximated by

θ ≈ N⋆ θ e,

δθ ≈ N⋆ δθ e.
(57)

where N⋆(ξ 1, ξ 2) := [N1, N2, . . . , Nn] is a (1×ne) array shape function of master element Ω e; θ e, δθ e are vectors
containing the discretized nodal temperature and its variation at element level, respectively. Differentiating Eq. (57)
w.r.t. coordinate ξα yields the real and virtual temperature gradient interpolation as follows

θ,α ≈ N⋆
,α θ e,

δθ,α ≈ N⋆
,α δθ e,

(58)

Consequently, the surface gradient of the temperature and its variation on S, see [44], are defined by

∇Sθ = θ,α aα ≈ aα N⋆
,α θ e,

∇Sδθ = δθ,α aα ≈ aα N⋆
,α δθ e.

(59)

where N⋆
,α(ξ 1, ξ 2) := [N1,α, N2,α, . . . , Nne,α] is an array derivatives of shape function. Likewise, the surface

gradient of the temperature and its variation on Ŝ and S0, respectively, can be represented by

∇Ŝθ = θ,α âα ≈ âα N⋆
,α θ e, ∇Ŝδθ = δθ,α âα ≈ âα N⋆

,α δθ e,

∇S0θ = θ,α Aα ≈ Aα N⋆
,α θ e, ∇S0δθ = δθ,α Aα ≈ Aα N⋆

,α δθ e.
(60)

where ∇Ŝ• and ∇S0• denote the surface gradient of quantity • on Ŝ and S0, respectively.

4.2. Discretized weak form

Using the above interpolations to discretize the weak form shown by Eq. (43), its approximation reads

δWx ≈

nel∑
e=1

δW e
x =

nel∑
e=1

(
δW e

int − δW e
ext

)
, (61)

where nel is the number of FE elements. The internal and external virtual works associated with the mechanical
model per element are approximated by

δW e
int = δxT

e

(
fe
intτ + fe

intM

)
,

δW e
ext = δxT

e

(
fe
ext0 + fe

extp + fe
extt + fe

extm

)
.

(62)

Here the internal equivalent nodal forces are split into contributions of membrane stress τ αβM and bending moment
Mαβ

M as follows

fe
intτ :=

∫
Ωe

0

τ
αβ

M NT
,αaβ Jθ dA,

fe
intM :=

∫
Ωe

0

Mαβ

M

(
N,αβ − Γ

γ

αβ N,γ

)
n Jθ dA,

(63)

with N,αβ(ξ ) := [N1,αβ1, N2,αβ1, . . . , Nn,αβ1] and Christoffel symbols Γ
γ

αβ = aγ · aα,β . The external equivalent
nodal forces are subdivided into components due to a constant body force f 0, surface pressure q , boundary traction
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t and boundary moment mτ , that yield

fe
ext0 :=

∫
Ωe

0

NT f 0 dA,

fe
extq :=

∫
Ωe

NT qn da,

fe
extt :=

∫
∂tΩe

NT t ds,

fe
extm :=

∫
∂mΩe

NT
,αν

αmτn ds.

(64)

The linearizations of δW e
int and δW e

ext are given in [37]. Similarly, inserting the above-mentioned interpolations into
the weak form shown by Eq. (46), we obtain the fully discretized form of the balance of heat from Eq. (45) as

δWθ = δθT
e

(
fe
θ − fe

q̄ + fe
Q

)  
Re
θ

, (65)

where the thermal force vector fe
θ , the boundary heat flux vector fe

q̄ and the heat source vector fe
Q are given by

fe
θ =

∫
Ωe

0

k J (Aα N⋆
,α)T

· C−1
· Aα N⋆

,α θ e dA,

fe
q̄ =

∫
∂qΩe

N⋆T q̄ ds,

fe
Q =

∫
Ωe

N⋆T Q dA.

(66)

The nodal energy residual Re
θ can then be expressed as

Re
θ =

∫
Ωe

0

k J (Aα N⋆
,α)T

· C−1
· Aα N⋆

,α θ e dA −

∫
∂qΩe

N⋆T q̄ ds +

∫
Ωe

N⋆T Q dA. (67)

4.3. Lagrange multiplier method for rotational constraints

For the multipatch shell structures examined in the numerical examples, C1-continuity at patch interfaces is
required. To enforce this rotational constraint, we introduce the constraint potential

Wg =

∫
L0

λ (ḡc + ḡs) d S, (68)

in the shell formulation. Here the integration is performed on the reference surface, λ denotes the Lagrange multiplier
and

ḡc := 1 − cos(ζ − ζ0), (69)

ḡs := sin(ζ − ζ0), (70)

with cos ζ0 := N · N̄ and cos ζ := n · n̄. Here N and n are reference and spatial surface normal vectors for the
patch considered while N̄ and n̄ are the counterparts for the neighboring patch. The variation, linearization and FE
discretization of Wg are well detailed in [37].

5. Inverse analysis

An inverse analysis framework for the preceding coupled thermohyperelastic model is presented briefly here.
Kinematic and hyperelastic constitutive nonlinearities are taken into account in this study. External stimuli, i.e. sur-
face loads like out-of-plane pressure and heat sources, applied to produce a target shape for thin shell structures,
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will be recovered. Inverse problems, where the solution is solved iteratively, can be expressed mathematically in
the following form:

minimize J
(

s,u(s), θ (s)
)

h
(

s,u(s), θ (s)
)

= 0

sl ≤ s ≤ su,

(71)

where s denotes the design variables (i.e. a supplied heat source and a lateral pressure), u(s) and θ (s) are the
state variables (i.e. the nodal displacements and temperatures). In general, the objective function J is subjected
to equality constraints h while the design variables s are restricted by the lower bound sl and the upper bound
su , respectively. In this study, the design variables s can be identified based on the measured displacements and
temperature at discrete points on the surface. A mapping of these variables to measurements is described by the
forward operator as

F : X → Y, (72)

s ↦→ {u, θ}T (73)

in which X is a finite dimensional parameter space where a supplied heat source, external loads etc. are defined
and Y is a finite dimensional measurement space. Based on measured quantities umeas and θmeas , determination of
s via the inverse problem is conducted from the following equation

F(s) =

{
umeas

θmeas

}
. (74)

As the system in Eq. (74) may be ill-posed, we intend to solve the problem in the sense of a regularized least-squares
solution, i.e. minimization of

J (s, u(s)) =
1
2

∫
Ω

⏐⏐⏐⏐umeas
− u(s)

umax (s)

⏐⏐⏐⏐2 dΩ +
1
2

∫
Ω

⏐⏐⏐⏐θmeas
− θ (s)

θmax (s)

⏐⏐⏐⏐2 dΩ + R(q), (75)

where umax (s) and θmax (s) are the respective maximum values of displacement and temperature fields; R(q) is
a regularization term [45]. The gradient-based method – moving asymptotes (MMA) [46] – is used to solve
the objective function iteratively. Furthermore, nonlinear softening deformations of the shell structure are also
reconstructed where shape changes resulting from buckling are permitted. The FE-based discretization of the
objective function is then given by

J =
1
2

umeas
− u

umax

2

+
1
2

θmeas
− θ

θmax

2

+ β
q − q0

2
, (76)

where umax and θmax denote the maximum values of the numerical displacement and temperature, respectively; umeas

and θmeas are the respective displacements and temperatures measured on the target shape; q0 is chosen as a priori
estimate of q; β refers to the regularization parameter. The total sensitivity of the objective function J w.r.t. design
variables si is estimated using the chain rule of differentiation as follows:

dJ
dsi

=
∂J
∂si

+
∂J
∂θ

∂θ

∂si
+
∂J
∂u

∂u
∂si
. (77)

5.1. Adjoint problem

The FE equilibrium equations for nonlinear mechanics are given in the form

r(u, θ , s) = fint(u, θ , s) − fext(u, s) = 0, (78)

with fint and fext being the internal and external equivalent nodal forces, respectively. Differentiating Eq. (78) w.r.t.
the design variables s we obtain

dr
dsi

=
∂fint

∂si
+
∂fint

∂θ

∂θ

∂si
+
∂fint

∂u
∂u
∂si

−

(
∂fext

∂si
+
∂fext

∂u
∂u
∂si

)
= 0. (79)
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The FE equilibrium equations for heat conduction are given in the form,

Kθ θ = fQ . (80)

where Kθ , θ and fQ denote the global conductivity matrix, vector of nodal temperatures and heat force vector,
respectively, which are given by

Kθ = Anel
i=1

∫
Ωe

0

k J N⋆T
,α (Aα)T

· C−1 Aα N⋆
,α dA,

fQ = Anel
i=1

∫
Ωe

N⋆T Q dA.

(81)

where Anel
i=1 is assembly operator. Differentiating Eq. (80) w.r.t. the design variables we obtain

Kθ
∂θ

∂si
=

dfQ
dsi

−
dKθ
dsi

θ (82)

In order to avoid computing the derivatives ∂u/∂si and ∂θ/∂si in Eq. (77) explicitly, the adjoint method is
employed for performing the sensitivity analysis. The derivative of the equilibrium equations (79) and (82) is added
into the derivative of the objective function in Eq. (77) through the Lagrange multiplier approach as proposed
by [47]. We thus have

dJ
dsi

=
∂J
∂si

+
∂J
∂θ

∂θ

∂si
+
∂J
∂u

∂u
∂si

+ λT
θ

(
dfQ
dsi

−
dKθ
dsi

θ − Kθ
∂θ

∂si

)
+ λT

m

(
∂fint

∂si
−
∂fext

∂si
+

(
∂fint

∂u
−
∂fext

∂u

)
∂u
∂si

+
∂fint

∂θ

∂θ

∂si

)
.

(83)

Rearranging Eq. (83), we have

dJ
dsi

=
∂J
∂si

− λT
θ

(
dKθ
dsi

θ −
dfQ
dsi

)
+ λT

m

(
∂fint

∂si
−
∂fext

∂si

)
+

(
∂J
∂θ

− λT
θ Kθ + λT

m
∂fint

∂si

)
∂θ

∂si
+

[
∂J
∂u

+ λT
m

(
∂fint

∂si
−
∂fext

∂si

)]
∂u
∂si

(84)

Then, the coefficient terms associated with ∂θ/∂si and ∂u/∂si are set to zero. Set Km = ∂fint/∂si − ∂fext/∂si , the
adjoint vectors λm and λθ are solved from the following mechanical adjoint equation

Kmλm =

(
∂J
∂u

)T

, (85)

and the following thermal adjoint equation

Kθλθ =

(
∂J
∂θ

)T

+

(
∂fint

∂θ

)T

λm . (86)

Eq. (84) now becomes

dJ
dsi

=
∂J
∂si

− λT
θ

(
dKθ
dsi

θ −
dfQ
dsi

)
− λT

m

(
∂fint

∂si
−
∂fext

∂si

)
. (87)

Defining vectors z and ψ with components zi = ∂J /∂ui and ψi = ∂J /∂θi and considering the Dirichlet and
Neumann boundary conditions

zi = umeas
i − ui on Ω , (88)

ψi = θmeas
i − θi on Ω . (89)

Eqs. (85) and (86) can be solved for the adjoint vectors λm , λθ in a similar manner as Eqs. (78) and (80). In the
following, analytical sensitivities are employed to obtain the derivatives of fext and fQ w.r.t. the design variables s.
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5.2. Analytical sensitivities

Consider a shell structure subjected to a supplied heat source Q and lateral pressure q. Hence, the two design
variables are s1 = Q and s2 = q. The derivatives ∂fe

Q/∂s1 and ∂fe
ext/∂s2 are given by

∂fe
Q

∂s1
=
∂fe

Q

∂Q
= −

∫
Ωe

N⋆T da, (90)

and
∂fe

ext

∂s2
=
∂fe

ext

∂q
= −

∫
Ωe

NT n da. (91)

These derivatives are then inserted into Eq. (87) to obtain dJ /dsi .

5.3. The L-curve criterion for the selection of the regularization parameter

In order to avoid an ill-posed problem, Tikhonov regularization along with a variant of the L-curve criterion is
employed. A residual L-curve presented in [45], that shows a log–log plot of the residual norm over a regularized
solution, is adopted to select a proper regularization parameter. Two flat regions on the curve result from under and
over regularization, respectively. The optimal regularization parameter is indicated by the intersection of the two
regions. It can be determined by finding the point with maximal curvature.

6. Numerical results

Inspired by the nature, where plants that undergo local swelling change their shape, various studies to shape
morphing of hyperelastic thin membranes (or shells) have been performed [8,33]. In these studies, the shape
changes of geometric composite membranes were fabricated via gradient-driven flow of polymer chains from high
density regions to low density regions. In this section, the effect of swelling-induced large deformations on soft
thin geometric composite shells is demonstrated. Swelling can be viewed as a thermal-like strain driven by the
concentration gradient. The steady-state equation for the concentration (which is independent of the strain) is given
by Eq. (22). Initially, the geometric composites are flat. They deform into curved 3D disks once a heat source is
supplied. In other words, swelling is driven by the thermal (or concentration) gradient and leads to shape change.

The validation of the proposed method is based on experiment-like data used to mimic experimental measure-
ments in practical application. At first, an FE analysis is performed for a given shell structure that is subject to
external stimuli. A NURBS-based FE formulation is used for this [48]. This gives the nodal surface displacement
u f orw, from which the experiment-like data umeas

:= u f orw(1 + 0.01γ ), with random number γ ∈ [−1, 1],
is obtained. The random noise added to u f orw expresses small disturbances as they could occur in reality
measurements. Secondly, a gradient-based method using the analytical sensitivities is employed to minimize Eq.
(76) based on the experiment-like data. Analytical sensitivities are used to estimate the element derivatives required
in Eq. (87). The inverse problem is then solved iteratively until the corresponding structural shape is reconstructed.
The convergence criterion ϵobj. f unc. = |

J j
−J j−1

J 0 | ⩽ 10−3, where j is the iteration number used to terminate the
inverse algorithm.

Three numerical examples for geometrically nonlinear shells are examined. The thermohyperelastic constitutive
law presented in Section 3.2 is used to describe nonlinear behavior of the shells. Furthermore, lateral disturbing
pressure is employed to trigger buckling shape changes to mimic the effect of imperfections. Consequently, the
accuracy of the inverse analysis will be evaluated. The first example considers the deflection of a geometric
composite beam. The second example considers the dome-like deformation of a geometric composite disk. The
third example considers the saddle-like deformation of a geometric composite disk. We assume that the temperature
is uniformly distributed through the thickness and the temperature in the reference configuration is equal to 0. We
denote the Young’s modulus, Poisson’s ratio, thermal expansion coefficient, and thermal conductivity by E , ν, αθ
and k, respectively.
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Fig. 3. Geometric composite beam subject to heat source Q and lateral disturbing pressure q: (a) undeformed shape, (b) deformed shape,
(c) force–displacement curve, (d) effect of the lateral disturbing pressure q on the force–displacement curve. Here the legend, e.g. T60-P5,
infers Q = 60 W/mm2 and q = 5 × 10−3 N/mm2.

6.1. Geometric composite beam subject to temperature change and lateral disturbing pressure

The first problem considers the buckling deformation of a geometric composite beam. The problem setup is
shown in Fig. 3(a). A simply supported beam with dimensions L × W × H = 2 mm×6 mm×0.2 mm is subjected
to an applied external heat source Q = 60 W/mm2 and lateral disturbing pressure q = 5×10−3 N/mm2 at mid-span.
The beam is generated by two Bézier patches. A quadratic NURBS mesh with 8 × 48 elements is used here. The
C1-continuity at the interface between the two patches is enforced by the Lagrange multiplier method presented in
Section 4.3 and [37]. The material properties are E1 = 1.2×103 N/mm2, αθ1 = 10−4 K−1, k1 = 10 W/(mm K) for
the left patch, and E2 = 103 N/mm2, αθ2 = 10−5 K−1, k2 = 1 W/(mm K) for the right patch. The incompressible
Neo-Hookean model (ν = 0.5) is used to describe both materials.

The heat source Q is supplied over the entire beam while the temperature θ̄ = 0 is prescribed along the two
pinned-end edges of the geometric composite beam. Under temperature change, the beam deforms as shown in
Fig. 3(b). The sum of the reaction forces at the nodes on the left end (line a) versus the displacement at a point
on the interface (line b) is plotted in Fig. 3(c). It is shown that the beam buckles when the reaction force at the
pinned ends resulting from the thermal loading reaches approximately 0.4 N . Furthermore, the effect of the lateral
disturbing pressure (i.e. load imperfection) on the force–displacement response is illustrated in Fig. 3(d). The target
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Fig. 4. Geometric composite beam subject to heat source Q and lateral disturbing pressure q . Residual L-curves corresponding to 1% noise:
the objective function value over the regularization parameter β.

deformation corresponding to point C in Fig. 3(c). Experiment-like data is obtained by adding noise to this target
deformation as mentioned above.

Inverse analysis based on the experiment-like data is then carried out. The residual L-curve, corresponding to
data disturbed by 1% noise, is illustrated in Fig. 4. The curve is obtained through inverse analysis for regularization
parameter β varied from 105 mm2/N to 107 mm2/N. The optimal regularization parameter β, indicated by the
corner point on the curve, is approximately 106 mm2/N. Convergence histories of the objective function and the
L2 error norm are illustrated in Fig. 5. The solution to the inverse problem, Qinv

= 59.46 W/mm2 and q inv
=

4.94 × 10−3 N/mm2, is obtained after 40 iterations. Overall, the proposed inverse method can accurately recover
the applied heat source and the surface disturbing load as they are in good agreement with Qmeas

= 60 W/mm2

and qmeas
= 5 × 10−3 N/mm2. In addition, the corresponding shape, shown in Fig. 5(f), is reconstructed nearly

identical to the target shape shown in Fig. 3(b). It should be noted that the target configuration is reconstructed in
the presence of sudden shape changes.

In the following examples, we consider geometrically frustrated structures in form of flat disks. Those deform into
dome-like and saddle-like shapes as a consequence of thermal expansion due to a surface heat source and different
patterns of lateral disturbing pressure. It is worth noting that in this study the thermal expansion is analogous to
(chemical) swelling as noted in the remark of Section 3.1.2. The analogous quantities to the heat source Q and the
boundary heat flux q̄ are then the adsorption S and the boundary mass flux j̄ .

6.2. Dome-shaped geometric composite disk

The second problem consists of a thermally induced swelling of a geometric composite disk. Geometrically, it is
composed by an inner (pink) disk and an outer (green) annulus discretized with nine Bézier patches. We designed
the geometry so that the outer annulus radii Ri = 5 mm and Re = 12 mm is compatibly fitted to the inner disk with
radius r = 5 mm, without pre-stretch. Both have thickness hd = ha = 2 mm. The problem geometry, boundary
conditions and FE mesh are shown in Fig. 6(a). At the patch interfaces, C1-continuity is enforced using the Lagrange
multiplier method shown in Section 4.3. The edges along the circumferential direction of the disk shell are pinned.
A thermohyperelastic incompressible material with Ed = 12 MPa, Ea = 10 MPa and νd = νa = 0.5 for the
inner disk and the outer annulus, respectively, is used to model the material response. The thermal properties for
the inner disk and the outer annulus are chosen respectively as αθd = 5 × 10−5 K−1, kd = 5 W/(mm K) and
αθa = 2 × 10−5 K−1, ka = 1 W/(mm K).

The geometric composite disk is heated by the heat source Q = 25 W/mm2 while keeping the surrounding
temperature θ̄ = 0 at the circumferential boundary ∂θS unchanged. The load imperfection depicted by the lateral
disturbing pressure q = 5×10−3 N/mm2 is applied on the inner disk, see Fig. 6(a). After deformation, the resultant
dome-like shape can be observed in Fig. 6(b). Accordingly, the reaction force estimated at B versus the displacement
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Fig. 5. Geometric composite beam subject to heat source and lateral disturbing pressure: (a) Convergence of the objective function, (b) L2

error norm versus iteration number, (c) deformation at the initial iteration, (d) reconstructed deformation after 2 iterations, (e) reconstructed
deformation after 4 iterations, (f) reconstructed deformation after 40 iterations.
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Fig. 6. Geometric composite disk subject to heat source Q and lateral disturbing pressure q: (a) undeformed shape, (b) deformed shape, (c)
reaction force estimated at B versus displacement measured at A, (d) effect of the lateral disturbing pressure q on the force–displacement
response. Here the legend, e.g. T25-P5, infers Q = 25 W/mm2 and q = 5 × 10−3 N/mm2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

measured at A that shows the buckling behavior of the geometric composite disk is shown in Fig. 6(c). This plot
shows that the disk softens with the reaction force at B being approximately 0.7 N. In addition, the effect of load
imperfection on the force–displacement response is illustrated in Fig. 6(d). The experiment-like data, which is the
nodal displacements of the deformed configuration shown in Fig. 6(b) along with additional noise, is then extracted
to use for the inverse analysis. Note that the deformed shape corresponds to point C on the force–displacement
curve plotted in Fig. 6(c).

Next, the prescribed heat source and lateral disturbing pressure are identified using the above obtained
experiment-like data. The optimal regularization parameter β ≈ 108 mm2/N required by the Tikhonov regularization
technique is chosen corresponding to the corner of the residual L-curve shown in Fig. 7. The convergence of the
objective function and the convergence of L2 error norm during the iteration are shown in Fig. 8. The inverse
solution Qinv

= 25.08 W/mm2 and q inv
= 5.04×10−3 N/mm achieved after 40 iterations is in good agreement with

Qmeas
= 25 W/mm2 and qmeas

= 5×10−3 N/mm. The accuracy of the inverse approach is highlighted in Fig. 8(f),
which shows that the optimal shape is in excellent agreement with the target shape observed in Fig. 6(a). It is worth
noting that the reconstruction of the target configuration is carried out while large shape changes (i.e. buckling) are
allowed.
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Fig. 7. Geometric composite disk subject to heat source Q and lateral disturbing pressure q . Residual L-curves corresponding to 1% noise:
the objective function value over the regularization parameter β.

6.3. Saddle-shaped geometric composite disk

The third problem studies a saddle-shaped disk. We consider the problem setup given in Fig. 9(a). The geometric
composite disk is modeled as an initially flat disk consisting of an inner pink disk and an outer green annulus. The
radii of the inner disk (r = 6 mm) and the annulus (Ri = 6 mm and Re = 12 mm) are ideally matched so that they
are bonded without pre-stretch. The disk surface is clamped at the center and the outermost boundary is constrained
in x and y directions as shown in Fig. 9(a). The center clamp is achieved by fixing the first ring of FE nodes around
the center in z-direction as explained in [49].

A constant heat source Q = 25 W/mm2 is prescribed over the entire structure. Zeros temperature is prescribed
along the outermost boundary. Additionally, an altering lateral disturbing pressure is partially applied on the outer
annulus as shown in Fig. 9(a). The disk is analyzed using 16 × 16 NURBS elements described by thermohyperelastic
constitution using (1) the Koiter model and (2) the incompressible Neo-Hookean material model. At first, the Koiter
model with Ed = 1.2 × 103 MPa, Ea = 103 MPa and νd = νa = 0.35 for the inner disk and the outer annulus,
respectively, is used. The lateral pressure whose magnitude q = 0.1 N/mm2 is prescribed. The thermal properties
are taken as αθd = 2 × 10−5 K−1, kd = 5 W/(mm K) and αθa = 4 × 10−5 K−1 and ka = 1 W/(mm K). Under the
stimuli, the resultant saddle-like shape of Fig. 9(b) can be observed. The reaction force at B versus the displacement
at A is shown in Fig. 9(c).

Secondly, both bodies are described by the incompressible Neo-Hookean formulation with the material properties:
Ed = 12 MPa, Ea = 10 MPa and νd = νa = 0.5. The thermal expansion coefficients αθd = 2 × 10−5 ◦

C−1 and
αθa = 4 × 10−5 ◦

C−1 are taken. The lateral pressure whose magnitude is q = 5 × 10−3 N/mm2 is applied. The
deformed shape is shown in Fig. 10(a). Fig. 10(b) shows the reaction force at B versus the displacement measured
at A.

Inverse analysis based on the nodal displacement of the target configuration shown in Fig. 9(b), is performed to
recover the heat source Q and the lateral disturbing pressure q. Based on the residual L-curve described in Fig. 11,
the optimal regularization parameter β is determined as 107 mm2/N. Fig. 12 shows that the objective function and
the L2 error norm versus the number of iterations converge after 40 iterations. Good agreement between the inverse
solutions Qinv

= 24.94 W/mm2 and q inv
= 0.1004 N/mm2 and Qmeas

= 25 W/mm2 and qmeas
= 0.1 N/mm2 is

realized. Furthermore, the resulting structural deformation corresponding to the optimal solution, shown in Fig. 12(f),
is nearly identical to the target shape. Likewise, for case (2) the deformed shape shown in Fig. 10(a) is adopted
as experiment-like data. Inverse analysis is then carried out leading to the determination of heat source Q and
lateral disturbing pressure q . The optimal regularization parameter β ≈ 5 × 107 mm2/N corresponding to the
corner point on the residual L-curve is taken, see Fig. 13. Reduction of the objective function and the L2 error
norm versus the iteration number are visualized in Fig. 14. The identified parameters Qinv

= 24.89 W/mm2 and
q inv

= 7.484 × 10−3 N/mm2 are in good agreement with Qmeas
= 25 W/mm2 and qmeas

= 7.5 × 10−3 N/mm2.
Accordingly, the target shape is accurately reconstructed after 40 iterations as shown in Fig. 14(f).
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Fig. 8. Geometric composite disk subject to heat source Q and lateral disturbing pressure q: (a) Convergence of the objective function,
(b) L2 error norm versus iteration number, (c) deformation at the initial iteration, (d) reconstructed deformation at the first iteration, (e)
reconstructed deformation after 2 iterations, (f) reconstructed deformation after 40 iterations.
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Fig. 9. Geometric composite disk subject to heat source Q and partially opposite lateral disturbing pressure q: (a) undeformed shape, (b)
deformed shape, (c) reaction force estimated at B versus displacement measured at A, (d) effect of the lateral disturbing pressure q on
the force–displacement response. Here the legend, e.g. T25-P0.1, infers Q = 25 W/mm2 and q = 0.1 N/mm2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Source: The thermohyperelastic theory using the Koiter model is formulated.

7. Conclusions

A new computational framework has been developed to study morphing of geometric composites from 2D
thin sheets to nontrivial 3D shapes due to swelling-induced buckling. An inverse analysis was used to determine
the external stimuli and reconstruct the corresponding shape within the framework of a nonlinear field theory.
A gradient-based optimization method using analytical sensitivities was employed to tackle inverse problems.
We have applied the proposed method to several examples motivated by practical applications in the field of
soft matter. The nonlinear deformations can be reconstructed based on given experiment-like data. Especially,
large shape changes can be captured accurately. We believe that this study provides an effective design tool for
manufacturing of stimuli-responsive materials. It allows us to generate desired 3D shapes of geometric composites
by appropriately prescribing external stimuli on thin flat sheets. The inverse analysis for the thermomechanics of
layered composite shells for example considered in [50–53], where the shell deformation results from nonuniform
heating and local swelling, can be studied in future work. Furthermore, this study can be extended to path-dependent
materials straightforwardly. For example, one can model viscoelastic or elastoplastic shells based on a multiplicative
decomposition of the surface deformation gradient [38].
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Fig. 10. Geometric composite disk subject to heat source Q and partially opposite lateral disturbing pressure q: (a) undeformed shape, (b)
deformed shape, (c) reaction force estimated at B versus displacement measured at A, (d) effect of the lateral disturbing pressure q on the
force–displacement response. Here the legend, e.g. T25-P0.1, infers Q = 25 W/mm2 and q = 5 × 10−3 N/mm2.
Source: The thermohyperelastic theory using the incompressible Neo-Hookean formulation is adopted.
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Appendix A. Linearization of kinematical quantities in the direction ∆x

A.1. Linearization of the surface stretch J in the direction ∆x

The change of J shown in Eq. (12) in the direction ∆x is given by [54] as follows

∆x J =
∂ J
∂aα

· ∆x aα = J aα · ∆x aα = J aα · N,α ∆xe. (A.1)
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Fig. 11. Geometric composite disk subject to heat source Q and partially opposite lateral disturbing pressure q . Residual L-curves
corresponding to 1% noise: the objective function value over the regularization parameter β.
Source: The thermohyperelastic theory using the Koiter model is formulated.

A.2. Linearization of C−1 in the direction ∆x

Linearizing the inverse of the right Cauchy–Green strain C shown in Eq. (14) in the direction ∆x, we obtain

∆x C−1
= ∆x aαβ Aα ⊗ Aβ (A.2)

where the change of aαβ in the direction ∆x, referred from [41], can be written as

∆x aαβ =
∂aαβ

∂aγ δ
∆x aγ δ = aαβγ δ ∆x aγ δ = aαβγ δ aγ · N,δ ∆xe, (A.3)

with

aαβγ δ = −
1
2

(
aαγ aβδ + aαδaβγ

)
, (A.4)

Appendix B. Linearization of kinematical quantities in the direction ∆θ

B.1. Linearization of âα and âα in the direction ∆θ

According to Eq. ((55).1), we linearize âα = ϕ Aα and âα = (1/ϕ) Aα to give

∆θ âα = α Aα N⋆ ∆θ e (B.1)

and

∆θ âα = −
α

ϕ2 Aα N⋆ ∆θ e. (B.2)

B.2. Linearization of âαβ and âαβ in the direction ∆θ

We linearize âαβ = âα · âβ and âαβ = âα · âβ in the direction ∆θ to give

∆θ âαβ = âα · ∆θ âβ + ∆θ âα · âβ = 2αϕ Aαβ N⋆ ∆θ e,

∆θ âαβ = âαβγ δ ∆θ âγ δ = −2
α

ϕ3 Aαβ N⋆ ∆θ e
(B.3)
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Fig. 12. Geometric composite disk subject to heat source Q and partially opposite lateral disturbing pressure q: (a) Convergence of the
objective function, (b) L2 error norm versus iteration number, (c) deformation at the initial iteration, (d) reconstructed deformation after 2
iterations, (e) reconstructed deformation after 4 iterations, (f) reconstructed deformation after 40 iterations.
Source: The thermohyperelastic theory using the Koiter model is formulated.
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Fig. 13. Geometric composite disk subject to heat source Q and partially opposite lateral disturbing pressure q . Residual L-curves
corresponding to 1% noise: the objective function value over the regularization parameter β.
Source: The thermohyperelastic theory using the incompressible Neo-Hookean formulation is adopted.

B.3. Linearization of b̂αβ and b̂αβ in the direction ∆θ

Linearizing b̂αβ = n̂ · âα,β , ˜̂bαβ = 2Ĥ âαβ − b̂αβ and κ b̂αβinv = 2Ĥ âαβ − b̂αβ , we have

∆θ b̂αβ = α Bαβ N⋆ ∆θ e (B.4)

and

∆θ b̂αβ = b̂αβγ δ ∆θ âγ δ − âαβγ δ ∆θ b̂γ δ

= α
(

2ϕ b̂αβγ δ Aαβ − âαβγ δ Bαβ
)

N⋆ ∆θ e

(B.5)

with aαβγ δ being given in Eq. (A.4) and

b̂αβγ δ := −
1
2

(
âαγ b̂βδ + b̂αγ âβδ + âαδ b̂βγ + b̂αδ âβγ

)
. (B.6)

B.4. Linearization of Jθ in the direction ∆θ

The linearization of Jθ , shown in Eq. (11), in the direction ∆θ can be expressed by

∆θ Jθ = 2αϕ ∆θ = 2αϕ N⋆ ∆θ e. (B.7)

B.5. Linearization of ĝαβ and ĝαβ in the direction ∆θ

Linearizing ĝαβ shown in Eq. ((34).1) in the direction ∆θ , we obtain

∆θ ĝαβ = ĝa ∆θ âαβ + ĝb ∆θ b̂αβ + âαβ ∆θ ĝa + b̂αβ ∆θ ĝb (B.8)

with

∆θ ĝa = ξ 2κ̂ âγ δ ∆θ âγ δ − ξ 2 ˜̂bγ δ ∆θbγ δ,

∆θ ĝb = −ξ 2 b̂γ δ ∆θ âγ δ − ξ 2 âγ δ ∆θbγ δ.
(B.9)

Similarly, the linearization of ĝαβ , shown in Eq. ((34).2), in the direction ∆θ yields

∆θ ĝαβ = ĝαβγ δa ∆θ âγ δ + ĝαβγ δb ∆θ b̂γ δ (B.10)
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Fig. 14. Geometric composite disk subject to heat source Q and partially opposite lateral disturbing pressure q: (a) Convergence of the
objective function, (b) L2 error norm in parameter space X versus iteration number, (c) deformation at the initial iteration, (d) reconstructed
deformation after 2 iterations, (e) reconstructed deformation after 4 iterations, (f) reconstructed deformation after 40 iterations.
Source: The thermohyperelastic theory using the incompressible Neo-Hookean formulation is adopted.
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where

ĝαβγ δa := ŝ−2
(

âαβ ϵ̂γ δa + b̂αβ ν̂γ δa

)
+ ĝa âαβγ δ + ĝb b̂αβγ δ,

ĝαβγ δb := ŝ−2
(

âαβ ϵ̂γ δb + b̂αβ ν̂γ δb

)
− ĝb âαβγ δ,

(B.11)

with

ϵ̂αβa :=
(
âαβ − ĝ−1 µ̂αβa

) (
ĝa + 2Ĥ ĝb

)
+ λαβa ,

ϵ̂
αβ

b := −ĝ−1 µ̂αβa

(
ĝa + 2Ĥ ĝb

)
+ λ

αβ

b .

(B.12)

and
ν̂αβa := −

(
âαβ − ĝ−1 µ̂αβa

)
ĝb − ξ 2 b̂αβ,

ν̂
αβ

b := ĝ−1 µ̂
αβ

b ĝb − ξ 2 âαβ,
(B.13)

Here we defined

λ̂αβa := ξ 2κ̂ âαβ −

(
2Ĥξ 2

+ ĝb

)
b̂αβ,

λ̂
αβ

b := ξ 2 ˜̂bαβ +

(
2Ĥξ 2

+ ĝb

)
âαβ,

(B.14)

and

µ̂αβa := 2â
(

ĝa + Ĥ ĝb

)
ξ 2κ̂ âγ δ − 2

(
b̂ ĝb + Ĥ âĝa

)
ξ 2 b̂γ δ + ĝ2

a â âγ δ + ĝa ĝb â ˜̂bγ δ,

µ̂
αβ

b := −2â
(

ĝa + Ĥ ĝb

)
ξ 2 ˜̂bγ δ + 2

(
b̂ ĝb + Ĥ âĝa

)
ξ 2 âγ δ + ĝ2

b â ˜̂bγ δ + ĝa ĝb â âγ δ.
(B.15)

B.6. Linearization of J ⋆M in the direction ∆θ

According to [37], the change

∆θ J ⋆M =
J ⋆M
2

(
ω̂αβa ∆θ âαβ + ω̂

αβ

b ∆θ b̂αβ
)

(B.16)

is derived, where

ω̂αβa := ξ 2 κ̂ m̂a âαβ − ξ 2 m̂b b̂αβ + ĝa ĝαβ,

ω̂
αβ

b := −ξ 2 m̂a
˜̂bαβ + ξ 2 m̂b âαβ + ĝb ĝαβ .

(B.17)

with m̂a = ĝγ δ âγ δ and m̂b = ĝγ δ b̂γ δ .

B.7. Linearization ŝ in the direction ∆θ

From Eq. (36), the change of ŝ is described by

∆θ ŝ = 2ξ ∆θ Ĥ + ξ 2 ∆θ κ̂ . (B.18)

in which the mean curvature and the Gauss curvature associated with the thermal intermediate configuration Ŝ are
given by

Ĥ =
1
2

âαβ b̂αβ, κ̂ =
det[b̂αβ]
det[âαβ]

=
b̂
â
. (B.19)

and the change of Ĥ and κ̂ in the direction ∆θ can thus be expressed as

∆θ Ĥ =
∂ Ĥ
∂ âαβ

∆θ âαβ +
∂ Ĥ

∂ b̂αβ
∆θ b̂αβ

∆θ κ̂ =
∂κ̂

∂ âαβ
∆θ âαβ +

∂κ̂

∂ b̂αβ
∆θ b̂αβ,

(B.20)
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with

∂ Ĥ
∂ âαβ

= −
1
2

b̂αβ,
∂ Ĥ

∂ b̂αβ
=

1
2

âαβ

∂κ̂

∂ âαβ
= −κ âαβ,

∂κ̂

∂ b̂αβ
= κ b̂αβinv =

˜̂bαβ .

(B.21)

B.8. Linearization of τ αβM and Mαβ

M in the direction ∆θ

B.8.1. Koiter material model
Given by Eq. (37), the linearization of τ αβM and Mαβ

M can be expressed by

∆θτ
αβ

M =

[
−

2α
ϕ3

(
Λ Aαβ âγ δ + 2µ Aαγ âβδ

) (
aγ δ − âγ δ

)
− αϕ ĉαβγ δ Aγ δ

]
N⋆∆θ e,

∆θ Mαβ

M =

[
−

4α
ϕ3

T 2

12

(
Λ Aαβ âγ δ + 2µ Aαγ âβδ

) (
bγ δ − b̂γ δ

)
− α f̂ αβγ δ Bγ δ

]
N⋆∆θ e.

(B.22)

where ĉαβγ δ and f̂ αβγ δ are given by Eq. (31).

B.8.2. Incompressible Neo-Hookean material model
According to Eq. (37), we can derive the following linearizations

∆θτ
αβ

M =

∫ T
2

−
T
2

[
∆θ ŝ

(
1 − ξ 2κ

)
τ̃
αβ

M + ŝ
(
1 − ξ 2κ

)
∆θ τ̃

αβ

M

]
dξ,

∆θ Mαβ

M =

∫ T
2

−
T
2

[
∆θ ŝ

(
−ξ + ξ 2 H

)
τ̃
αβ

M + ŝ
(
−ξ + ξ 2 H

)
∆θ τ̃

αβ

M

]
dξ,

(B.23)

where τ̃ αβM is given by Eq. (40), we can thus derive the following linearization

∆θ τ̃
αβ

M = µ̃

(
∆θ ĝαβ + 2

∆θ J ⋆M
J ⋆M

3 gαβ
)
, (B.24)

with ∆θ ĝαβ and ∆θ J ⋆M being given in Eqs. (B.10) and (B.16), respectively, we obtain

∆θ τ̃
αβ

M = µ̃ α

[(
2ϕ Aγ δ ĝαβγ δa + Bγ δ ĝαβγ δb

)
+

1

J ⋆M
2

(
2ϕ Aαβ ω̂αβa + Bαβ ω̂

αβ

b

)]
N⋆∆θ e. (B.25)
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