
TreeRot.v3

Copyright (c) 2007 Michael D. Sorenson & Eric A. Franzosa
Department of Biology, Boston University, Boston, MA 02215

Please send questions and suggestions to: msoren@bu.edu

Suggested citation:

Sorenson, M.D. & E.A. Franzosa. 2007. TreeRot, version 3. Boston University, Boston, MA.

Description:

TreeRot aids in the determination of decay or Bremer support indices (Bremer 1988) by generating
a command file for PAUP or PAUP* (Swofford 1993, 1999). The command file includes 1) a
constraint statement for each node in a given shortest or strict consensus tree and 2) commands to
search for trees inconsistent with each of these constraint statements in turn. Compared to the
shortest unconstrained tree, the number of additional steps required in the shortest tree(s) that is
inconsistent with a given node is the decay index or Bremer support index for that node. For nodes
with decay indices of more than 2 or 3, the constraint statement approach is much more effective
than simply finding all trees 1, 2, 3, etc. steps longer than the shortest tree and then examining their
strict consensus for which nodes are lost. Note also that a similar approach can be taken in analyses
using other optimality criteria - see Lee & Hugall (2003) for an example involving maximum
likelihood.

New Features, version 3

TreeRot.v3 has been completely recoded in Perl and should now run on any operating system!

TreeRot.v3 provides additional information about the results of partitioned analyses in which
multiple equally parsimonious trees are found in a given constrained search. For each data partition,
TreeRot now provides both the average difference in tree length between constrained and
unconstrained searches and the minimum and maximum differences in tree length (for single
partition analyses, all these values are the same). As shown by Lambkin et al. (2002), equally
parsimonious trees found in a constrained search may require different numbers of extra steps for a
given data partition; in some cases, one tree may require extra steps (suggesting support for that
node in the given data partition), whereas another tree may require fewer steps (suggesting conflict
with that node in the given data partition). Averaging across trees sweeps this potentially interesting
conflicting signal under the rug. See Lambkin et al. (2002) for more on this issue.

TreeRot.v3 now summarizes your results in a NEXUS format tree file, in which the decay index for
each node (and partition) is embedded in the tree file. This file can be viewed in FigTree
(http://tree.bio.ed.ac.uk/software/) which will show the decay indices on each node. Values for
different data partitions are shown on separate trees (one for each partition).

New Features, version 2

TreeRot.v2 includes an option to generate the commands needed to calculate "partitioned" Bremer
support (Baker & DeSalle 1997, Baker et al. 1998). Partitioned Bremer support provides a measure
of how different partitions of the data contribute to the decay index for each node in the context of
the combined data analysis. The partial Bremer index for each data partition is determined by

subtracting the number of steps for that partition in the most parsimonious tree(s) from the number
of steps for that partition in the shortest tree(s) without the node in question. Partial decay indices
may be either positive or negative for an individual data partition, but the sum of the partial decay
indices for a given node equals the overall decay index if the partitions specified are mutually
exclusive but together comprise all of the characters in the original analysis.

TreeRot.v2 will also parse the PAUP log file and calculate decay indices or partial decay indices
after all of the searches in the command file have been completed. Although this makes it very easy
to obtain decay indices for your tree, I recommend a careful examination of the log file to evaluate
whether the random addition replicates for each constrained search have consistently found trees of
the same length. If not, additional replicates are likely to yield shorter trees, resulting in a smaller
decay index.

Instructions:

1) In PAUP, find the shortest tree or trees for a given analysis. Save either the shortest tree or the
strict consensus tree to a NEXUS tree file (e.g., duck.tree). This tree file must be saved in the same
folder/directory as TreeRot. If more than one tree is saved TreeRot will use only the first tree. Note
that by definition, nodes not in the strict consensus tree have a decay index of 0.

2) Double-click the TreeRot.sh icon (or if that doesn't work, open a command line window - the
Terminal program in OSX - and type perl TreeRot.pl). Enter 1 to generate a PAUP command file.
Follow the prompts to enter a) the name of the tree file (e.g., duck.tree), b) a name for the command
file that TreeRot will generate (e.g., duck.constraints), and c) a name for the PAUP log file (e.g.,
duck.results). The latter is specified within the command file and will not be created until the
command file is executed in PAUP.

3) If you want to generate partitioned Bremer support indices, answer yes (y) at the prompt and
then follow additional prompts to enter the number of partitions and their names. Names of the
partitions must correspond exactly to names of character sets in your PAUP data file. These should
be mutually exclusive character sets that together comprise all the characters used in the original
analysis.

4) Return to PAUP and execute the command file generated by TreeRot (e.g., duck.constraints).
Results will be shown on the screen and also written to disk in a log file, the name of which was
specified in TreeRot (e.g., duck.results). The relevant node will be written to the screen and to the
log file after each search in the form of: Taxon1,Taxon2,>-----<Taxon3,Taxon4,Taxon5,Taxon6, etc.
Subtract the number of steps in the shortest, unconstrained tree(s) from the number of steps in the
shortest tree(s) found in each of the constrained searches to get your decay/support indices, or...

5) Launch TreeRot again and enter 2 to parse the PAUP log file. Follow the prompts to enter the
name of the log file (e.g., duck.results) and the name of a file for the parsed results (e.g.,
duck.summary). Open this file in PAUP or a word processor. The length of the unconstrained
analysis is given first followed by a list of taxa in each group and the length of the shortest trees
without that group. The decay index for that node is shown to the right on the same line. For
partitioned analyses, tree lengths and decay indices are broken down by data partition and the
average, minimum, and maximum length difference for each partition over the shortest trees that
were found is given (note that partitioned decay indices may be negative and/or fractional).
TreeRot.v3 also writes to the same file in NEXUS format a tree that you can view in FigTree
(http://tree.bio.ed.ac.uk/software/) to see decay indices on each node - this is substantially easier
than going through the text output. It is, however, advisable to also examine the PAUP log file to
confirm that the same island(s) of trees were consistently found across replicate runs - if not, more
thorough searching of tree space may be necessary.

Getting TreeRot to run on your system:

The source code for the updated program is included in TreeRot.pl. The syntax is based on Perl
5.8. To run the program in script mode simply navigate to its location at the command line (using
Terminal under OS X or the Command Prompt, cmd.exe, under Windows) and type "perl
TreeRot.pl" (no quotes) and then press enter. Since OS X is based on Unix it comes with a version
of Perl already installed. Windows does not include Perl by default, but a free version can be
downloaded and installed from ActiveState (the distribution is called ActivePerl).

The file TreeRot.exe is an executable version of TreeRot compiled for the Windows platform. The
executable contains all the TreeRot source code in addition to the necessary Perl components. If
you choose to use the executable, you DO NOT need to install Perl separately on Windows. The
executable can be run by double-clicking its icon (which will open and prepare a command prompt
for you). TreeRot.exe was compiled using the free PAR (v0.973) and PAR::Packer (v0.975) Perl
modules under ActiveState Perl 5.8.8 build 820.

The file TreeRot.sh is a compiled version of TreeRot in the form of a Mac OS X shell script.
Double clicking the program icon in Mac OS X will launch a terminal window and run the program
(just like the windows executable). The shell script is smaller and runs faster than the windows
version because it can take advantage of the built-in Perl functionality of OS X. The attached
version of TreeRot.sh was compiled on an intel-based mac running OS 10.4. There may be issues
getting this version of the shell script to run on other versions of OS X or on power pc-based macs.
To compile a version of TreeRot for your platform, download TreeRot.pl, navigate to its location in
a Terminal window, and then type "perlcc -B -o TreeRot.sh TreeRot.pl" (no quotes) and then press
enter. This will call OS X's built-in Perl compiler to make an executable version of TreeRot called
TreeRot.sh. The *.sh file extension lets OS X know that this file wants to open and run in a
terminal window.

Additional Notes:

1) Before executing the command file, make sure that all settings in PAUP are identical to those
used in finding the original shortest unconstrained tree: e.g. inclusion/exclusion of taxa and
characters, character weights, and step matrices. (Decay indices can be calculated for analyses using
character weights and step matrices, although the values obtained will reflect these weighting
schemes and should be interpreted appropriately.) The first search command in the command file
generated by TreeRot is without constraints and should result in a tree(s) with the same number of
steps as that found in the original search. If not, then some setting in PAUP has been changed or
the shortest tree(s) is not being found.

2) By default, TreeRot specifies 20 replicate heuristic searches with random addition of taxa for
each constraint statement. Note that for decay indices to be accurate, the shortest tree inconsistent
with the constraint statement for each node must be found. Because failure to find the shortest
tree(s) in each search results in an overestimation of decay indices, searching strategy is just as
important as in the original unconstrained search. Depending on your dataset, you may want to edit
the search statements in the command file generated by TreeRot. Additional replicates, exhaustive
searches, branch and bound searches, and other search options can be implemented in these
statements (see the PAUP manual). For example, you may want to limit the number of trees saved
in each random addition replicate and increase the number of replicates to better explore tree space
when working with large numbers of taxa. Be aware that additional options previously specified in
PAUP dialog boxes or commands may be in effect at the time the command file is executed.

3) If you start additional searches on the same dataset after determining decay indices, be aware that
the last constraint specified in the command file will still be in effect after execution of the

command file is completed.

4) With large datasets, you can execute the command file and leave it to run for hours (or days or
weeks): a search will be conducted for each node. PAUP will sometimes stop, however, for a
prompt (such as when MAXTREES has been reached). Before executing the command file, you
may want to set MAXTREES to automatically increase or alternatively to "leave unchanged and
don't prompt" (the effectiveness of the search may be reduced in the latter).

5) If searching for the shortest trees inconsistent with certain nodes is problematic because of
multiple islands and/or large numbers of trees, you can input all the constraint statements by
executing the command file and then stopping the first search. All of the constraint statements are
then available in the dialog boxes for heuristic, branch and bound, or exhaustive searches, etc.,
allowing additional searching for shortest trees inconsistent with any particular node. Examine the
command file to figure out which taxa belong to each node.

6) TreeRot works with NEXUS tree files generated by PAUP, either with or without a taxon
translation table. TreeRot works with trees exported either as rooted or unrooted but with rooted
trees (and outgroup assumed to be a monophyletic sister group), the last constraint statement may
be a duplicate of an earlier statement, but with the complementary set of taxa in parentheses (this
should only happen if the “[&R] ” flag is not present in the tree statement). Likewise, with a single
taxon in the outgroup, the last constraint statement may be invalid because it is consistent with all
trees. In either case, parsing of the PAUP output file using TreeRot should work just fine. In the
case of a monophyletic sister group as outgroup, note that the decay index for the ingroup-outgroup
branch will show up twice in the final output from TreeRot, once for monophyly of the outgroup
and once for monophyly of the ingroup – note that this is simply the same value shown on either
end of the same branch (in an unrooted context) and a high value should not be interpreted as
strong support for both ingroup and outgroup monophyly – the latter was assumed initially when
the original tree was saved in PAUP. TreeRot.v3 should no longer have limitations on number of
taxa and length of taxon names, but let me know if you run into trouble.

7) No warranty is expressed or implied regarding the accuracy of your results or the compatibility
of TreeRot with any other programs. Please let me know if you discover any bugs
(msoren@bu.edu).

References:
Lambkin, C. L., M. S. Y. Lee, S. L. Winterton, and D. K. Yeates. 2002. Partitioned Bremer

support and multiple trees. Cladistics-the International Journal of the Willi Hennig Society
18:436-444.

Lee, M. S. Y., and A. F. Hugall. 2003. Partitioned likelihood support and the evaluation of data
set conflict. Systematic Biology 52:15-22.

Baker, R.H., and R. DeSalle. 1997. Multiple sources of character information and the phylogeny
of Hawaiian Drosophilids. Systematic Biology 46:654-673.

Baker, R. H., X. B. Yu, and R. DeSalle. 1998. Assessing the relative contribution of molecular
and morphological characters in simultaneous analysis trees. Molecular Phylogenetics and
Evolution 9:427-436.

Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic
reconstruction. Evolution 42:795-803.

Swofford, D.L. 1993. Phylogenetic analysis using parsimony (PAUP), version 3.1. Illinois
Natural History Survey, Champaign, IL.

Swofford, D. L. 1999. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods),

version 4.0. Sinauer Associates, Sunderland, Massachusetts.

