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Peer-to-Peer Markets with Bilateral Ratings

ABSTRACT

Peer-to-peer (P2P) markets have become a critical aspect of the modern economy. We con-
sider a P2P market where a time-sensitive service is provided through a platform that matches
providers of varying qualities to customers of varying costs. The P2P platform features bilat-
eral ratings, which distinguishes itself from a traditional market: ratings of a provider reveal
his service quality and ratings of a customer reveal her service cost. The existence of a cost
measure in the P2P market leads to novel pricing considerations: a provider can attract low-
cost customers by charging a low price, leading to an “endogenous composition effect”. As
a result, equilibrium prices may decrease as customers become more costly to serve or as the
platform’s commission rate gets higher. Under certain conditions, high-quality providers may
even charge a lower equilibrium price than low-quality providers in order to cherrypick low-
cost customers. Exploratory analysis reveals that compared with unilateral ratings, bilateral
ratings may soften provider competition and raise equilibrium prices as the providers target
customers in different cost segments.

Keywords: user-generated content, customer reviews, decentralized matching, peer-to-peer market,
platform design



1 Introduction

The past two decades have witnessed an explosion of information technology that has
given birth to larger, faster, and more geographically diverse marketplaces. Peer-to-peer (P2P)
platforms, in particular, can provide consumers with access to either material goods such as ve-
hicles (e.g., Toru, RVShare), or services such as accommodation (e.g., Airbnb), care-giving (e.g.,
Rover, Care.com), home improvement (e.g., Thumbtack, TaskRabbit), freelance work (e.g., Up-
work, Fiverr) and personal loans (e.g., Prosper, LendingClub) . Due to the broad adoption of
P2P platforms, they have become an important part of a modern consumer’s life and a critical
aspect of the sharing economy.

P2P markets have two distinctive features when compared to traditional markets. First,
the service provided in a P2P market is often time-sensitive, which creates a capacity con-
straint for the service and may lead to significant coordination frictions: some customers may
fail to match with any provider and some providers may end up with no customer to serve.
Recent empirical studies (e.g., Horton 2014; Fradkin 2015) have, for example, systematically
documented that popular providers on oDesk and Airbnb get contacted by multiple buyers
and often reject certain guests due to capacity constraints.1 When a failure of match occurs,
the customer would often have to seek service from other channels (e.g., family and friends,
traditional businesses), do it themselves (e.g., home repair, data entry), or simply abort the
need. Acknowledging such coordination frictions enables us to understand why customers
and providers in P2P markets have a strong incentive to maintain a good reputation so that
they are more likely to be matched.

A bilateral reputation system is the second distinctive feature of P2P markets. In such a
system, both customers and providers are rated by the other side of the market, whereas in a
typical traditional market only the providers are rated. The service orientation of P2P markets
and the capacity constraint on such time-sensitivity service make it important for providers to
learn the cost to serve a particular customer. When aggregated, ratings can significantly resolve
uncertainties around the quality of a provider’s service and the cost to serve a customer.2 While
many potential factors may hinder truthful reporting, the flourishing of peer-to-peer markets is
in itself evidence that bilateral reputation systems work well to screen out dysfunctional actors
and deter fraudulent behavior (Resnick et al. 2002; Dellarocas 2003; Cabral and Hortacsu 2010;
Ke and Zhu 2021).

We build a decentralized matching model to explore the effects of these two distinctive
features of P2P markets. Our one-shot model captures the time-sensitivity of P2P services and
features large numbers of customers and providers. We find two types of equilibria. In the
first type, low-cost customers apply only to high-quality providers while high-cost customers
apply to all providers. Intuitively, low-cost customers are more attractive than high-cost cus-

1Similarly, Liu et al. (2020) empirically document that providers tend to refuse to serve customers with a weak
reputation. Brown (2023) finds that discrimination against black taxi riders results in far higher rates of trip cancel-
lation and longer wait times compared with white riders. By contrast, ride-hailing dramatically reduces differences
between riders. Scott et al. (2016) find that in the context of service refusals in supply chains, spot prices for rejected
truckload services average about 62% higher than contract rates.

2In addition to organic reviews on peer-to-peer platforms, certain service providers can also use third-party
review sites such as ratemycustomers.com, badbuyerlist.org, and customers2avoid.com to avoid costly customers.
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tomers and more likely to be accepted by high-quality providers, who have more attractive
applicants, longer queues, and lower acceptance rates than low-quality providers. A high-cost
customer may, interestingly, get over-penalized for her reputation with such a low acceptance
rate that at the application stage, she would find it worthwhile to reimburse the provider of
her entire service cost if she could then be treated as a low-cost customer. In the second type
of equilibria, all customers apply to all types of providers but low-cost customers still have
higher acceptance rates than high-cost ones.

We highlight in our analysis a unique endogenous composition effect: the expected service
cost faced by a provider is not an exogenous market feature but rather depends on the compo-
sition of customers that apply to him, which in turn depends on the price set by the provider.
More specifically, as a provider lowers his price, he attracts a pool of applicants with a lower
average service cost. In a traditional market, a lower price has two effects, a decrease in the
profit margin accompanied by an increase the demand, whereas in our model, it continues to
have these two effects but also has a third strategic effect of lowering the cost of service which
can help reduce or even reverse the loss in profit margin.

These novel pricing considerations lead to interesting comparative statics. To begin, equi-
librium prices may decrease with customers’ service costs and the platform’s commission rate.
These two patterns are counter-intuitive: one would expect that higher costs and fees would
drive up prices in order for the providers to cover their expenses. In the presence of the en-
dogenous composition effect, however, providers may lower prices instead if the strategic ben-
efit of attracting low-cost customers outweighs the immediate loss in their profit margin.

Allowing for incomplete market coverage, we also find that high-quality providers may
charge a price that is lower than that of low-quality providers. Given the prevalence of high-
cost customers, the high-quality providers in this case prioritize the cultivation of a low-cost
applicant pool through charging a low price, while low-quality providers anticipate only ap-
plications from more costly customers and are forced to charge a high price in order to make
up for the high service costs of his applicants.

Finally, we characterize the market equilibrium under unilateral ratings of providers, and
find through numerical comparisons that bilateral ratings tend to raise market prices as a result
of cost-based customer segmentation and the subsequent reduction in provider competition.
The platform may hence benefit from bilateral ratings as it takes a fraction of the increased
provider revenue, but the implications of bilateral ratings on consumer welfare remain unclear:
matches indeed become more informed but prices are increased as well.

1.1 Literature Review

Our research contributes to the growing literature of pricing, matching and P2P mar-
kets. In the literature of behavior-based price discrimination (BBP), firms typically discriminate
based on customers’ willingness-to-pay that they learn from the customers’ past purchase be-
havior. For example, a firm may discriminate between its own and the competitors’ customers
(e.g., Fudenberg and Tirole 2000; Pazgal and Soberman 2008; Shin and Sudhir 2010; Zhang
2011), and a firm can charge returning and new customers different prices (e.g., Hart and Ti-
role 1988; Schmidt 1993; Villas-Boas 2004). In our model, providers cannot charge different
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prices based on customers’ willingness to pay or service cost, but they can decide whether to
serve a specific customer based on her service cost. In this regard, our study relates to Shin
et al. (2012) who show that a monopolist may find it optimal to fire some high-cost customers
even if they are profitable. While our results share the general intuition from the BBP literature
that sellers’ enhanced ability to track customer behavior may intensify price competition, our
study points out that bilateral ratings may also relax competition through cost-based segmen-
tation.

Another related branch of the pricing literature focuses on cross-brand retail pass-through:
retailers may change prices of multiple products in response to a change in the wholesale cost
of a single product (e.g., Nakamura 2008), and there can be positive (negative) cross-brand
pass-through where the retail price of an item would decrease (increase) as the wholesale price
of another item decreases (e.g., Besanko et al. 2005). While our study also features competition
between providers who sell through the same platform (e.g., Hu et al. 2022), our main focus
is on how providers can influence the composition of their own customer base. This departs
from the pass-through literature which highlights retailers’ profit maximization as the driving
force behind co-movement of prices (e.g., Moorthy 2005).

Within the context of decentralized matching, our model builds on the competitive search
literature in labor economics pioneered by Peters (1991) and Montgomery (1991). Early contri-
butions to this literature (e.g., Burdett et al. 2001) focus on homogeneous agents on both sides
of the market while more recent papers have started to incorporate heterogeneous agents (e.g.,
Eeckhout and Kircher 2010; Chade et al. 2017). Compared with other search and matching
models, the labor-economics framework explicitly models the matching process (see Rogerson
et al. (2005) for a survey). Shi (2002), in particular, considers a directed search model with
coordination frictions in which workers with heterogeneous skills apply to firms with hetero-
geneous technologies. Shi assumes that high-skill workers generate higher output when they
are matched with high-technology firms, which leads to positive assortment. The absence of
an equivalent assumption in our model enables us to shift the focus from positive assortment
to the endogenous composition effect. To this regard, our model also makes methodological
contribution to the competitive search literature by incorporating a continuous distribution
of customer types, which has two advantages: first, it allows us to establish an elegant re-
lationship between an individual provider’s profit and his acceptance rates for all types of
customers, which facilitates tractable analysis; second, it enables a straightforward and visual
characterization of market segmentation based on customer costs.

Finally, our paper makes an important contribution to the emerging literature on P2P plat-
forms, collaborative consumption and sharing economy (e.g., Einav et al. 2016; Veiga and Weyl
2017). Existing research in this literature has generally focused on how peer-to-peer markets
differ from traditional markets, discussing the impact of peer-to-peer markets on traditional
markets (e.g., Zervas et al. 2016; Jiang and Tian 2018; Tian and Jiang 2018; Gong et al. 2017), the
value of flexible work (e.g., Chen et al. 2019), and search frictions (e.g., Horton 2014; Fradkin
2015; Arnosti et al. 2021).3 By viewing bilateral ratings in our model as a form of information

3Other studies have examined buyers’ incentives to leave feedback (e.g., Bolton et al. 2013; Nosko and Tadelis
2015; Horton and Golden 2015), the impact of choice sets (e.g., Halaburda et al. 2018), potential incentive misalign-
ment between customers and the platform (e.g., Armstrong and Zhou 2011; Eliaz and Spiegler 2011; Hagiu and
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disclosure, we recognize Romanyuk and Smolin (2019) as the closest to our paper in this liter-
ature, who show that full information disclosure on a platform with nonstrategic buyers may
lead to a market failure due to excessive rejections by the sellers. To our best knowledge, the
current paper is the first theoretical attempt to understand how a bilateral reputation mecha-
nism affects strategic behavior of agents on both sides of a P2P platform.

The remainder of the paper proceeds as follows. Section 2 introduces the main model and
Section 3 characterizes the equilibrium outcomes and comparative statics. Section 4 explores
providers’ pricing strategies when market coverage is incomplete. Section 5 studies a mar-
ket with unilateral ratings and compares the equilibrium outcomes with those from the main
model. Section 6 tests the robustness of our findings under alternative assumptions. Section 7
concludes and points out directions for future work.

2 Main Model

We consider a P2P market where M providers and N customers gather on a platform
to trade with each other for a time-sensitive service. Following the literature on matching
markets and consistent with our observation of P2P markets, we assume that the market is
large, i.e., M,N → ∞, and neither side of the market is infinitely larger than the other side, i.e.,
0 < n ≡ N/M < ∞.4

To explore the effects of a bilateral reputation system, we incorporate quality differenti-
ation for providers and cost differentiation for customers into our model.5 On the provider
side, we assume that a fraction γ of the providers are of high (H) quality qH and the remaining
1−γ fraction are of low (L) quality qL, with γ ∈ (0, 1) and qH ≥ qL > 0.6 On the customer side,
a customer’s utility from receiving service of quality q at price p is u(p, q) = q − p.7 To serve a
customer of cost type θ, a provider of quality q incurs a variable cost of θg(q), where g(·) > 0,
g′(·) ≥ 0, and θ follows a distribution function F (·) in [0, θ̄] with PDF f(θ) ≡ F ′(θ) being

Jullien 2011; De Cornière and Taylor 2014), and comparison of different pricing formats such as auctions, posted
prices and surge pricing (e.g., Einav et al. 2018; Gomez Lemmen Meyer 2015; Cullen and Farronato 2021; Guda and
Subramanian 2019; Castillo et al. 2017).

4This assumption facilitates the tractability of the model by essentially approximating binomial distribution
of the number of applications received by a provider by exponential distribution (Butters 1977). An equivalent
representation of the model is to have a set of providers of measure 1 and a set of customers of measure n. Each
provider or customer can then be interpreted as an infinitesimally small subset. To facilitate analysis, we take the
limit of M,N → ∞ when analyzing the equilibrium instead of first solving the equilibrium for finite N and M
and then taking the limit. In Section 6.1, we analyze an alternative market setup with M = N = 2 and find that a
pure-strategy price equilibrium does not exist.

5We focus on vertical differentiation for two reasons. First, the most salient features of customer reviews in the
real world are often the average rating and the number of ratings, both of which mainly reflect vertical quality of
the provider’s service. Second, we want to explore the possibility of a higher-quality provider charging a lower
price in an environment with endogenous composition effect. If providers are horizontally rather than vertically
differentiated, our intuition is that the endogenous composition effect would still persist: providers may respond
to higher commission rates and average service cost by lowering their prices.

6As the driving force of our results is coordination frictions that are rooted in time-sensitivity of the service
provided, we do not expect the main results to change for alternative model setups with, for example, a continuum
of quality types. The discrete setup of provider qualities is in line with classic vertical differentiation models (e.g.,
Moorthy 1988), which makes our result directly comparable with the classic results in the literature.

7If customers have different sensitivities towards quality, the high-quality providers may have an incentive to
charge a higher price to cream skim the high-sensitivity customers who have higher willingness to pay for quality.
This new incentive could balance against these providers’ incentive to cherry-pick the low-cost customers through
lower prices, leading to a weaker endogenous composition effect.
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positive and finite for ∀θ ∈ [0, θ̄]. As one can see, customers with a higher θ are more costly to
serve. Note that the cost to serve a particular customer may be the same if g(q) = 1, or different
across providers if for example, g(q) = q, under which, service cost is higher to a high-quality
provider than to a low-quality provider. This happens when high-quality providers value their
time more than the low-quality ones and hence regard service as more costly.8 The fixed cost
of service is normalized to zero.

To keep the analysis tractable, we assume complete market coverage in the main model:
service costs are low enough in comparison to its value so that even the most costly customer
would be served in equilibrium. We will analyze the case of incomplete market coverage in
Section 4. We also assume that the platform implements a bilateral rating system that fully
reveals providers’ service quality and customers’ service cost.

We consider a matching game in three stages. First, all providers post prices simultane-
ously, which are observed by all agents in the marketplace. Each provider posts a single price
and there is no price discrimination based on service costs. Second, all customers simulta-
neously submit their applications to providers. Each customer can only submit at most one
application but is allowed to use a mixed strategy.9 Lastly, a provider decides which appli-
cation to accept if he receives one or more applications. An important assumption we make
here is that each provider can serve at most one customer. The capacity constraint enables us
to capture the scarce, time-sensitive nature of services in many P2P markets and is also recog-
nized as an important feature of matching models in the literature (e.g., Burdett et al. 2001).
Given the capacity constraint, upon receiving multiple applications, a provider will accept the
customer with the lowest θ, because the price has been set and customers are homogeneous
along all other dimensions. Once acceptance occurs, service is provided and payment is made
to the provider, who then pays the platform a fraction δ ∈ [0, 1) of the transaction price as
a commission. If a provider receives no applications from customers or turns down all the
applications he receives, he receives zero payoff. Similarly, if a customer does not submit an
application or has her application rejected, she gets zero payoff.

3 Equilibrium Analysis

We solve the game with backward induction and focus on symmetric equilibria in which
all providers of type j ∈ {H,L} post the same price pj , and all customers of type θ ∈ [0, θ̄]

use the same application strategy aj(θ), j ∈ {H,L}, which denotes the probability of a type
θ customer submitting an application to a provider of type j. Following the literature, we
define the queue length of a provider of type j from customer type θ as xj(θ) ≡ Nf(θ)aj(θ).
Subsequently, xj(θ)dθ is the number of applications that provider j receives from customers in
[θ, θ+dθ]. As M and N go to infinity, aj(θ) goes to zero while xj(θ) converges to a finite positive
number. Therefore, it is easier to work with xj(θ) than aj(θ).10 As there is no submission

8We consider the case of g′(·) < 0 in Section 6.4.
9We allow a customer to make multiple applications in Section 6.2.

10In a large market, if a subset of customers with zero measure change their application strategies, the equilib-
rium remains unchanged. It is hence reasonable and technically convenient to stipulate that xH(θ) and xL(θ) are
piece-wise continuous with a finite number of discontinuities.
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cost, each customer always submits one application and we have the normalization condition
γMaH(θ) + (1− γ)MaL(θ) = 1, or equivalently,

γxH(θ) + (1− γ)xL(θ) = nf(θ). (1)

3.1 Customer’s Problem

A customer maximizes her expected utility by deciding which provider to apply to. Let
U(θ) denote the maximum expected utility of customers of type θ. A customer of this type
submits an application to a provider of type j with positive probability iff bj(θ)(qj−pj) ≥ U(θ),
where the left-hand side of the inequality is her expected utility from that provider, pj denotes
the posted price from providers of type j and bj(θ) denotes the probability that an application
from a customer of type θ gets accepted by a provider of type j.

To calculate bj(θ), notice that the provider will accept the customer if and only if he re-
ceives no application from customers with a lower cost:11

bj(θ) = lim
N→∞

θ∏
t=0

(1− aj(t))
Nf(t)dt = lim

N→∞

θ∏
t=0

(
1− xj(t)

Nf(t)

)Nf(t)dt

=

θ∏
t=0

e−xj(t)dt = e−
∫ θ
0 xj(t)dt.

(2)
Obviously, bj(θ) decreases with θ, which implies that a customer of higher cost expects a lower
acceptance rate. Intuitively, low-cost customers are less likely to be rejected, because they get
rejected only when there exists at least one other customer with even lower cost who applies
to the same provider.

In equilibrium, it cannot be the case that bj(θ)(qj − pj) > U(θ); otherwise, customers
of type θ would apply to that provider with probability one, which would then drive down
the acceptance probability bj(θ) until bj(θ)(qj − pj) = U(θ). This equation illustrates a cus-
tomer’s tradeoff: on one hand, she prefers providers that generate a higher potential payoff
upon acceptance, qj − pj ; on the other hand, such high-payoff providers may receive many
applications and hence have a lower acceptance rate bj(θ). As low-cost customers are less
likely to be rejected, they would be more confident to apply to providers with higher potential
payoffs, which keeps driving down the acceptance rate of those providers until the high-cost
customers become indifferent between the two types of providers. We formalize the intuition
in the following proposition.

Proposition 1. When one type of providers generate a significantly greater potential payoff than the
other type, all customers apply only to the high-payoff providers. When one type of providers generate
a slightly greater potential payoff than the other type, customers of cost types below a certain threshold
apply only to high-payoff providers, and the other customers are indifferent between the two types of
providers. When all providers provide the same potential payoff, all customers are indifferent between
the two types of providers.

See all proofs in the Appendix, which characterizes customers’ application strategies by
calculating xL(θ), xH(θ) and U(θ) explicitly. Figure 1 illustrates Proposition 1, with the closed-

11Notice that the product is taken over the series of dt increments in equation (2); the geometric integral has finite
bounds so it can be exchanged with the limit of N → ∞.
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form expressions for the thresholds of θL and θH provided in Appendix. One can see an in-
teresting market segmentation arising in this figure: desirable providers may serve customers
in the entire cost spectrum, while the other providers serve only the undesirable, high-cost
customers. 	
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Figure 1: Possible Market Segmentations.

It is worth noting that we have only considered customers’ application strategies when all
providers of the same type post the same price, i.e., symmetric pricing. When we consider an
individual provider’s pricing decision as a next step, we have to consider his deviation of price
with respect to other providers, which leads to analysis of asymmetric prices. How can we uti-
lize customers’ application strategies derived only under symmetric pricing in Proposition 1 to
inform an individual provider’s pricing decision? The key lies in the large market assumption
that M,N → ∞. Under this assumption, an individual provider’s deviation in price would
not change individual customers’ maximum expected utility U(θ), because this provider can
serve at most one customer: even if he offers the best deal in the market, a customer rationally
expects that there is little chance that she would be the lucky one to get the deal. We are now
ready to analyze providers’ pricing problem.

3.2 Providers’ Problem

Let us consider an individual provider of type j, who posts price p0j for j ∈ {H,L}. Given
all other providers’ prices of pH and pL, U(θ) is determined by Proposition 1 as can be seen in
the proof of the proposition. U(θ) is taken as given by the provider when choosing his price p0j .
Now consider customers’ application strategy for this provider. If U(θ) ≤ qj − p0j , customers
of type θ apply to him until b0j (θ)(qj − p0j ) = U(θ), where b0j (θ) is his acceptance rate; on the
other hand, if U(θ) > qj − p0j , customers of type θ apply not to him but to other providers
with a higher expected utility. It is easy to show that U(θ) is a strictly decreasing function, and
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therefore we have,

b0j (θ) =
U(θ)

qj − p0j
for θ ∈ [θ0, θ̄], where θ0 =

{
0, qj − p0j > U(0),

U−1(qj − p0j ), otherwise.
(3)

Notice that by definition, b0j (θ) is the probability that the provider has not received an
application from customers of types lower than θ. Correspondingly, 1 − b0j (θ) is the proba-
bility that the provider has received at least one application from these customers. Therefore,

d
(
1− b0j (θ)

)
= −db0j (θ)

dθ dθ is the probability that the provider has received at least one applica-
tion from customers of types in [θ, θ+dθ] and has not received any application from customers
with type lower than θ.

When a provider receives no application, he ends up with no match and thus zero profit.
When a provider of type j receives and accepts an application from a customer of type θ, he
earns revenue p0j , pays the commission fee of δp0j to the platform, and incurs serving cost of
θg(qj). Therefore, we can write down the provider’s expected profit π0

j (p
0
j ; pH , pL) as follows,

given his price p0j as well as other providers’ prices:

π0
j (p

0
j ; pH , pL) =

∫ θ̄

θ0

[
(1− δ)p0j − θg(qj)

]
·

(
−
db0j (θ)

dθ

)
dθ. (4)

This equation establishes an explicit relationship between a provider’s profit and his
acceptance rate for each type of customers, and it showcases the analytical tractability of
our model that comes from incorporating a continuous distribution of service costs.12 The
provider’s objective is to maximize his expected profit π0

j (p
0
j ; pH , pL) by choosing the posted

price p0j . In equilibrium, we must have p0j = pj . A pure-strategy Nash equilibrium (p∗H , p∗L) is
determined by

p∗j = argmax
p0j

π0
j (p

0
j ; p

∗
H , p∗L), for j ∈ {H,L}. (5)

As common for competitive search models with heterogeneous agents, there is no closed-
form expression for the equilibrium prices (p∗H , p∗L). To facilitate equilibrium analysis, we re-
strict our attention to the uniform distribution of cost types for the following analysis, where
F (θ) = θ/θ̄.13 The following proposition characterizes the equilibrium.

Proposition 2. Assume uniform distribution of cost type F (·) and that the ratio of customers to
providers n is sufficiently large.

• There always exist an infinite number of solutions to the problem in equation (5), which satisfy
qH − p∗H = qL − p∗L = ε for ∀ε ∈ (0, ε̄].

• When g(q) = 1 or g(q) = q, high quality providers generate higher potential payoff in equilib-
rium: qH − p∗H ≥ qL − p∗L.

The proof of the proposition and the closed-form expression of ε̄ > 0 are relegated to the

12Note that the profit function above reflects our assumption that the customer market is fully covered, p0j ≥
θ̄g(qj)/(1− δ). We verify this assumption in equilibrium below.

13Section 6.3 explores alternative distributions of F .
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Appendix.14 Proposition 2 reveals that there exist multiple equilibria. In fact, our model setup
belongs to a general class of games with strategic complementarities and multiple equilibria
are a well-known common potential outcome for this type of games (e.g. Vives 2005). Fol-
lowing the tradition of the literature, we will work with multiple equilibria directly instead of
imposing specific rules of equilibrium selection.

The first result in the proposition points out that (p∗H , p∗L) = (qH − ε, qL − ε) is always
an equilibrium for ε positive but sufficiently small.15 This result implies that coordination
frictions can give rise to monopolistic power for individual providers in a decentralized P2P
market. Since the customer is left with almost no surplus, the two kinds of providers are
equally attractive. The second result suggests that as long as service cost weakly increases with
service quality, a customer would expect a weakly higher potential payoff from providers of
higher quality. That is, high-quality providers are more attractive in this case than low-quality
ones.

Following the analysis, there are two possible market segmentations in equilibrium, as
shown by Figure 2: either all customers apply to both types of providers, or low-cost cus-
tomers apply solely to high-quality providers and high-cost customers apply to both types of
providers.
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apply to L with -&(!) > 0  

Figure 2: Equilibrium Market Segmentations.

Figure 3 illustrates all price equilibria under one parameter setting with n = 1, γ = 0.5,
qH = 2qL, δ = 0.1, θ̄ = 0.2, and g(q) = 1, which will be used for all following illustrations
and referred to as “the parameter setting”. We can see that under this parameter setting, both
types of price equilibria are possible: there are infinite equilibria with both types of providers
generating the same potential payoff, as marked by the solid line above the kink, and there are
also infinite equilibria with higher-quality providers generating a higher potential payoff, as
marked by the solid line below the kink. Moreover, equilibrium prices are lower in the second
type of equilibria.

By combining Propositions 1 and 2, we characterize customers’ equilibrium application
strategies, acceptance rates, and expected utilities in the following proposition, where we unify

14The lower bound on n comes from the second-order optimality condition in optimization problem (5). That is,
we require the profit function π0

j (p
0
j ; pH , pL) in equation (4) to be concave in p0j ∈ [qj − U(0), qj ].

15We do not consider the case with ε = 0, because in this case, customers expect zero utility from all providers.
Consequently, each customer is indifferent between the two types of providers, and there is arbitrariness in cus-
tomers’ application strategy.
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Figure 3: Equilibrium Prices under the Parameter Setting with n = 1, γ = 0.5, qH = 2qL,
δ = 0.1, θ = 0.2 and g(q) = 1. The dashed line represents qH − p∗H = qL − p∗L.

the two cases in Figure 2 by noting that when qH − p∗H = qL − p∗L, θH = 0 and [0, θH) = ∅.

Proposition 3. Assume uniform distribution of F (·), n is sufficiently large, and g(q) = 1 or g(q) = q.
In equilibrium, customers with θ ∈ [0, θH) apply only to high-quality providers, and customers with
θ ∈

[
θH , θ̄

]
apply to all providers. Prices satisfy qH − p∗H ≥ qL − p∗L. Queue lengths, acceptance rates,

and customers’ expected utilities are as follows,

xH(θ) =


n

γθ̄
, 0 ≤ θ ≤ θH

n

θ̄
, θH < θ ≤ θ̄

, xL(θ) =

 0, 0 ≤ θ ≤ θH
n

θ̄
, θH < θ ≤ θ̄

;

bH(θ) =


e
−nθ

γθ̄ , 0 ≤ θ < θH(
qH − p∗H
qL − p∗L

)−(1−γ)

e−
nθ
θ̄ , θH ≤ θ ≤ θ̄

, bL(θ) =

 1, 0 ≤ θ < θH(
qH − p∗H
qL − p∗L

)γ

e−
nθ
θ̄ , θH ≤ θ ≤ θ̄

;

U(θ) =


(qH − p∗H)e

−nθ
γθ̄ , 0 ≤ θ ≤ θH

(qH − p∗H)

(
qH − p∗H
qL − p∗L

)−(1−γ)

e−
nθ
θ̄ , θH < θ ≤ θ̄

.

Figure 4 plots queue lengths, acceptance rates, and expected utility in the aforementioned
two types of equilibria. When all providers generate the same potential payoff (panel on the
left), queue lengths and acceptance rates are the same for the two types of providers. When
high-quality providers generate a higher potential payoff than low-quality providers (panel
on the right), only low-cost customers enter the queue for high-quality providers, who have
a lower acceptance rate than low-quality providers for all types of customers. As one can see
from the figure, when high-quality providers provide a higher, rather than the same, potential
payoff than low-quality providers, the difference in the two types of providers’ queue length,
acceptance rates and expected utility generated for the customers widens. This is intuitive
as the high-quality providers essentially become more attractive to the customers than low-
quality providers. Notice that in all equilibria, customers with higher costs expect lower utility.
In fact, a customer would rather reimburse her provider of her service cost if she could then be
treated as a customer with zero cost. We formalize this result below.

Corollary 1. Under the same assumptions in Proposition 3 with n sufficiently large, U(θ) < U(0)−θ.
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Figure 4: Equilibrium Queue Length x(θ), Acceptance Rate b(θ), and Customers’ Expected
Utility U(θ) under the Parameter Setting. In the left panel, (p∗H , p∗L) = (0.787qH , 0.573qL) with
qH − p∗H = qL − p∗L so that all providers generate the same potential payoff; in the right panel,
(p∗H , p∗L) = (0.666qH , 0.533qL) with qH − p∗H > qL − p∗L so that high-quality providers generate
a higher potential payoff than low-quality providers.
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The result highlights that a high-cost customer is subject to disproportionately low accep-
tance rate in equilibrium and customers would in general find it rather beneficial to maintain
a good reputation in a P2P market.

3.3 Comparative Statics

Given the existence of multiple equilibria, we leverage the general monotone comparative
statics results for supermodular games to prove the following results.16

Proposition 4. Under uniform distribution of F (·), the game described by equation (5) is supermodu-
lar. Equilibrium prices p∗H and p∗L increase with n, decrease with γ, and for n sufficiently high, decrease
with θ̄ and δ. Given multiple equilibria of (p∗H , p∗L), an increasing (decreasing) relationship with a
parameter is defined as:

1. the largest and smallest equilibrium points increase (decrease);

2. starting from any equilibrium, the best-response dynamics lead to a weakly larger (smaller) equi-
librium point following the parameter change.

We plot the comparative statics numerically in Figure 5. Similarly, we see two types of
equilibria under all parameter settings, where the solid line above the kink represents the equi-
librium with equal potential payoff for both types of providers, and the solid line below the
kink represents the equilibrium with high-type providers generating a higher potential payoff.

Several patterns in Proposition 4 and Figure 5 are noteworthy. First, as the ratio of cus-
tomers to providers n gets larger, providers’ market becomes less competitive and the equi-
librium prices increase. Similarly, as the fraction of high-quality providers γ gets larger, high-
quality providers’ market becomes more competitive, and their price p∗H decreases, which has
a spillover effect that decreases the low-quality providers’ price. Note that prices decrease
despite the fact that low-quality providers’ market becomes less competitive: in essence, the
increase in competition among high-quality providers dominates the decrease in competition
among low-quality providers.

Second, when service cost θ̄ increases, equilibrium prices decrease as long as n is suffi-
ciently large, which stands in stark contract to how production costs typically pass through
positively to prices. The intuition goes back to the endogenous composition effect: as an in-
dividual provider raises his price, he loses applications from customers with low costs and
gains applications from those with high costs.17 On the other hand, by setting a lower price,
a provider can get more applications and cherry-pick the lowest-cost customer in an enlarged
pool. The incentive to lower his price becomes stronger, when there are enough customers in
the market to cherry-pick from (n is large) and when service costs become higher are more
spreaded out so that it is important to distinguish the low-cost customers from the high-cost
ones. Similarly, when the platform’s commission rate (δ) increases, equilibrium prices decrease

16The technique is developed by Topkis (1978) and Topkis (1979), and applied to economics by Vives (1990) and
Milgrom and Roberts (1990). Our proof in Appendix follows the user manual outlined by Vives (2005).

17Particularly, from equation (3), we find that the demand from customer θ, −db0j (θ)

dθ
dθ decreases (increases) with

the type-j provider’s price p0j for relatively small (large) θ.
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Figure 5: Comparative Statics of Equilibrium Prices under the Parameter Setting unless Other-
wise Noted.

as long as n is sufficiently large, since providers now have a stronger incentive to attract the
low-cost customers.

In the last two plots in Figure 5, we illustrate how equilibrium prices may depend on g(·)
and qH/qL. Compared with the case g(q) = 1, we find that prices with g(q) = q are lower.
The intuition is as follows. In the latter case, the difference in the service costs between a low-
cost and a high-cost customer for a high-quality provider is higher than that for a low-quality
provider , which motivates high-quality providers to compete more aggressively for low-cost
customers, pushing low-quality providers to also lower their prices. Finally, as service quality
qH becomes higher, equilibrium price p∗H also increases, which is intuitive.

3.4 Platform Strategy

When the platform raises its commission rate δ, it has two effects. The direct effect is
that it would get a larger share of the total profit, and the indirect effect, as discussed above,
comes from the providers’ reducing prices in order to attract lower-cost customers. Formally,
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the platform’s profit under the equilibrium is given by,

PP ≡ δM

[
(1− γ)p∗L

(
1− e−n

(
qH − p∗H
qL − p∗L

)γ)
+ γp∗H

(
1− e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)
)]

. (6)

While an analytical characterization of the total effect is not tractable, Figure 6 illustrates
the equilibrium prices from the lowest-price equilibrium. We see that prices indeed decrease
with the commission rate but since the decrease is relatively mild, the direct effect overall
dominates the indirect effect, and the platform’s profit increases with its commission rate. To
arrive at an optimal commission rate, however, one would need to incorporate the entry of
customers and providers into the analysis, which is beyond the scope of the current paper.
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Figure 6: Equilibrium Prices and Platform Profit on Commission Rate under The Parameter
Setting.

4 Incomplete Market Coverage

In this section, we consider the possibility that there may exist some customers who are
so costly that providers would rather not serve them.18 In particular, we consider the more
interesting equilibria in which low-quality providers are willing to serve all customers and
high-quality providers are willing to serve only customers of low costs, i.e.,

pH < θ̄g(qH)/(1− δ) and pL ≥ θ̄g(qL)/(1− δ). (7)

We consider both cases g(q) = 1 and g(q) = q, under which it is not hard to show that
the incomplete market coverage condition in equation (7) implies that qH − pH > qL − pL:
high-quality providers would generate a higher potential payoff than low-quality providers.
Similar to Proposition 1, we are able to completely characterize customers’ application strate-
gies given providers’ posted prices pH and pL (details provided in the Online Appendix). A
key difference here is that customers of type θ ∈

(
(1− δ)pH/g(qH), θ̄

]
would be rejected by

high-quality providers and hence have no other choice but to apply to low-quality providers.
18The market coverage condition refers to whether the costliest customer will be served by a provider if he has

no other applicant. It is not directly linked to comparison between the number of providers, M and the number
of customers, N . In fact, due to coordination friction, there will almost surely exist some customers unserved
regardless of the comparison between M and N .
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Figure 7 characterizes the resulting market segmentation: low-cost customers apply to high-
quality providers only, medium-cost customers apply to both types of providers, and high-cost
customers apply to low-quality providers only.
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Figure 7: Possible Market Segmentations under Incomplete Market Coverage.

Given customers’ application strategies, we explore providers’ pricing decisions in the
Online Appendix. While a full characterization of the equilibrium is not tractable, we are able
to highlight one interesting finding numerically, as demonstrated in Figure 8. Unlike before,
in this figure, there is only one type of equilibrium, in which high-quality providers generate a
higher potential payoff than low-quality providers. Meanwhile, as one can see from the figure,
for the part of the solid line to the left of the dashed line, pL > pH while for the part to the right,
pL < pH . In other words, it is possible that high-payoff, high-quality providers may charge a
lower price than low-quality providers in equilibrium. This is a rather surprising finding, as
quality is observed to be positively correlated with price in most markets. The intuition of our
result is as follows: since high-cost customers are unprofitable for high-quality providers, low-
quality providers face less competition in serving these customers. As a result, they charge a
high price to cover the high service cost of their clientele while high-quality providers charge
a low price to compete for the lowest-cost customers. Note that the parameter setting in this
figure indeed features high service costs and a high fraction of high-quality providers, which
is consistent with our intuition that intense competition and spreaded-out service costs drive
high-quality providers’ cherry-picking of the lowest-cost customers through low prices.
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Figure 8: Equilibrium Prices under Incomplete Market Coverage under n = 1, γ = 0.9, qH =
2qL, δ = 0.1, θ = 0.8 and g(q) = q.
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5 Unilateral Ratings

To understand the role of a bilateral rating system, we consider in this section P2P mar-
kets with a unilateral rating system, in which only providers’ quality is publicly observable
and customers’ cost is not. With unilateral ratings, providers cannot discern low-cost cus-
tomers from high-cost ones, so they will randomly select a customer when receiving multiple
applications.

Denote the probability that a customer submits an application to a provider of type j by
Aj , for j ∈ {H,L} and the queue length at a provider of type j by Xj = NAj . We now have
the normalization condition:

γXH + (1− γ)XL = n. (8)

Given the providers’ prices pH and pL, a customer’s acceptance rate by a provider of type j

conditioning on that the customer has submitted her application to the provider is

Bj = lim
N,M→∞

N−1∑
i=0

(
N − 1

i

)
Ai

j (1−Aj)
N−1−i 1

i+ 1
= lim

Nj ,M→∞

1− (1−Aj)
N

NAj
=

1− e−Xj

Xj
. (9)

With unilateral ratings, low-cost customers lose preferential treatment from providers, and all
customers have the same acceptance rate. Similar as before, a customer’s expected utility from
the two types of providers must be the same in equilibrium: U = BH(qH − pH) = BL(qL− pL),
or equivalently,

U = (qH − pH)
1− e−XH

XH
= (qL − pL)

1− e−XL

XL
. (10)

By combining equations (8) and (10), we can solve for XH , XL and determine U .
Consider now an individual provider j’s profit maximization problem. Given his posted

price p0j , his acceptance rate is

B0
j = min

{
U

qj − p0j
, 1

}
. (11)

Define function ϕ(x) ≡ [1− e−x] /x for x ∈ (0,∞) and ϕ(0) ≡ limx→0 ϕ(x) = 1. ϕ(x) is then
a continuous and strictly decreasing function on [0,∞). Given the provider’s acceptance rate
B0

j , his queue length can be written as X0
j = ϕ−1(B0

j ). The provider’s expected profit, given
his posted price p0j and the market prices pH and pL, is

Π0
j (p

0
j ; pH , pL) =

[
(1− δ)p0j −

θ̄

2
g(qj)

]
X0

jB
0
j . (12)

Note that H and L providers now have the same customer composition and there is no cost-
based segmentation of customers with unilateral ratings. In the appendix, we show that
Π0

j (p
0
j ; pH , pL) is concave in p0j and there exists a unique solution to the first-order optimal-

ity condition, ∂Π0
j (p

0
j ; pH , pL)/∂p

0
j |p0j=pj

= 0, which can be written as

qj − pj
U

− (1− δ)(qj − pj)

(1− δ)qj − θ̄
2g(qj)

= ln

(
qj − pj

U

)
− ln

[
(1− δ)(qj − pj)

(1− δ)qj − θ̄
2g(qj)

]
≥ 0, j ∈ {H,L}. (13)
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The equilibrium is the set of (pH , pL, XH , XL, U) that satisfies equations (8), (10) and (13).
There are five equations in total to determine five unknown variables. The following proposi-
tion characterizes the existence and some properties of the equilibrium.

Proposition 5. With unilateral ratings, when equations (8), (10) and (13) are not degenerate, there
exists a unique pure-strategy Nash equilibrium (p∗∗H , p∗∗L ). If qH > qL and g(q) = 1 or q, we have
qH − p∗∗H > qL − p∗∗L in equilibrium.

5.1 Comparison of The Two Rating Systems

In the absence of closed-form expressions of equilibrium prices with either bilateral or
unilateral ratings, we use Figure 9 to plot the prices numerically. As suggested by the propo-
sition above, there is a unique equilibrium with unilateral ratings. What is more interesting is
perhaps that compared with unilateral ratings, bilateral ratings may lead to higher equilibrium
prices. At the first sight, this may contradict our prior intuition that information on service
costs may facilitate cherry-picking through low prices. The dominant effect here is, however,
that bilateral ratings can facilitate market segmentation and soften the competition between the
two types of providers. Specifically, as high-quality providers focus on competing for low-cost
customers, the competition between high- and low-quality providers is softened. Consistent
with the intuition, we solve the equilibrium for all parameter settings used in Figure 5 and
find that equilibrium prices with bilateral ratings are always higher than those with unilateral
ratings.

����������
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Figure 9: Equilibrium Prices with Bilateral and Unilateral Ratings

Parameters: n = 1; γ = 0.5; qH = 2qL; δ = 0.1; θ̄ = 0.2; g(q) = 1

One may also wonder about the impact of different rating systems on customer surplus.
In Figure 10, we show that bilateral ratings may lower total customer surplus. In particular,
for low-cost customers, bilateral ratings increase their surplus due to higher acceptance rates;
for high-cost customers, however, bilateral ratings decrease their surplus due to higher prices.
Overall, in this particular example, bilateral ratings decreases total customer surplus. In other
parameter settings, however, we find that it is possible for customer surplus to be higher under
bilateral ratings.
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In sum, a numerically robust finding is that bilateral ratings may lead to higher prices than
unilateral ratings. Furthermore, one may think that customers may have higher reputation
concerns with bilateral ratings and hence take precautions to reduce their service costs. This
would further increase the equilibrium prices with bilateral ratings, as suggested by Proposi-
tion 4, making our prediction stronger. The welfare comparison, on the other hand, remains
unclear: bilateral ratings could either increase or decrease customer surplus as well as total
surplus.

6 Alternative Model Assumptions

In this section, we explore several alternative model assumptions and show that the en-
dogenous composition effect persists and plays similar roles as in our main model.

6.1 A Small Marketplace

In this section, we analyze a small P2P market with M = N = 2: there is one high-
quality provider, one low-quality provider, one high-cost customer with service cost c > 0,
and one low-cost customer with service cost normalized to zero. We assume qL > c so that
there is positive social surplus for the match between a low-quality provider and a high-cost
customer. If qL ≤ c, we have the uninteresting equilibrium, where the high-quality provider
prices at p∗H = qH − qL and serves the low-cost customer, and the low-quality provider is out
of the market. As a tie-breaking rule consistent with the main model, we assume that when a
customer is indifferent between the two providers, she chooses one randomly.

We can solve the game with backward induction. First, notice that when a provider re-
ceives applications from two customers, he accepts the one with a lower service cost. This im-
plies that the low-cost customer applies to the provider with a higher potential payoff, qi − pi.
The high-cost customer hence applies to the other provider that is not chosen by the low-cost
customer. Given the customers’ application strategies, we can write down provider i’ profit

18



function as,

πi(pi) =


pi, if qi − pi > qj − pj ;
1

2
pi +

1

4
max{pi − c, 0}, if qi − pi = qj − pj ;

max{pi − c, 0}, otherwise.

Bertrand competition for the low-cost customer would keep driving the two providers’
prices down to pH = qH − c and pL = qL − c, at which point each provider would have an
incentive to raise his price and serve the high-cost customer instead. As a result, there is no
pure-strategy pricing equilibrium and the following result characterizes the mixed-strategy
equilibrium (see proof in the Online Appendix).

Proposition 6. There is a unique equilibrium in which both providers use a mixed pricing strategy.
The equilibrium price distribution for provider i ∈ {H,L} is

Fi(pi) =
pi + c− qi

pi − qi + qj −max{pi − qi + qj − c, 0}
, for pi ∈ [qi − c, qi] and i ̸= j ∈ {H,L}. (14)

Correspondingly, provider i’s expected equilibrium profit is qi − c.

When qL ≥ 2c, we have complete market coverage as the high-cost customer is always
served. In fact, we can obtain Fi(pi) = 1 − (qi − pi)/c in this case, which means that both
providers’ prices follow uniform distributions. Since 1 − FH(p) = (qH − p)/c ≥ (qL − p)/c =

1 − FL(p), the high-quality provider charges a higher price than the low-quality provider in
the sense of first-order stochastic dominance.

On the other hand, when qL < 2c, the high-cost customer may get rejected by the low-
quality provider at certain price levels, similar to the incomplete market coverage case in Sec-
tion 4. Through equation (14), we can show that we no longer have the first-order stochastic
dominance and similar to what we find in Section 4, the high-quality provider’s price may be
lower than that of the low-quality provider.

6.2 Multiple Applications

In this section, we consider the possibility that a customer can submit multiple applica-
tions. This introduces new complexities when a provider decides which customer to make an
offer to upon receiving multiple applications, because he expects that a low-cost customer may
turn his offer down if the customer has received multiple offers. In the extreme case where a
customer can freely submit an application to every provider, the model in essence would turn
into one of competitive auctions. We do not expect all of our findings to extend to this setting. As
each customer applies to every provider, there is no incentive for high-quality providers to set a
low price to attract applications from low-cost customers; instead, these providers can make an
offer to low-cost customers directly. In some freelance P2P marketplaces that are more aligned
with the competitive auction model, casual observations suggest that high-quality providers
(“experts”) tend to charge a higher price than the low-quality ones (“beginners”) in general
(Ke and Zhu 2021).

What would happen in less extreme cases? We examine here a case in which a cus-
tomer can submit two applications (see analysis in the Online Appendix) and find that a
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pure-strategy equilibrium does not exist. While mixed-strategy equilibrium outcomes make
comparison to the main model difficult, our analysis suggests that in the revised game, high-
quality providers still have incentives to lower their prices to attract low-cost customers (in
particular, those with θ = 0) to apply. In equilibrium, the lowest-cost customers would always
submit one of their two applications to the provider with the highest potential payoff, which in
turn gives providers incentives to compete for such customers. The intuition is hence broadly
consistent with the endogenous composition effect in our main model.

6.3 Alternative Distribution of Customer Types

To demonstrate that our results do not depend on the customer cost type being uniformly
distributed, we numerically solve for the equilibrium under a generalized distribution func-
tion F (θ) = (1−α)θ/θ̄+α(θ/θ̄)2, |α| < 1. When α = 0, F (·) reverts back to uniform distribution.
The probability density function, F ′(θ) = (1−α)/θ̄+2αθ/θ̄2 increases with θ for α > 0 and de-
creases with θ for α < 0, allowing for the possibility of either more high-cost or more low-cost
customers in the market.

We are able to numerically verify that in equilibrium, qH − p∗H ≥ qL − p∗L for all |α| < 1.
Figure 11 plots the comparative statics of equilibrium prices with respect to θ̄ under α = ±0.5.
As before, equilibrium prices decrease when service cost increases , which points again to the
importance of the endogenous composition effect.
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Figure 11: Equilibrium Prices with Non-Uniformly Distributed Customers under the Parame-
ter Setting with α = 0.5 (left) and α = −0.5 (right).

6.4 Alternative Service Cost Structure

We now explore the possibility that the cost to serve the same customer is lower for a
high-quality provider: g(q) = 1/q. This could be due to the provider being more experienced
and hence more efficient at providing the service. Under complete market coverage, Figure
12 presents equilibrium prices and comparative statics with respect to the highest service cost
θ̄. Similar as in the main model, a higher θ̄ lowers equilibrium prices due to the endogenous
composition effect.

Under incomplete market coverage, if an equilibrium exists where the market coverage is
incomplete for high-quality providers and complete for low-quality providers, we can show
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Figure 12: Equilibrium Prices under the Parameter Setting Except for g(q) = 1/q.

that the high-quality providers would charge a lower equilibrium price than the low-quality
ones.19 However, we are unable to identify a numerical example, which suggests that such
equilibria may not exist. Intuitively, as high-quality providers already incur lower service
cost for the same customer than low-quality providers, their incentive to compete for low-cost
customers weakens.

7 Conclusion

This paper considers a peer-to-peer market that matches capacity-constrained providers
with customers. We explore how bilateral ratings, which reveal providers’ service quality and
customers’ service costs, influence price competition and market segmentation. We identify
a unique endogenous composition effect: a provider can attract certain customers to apply to
him by varying his price. This effect leads to important and novel patterns in our analysis.
First, a higher average service cost or a higher platform commission fee may lead to lower,
instead of, higher equilibrium prices as providers compete more aggressively for low-cost cus-
tomers. A platform hence needs to consider how the lower prices may affect its profit when
raising the commission rate. Second, a high-quality provider may charge a lower, instead of
higher, equilibrium price than a low-quality provider. Finally, compared with unilateral rat-
ings, bilateral ratings may soften provider competition and lead to higher equilibrium prices.

As a final remark, it is worth noting that in our model, market frictions come not from
agents’ search costs but rather from coordination frictions—more than one customer may ap-
ply to the same provider, and some providers may receive no application. We believe that such
coordination frictions are significant in P2P markets in the real world: providers often end up
with no customers at certain time points and customers also exit the market if they find it too
hard to find a matching provider.

If we allow unmatched agents to play the same matching game again, some of them
would get matched. In theory, we can extend the current one-shot game into multiple rounds,
and that would reduce coordination frictions. While a formal analysis is beyond the scope
of the current paper, we offer some intuition here for a two-round game. The possibility for

19Equation (7) implies that pHqH < (1− δ)θ̄ < pLqL, which further implies that pH < pL given qH > qL.
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an unmatched provider to get matched in the second period would serve as an outside op-
tion for the provider, which in the first period reduces his incentive to price low to attract
customers. This effect is weaker for high-quality providers than for low-quality ones, as the
former are more likely to get matched in the first round and do not value the outside option
as much. Therefore, the price increase for high-quality providers would be smaller than that
for low-quality ones. As a result, if high-quality providers are already charging a lower price
than low-quality providers in a one-shot game, the price gap may widen in a two-round game.
There is, however, an opposite force at work too. Customers are now less worried about being
rejected in the first period because they have a second chance. They are more likely to apply
to high-quality providers in the first period, which reduces price competition among these
providers, leading to higher prices. This effect would narrow the aforementioned price gap,
making the total effect ambiguous. It may be interesting for future studies to investigate the
dynamic matching process and characterize the trade-off between these two opposing effects.
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Appendix

Proof of Proposition 1:

Proof. In mathematical terms, we write the proposition as follows. Suppose qj − pj > 0 for
j ∈ {H,L}. Define

θH ≡ F−1

[
γ

n
ln

(
qH − pH
qL − pL

)]
and θL ≡ F−1

[
1− γ

n
ln

(
qL − pL
qH − pH

)]
.

1. If qH−pH
qL−pL

≤ e
− n

1−γ , all customers apply to providers of type L with xH(θ) = 0 and xL(θ) =
n

1−γ f(θ) for θ ∈
[
0, θ̄
]
.

2. If e−
n

1−γ < qH−pH
qL−pL

< 1, customers with type θ ∈ [0, θL] apply to providers of type L with
xH(θ) = 0 and xL(θ) =

n
1−γ f(θ), and customers with θ ∈

(
θL, θ̄

]
apply to both types of

providers with xH(θ) = xL(θ) = nf(θ).

3. If qH−pH
qL−pL

= 1, all customers apply to both types of providers with xH(θ) = xL(θ) = nf(θ)

for θ ∈
[
0, θ̄
]
.

4. If 1 < qH−pH
qL−pL

< e
n
γ , customers with type θ ∈ [0, θH ] apply to providers of type H only

with xH(θ) = n
γ f(θ) and xL(θ) = 0, and customers with θ ∈

(
θH , θ̄

]
apply to both types

of providers with xH(θ) = xL(θ) = nf(θ).

5. If qH−pH
qL−pL

≥ e
n
γ , all customers apply to providers of type H with xH(θ) = n

γ f(θ) and
xL(θ) = 0 for θ ∈

[
0, θ̄
]
.

Correspondingly,

U(θ) =



(qL − pL)e
− n

1−γ
F (θ)

, if
qH − pH
qL − pL

< 1 and 0 ≤ θ ≤ min
{
θL, θ̄

}
,

(qL − pL)

(
qH − pH
qL − pL

)γ

e−nF (θ), if e−
n

1−γ <
qH − pH
qL − pL

< 1 and θL < θ ≤ θ̄,

(qH − pH)e−nF (θ), if
qH − pH
qL − pL

= 1,

(qH − pH)

(
qH − pH
qL − pL

)−(1−γ)

e−nF (θ), if 1 <
qH − pH
qL − pL

< e
n
γ and θH < θ ≤ θ̄,

(qH − pH)e
−n

γ
F (θ)

, if
qH − pH
qL − pL

> 1 and 0 ≤ θ ≤ min
{
θH , θ̄

}
.

We start the proof by first proving two lemmas.

Lemma 1. Suppose qL− pL > 0. If there exists θ′ ∈
[
0, θ̄
]

such that xH(θ′) > 0 and xL(θ
′) = 0, then

we have that xH(θ) > 0 and xL(θ) = 0 for ∀θ ∈ [0, θ′].

Proof. The lemma is obviously true for θ′ = 0. For θ′ > 0, we prove the lemma by contradiction.
Suppose there exists θ′ ∈

(
0, θ̄
]

such that xH(θ′) > 0 and xL(θ
′) = 0, and there exists θ′′ ∈ [0, θ′)

such that xH(θ′′) = 0 or xL(θ′′) > 0. By equation (1) and f(·) > 0, the condition xH(θ′′) = 0 or
xL(θ

′′) > 0 is equivalent to xL(θ
′′) > 0.
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Based on the main text, it is easy to see that customers’ application strategy must satisfy that

xj(θ) =

{
∈ (0,∞), if bj(θ)(qj − pj) = U(θ);

0, if bj(θ)(qj − pj) < U(θ).
(15)

According to equation (15), the conditions xH(θ′) > 0 and xL(θ
′) = 0 imply that

U(θ′) = e−
∫ θ′
0 xH(t)dt(qH − pH) > e−

∫ θ′
0 xL(t)dt(qL − pL),

i.e., e
∫ θ′
0 (xH(t)−xL(t))dt <

qH − pH
qL − pL

. (16)

Similarly, by applying equation (15) to the condition xL(θ
′′) > 0, we have that

U(θ′′) = e−
∫ θ′′
0 xL(t)dt(qL − pL) ≥ e−

∫ θ′′
0 xH(t)dt(qH − pH),

i.e., e
∫ θ′′
0 (xH(t)−xL(t))dt ≥ qH − pH

qL − pL
. (17)

Combining equations (16) and (17), we have that

e
∫ θ′′
0 (xH(t)−xL(t))dt ≥ qH − pH

qL − pL
> e

∫ θ′
0 (xH(t)−xL(t))dt,

i.e.,
∫ θ′

θ′′
(xH(t)− xL(t)) dt < 0. (18)

Meanwhile, by the normalization condition in equation (1), we know that xH(θ′) − xL(θ
′) =

n
γ f(θ

′) > 0. Since xH(θ) and xL(θ) are both piecewise continuous, xH(θ) − xL(θ) is also
piecewise continuous. Thus, there exists a neighborhood around θ′ such that for all θ within
the neighborhood, xH(θ) − xL(θ) > n

2γ f(θ
′) > 0. Without loss of generality, assume that

xH(θ)−xL(θ) is left-continuous, so the neighborhood takes the form of [θ′−ε, θ′], where ε > 0.
Similarly, if xH(θ) − xL(θ) is right-continuous instead, the neighborhood takes the form of
[θ′, θ′ + ε], under which case we can redefine θ′ as θ′ + ε for the following discussion.

To summarize, we have shown that xH(θ)− xL(θ) >
n
2γ f(θ

′) > 0 for θ ∈ [θ′ − ε, θ′]. Now
we can rewrite the inequality (18) as follows,

0 >

∫ θ′

θ′′
(xH(t)− xL(t)) dt =

∫ θ′−ε

θ′′
(xH(t)− xL(t)) dt+

∫ θ′

θ′−ε
(xH(t)− xL(t)) dt

>

∫ θ′−ε

θ′′
(xH(t)− xL(t)) dt+

n

2γ
f(θ′)ε > 0,

which is a contradiction. The last inequality above is due to the fact that inequality (18) is valid
for any θ′ and θ′′ that satisfy their definitions, so we can let θ′′ and θ′ − ε be infinitely close to
each other, and

∫ θ′−ε
θ′′ (xH(t)− xL(t)) dt infinitely close to zero. Therefore, we have proved the

original statement in Lemma 1.

With the same logic, we can show the following lemma, whose proof is omitted.

Lemma 2. Suppose qH − pH > 0. If there exists θ′ ∈
[
0, θ̄
]

such that xL(θ′) > 0 and xH(θ′) = 0,
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then we have xL(θ) > 0 and xH(θ) = 0 for ∀θ ∈ [0, θ′].

We next prove Proposition 1. Consider first the case qH − pH ≥ qL − pL > 0. By the
normalization condition in equation (1), we have 0 ≤ xH(θ) ≤ n

γ f(θ) and 0 ≤ xL(θ) ≤ n
1−γ f(θ).

This implies that

bH(θ)(qH − pH) = e−
∫ θ
0 xH(t)dt(qH − pH)

≥ e
−

∫ θ
0

n
γ
f(t)dt

(qH − pH)

= e
−n

γ
F (θ)

(qH − pH)

≥ e
−n

γ
F (θ) qH − pH

qL − pL
(qL − pL)e

−
∫ θ
0 xL(t)dt

= e
−n

γ
F (θ) qH − pH

qL − pL
× bL(θ)(qL − pL)

> bL(θ)(qL − pL), when θ < θH .

By equation (15), the above inequality implies that xH(θ) = n
γ f(θ) and xL(θ) = 0 for θ ∈ [0, θH).

If θH ≥ θ̄, we have effectively determined xj(θ) (j ∈ {H,L}) for all θ ∈
[
0, θ̄
]
. If θH < θ̄, we

still need to determine xj(θ) (j ∈ {H,L}) for θ ∈
[
θH , θ̄

]
. For θH < θ̄, we pin down xj(θ)

(j ∈ {H,L}) for θ ∈
(
θH , θ̄

]
first and then determine xj(θH) (j ∈ {H,L}).

First, we know that it is impossible that xL(θ) > 0 and xH(θ) = 0 for θ ∈
(
θH , θ̄

]
, because

by Lemma 2 this would imply xL(θ) > 0 and xH(θ) = 0 for θ ∈ [0, θH), which is a contradiction.
Second, we also know that it is impossible that xH(θ) > 0 and xL(θ) = 0 for θ ∈

(
θH , θ̄

]
,

because by Lemma 1 this would imply that for θ ∈
(
θH , θ̄

]
,

bH(θ)(qH−pH) = e
−

∫ θ
0

n
γ
f(t)dt

(qH−pH) = e
−n

γ
F (θ) qH − pH

qL − pL
(qL−pL) < (qL−pL) = bL(θ)(qL−pL),

which is a contradiction. Therefore, we must have xH(θ) > 0 and xL(θ) > 0 for θ ∈
(
θH , θ̄

]
. By

equation (15), this implies that

e−
∫ θ
0 xL(t)dt(qL − pL) = e−

∫ θ
0 xH(t)dt(qH − pH),

i.e., e−
∫ θ
θH

xL(t)dt(qL − pL) = e−
∫ θH
0 xH(t)dte

−
∫ θ
θH

xH(t)dt
(qH − pH),

i.e., e−
∫ θ
θH

xL(t)dt = e
−

∫ θ
θH

xH(t)dt
,

i.e.,
∫ θ

θH

(xH(t)− xL(t)) dt = 0.

Notice that for the equality above to be valid for ∀θ ∈
(
θH , θ̄

]
, we must have xH(θ) = xL(θ)

for ∀θ ∈
(
θH , θ̄

]
. By the piece-wise continuity of xH(θ) and xL(θ), we must also have that

xH(θH) = xL(θH). By the normalization condition in equation (1), we then have xH(θ) =

xL(θ) = nf(θ) for ∀θ ∈
[
θH , θ̄

]
.

We have completely proved the proposition for the case qH − pH ≥ qL − pL > 0 above.
The proof for the other case with qL − pL ≥ qH − pH > 0 follows the same logic and is thus
omitted. Finally, U(θ) can be calculated by equation (15) given xH(θ) and xL(θ).
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Proof of Proposition 2:

Proof. The expression of ε̄ is

ε̄ = min
j∈{H,L}

e−nqj +
1− (n+ 1)e−n

(1− δ)n
θ̄g(qj) ≥

θ̄q(gL)

2(1− δ)n
> 0.

To start the proof, we calculate π0
j (p

0
j ; pH , pL) based on equation (4) as follows,

π0
j (p

0
j ; pH , pL) =

[
(1− δ)p0j − g(qj)θ

0
]
b0j (θ

0)−
[
(1− δ)p0j − g(qj)θ̄

]
b0j (θ̄)− g(qj)

∫ θ̄

θ0
b0j (θ)dθ

=



−(1− δ)
[
U(0)− U(θ̄)

]
−
∫ θ̄
0 [(1− δ)qj − g(qj)θ]U

′(θ)dθ

qj − p0j
, if p0j < qj − U(0);

(1− δ)U(θ̄) + (1− δ)p0j − g(qj)U
−1(qj − p0j )

−
(1− δ)U(θ̄)qj + g(qj)

[∫ θ̄
U−1(qj−p0j )

U(θ)dθ − θ̄U(θ̄)
]

qj − p0j
, otherwise.

(19)

The first equality above is due to integration by part and rearrangement of terms; to get the
second equality, we use b0j (θ) in equation (3). Notice from equation (19) that π0

j (p
0
j ; pH , pL)

increases with p0j when p0j < qj −U(0). This is because U ′(θ) < 0 and (1− δ)qj − g(qj)θ > (1−
δ)p0j−g(qj)θ̄ ≥ 0. Therefore, we only need to consider the case p0j ≥ qj−U(0). Correspondingly,
π0
j (p

0
j ; pH , pL) is given by the second case in equation (19).
The solution to the optimization problem in equation (5) must be either a corner solution

with p0j = qj −U(0) or an interior solution with p0j > qj −U(0). Notice that the corner solution
of p0j = qj − U(0) is possible, because π0

j (p
0
j ; pH , pL) is continuous at p0j = qj − U(0) and

∂p0j
π0
j (p

0
j ; pH , pL) jumps by −(1− δ)U(0)p0j/(qj − p0j )

2 < 0 when p0j increases from (qj −U(0))−

to (qj −U(0))+. Meanwhile, from Proposition 1, we know that U(0) = max{qH − pH , qL − pL}.
There are three cases to consider. First, suppose in equilibrium, qH − p∗H > qL − p∗L,

which immediately implies that U(0) = qH − p∗H , or equivalently, p∗H = qH − U(0). This
implies that the maximizing point of π0

H(p0H ; pH , pL) must be the corner solution of p0H =

p∗H = qH − U(0). Correspondingly, the first-order optimality condition for the corner solu-
tion is ∂p0H

π0
H(p0H ; pH , pL)|p0H=p∗H

≤ 0. Moreover, we have p∗L > qL − (qH − p∗H) = qL − U(0),
which implies that the maximizing point of π0

L(p
0
L; pH , pL) must be the interior solution of

p0L = p∗L > qL − U(0). Correspondingly, the first-order condition for the interior solution is
∂p0L

π0
L(p

0
L; pH , pL)|p0L=p∗L

= 0. Similarly, we can analyze the other two cases with qH − p∗H <

qL − p∗L and qH − p∗H = qL − p∗L. The first-order condition for the optimization problem in
equation (5) is

qH − p∗H < qL − p∗L

(1− δ)(qH − p∗H)2 −
[
(1− δ)qH − g(qH)θ̄

]
U(θ̄)− g(qH)

∫ θ̄

θL

U(θ)dθ = 0

(1− δ)(qL − p∗L)
2 −

[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

0
U(θ)dθ ≤ 0

, or (20)
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

qH − p∗H = qL − p∗L

(1− δ)(qH − p∗H)2 −
[
(1− δ)qH − g(qH)θ̄

]
U(θ̄)− g(qH)

∫ θ̄

0
U(θ)dθ ≤ 0

(1− δ)(qL − p∗L)
2 −

[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

0
U(θ)dθ ≤ 0

, or (21)



qH − p∗H > qL − p∗L

(1− δ)(qH − p∗H)2 −
[
(1− δ)qH − g(qH)θ̄

]
U(θ̄)− g(qH)

∫ θ̄

0
U(θ)dθ ≤ 0

(1− δ)(qL − p∗L)
2 −

[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

θH

U(θ)dθ = 0

. (22)

U(θ) in equations (20), (21) and (22) is given in cases 2, 3, and 4 respectively at the beginning
of the proof of Proposition 1. Cases 1 and 5 never occur in equilibrium, because all customers
apply only to one type of providers in these cases. Consequently, the other type of providers
get zero profit. It is of each of these individual providers’ interest to decrease his price until
either case 2 or 4 is holding. In writing down equations (20)-(22), we utilize the expressions of
U(θ) in the proof of Proposition 1. Particularly, in equation (20), U−1(qL − p∗L) = θH according
to case 2 in the proof, and in equation (22), U−1(qH − p∗H) = θL according to case 4.

Next, we consider the second-order optimality condition. We require π0
j (p

0
j ; pH , pL) in

equation (19) to be concave in p0j ∈ [qj − U(0), qj ], which holds if and only if for j ∈ {H,L},

nf(θ) ≥


(1− γ)U(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ U(t)dt

] , for ∀θ ∈ [0, θL]

U(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ U(t)dt

] , for ∀θ ∈ [θL, θ̄]

 if qH − pH ≤ qL − pL;

nf(θ) ≥


γU(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ U(t)dt

] , for ∀θ ∈ [0, θH ]

U(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ U(t)dt

] , for ∀θ ∈ [θH , θ̄]

 otherwise.

(23)

To see where equation (23) comes from, notice that for p0j ∈ [qj − U(0), qj ], π0
j (p

0
j ; pH , pL) is

given by the second case in equation (19). π0
j (p

0
j ; pH , pL) is concave if and only if

∂π0
j (p

0
j ; pH , pL)

∂(p0j )
2

= − 1

(qj − p0j )
3

{
2
[
(1− δ)qj − θ̄g(gj)

]
U(θ̄)

+ g(qj)

2 ∫ θ̄

U−1(qj−p0j )
U(θ)dθ +

(qj − p0j )
2

U ′
(
U−1(qj − p0j )

)
} ≤ 0. (24)

From equation (15), we know that U(θ) = (qj∗ − pj∗)e
−

∫ θ
0 xj∗ (t)dt, where j∗ ∈ {H,L} is defined

by xj∗ > 0. Therefore, U ′(θ) = −U(θ)xj∗(θ). By substituting this equality back to inequality
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(24), we can rearrange and rewrite (24) as

xj∗
(
U−1(qj − p0j )

)
≥

(qj − p0j )

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
U−1(qj−p0j )

U(t)dt
] .

Denote θ = U−1(qj − p0j ), which ranges in [0, θ̄]. Notice that xj∗ is given in the proof of Propo-
sition 1 and we can rewrite the inequality above as inequality (23).

With the first- and second-order conditions above, we are ready to prove the proposition.
To show the existence of Nash equilibria with qH − p∗H = qL− p∗L = ε ∈ (0, ε̄], we need to show
that condition (21) is satisfied for ε ∈ (0, ε̄]. In fact, condition (21) can be simplified as qH − p∗H = qL − p∗L = ε,

(1− δ)ε− 1

n
θ̄g(qj)− e−n

[
(1− δ)qj −

n+ 1

n
θ̄g(qj)

]
≤ 0, j ∈ {H,L},

which implies that ε ≤ ε̄. To show that ε̄ ≥ θ̄g(gL)
2(1−δ)n > 0, we can set θ = 0 and qH −p∗H = qL−p∗L

in concavity condition (23).
To show that in equilibrium, qH −p∗H ≥ qL−p∗L, we need to show that equation (20) never

holds in equilibrium given condition (23).
By substituting the expression of U(θ) from the second case in the proof of Proposition 1,

the above statement can be equivalently written as:

If


qH − p∗H < qL − p∗L

(1− δ)(qH − p∗H)− 1

n
g(qH)θ̄ −

[
(1− δ)qH − n+ 1

n
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)

= 0
,

then (1− δ)(qL − p∗L)−
1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)]
−
[
(1− δ)qL −

(
1 +

1

n

)
g(qL)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ

> 0.

In fact, we have that

(1− δ)(qL − p∗L)−
1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)]
−
[
(1− δ)qL −

(
1 +

1

n

)
g(qL)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ

=

(
qL − p∗L
qH − p∗H

){
(1− δ)(qH − p∗H)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)](
qH − p∗H
qL − p∗L

)
+

1

2n
g(qL)θ̄e

−n

(
qH − p∗H
qL − p∗L

)γ+1

−
[
(1− δ)qL −

(
1 +

1

2n

)
g(qL)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ+1}
≥
(

qL − p∗L
qH − p∗H

){
(1− δ)(qH − p∗H)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)](
qH − p∗H
qL − p∗L

)
+

1

2n
g(qL)θ̄e

−n

(
qH − p∗H
qL − p∗L

)γ+1

−
[
(1− δ)qH −

(
1 +

1

2n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ+1}
(25)
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=

(
qL − p∗L
qH − p∗H

){
(1− δ)(qH − p∗H)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)](
qH − p∗H
qL − p∗L

)
+

1

2n
g(qL)θ̄e

−n

(
qH − p∗H
qL − p∗L

)γ+1

−
[
(1− δ)qH −

(
1 +

1

2n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ+1

−
[
(1− δ)(qH − p∗H)− 1

n
g(qH)θ̄ −

[
(1− δ)qH −

(
1 +

1

n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ) ]}
=

(
qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](qH − p∗H
qL − p∗L

)
+

[
(1− δ)qH −

(
1 +

1

n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)
[
1−

(
qH − p∗H
qL − p∗L

)2
]}

≥
(

qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](qH − p∗H
qL − p∗L

)
− 1

2n
g(qH)θ̄

[
1−

(
qH − p∗H
qL − p∗L

)2
]}

. (26)

Inequality (25) is due to that

(1− δ)qL −
(
1 +

1

2n

)
g(qL)θ̄ ≤ (1− δ)qH −

(
1 +

1

2n

)
g(qH)θ̄.

This inequality is obviously true if g(q) = 1. To show that it is true if g(q) = q, we need to show
that (1− δ)−

(
1 + 1

2n

)
θ̄ ≥ 0. Letting θ = θ̄ in equation (23), we have that

n

θ̄
≥ 1

2
(
(1−δ)qj
g(qj)

− θ̄
) ,

which implies that (1− δ)−
(
1 + 1

2n

)
θ̄ ≥ 0 when g(q) = q.

Inequality (26) is due to that

[
(1− δ)qH −

(
1 +

1

n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)

≥ − 1

2n
g(qH)θ̄.

This inequality can be obtained by setting θ = θL and j = H in inequality (23).
To continue the derivation following inequality (26), we have

(
qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](qH − p∗H
qL − p∗L

)
− 1

2n
g(qH)θ̄

[
1−

(
qH − p∗H
qL − p∗L

)2
]}
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=

(
qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1

2
+

(
qH − p∗H
qL − p∗L

)2

− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](qH − p∗H
qL − p∗L

)
≥
(

qL − p∗L
qH − p∗H

){
1

n
g(qL)θ̄

[
1

2
+

(
qH − p∗H
qL − p∗L

)2

− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](qH − p∗H
qL − p∗L

)
(27)

=

(
qL − p∗L
qH − p∗H

)
1

2n
g(qL)θ̄

[
1−

(
qH − p∗H
qL − p∗L

)][
1−

(
qH − p∗H
qL − p∗L

)
+ 2γ

(
qH − p∗H
qL − p∗L

)]
> 0. (28)

Inequality (27) is due to g(qH) ≥ g(qL), and inequality (28) is due to 0 <
qH−p∗H
qL−p∗L

< 1.

Proof of Proposition 3:

Proof. The proof is straightforward by combining Propositions 1 and 2. We only need to notice
that we can unify the two types of price equilibria by observing that when qH − pH = qL − pL,
we have θH = 0 and [0, θH) = ∅.

Proof of Corollary 1:

Proof. Let’s consider the case with 0 ≤ θ ≤ θH first. We have

U(0)− U(θ) = (qH − p∗H)

(
1− e

−nθ
γθ

)
≥ (qH − p∗H)

nθ

γθ
> g(qj)θ, if n >

γg(qj)θ

qH − p∗H
.

That is, for n sufficiently high, we have U(0)− U(θ) > g(qj)θ. The other case with θH < θ ≤ θ

can be proved following the same logic.

Proof of Proposition 4:

Proof. As pointed out in the proof of Proposition 2, we only need to consider the case p0j ≥
qj − U(0), and correspondingly, by equation (19), we have

π0
j (p

0
j ; p

∗
H , p∗L) = (1− δ)U(θ̄) + (1− δ)p0j − g(qj)U

−1(qj − p0j )

−
(1− δ)U(θ̄)qj + g(qj)

[∫ θ̄
U−1(qj−p0j )

U(θ)dθ − θ̄U(θ̄)
]

qj − p0j
.

Hence,

∂π0
j (p

0
j ; p

∗
H , p∗L)

∂p0j
= (1− δ)−

g(qj)
∫ θ̄
U−1(qj−p0j )

U(θ)dθ +
[
(1− δ)qj − θ̄g(qj)

]
U(θ̄)(

qj − p0j

)2 .

Notice that ∂p0jπ
0
j (p

0
j ; p

∗
H , p∗L) depends on p∗H and p∗L only via U(·). Under the market coverage

condition, we have (1−δ)qj−θ̄g(qj) ≥ 0. It is then obvious that ∂p0jπ
0
j (p

0
j ; p

∗
H , p∗L) decreases with
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U(·). Meanwhile, Cases 3 and 4 in the proof of Proposition 1 are the only possible equilibria,
under which we have:

1. If qH−p∗H
qL−p∗L

= 1,

U(θ) = (qH − p∗H)e−
nθ
θ̄ .

2. If 1 <
qH−p∗H
qL−p∗L

< e
n
γ ,

U(θ) =


(qH − p∗H)e

−nθ
γθ̄ , 0 ≤ θ ≤ γ

n
ln

(
qH − p∗H
qL − p∗L

)
θ̄

(qH − p∗H)

(
qH − p∗H
qL − p∗L

)−(1−γ)

e−
nθ
θ̄ ,

γ

n
ln

(
qH − p∗H
qL − p∗L

)
θ̄ < θ ≤ θ̄

.

It is straightforward to show that U(·) decreases with p∗H and p∗L. Therefore, ∂p0jπ
0
j (p

0
j ; p

∗
H , p∗L)

increases with p∗H and p∗L. This proves that the game is supermodular by the definition on page
446 in Vives (2005).

Next, we leverage Result 5 on page 450 in Vives (2005) to prove the comparative statics.
We only need to show that given fixed p0j , p∗H and p∗L, ∂p0jπ

0
j (p

0
j ; p

∗
H , p∗L)|p0j=p∗j

(1) increases with
n and decreases with γ, (2) decreases with δ for n sufficiently high, and (3) decreases with θ̄ for
n sufficiently high.

For (1), notice that ∂p0jπ
0
j (p

0
j ; p

∗
H , p∗L) depends on n and γ only via U(·), and thus we only

need to show that given fixed p∗H and p∗L, U(·) decreases with n and increases with γ. Given
the expressions of U(·), it is easy to verify that this is true.

For (2), notice that U(·) does not depend on δ. We have

∂2π0
j (p

0
j ; p

∗
H , p∗L)

∂p0j∂δ

∣∣∣
p0j=p∗j

= −1 +
qjU(θ̄)(
qj − p∗j

)2 .
As n → ∞, U(θ̄) → 0, so we have for sufficiently high n,

∂2π0
j (p

0
j ;p

∗
H ,p∗L)

∂p0j∂δ
|p0j=p∗j

≤ 0.

For (3), notice that U(θ̄) does not depend on θ̄. There are two cases to consider depending
on the expression of U(·). In the first case with qH−p∗H

qL−p∗L
= 1, we have

∂2π0
j (p

0
j ; p

∗
H , p∗L)

∂p0j∂θ̄

∣∣∣
p0j=p∗j

= −
g(qj)

∫ θ̄
0 ∂θ̄U(θ)dθ(

qj − p∗j

)2 ≤ 0,

where the inequality is due to ∂θ̄U(θ) ≥ 0.
In the second case with 1 <

qH−p∗H
qL−p∗L

< e
n
γ , similar to the first case, we have

∂2π0
H(p0H ; p∗H , p∗L)

∂p0H∂θ̄

∣∣∣
p0H=p∗H

= −
g(qj)

∫ θ̄
0 ∂θ̄U(θ)dθ(

qH − p∗H
)2 ≤ 0;

moreover,

∂2π0
L(p

0
L; p

∗
H , p∗L)

∂p0L∂θ̄

∣∣∣
p0L=p∗L

= −
g(qL)

[
1− (n+ 1)e−n

(
qH−p∗H
qL−p∗L

)γ]
n
(
qL − p∗L

) ,
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which is negative when n is sufficiently high.

Proof of Proposition 5:

Proof. Based on equation (12), to ensure that the provider has a nonnegative profit margin,
we must have p0j ≥ θ̄g(qj)/ [2(1− δ)]; to ensure that the provider has positive demand, we
must have p0j ≤ qj − U . Therefore, we must have θ̄g(qj)/ [2(1− δ)] ≤ qj − U to ensure that
the provider is willing to participate in the market. We verify this condition in equilibrium,
which is similar to the full market coverage condition in the case of bilateral ratings. Given the
participation constraint, the provider only considers p0j ∈

[
θ̄g(qj)/ [2(1− δ)] , qj − U

]
, because

Π0
j

(
θ̄g(qj)/ [2(1− δ)] ; pH , pL

)
= Π0

j (qj − U ; pH , pL) = 0.
Next, we show that Π0

j (p
0
j ; pH , pL) is concave in p0j :

∂2Π0
j

∂(p0j )
2
= −

W

(
− qj−p0j

U e−
qj−p0j

U

)[
qj−p0j

U +W

(
− qj−p0j

U e−
qj−p0j

U

)]
2(qj − p0j )

3

[
1 +W

(
− qj−p0j

U e−
qj−p0

j
U

)]3
×
{
− 4(1− δ)U(qj − p0j )

[
1 +W

(
−
qj − p0j

U
e−

qj−p0j
U

)]2

− 2U

[
(1− δ)p0j −

θ̄

2
g(qj)

]qj − p0j
U

+ 3W

(
−
qj − p0j

U
e−

qj−p0j
U

)
+ 2W

(
−
qj − p0j

U
e−

qj−p0j
U

)2
},

where W (z) is the product logarithm function, which is defined as the upper branch of the

inverse function of z = WeW . We note that
qj−p0j

U ≥ 1, so 0 > W

(
− qj−p0j

U e−
qj−p0j

U

)
≥ −1 ≥

− qj−p0j
U . We can further show that

qj−p0j
U + 3W

(
− qj−p0j

U e−
qj−p0j

U

)
+ 2W

(
− qj−p0j

U e−
qj−p0j

U

)2

≥ 0.

We also notice that (1− δ)p0j − θ̄
2g(qj) ≥ 0. According to all these inequalities, it is straightfor-

ward to verify that
∂2Π0

j

∂(p0j )
2 ≤ 0 and thus Π0

j (p
0
j ; pH , pL) is a concave function in p0j .

Because Π0
j (p

0
j ; pH , pL) is continuous in p0j , pH and pL, and concave in p0j , the existence of

a pure-strategy Nash equilibrium is guaranteed by classic results, such as Proposition 8.D.3
on page 260 of Mas-Collell et al. (1995), except that now we have symmetric infinite games.
Cheng et al. (2004) extend the classic results to consider symmetric infinite games and show
that a symmetric pure-strategy Nash equilibrium exists with compact, convex strategy spaces
and continuous, quasiconcave utility functions.

We prove qH−p∗∗H > qL−p∗∗L by contradiction. Suppose qH−p∗∗H ≤ qL−p∗∗L . We know that
(1 − δ)qH − θ̄

2g(qH) > (1 − δ)qL − θ̄
2g(qL) when qH > qL, and g(q) = 1 or g(q) = q. Therefore,

we have
(1− δ)(qH − pH)

(1− δ)qH − θ̄
2g(qH)

<
(1− δ)(qL − pL)

(1− δ)qL − θ̄
2g(qL)

< 1,
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which implies that

(1− δ)(qH − pH)

(1− δ)qH − θ̄
2g(qH)

−ln

[
(1− δ)(qH − pH)

(1− δ)qH − θ̄
2g(qH)

]
>

(1− δ)(qL − pL)

(1− δ)qL − θ̄
2g(qL)

−ln

[
(1− δ)(qL − pL)

(1− δ)qL − θ̄
2g(qL)

]
.

Meanwhile, we know that
1 ≤ qH − pH

U
≤ qL − pL

U
,

which implies that,

qH − pH
U

− ln

(
qH − pH

U

)
≤ qL − pL

U
− ln

(
qL − pL

U

)
.

By equation (13), we know that

(1− δ)(qH − pH)

(1− δ)qH − θ̄
2g(qH)

− ln

[
(1− δ)(qH − pH)

(1− δ)qH − θ̄
2g(qH)

]
=

qH − pH
U

− ln

(
qH − pH

U

)
,

which implies that

(1− δ)(qL − pL)

(1− δ)qL − θ̄
2g(qL)

− ln

[
(1− δ)(qL − pL)

(1− δ)qL − θ̄
2g(qL)

]
<

qL − pL
U

− ln

(
qL − pL

U

)
.

This is a contradiction to equation (13). Therefore, we have that qH − p∗∗H > qL − p∗∗L .
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Online Appendix of Peer-to-Peer Markets with Bilateral Ratings

Analysis of Incomplete Market Coverage:

The following proposition characterizes customers’ application strategy with a proof sim-
ilar to that of Proposition 1 and thus omitted.

Proposition OA1. Under the incomplete market condition (7) and with θ̄+δ ≤ 1, we have qH−pH >

qL − pL.

1. If qH−pH
qL−pL

< e
n
γ
F
(

(1−δ)pH
g(qH )

)
, customers with type θ ∈ [0, θH ] apply to providers of type H, cus-

tomers with θ ∈ (θH , (1− δ)pH/g(qH)] apply to both types of providers, and customers with
θ ∈

(
1− δ)pH/g(qH), θ̄

]
apply to providers of type L. For θ ∈

[
0, θ̄
]
,

xH(θ) =



n

γ
f(θ), 0 ≤ θ ≤ θH

nf(θ), θH < θ ≤ (1− δ)pH
g(qH)

0,
(1− δ)pH
g(qH)

< θ ≤ θ̄

; xL(θ) =


0, 0 ≤ θ ≤ θH

nf(θ), θH < θ ≤ (1− δ)pH
g(qH)

n

1− γ
f(θ),

(1− δ)pH
g(qH)

< θ ≤ θ̄

;

U(θ) =



(qH − pH)e
−n

γ
F (θ)

, 0 ≤ θ ≤ θH

(qH − pH)

(
qH − pH
qL − pL

)−(1−γ)

e−nF (θ), θH < θ ≤ (1− δ)pH
g(qH)

(qH − pH)

(
qH − pH
qL − pL

)−(1−γ)

e
γ

1−γ
nF

(
(1−δ)pH
g(qH )

)
e
− 1

1−γ
nF (θ)

,
(1− δ)pH
g(qH)

< θ ≤ θ̄

.

2. Otherwise, if qH−pH
qL−pL

≥ e
n
γ
F
(

(1−δ)pH
g(qH )

)
, customers with type θ ∈ [0, (1− δ)pH/g(qH)] apply to

providers of type H, and customers with θ ∈
(
1− δ)pH/g(qH), θ̄

]
apply to providers of type L.

For θ ∈
[
0, θ̄
]
,

xH(θ) =


n

γ
f(θ), 0 ≤ θ ≤ (1− δ)pH

g(qH)

0,
(1− δ)pH
g(qH)

< θ ≤ θ̄
; xL(θ) =


0, 0 ≤ θ ≤ (1− δ)pH

g(qH)
n

1− γ
f(θ),

(1− δ)pH
g(qH)

< θ ≤ θ̄
;

U(θ) =


(qH − pH)e

−n
γ
F (θ)

, 0 ≤ θ ≤ (1− δ)pH
g(qH)

(qL − pL)e
1

1−γ
nF

(
(1−δ)pH
g(qH )

)
e
− 1

1−γ
nF (θ)

,
(1− δ)pH
g(qH)

< θ ≤ θ̄
.

Next, we study the providers’ problem. Consider a provider of type j posting price p0j .
Similar to equation (19) in the case of complete market coverage, a low-type provider’s profit
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function can be written as

π0
L(p

0
L; pH , pL) =



−(1− δ)
[
U(0)− U(θ̄)

]
−
∫ θ̄
0 [(1− δ)qL − g(qL)θ]U

′(θ)dθ

qL − p0L
, if p0L ≤ qL − U(0);

(1− δ)U(θ̄) + (1− δ)p0L − g(qL)U
−1(qL − p0L)

−
(1− δ)U(θ̄)qL + g(qL)

[∫ θ̄
U−1(qL−p0L)

U(θ)dθ − θ̄U(θ̄)
]

qL − p0L
otherwise.

(1)

Different from the case of complete market coverage, U(·) is no longer a continuous function

when qH−pH
qL−pL

≥ e
n
γ
F
(

(1−δ)pH
g(qH )

)
. Therefore, U−1(·) is not well defined. By redefining U−1(u) =

inf
{
x ∈ [0, θ̄]

∣∣U(x) ≤ u
}

, one can show that equation (1) still holds.
Consider now a high-type provider, whose profit function is different from equation (19)

in that the provider would not serve any customer with cost type θ ∈ ((1 − δ)pH/g(qH), θ̄].
Therefore, the upper limit of the integral in equation (19) is replaced by (1− δ)pH/g(qH) as we
write down the provider’s profit function:

π0
H(p0H ; pH , pL) =



−(1− δ)

[
U(0)− U

(
(1− δ)p0H

qH

)]

−
∫ (1−δ)p0H

qH
0 [(1− δ)qH − g(qH)θ]U ′(θ)dθ

qH − p0H
, if p0H ≤ qH − U(0);

(1− δ)U

(
(1− δ)p0H

qH

)
+ (1− δ)p0H

−g(qH)U−1(qH − p0H)−
(1− δ)U

(
(1−δ)p0H

qH

)
qH

qH − p0H

−
g(qH)

[∫ (1−δ)p0H
qH

U−1(qH−p0H)
U(θ)dθ − (1−δ)p0H

qH
U
(
(1−δ)p0H

qH

)]
qH − p0H

, otherwise.

(2)

Following similar analysis in Section 3.2, we can write down the first-order conditions to the
profit maximization problems whose objectives are given in equations (1) and (2), along with
the incomplete market coverage condition, as follows,

p∗H < θ̄g(qH)/(1− δ),

p∗L ≥ θ̄g(qL)/(1− δ),

(1− δ)(qH − p∗H)2 − (1− δ)(qH − p∗H)U

(
(1− δ)p∗H

qH

)
− g(qH)

∫ (1−δ)p∗H
qH

0
U(θ)dθ ≤ 0,

(1− δ)(qL − p∗L)
2 −

[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

min

{
θH ,

(1−δ)p∗
H

qH

} U(θ)dθ = 0.

(3)
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Proof of Proposition 6: Analysis for a Small Marketplace

Proof. We first prove there is no pure-strategy equilibrium. Suppose p∗H and p∗L are an equilib-
rium pair of prices. There are two cases to consider. First, qH −p∗H = qL−p∗L, in which case the
high-quality provider can increase his profit by lowering his price by a small amount to get the
low-cost customer for sure. Therefore, p∗H is not in equilibrium. Second, qi − p∗i > qj − p∗j , in
which case provider i gets the low-cost customer and provider j gets the high-cost customer.
We must have p∗j = qj given that the high-cost customer has no other choice except for the
outside option. Given p∗j = qj , we must have p∗i = qi− ε for ε > 0 and ε → 0. Given p∗i = qi− ε,
provider j has an incentive to choose price p∗j = qj − ε− η for η > 0 and η → 0, so as to get the
low-cost customer. Therefore, p∗j is not in equilibrium.

Denote Si as the support for provider i’s mixed pricing strategy, for i ∈ {H,L}. Further
denote Ui ≡ {qi − pi|pi ∈ Si}. Following the proof for Proposition 2 in Narasimhan (1988),
we can show that both Ui and Ui − Ui ∩ Uj are convex, and thus Ui is convex. Therefore, Si is
convex, and we can denote Si = [p

i
, pi].

We now prove that qH − p
H

= qL − p
L

> 0. In fact, suppose qi − p
i
> qj − p

j
. Then,

provider i can increase his profit by raising p
i

to p′
i
= p

i
+ [(qi − p

i
) − (qj − p

j
)]/2. Therefore

qH − p
H

= qL − p
L

, which is greater than zero because both providers’ profits are positive.
Furthermore, there is no mass point for provider i’s price distribution at p

i
. Suppose provider

i has a mass point at p
i
. Provider j can then increase his profit by shifting some probability

from above p
j

to below p
j
. Following a similar argument, one can prove that pi = qi and it is

not an equilibrium for both providers to have a mass point at pi (see more detailed argument
in the proof of Proposition 3 in Narasimhan 1988).

We are now ready to calculate the providers’ price distributions. Given that there is at
least one provider who has no mass point at pi, without loss of generality, we assume that it
is the low-quality provider who has no mass point at pL = qL. This implies that by charging
pH = qH , the high-quality provider would serve the high-cost customer almost surely. The
provider is indifferent towards charging any price p ∈ [p

H
, qH ]. This implies that provider H’s

profit is

πH = qH − c = [1− FL (p− (qH − qL))] p+ FL (p− (qH − qL))max{p− c, 0}.

By solving FL(·) from the equation above, we have

FL(p) =
p+ c− qL

p+ qH − qL −max{p+ qH − qL − c, 0}
.

Notice that there is no mass point at p
L

, so we have FL(pL) = 0, which enables us to solve
p
L
= qL − c. Provider L’s profit is hence

πL = p
L
= qL − c = [1− FH (p+ (qH − qL))) p+ FH (p+ (qH − qL)]max{p− c, 0}.

By solving FH(·) from the equation above, we have

FH(p) =
p+ c− qH

p− qH + qL −max{p− qH + qL − c, 0}
.
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By qH − p
H

= qL − p
L

, we have p
H

= qH − c. Moreover, one can see that FH(pH) = 1, so there
is no mass point at pH = qH either.

Analysis for Two Applications

Proof. Consistent with the main model, we assume that the number of customers per provider,
n is sufficiently high so that when a provider receives multiple applications, he chooses the
one with the lowest θ because he is not concerned about the possibility that the customer gets
better offers from other providers and rejects his offer. If it happens that the customer indeed
rejects his offer, it is assumed that the provider has no option to make another offer and would
stay unmatched.

Customers’ Problem

Consider first the customers’ application strategy. A customer has three possible applica-
tion strategies: (1) submitting both applications to H providers, (2) submitting both applica-
tions to L providers, (3) submitting one application to an H provider and one to an L provider.
Assume that among providers of the same type j ∈ {H,L}, a customer of type θ still uses a
symmetric mixed strategy represented by aj(θ). A customer is allowed to further mix among
the three types of application strategies above.

Similar to the main model, we define xj(θ) = Nf(θ)aj(θ) and obtain the following nor-
malization condition:

γxH(θ) + (1− γ)xL(θ) = 2nf(θ).

It is straightforward to see that the acceptance rate is still given by bj(θ) in equation (2).
When a customer of type θ uses application strategies (1), (2) and (3), her expected utilities are,
respectively,

UHH(θ) =
(
1− (1− bH(θ))2

)
(qH − pH);

ULL(θ) =
(
1− (1− bL(θ))

2
)
(qL − pL);

UHL(θ) =

{
bH(θ)(qH − pH) + (1− bH(θ))bL(θ)(qL − pL), if qH − pH ≥ qL − pL;

bL(θ)(qL − pL) + (1− bL(θ))bH(θ)(qH − pH), otherwise.

Two patterns are noteworthy. First, the acceptances of a customer’s two applications are
not independent events with a finite number of providers, but become asymptotically indepen-
dent as the number of providers goes to infinity (Albrecht et al. 2004). Second, the calculation
of customer’s expected utilities above illustrates the ex-post competition among providers af-
ter they make offers, because if a customer receives two offers, she would pick the better one,
a new feature to this setting. The customer chooses among the three application strategies to
maximize her expected utility,

U(θ) = max {UHH(θ), ULL(θ), UHL(θ)} .

With a similar proof, we can show that except for the expression of U(θ), everything else
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in Proposition 1 still applies here as long as we replace n by 2n and the notations of θH and θL

by θHH and θLL. That is,

θHH ≡ F−1

[
γ

2n
ln

(
qH − pH
qL − pL

)]
and θLL ≡ F−1

[
1− γ

2n
ln

(
qL − pL
qH − pH

)]
.

Consider the five cases in the proof of Proposition 1, customers in Cases 1 and 5, those with
θ ≤ θLL in Case 2, and those with θ ≤ θHH in Case 4 would submit both applications to the
same type of providers; for the remaining customers (those in Case 3, those with θ > θLL in
Case 2, and those with θ > θHH in Case 4), they would submit one application to providers of
type j that offer a higher potential payoff qj − pj and are indifferent between the two types of
providers for their second application.

To understand the intuition behind this result, consider the case of qH − pH > qL − pL as
an example. Given qH − pH > qL − pL, customers with low θ submit both their applications
to H providers, because UHH(θ) dominates ULL(θ) and UHL(θ) for bH(θ) and bL(θ) close to one.
Low-θ customers’ application strategy drives down bH(θ), the acceptance rate of H providers,
while bL(θ) remains at one, till θ = θHH, at which point UHH(θHH) =

(
1− (1− bH(θHH))

2
)
(qH−

pH) = UHL(θHH) = bH(θHH)(qH − pH) + (1 − bH(θHH))(qL − pL). Customers with θ > θHH are
indifferent between application strategies (1) and (3) so that UHH(θ) = UHL(θ), which implies
that xH(θ) = xL(θ).

Providers’ Problem

To simplify exposition, we continue to focus on the case with qH − pH > qL − pL. We
show next that a pure-strategy price equilibrium does not exist. To this end, consider a focal
individual provider of type H , who posts price p0H < pH and is deviating from equilibrium.
Given qH − pH > qL − pL, we have U(θ) = UHH(θ) =

(
1− (1− bH(θ))2

)
(qH − pH) accord-

ing to the analysis above. Consider a customer of type θ who submits one application to the
focal provider and the other application to an H provider. Given the focal provider’s accep-
tance probability b0H(θ), the customers’ expected utility is U0(θ) = b0H(θ)(qH − p0H) + (1 −
b0H(θ))bH(θ)(qH − pH). Notice that for any b0H(0) > 0, we have U0(0) > U(0). This implies that
all customers of type θ = 0 would submit one application to the focal provider, which makes
his acceptance probability b0H(0) = 0. Moreover, b0H(θ) ≥ 0 and is weakly increasing in θ by
definition, so we have b0H(θ) = 0 for all θ ∈ [0, θ]. In other words, by deviating to a price with
p0H < pH , the provider profits from a discrete upward jump in the number of applications. Fur-
thermore, pH = 0 cannot constitute an equilibrium, because the provider would raise the price
to profit from a positive acceptance probability. Therefore, a pure-strategy price equilibrium
does not exist.

v


	Introduction
	Literature Review

	Main Model
	Equilibrium Analysis
	Customer's Problem
	Providers' Problem
	Comparative Statics
	Platform Strategy

	Incomplete Market Coverage
	Unilateral Ratings
	Comparison of The Two Rating Systems

	Alternative Model Assumptions
	A Small Marketplace
	Multiple Applications
	Alternative Distribution of Customer Types
	Alternative Service Cost Structure

	Conclusion

