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Abstract

We study a continuous-time contracting problem under hidden action, where the prin-

cipal has ambiguous beliefs about the project cash flows. The principal designs a robust

contract that maximizes his utility under the worst-case scenario subject to the agent’s in-

centive and participation constraints. Robustness generates endogenous belief heterogene-

ity and induces a tradeoff between incentives and ambiguity sharing so that the incentive

constraint does not always bind. We implement the optimal contract by cash reserves,

debt, and equity. In addition to receiving ordinary dividends when cash reserves reach a

threshold, outside equity holders also receive special dividends or inject cash in the cash

reserves to hedge against model uncertainty and smooth dividends. The equity premium

and the credit yield spread generated by ambiguity aversion are state dependent and high

for distressed firms with low cash reserves.
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1 Introduction

Uncertainty and information play an important role in principal-agent problems. Consistent

with the rational expectations hypothesis, the traditional approach to these problems typically

assumes that both the principal and the agent share the same belief about the uncertainty

underlying an outcome, say output. The agent can take unobservable actions to influence

the output distribution. The distribution given the recommended action in a contract is

common and known to both the principal and the agent. This approach has generated impor-

tant economic implications and found increasingly widespread applications in practice, e.g.,

managerial compensation, insurance contracts, and lending contracts, etc.

However, there are several good reasons for us to think about departures from the tradi-

tional approach. First, the Ellsberg (1961) paradox and related experimental evidence demon-

strate that there is a distinction between risk and uncertainty (or ambiguity). Risk refers to

the situation where there is a known probability distribution over the state of the world,

while ambiguity refers to the situation where the information is too vague to be adequately

summarized by a single probability distribution (Gilboa an Schmeidler (1989)). Second, as

Anderson, Hansen and Sargent (2003) and Hansen and Sargent (2001, 2008) point out, eco-

nomic agents view economic models as an approximation to the true model. They believe

that economic data come from an unknown member of a set of unspecified models near the

approximating model. Concern about model misspecification induces a decision maker to

want robust decision rules that work over that set of nearby models.1

The goal of this paper is to study how to design robust contracts with hidden action in a

dynamic environment. We adopt a continuous-time framework to address this question. More

specifically, our model is based on DeMarzo and Sannikov (2006) and Biais et al (2007). The

continuous-time framework is analytically convenient for several reasons. First, it allows us

to represent belief distortions by perturbations of the drift of the Brownian motion using the

powerful Girsanov Theorem (see Karatzas and Shreve (1991)). Second, it allows us to adapt

and extend the martingale approach to the dynamic contracting problems recently developed

by DeMarzo and Sannikov (2006), Sannikov (2008), and Williams (2009, 2011). Third, it

allows us to express solutions in terms of ordinary differential equations (ODEs) which can be

numerically solved tractably. Finally, it allows us to conduct capital structure implementation

so that we can analyze the impact of robustness on asset pricing transparently.

When formulating robust contracting problems, we face two important issues. The first

issue is that we have to consider who faces model ambiguity in our two-party contracting

1There is a growing literature on the applications of robustness and ambiguity to finance and macroeco-
nomics, e.g., Epstein and Wang (1994), Epstein and Miao (2003), Maenhout (2004), Hansen (2007), Hansen
and Sargent (2010), and Ju and Miao (2012), among others.
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problems, unlike in the representative agent models. As a starting point, it is natural to

assume that the agent knows the output distribution chosen by himself. Due to the lack of

information, the principal faces model uncertainty in the sense that he believes that there

may be multiple distributions surrounding the output distribution chosen by the agent.

The second issue is how to model decision making under ambiguity. There are several

approaches in decision theory. A popular approach is to adopt the maxmin expected utility

model of Gilboa and Schmeidler (1989). Chen and Epstein (2002) formulate this approach

in a continuous-time framework. We adopt the approach proposed by Hansen and Sargent

(2001), Anderson, Hansen, and Sargent (2003), and Hansen et al (2006).2 This approach is

especially useful for our analysis since model discrepancies are measured by entropy, which

is widely used in statistics and econometrics for model detection. Moreover, it is analytically

tractable.

We assume that the principal copes with model uncertainty by designing a robust contract

that maximizes his utility in the worst-case scenario subject to the agent’s incentive and par-

ticipation constraints. The principal’s utility is modeled as the multiplier preferences proposed

by Hansen and Sargent (2001) and Anderson, Hansen and Sargent (2003) and axiomatized by

Maccheroni, Marinacci and Rustichini (2006a,b) and Strzalecki (2011). The principal solves a

maxmin problem, which is related to the zero-sum differential game literature (e.g., Fleming

and Souganidis (1989)). Our key insight is that the principal’s aversion to model uncertainty

generates an endogenous belief distortion in that he pessimistically puts more weight on worse

outcomes. Since the agent is assumed not to face ambiguity, there is endogenous belief het-

erogeneity. This belief heterogeneity generates a tradeoff between incentives and ambiguity

sharing and has important implications for contract dynamics and asset pricing.

We find the following main novel results. First, unlike DeMarzo and Sannikov (2006)

and Biais et al (2007), our robust contract implies that the optimal sensitivity of the agent’s

continuation value to the cash flow uncertainty is not always at the lower bound to ensure

incentive compatibility. The intuition is the following. The principal is ambiguous about

the probability distribution of the project cash flows. He wants to remove this ambiguity

and transfer uncertainty to the agent. But he does not want the agent to bear too much

uncertainty since this may generate excessive volatility and a high chance of liquidation.

When the agent’s continuation value is low, the principal is more concerned about liquidation

and hence the optimal sensitivity is at the lower bound so that the incentive constraint just

binds. But when the agent’s continuation value is high, the principal is more concerned about

model uncertainty and hence the optimal contract allows the agent to bear more uncertainty.

2See Hansen and Sargent (2008) for a textbook treatment of this approach in discrete time.
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In this case the optimal sensitivity of the agent’s continuation value to the cash flow is state

dependent and exceeds its lower bound.

Second, we show that the robust contract can be implemented by cash reserves, debt,

and equity as in Biais et al (2007).3 Unlike their implementation, the equity payoffs consist

of regular dividends (paid only when the cash reserves reach a threshold level) and special

dividends (or cash injections if negative). The special dividends or cash injections are used as

a hedge against model uncertainty. They ensure that cash reserves track the agent’s continu-

ation value so that the payout time and the liquidation time coincide with those in the robust

contract. Special dividends or cash injections occur only when the firm builds up sufficiently

high cash reserves. In this case, when the project performs well, outside equity holders inject

cash to raise cash reserves through new equity issues. But when the project performs bad,

outside equity holders receive special dividends so that total dividends are smoothed. This

result provides an explanation of dividend smoothing widely documented in the corporate

finance literature dated back to Lintner (1956). Our model prediction is consistent with the

empirical evidence documented by Leary and Michaely (2011) that dividend smoothing is

most common among firms that are cash cows.

Third, incorporating model uncertainty has important asset pricing implications. The

shadow prices of model uncertainty for the principal are revealed by the endogenously de-

termined worst-case belief and contribute to the uncertainty premium and hence the equity

premium. The uncertainty premium lowers the stock price and debt value and hence makes

some profitable projects unfunded. It also raises the credit yield spread. Importantly, the

equity premium and the credit yield spread increase with the degree of ambiguity aversion.

They are state dependent and high for distressed firms with low cash reserves. This also

implies that the equity premium and the credit yield spread are high in recessions since cash

reserves are low in bad times.4 By contrast, there is no equity premium in DeMarzo and

Sannikov (2006) and Biais et al (2007).

Fourth, unlike DeMarzo and Sannikov (2006) and Biais et al (2007), we show that the

stock price in the robust contracting problem is convex for low levels of cash reserves and

concave for high levels of cash reserves when investors (the principal) are sufficiently ambiguity

averse. Thus shareholders will benefit from a gamble involving the gain or loss from an initial

position of low cash reserves. This result implies that the asset substitution or risk-shifting

problem is more likely to occur for financially distressed firms or newly established firms

with low cash reserves (Jensen and Meckling (1976)). This prediction is consistent with

3See DeMarzo et al. (2012) for a related implementation. We can also implement the robust contracts by
credit lines, debt and equity as in DeMarzo and Sannikov (2006). We have not pursued this route in this paper.

4Biais et al (2007) also show that the credit yield spread is high for distressed firms with low cash reserves.
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the empirical evidence reported by Eisdorfer (2008) that, unlike healthy firms, financially

distressed firms speed up investments as uncertainty increases to transfer wealth from creditors

to shareholders.

Our paper is related to a fast growing literature on dynamic contracting problems in

continuous time.5 Our paper is most closely related to the seminal contributions by DeMarzo

and Sannikov (2006) and Biais et al (2007). Our main contribution is to introduce robustness

into their models and study capital structure implementation and asset pricing implications.

Szydlowski (2012) introduces ambiguity into a dynamic contracting problem in continuous

time. He assumes that the principal is ambiguous about the agent’s effort cost. His modeling

of ambiguity is quite different from ours and can be best understood as a behavioral approach.

His utility model cannot be subsumed under the decision-theoretic setting of Gilboa and

Schmeidler (1989) and its continuous time version by Chen and Epstein (2002). Carroll (2015)

studies a static contracting problem in which the principal has ambiguous beliefs about the

agent’s possible actions. He shows that the optimal contract is linear, but he does not study

the questions related to security design and asset pricing.

Our modeling of robust contracting problems is inspired by Hansen and Sargent (2012)

who classify four types of ambiguity in robust monetary policy problems in which a Ramsey

planner faces private agents. They argue that “a coherent multi-agent setting with ambiguity

must impute possibly distinct sets of models to different agents, and also specify each agent’s

understanding of the sets of models of other agents.” This point is particularly relevant for

contracting problems because such problems must involve at least two parties. Ambiguity

aversion generates endogenous belief heterogeneity and delivers interesting contract dynamics

and asset pricing implications.

The remainder of the paper proceeds as follows. Section 2 lays out the model. Section 3

presents the solution to the robust contract. Sections 4 analyzes capital structure implemen-

tation and asset pricing implications. Section 5 concludes. Technical details are relegated to

appendices.

2 The Model

We first introduce the model setup which is based on DeMarzo and Sannikov (2006) and

Biais et al (2007). We then introduce belief distortions and incorporate a concern for model

uncertainty.

5See Sannikov (2013) and Cvitanic and Zhang (2013) for surveys of this literature.
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2.1 Setup

Consider a continuous-time infinite-horizon environment. An agent (or entrepreneur) owns

a technology (or project) that can generate a cumulative cash-flow process represented by

(Yt) . The project needs initial capital K > 0 to be started. The agent has no initial wealth

and needs financing from outside investors (the principal). Once the project is started, the

agent affects the technology performance by taking an action or effort level at ∈ [0, 1], which

changes the distribution of cash flows. The cash flows (Yt) follow the process

dYt = µatdt+ σdBa
t , (1)

where µ, σ > 0 and Ba is a standard Brownian motion defined on the filtered probability space
(

Ω,F , (Ft)t≥0 , P a
)

.6 Note that the triple (Y,Ba, P a) is a weak solution to the preceding

stochastic differential equation.

The agent can derive private benefits λµ (1− at) dt from the action at, where λ ∈ (0, 1).

Due to linearity, this modeling is also equivalent to the binary effort setup where the agent can

either shirk, at = 0, or work, at = 1. Hence, we adopt this simple assumption throughout the

paper. Alternatively, we can interpret 1−at as the fraction of cash flow that the agent diverts

for his private benefit, with λ equal to the agent’s net consumption per dollar diverted. In

either case, λ represents the severity of the agency problem. The choice of the agent’s action

is unobservable to the principal, creating the moral hazard issue. The principal only observes

past and current cash flows and his information set is represented by the filtration (Ft)t≥0

generated by (Yt) .

Both the principal and the agent are risk neutral and discount the future cash flows

according to r and γ respectively. Assume that r < γ so that the agent is more impatient

than the principal. The technology can be liquidated. If it is liquidated, the principal obtains

L and the agent gets outside value zero.

The principal offers to contribute capital K in exchange for a contract (C, τ , a) that

specifies a termination (stopping) time τ , a cash compensation C = {Ct : 0 ≤ t ≤ τ} to the

agent, and a suggested effort choice a = {at ∈ {0, 1} : 0 ≤ t ≤ τ}. Assume that C and a

are adapted to (Ft) and that C is a right continuous with left limits and increasing process

satisfying7

EP a

[(∫ t

0
e−γsdCs

)2
]

< ∞, t ≥ 0, C0 ≥ 0.

6All processes in the paper are assumed to be progressively measurable with respect to {Ft} . Inequalities
in random variables or stochastic processes are understood to hold almost surely.

7The square integrability is imposed to ensure Wt defined in (2) has a martingale representation (see
Cvitanic and Zhang (2013), Chapter 7).
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The monotonicity requirement reflects the fact that the agent has limited liability.

Fix a contract (C, τ , a) and assume that the agent follows the recommended choice of

effort. His continuation value Wt at date t is defined as

Wt = EP a

t

[∫ τ

t

e−γ(s−t)(dCs + λµ(1− as)ds)

]

, (2)

where EP a

t denotes the conditional expectation operator with respect to the measure P a given

the information set Ft. His total expected utility at date 0 is equal to W0.

DeMarzo and Sannikov (2006) and Biais et al (2007) study the following contracting

problem in which the principal maximizes his expected utility value without a concern for

model uncertainty.

Problem 2.1 (benchmark model)

max
(C,τ ,a)

EP a

[∫ τ

0
e−rs(dYs − dCs) + e−rτL

]

, (3)

subject to

EP a

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]

≥ EP â

[∫ τ

0
e−γs(dCs + λµ(1− âs)ds)

]

, (4)

EP a

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]

= W0, (5)

where âs ∈ {0, 1} and W0 ≥ 0 is given.

In this problem, consistent with the rational expectations hypothesis, both the principal

and the agent use the measure P a to evaluate expected utility. Inequality (4) is the incentive

constraint and equation (5) is the promising-keeping or participation constraint. Assume

that the agent and the principal cannot save and both the principal and the agent have full

commitment.

Let F b (W0) denote the principal’s value function for Problem 2.1. Then the project can

be funded if and only if maxw≥0 F
b (w) ≥ K. If the agent has all bargaining power due to

competition of principals, he extracts the maximal W0 such that F b (W0) = K. If the principal

has all bargaining power due to competition of agents, he delivers the agent W ∗ such that

W ∗ solves maxw F b (w) .
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2.2 Robustness and Belief Distortions

We now consider the possibility of belief distortions due to concerns about model misspecifi-

cations or model ambiguity. Both the principal and the agent view the probability measure

P a as an approximating model. Suppose that the principal does not trust this model and

considers alternative models as possible.

Suppose that all distorted beliefs are described by mutually absolutely continuous mea-

sures with respect to P a over any finite time intervals. This assumption allows us to use the

Girsanov Theorem for changing measures so that model ambiguity is only about the drift of

the diffusion processes.8 Define a density generator associated with an effort process a as a

real-valued process (ht) satisfying
∫ t

0 h
2
sds < ∞ for all t > 0 such that the process (zt) defined

by

zt = exp

(∫ t

0
hsdB

a
s −

1

2

∫ t

0
h2sds

)

(6)

is a (P a,Ft)-martingale (see Hansen et al (2006) for the technical details). Denote the set of

density generators by Ha. By the Girsanov Theorem, there is a measure Qh corresponding to

h defined on (Ω,F) such that zt is the Radon-Nikodym derivative of Qh with respect to P a

when restricted to Ft, dQ
h/dP a|Ft = zt, and the process

(
Bh

t

)
defined by

Bh
t = Ba

t −

∫ t

0
hsds,

is a standard Brownian motion under the measure Qh. Under measure Qh, cash flows follow

dynamics

dYt = µatdt+ σ
(

dBh
t + htdt

)

. (7)

Following Anderson, Hansen and Sargent (2002), Hansen et al (2006), and Hansen and

Sargent (2012), we use discounted relative entropy to measure the discrepancy between Qh

and P a,

rEP a

[∫ ∞

0
e−rtzt ln ztdt

]

=
1

2
EP a

[∫ ∞

0
e−rtzth

2
t dt

]

,

where the equality follows from (6) and integration by parts. To incorporate a concern for

robustness of belief distortions, we represent the principal’s preferences by multiplier utility

inf
h

EQh

[∫ τ

0
e−rt(dYt − dCt) + e−rτL

]

+
θ

2
EP a

[∫ τ

0
e−rtzth

2
t dt

]

, (8)

where the last term penalizes belief distortions. This utility model can be viewed as a

8See Epstein and Ji (2013) for a continuous-time model of ambiguity about both the drift and volatility
without the mutually absolute continuity assumption.
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continuous-time version of the dynamic variational utility model studied by Maccheroni,

Marinacci, and Rustichini (2006b). The parameter θ > 0 describes the degree of concern

for robustness. We may interpret 1/θ as an ambiguity aversion parameter. A small θ implies

a large degree of ambiguity aversion or a large degree of concern for robustness. When θ

approaches infinity, the preceding utility reduces to expected utility in (3).

3 Robust Contract

We formulate the robust contracting problem with agency as follows:

Problem 3.1 (robust contract with agency)

sup
(C,τ ,a)

inf
h

EQh

[∫ τ

0
e−rt(dYt − dCt) + e−rτL

]

+
θ

2
EP a

[∫ τ

0
e−rtzth

2
t dt

]

, (9)

subject to (4), (5), and (6).

Mathematically, Problem 3.1 is a combined singular control and stopping problem (see

Fleming and Soner (1993)). As Hansen et al (2006) point out, it is also related to the zero-sum

stochastic differential game problem (e.g., Fleming and Souganidis (1989)). We shall proceed

heuristically to derive the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation for optimality and

then provide a formal verification theorem. We finally analyze several numerical examples

to illustrate economic intuition. It is technically challenging and quite involved to provide a

rigorous derivation of the HJBI equation. Such an analysis is beyond the scope of this paper.

3.1 First-Best Robust Contract

Before analyzing the robust contract with agency, we start with the first-best case in which the

principal observes the agent’s effort choice and hence the incentive constraint (4) in problem

3.1 is not valid. The derivations of the HJBI equation consist of several steps. First, we ignore

the incentive constraint (4) and keep the participation constraint. Using Girsanov’s Theorem

and the Martingale Representation Theorem, (Wt) in (2) satisfies

dWt = γWtdt− dCt − λµ (1− at) dt+ htφtdt+ φtdB
h
t , (10)

where Bh
t is a standard Brownian motion under the measure Qh.
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Second, we write the principal’s utility in (3) under the measure Qh as

EQh

[∫ τ

0
e−rt(dYt − dCt) + e−rτL

]

+
θ

2
EP a

[∫ τ

0
e−rtzth

2
t dt

]

= EQh

[∫ τ

0
e−rt(µatdt+ σhtdt− dCt) + e−rτL

]

+
θ

2
EQh

[∫ τ

0
e−rth2t dt

]

,

where we have used the fact that dYt = (µat + σht) dt+ σdBh
t .

Third, define F (W0) as the value function for Problem 3.1 without the incentive constraint

(4) when we vary the promised value W0 to the agent. We use the dynamic programming

principle to write an approximate Bellman equation:

rF (Wt) dt = sup
dCt,φt,at∈{0,1}

inf
ht

µatdt+ σhtdt− dCt +
θ

2
h2t dt+ EQh

t [dF (Wt)] , (11)

subject to (10). This equation has an intuitive economic interpretation. The left-hand side

represents the mean return required by the principal. The right-hand side represents the total

return expected by the principal. It consists of the cash flow plus the expected capital gain or

loss EQh

t [dF (Wt)] . Optimality requires the expected return equal the required mean return.

Note that all expected values are computed using the measure Qh.

Now we use Ito’s Lemma and (10) to derive

EQh

t [dF (Wt)] = F ′(Wt)(γWtdt− dCt − λµ (1− at) dt+ htφtdt) +
F ′′(Wt)

2
φ2
t dt.

Plugging this equation into (11) yields

rF (Wt) dt = sup
at∈{0,1},dCt,φt

inf
ht

µatdt+ σhtdt− dCt +
θ

2
h2tdt

+F ′(Wt)(γWtdt− dCt − λµ (1− at) dt+ htφtdt) +
F ′′(Wt)

2
φ2
t dt.

Suppose that dCt = ctdt, where ct ≥ 0. Removing the time subscripts and cancelling dt, we

obtain the HJBI equation

rF (W ) = sup
a∈{0,1},c≥0,φ

inf
h

µa+ σh−
(
1 + F ′ (W )

)
c (12)

+F ′(W )(γW + hφ− λµ (1− a)) +
F ′′(W )

2
φ2 +

θh2

2
.

Clearly, for this problem to have a finite solution, we must have F ′ (W ) ≥ −1. We then

get c > 0 if and only if F ′ (W ) = −1. Define W̄ as the lowest level such that F ′ (W ) = −1.
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This illustrates the feature of the singular control problem: the principal makes payments to

the agent if and only if Wt reaches the point W̄ . The payments make the process (Wt) reflects

at this point.

The objective function in (12) is convex in h. Solving for the worst-case density generator

yields

h = −
φF ′ (W ) + σ

θ
. (13)

Substituting it back into (12) yields

rF (W ) = sup
a∈{0,1},φ

µa+ F ′(W ) (γW − λµ (1− a)) +
φ2

2
F ′′(W )−

[φF ′ (W ) + σ]2

2θ
. (14)

Assuming that

θF ′′ (W )− F ′ (W )2 < 0, (15)

so that the expression on the right-hand side of equation (14) is concave in φ, we can derive

the optimal sensitivity

φ∗ (W ) =
F ′ (W )σ

θF ′′ (W )− F ′ (W )2
. (16)

Note that the concavity of F is sufficient but not necessary for (15) to hold. Since λ ∈ (0, 1)

and F ′ (W ) ≥ −1, it follows that λF ′ (W ) + 1 ≥ 0 and hence implementing high effort at = 1

is optimal.

The following result characterizes the first-best robust contract.

Proposition 1 Consider the first-best robust contracting problem. Suppose that

L <
µ

r
−

σ2

2rθ
, (17)

and that there is a unique twice continuously differentiable solution F to the ODE on [0, W̄ ],

rF (W ) = µ+ F ′(W )γW −
[F ′ (W )σ]2

2θ
[

θF ′′ (W )− F ′ (W )2
] −

σ2

2θ
, (18)

with the boundary conditions,

F (0) =
µ

r
−

σ2

2rθ
, (19)

F ′
(
W̄

)
= −1, F ′′

(
W̄

)
= 0,

such that condition (15) holds and F ′ (W ) > −1 on [0, W̄ ). Then:

(i) When W ∈ [0, W̄ ], the principal’s value function is given by F (W ), the first-best

10



sensitivity φ∗ (W ) is given by (16), the worst-case density generator is given by

h∗ (W ) = −
φ∗ (W )F ′ (W ) + σ

θ
, (20)

and the agent always exerts high effort a∗ (W ) = 1. The contract initially delivers W ∈
[
0, W̄

]
≥ 0 to the agent whose continuation value (Wt) follows the dynamics

dWt = γWtdt− dC∗
t + φ∗ (Wt) dB

1
t , W0 = W, (21)

for t ≥ 0, where the optimal payments are given by

C∗
t =

∫ t

0
1{Ws=W̄}dC

∗
s , (22)

and the project is never liquidated.

(ii) When W > W̄ , the principal’s value function is F (W ) = F
(
W̄

)
−

(
W − W̄

)
. The

principal pays W − W̄ immediately to the agent and the contract continues with the agent’s

new initial value W̄ .

The intuition behind this proposition is as follows. The principal is ambiguity averse

and would like to transfer uncertainty to the agent when designing a contract. Ideally, the

risk-neutral agent should insure the principal by making the principal’s payoff flows constant.

This means that the agent should absorb all risk from the project cash flows. However, this

contract is not feasible due to limited liability. The project cash flows can be negative and the

agent can incur losses. With limited liability, uncertainty sharing is limited. The net marginal

cost to the principal from delivering an additional unit of value to the agent is 1+F ′ (W ) ≥ 0.

The principal makes payments to the agent when and only when the net marginal cost is equal

to zero at some point W̄ . The tradeoff is the following: On the one hand, the principal wants

to make payments to the agent earlier because the agent is more impatient. On the other

hand, the principal wants to delay payments, allowing the agent’s continuation value Wt to

get larger. This benefits the principal because if Wt is closer to zero, the principal has to bear

more of the project cash flow uncertainty. In particular, when Wt = 0, the principal bears full

uncertainty and his value is given by (19). The term σ2/ (2rθ) represents the discount due

to model uncertainty. It increases with volatility σ and ambiguity aversion parameter 1/θ.

Assumption (17) implies that liquidation is never optimal in the first-best robust contract.

Proposition 1 shows that the worst-case density generator and the sensitivity of the agent’s

continuation value to the cash flow are state dependent. The agent bears large cash flow

uncertainty, but he does not absorb all uncertainty due to limited liability. Because the
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principal also bears uncertainty, his value function F is nonlinear and the last two nonlinear

terms in the ODE reflect the value discount due to model ambiguity.

We emphasize that in two-party contracting problems, model ambiguity generates endoge-

nous belief heterogeneity. Specifically, the agent trusts the approximating model P a and his

continuation value (Wt) follows the dynamics (21) under P a. However, the principal has doubt

about the approximating model P a and the agent’s continuation value under the principal’s

worst-case model Qh∗
follows the dynamics

dWt = γWtdt− dC∗
t + φ∗ (Wt) h

∗ (Wt) dt+ φ∗ (Wt) dB
h∗

t . (23)

This point has important pricing implications when we implement the robust contract with

agency later. The endogenous belief heterogeneity is a useful interpretation and not intended

as an ex ante statement of uncertainty.

3.2 Robust Contract with Agency

Turn to the case with moral hazard in which the principal does not observe the agent’s effort

choice and hence the incentive constraint (4) must be imposed in Problem 3.1. Without risk

of confusion, we still use F (W0) to denote the value function for Problem 3.1 when we vary

the promised value W0 to the agent. Suppose that implementing high effort is optimal. Then

DeMarzo and Sannikov (2006) show that the incentive constraint is equivalent to

φt ≥ σλ. (24)

Using a similar argument to that in the previous subsection, we can proceed heuristically

to derive the HJBI equation for optimality. Imposing constraint (24) and setting at = 1 in

the associated equations in the previous subsection, we can show that the HJBI equation is

given by

rF (W ) = sup
c≥0,φ≥σλ

inf
h

µ+ σh−
(
1 + F ′ (W )

)
c (25)

+F ′(W )(γW + hφ) +
F ′′(W )

2
φ2 +

θh2

2
.

Thus the worst-case density generator is still given by (13) and there is a boundary point W̄

such that c > 0 if F ′
(
W̄

)
= −1 and c = 0 if F ′ (W ) > −1 for W ∈ [0, W̄ ). We can then

12



rewrite the HJBI equation as

rF (W ) = sup
φ≥σλ

µ+ F ′(W )γW +
φ2

2
F ′′(W )−

[φF ′ (W ) + σ]2

2θ
. (26)

Under condition (15), the optimal sensitivity is given by

φ∗ (W ) = max

{
F ′ (W )σ

θF ′′ (W )− F ′ (W )2
, σλ

}

. (27)

The last term in (26) reflects the cost of model uncertainty. When θ → ∞, that term

disappears and φ∗ (W ) → σλ. We then obtain the solution as in DeMarzo and Sannikov

(2006).

The following result characterizes the robust contract with agency.

Proposition 2 Consider the robust contracting problem with agency. Suppose that imple-

menting high effort is optimal and that condition (17) holds. Suppose that there exists a

unique twice continuously differentiable solution F to the ODE (26) on
[
0, W̄

]
with boundary

conditions

F ′
(
W̄

)
= −1, F ′′

(
W̄

)
= 0, F (0) = L,

such that condition (15) holds and F ′ (W ) > −1 on [0, W̄ ). Then:

(i) When W ∈ [0, W̄ ], F (W ) is the value function for Problem 3.1, the optimal sensitivity

φ∗ (W ) is given by (27), and the worst-case density generator is given by (20). The contract

delivers the value W ∈
[
0, W̄

]
to the agent whose continuation value (Wt) follows the dynamics

(21) for t ∈ [0, τ ] , where the optimal payments are given by (22). The contract terminates at

time τ = inf {t ≥ 0 : Wt = 0} .

(ii) When W > W̄ , the principal’s value function is F (W ) = F
(
W̄

)
−

(
W − W̄

)
. The

principal pays W − W̄ immediately to the agent and the contract continues with the agent’s

new initial value W̄ .

Unlike in the first-best case, the incentive constraint requires that the sensitivity φt be at

least as large as a lower bound σλ as in the DeMarzo-Sannikov model. In their model, the

choice of φt reflects the following tradeoff: a large φt is needed to provide incentives to the

agent. But a large φt also raises the volatility of the agent’s continuation value and hence

raises the chance of liquidation. The optimal sensitivity just achieves the lower bound σλ

when the principal’s value function is concave. However, this lower bound does not always

bind in the presence of model ambiguity. The reason is that there is an uncertainty and

incentive tradeoff. The robust contract should transfer uncertainty from the ambiguity averse

13
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Figure 1: Value functions for the robust contracting problem. The upper curve is
the first-best value function and the payout boundary is W̄FB. The lower curve is the value
function with agency and the payout boundary is W̄ . The optimal sensitivity changes value
at Ŵ . Parameter values are µ = 10, r = 0.10, γ = 0.15, λ = 0.20, σ = 5, L = 90, and θ = 20.

principal to the risk neutral agent as much as possible. Thus the agent should be exposed

more to the uncertainty so that the optimal sensitivity may exceed the lower bound.

Under what situation does this happen? For a low value of W, the principal is more

concerned about inefficient liquidation. Thus the optimal contract will set φt at the lower

bound. WhenW is large and close to the payout boundary W̄ , the principal is more concerned

about model uncertainty and hence he would like the agent to be exposed more to the cash

flow uncertainty by providing him more incentives so that

φ∗ (W ) =
F ′ (W )σ

θF ′′ (W )− F ′ (W )2
> σλ. (28)

From the analysis above, the agent is more likely to be overincentivized when his continuation

value is high.

Figure 1 plots the value functions for the robust contracting problem with and without

agency. The payout boundary is given by W̄FB for the first-best case. It is lower than that

for the contract with agency, implying that moral hazard generates inefficient delay in payout.

Both value functions are concave and become linear after the payout boundaries with a slope

−1. Figure 2 plots the worst-case density generator h∗ and the optimal sensitivity φ∗ for the

contract with agency. Consistent with the previous intuition, the figure shows that there is a

cutoff value Ŵ , such that the sensitivity φ∗ (W ) reaches the lower bound σλ for all W ∈ [0, Ŵ ]
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Figure 2: Optimal sensitivity and the worst-case density generator for the robust

contracting problem. Parameter values are µ = 10, r = 0.10, γ = 0.15, λ = 0.20, σ = 5,
L = 90, and θ = 20.

and it is given by (28) for all W ∈ [Ŵ , W̄ ]. We conjecture that this cutoff property holds more

generally because it is supported by our numerical examples for a wide range of parameter

values. Figure 2 also shows that h∗ (W ) increases with W and h∗ (W ) < 0 for all W ∈ [0, W̄ ).

Intuitively, the principal’s aversion to model uncertainty leads to his pessimistic behavior.

The local mean of the Brownian motion is shifted downward under the principal’s worst-case

belief. At W = W̄ , the boundary conditions F ′
(
W̄

)
= −1 and F ′′

(
W̄

)
= 0 imply that

h∗
(
W̄

)
= 0 and φ∗

(
W̄

)
= σ.

Figure 3 illustrates that the value function may not be globally concave. In particular,

it is convex when the agent’s continuation value is close to the liquidation boundary. To see

why this can happen, we rewrite (26) as

φ∗ (W )2

2
F ′′(W ) =

[
rF (W )− µ− F ′(W )γW

]
+

[φ∗ (W )F ′ (W ) + σ]2

2θ
.

When θ → ∞, the second expression on the right-hand side of the above equation vanishes and

the model reduces to the DeMarzo-Sannikov model so that the first square bracket expression

is negative and F ′′ (W ) < 0. However, when the principal is sufficiently ambiguity averse (i.e.,

1/θ is sufficiently large), the second expression may dominate so that F ′′ (W ) > 0. This case

can happen when W is sufficiently small for the first square bracket expression to be small. In

this case, public randomization in the sense of stochastic termination of the project is optimal
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σλ =

σ =

φ∗(W )

0 5 10 15 20 25

-1.5

-1

-0.5

0

W̄Ŵ
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Figure 3: Value function, optimal sensitivity, and the worst-case density generator

for the robust contracting problem. Parameter values are µ = 5, r = 0.10, γ = 0.15,
λ = 0.20, σ = 5, L = 0, and θ = 6.

to the principal, as illustrated by the dashed line from the origin in Figure 3.9 By contrast,

when W is sufficiently large, F ′ (W ) is close to −1 and φ∗ (W ) is close to σ so that the second

square bracket expression is close to zero. Thus F ′′ (W ) < 0 when W is sufficiently large.

Intuitively, the marginal value to the principal F ′ (W ) for a small W consists of three

components. First, an increase in W pushes the agent’s continuation value away from the

liquidation boundary. This marginal benefit decreases with W . Second, an increase in W

pushes the continuation value closer to the payout boundary. This marginal cost increases

withW . Third, an increase inW pushes the continuation value closer to the cutoff Ŵ , allowing

the principal to have better ambiguity sharing. This marginal benefit increases with W when

W is small. This component is unique in our robust contracting problem and may dominate

the other two components when W is sufficiently small. In this case F ′ (W ) increases with W

so that F is convex. But when W is sufficiently large, the first two components dominate so

that F is concave.

The following proposition gives a necessary and sufficient condition for implementing high

effort, which is satisfied in all our numerical examples.

Proposition 3 Implementing high effort is optimal at all times for Problem 3.1 if and only

9Stochastic liquidation is common in the discrete-time models, e.g., Clementi and Hopenhayn (2006), Biais
et al. (2007), and DeMarzo and Fishman (2007a,b). Since such an analysis is standard, we omit it here.
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if

rF (W ) ≥ max
φ≤σλ

F ′(W ) (γW − λµ) +
φ2

2
F ′′(W )−

[φF ′ (W ) + σ]2

2θ
, (29)

for W ∈
[
0, W̄

]
, where F is given in Proposition 2 and satisfies condition (15).

When θ → ∞, the condition in (29) reduces to that in Proposition 8 in DeMarzo and

Sannikov (2006) for expected utility. If we adopt the recursive multiple-priors utility model

of Chen and Epstein (2002) with the κ-ignorance specification of the set of priors, the HJBI

equation is given by

rF (W ) = max
dC≥0,φ≥σλ

min
|h|≤κ

µ+ σh− (1 + F ′ (W ))dC + F ′(W )(γW + hφ) +
F ′′(W )

2
φ2.

In the online appendix we show that the incentive constraint binds when the agent’s contin-

uation value is sufficiently low. This result is similar to that in our model with multiplier

preferences. The intuition follows from the same incentive and ambiguity sharing tradeoff. In

contrast to our model, the value function for the Chen-Epstein model is globally concave and

the corner solution h∗ (W ) = −κ for all W achieves the minimum. It is much more difficult

to analyze the HJBI equation for the Chen-Epstein model both analytically and numerically

because there are two constrained optimization problems involved.

The following proposition shows that the value function F decreases if the degree of concern

for robustness or the degree of ambiguity aversion increases, i.e., 1/θ increases. The intuition

is that model uncertainty is costly to the principal and hence reduces his value. The last term

in (26) gives this cost, which is the local entropy θh∗ (W )2 /2.

Proposition 4 The value function F (W ) on
[
0, W̄

]
in Problem 3.1 increases with the pa-

rameter θ.

3.3 Bellman-Isaacs Condition

As explained by Hansen et al (2006), the Bellman-Isaacs condition is important for various

interpretations of robust control. This condition allows for the exchange of orders of extrem-

ization. Given this condition, the decision maker also optimizes with respect to a different

probability specification of the original Brownian motion without period-by-period feedback

onto an endogenous state variable. One can then offer an ex-post Bayesian interpretation

of robust control. Hansen et al (2006) provide several examples (no binding inequality con-

straints, separability, and convexity) to verify this condition. Their examples do not fit in our

model because the control problem in our model involves inequality constraints and control of

the diffusion or volatility term (φt). For our robust contracting problem, one can check that if
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F is concave, then the max and min operators in (12) or (25) can be exchanged (Fan (1953))

and hence the Bellman-Isaacs condition is satisfied. But condition (15) in our verification

theorem (Proposition 2) does not imply global concavity of F and our numerical examples

show that F may be convex in some region for the robust contracting problem. In this case,

if one extremized φ first in (25), there would be no solution (φ is infinity). By contrast, we

extremize h first and φ next, the optimal solution for φ in problem (26) is given by (27) as

long as the second-order condition (15) holds. To conclude, whenever F is convex in some

region, the Bellman-Issacs condition will not hold in our model.

Since the Bellman-Isaacs condition may not hold in our robust contracting problem, we

cannot apply the ex-post Bayesian interpretation. Our interpretation of the worst-case prob-

ability measure as an endogenous belief is based on the decision theoretic axiomatization

in Maccheroni, Marinacci, and Rustichini (2006a,b) and Strzalecki (2011). The multiplier

utility given in (8) can be viewed as a continuous-time version of the discrete-time model in

Maccheroni, Marinacci, and Rustichini (2006b). According to their axiomatization, the set of

mutually absolutely continuous probability measures described in Section 2.2 represents the

decision maker’s ambiguous beliefs about all possible model specifications and the minimizing

measure represents the worst-case belief. Since the order of extremization may not be ex-

changed in our model, we cannot drop the penalty term in (8) when performing maximization

given the worst-case belief. Thus we cannot interpret the ambiguity averse principal in our

model as an ex-post Bayesian decision maker with expected utility. But we can interpret the

worst-case probability measure as his endogenous belief with non-expected utility.

4 Implementation and Asset Pricing

4.1 Capital Structure

We use cash reserves, debt, and equity to implement the optimal contract characterized in

Proposition 2. We will show that ambiguity aversion generates some new insights into asset

pricing. As in Biais et al (2007), the firm has a bank account that holds cash reserves Mt with

interest rate r. The project payoffs are put in the account. Outside investors (principal) hold

debt with coupon payment [µ− (γ − r)Mt] dt and a fraction 1−λ of equity. The entrepreneur

(agent) holds a fraction λ of equity. Equity pays total regular dividends dC∗
t /λ. The cash

reserves follow dynamics

dMt = rMtdt+ dYt − dC∗
t

︸︷︷︸

inside dividends

− dΨt, M0 = W0/λ, (30)
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for Mt ∈
[
0, W̄ /λ

]
, where

dΨt = [µ− (γ − r)Mt] dt
︸ ︷︷ ︸

coupon

+
1− λ

λ
dC∗

t
︸ ︷︷ ︸

outside dividends

+

[

σ −
φ∗ (λMt)

λ

]

dB1
t

︸ ︷︷ ︸

special dividends

,

and W̄ , C∗ and φ∗ are given in Proposition 2.

Unlike the implementation in Biais et al (2007), there is a new term in the cash reserve

dynamics (30)

[σ − φ∗ (λMt) /λ] dB
1
t = [σ − φ∗ (Wt) /λ] (dYt − µdt) /σ.

The interpretation of the other terms are the same as in the implementation of Biais et al

(2007). We interpret the new term as special dividends paid only to the outside equity holders.

Note that this term can be negative and we interpret it as cash injection through equity issues

as in Leland (1994) style models.10 The expected value of special dividends is equal to zero

under the agent’s belief P 1.

We can rewrite the cash reserves dynamics as

dMt = γMtdt+
φ∗ (λMt)

λ
dB1

t −
1

λ
dC∗

t ,

and use (21) to show that Mt = Wt/λ. We can also check that Wt = EP 1

t

[∫ τ

t
e−γ(s−t)dC∗

s

]
.

Thus the above capital structure is incentive compatible and implements the robust contract.

By Proposition 2, when the agent’s continuation valueWt is small, φ∗ (Wt) = σλ. But when

Wt is large, φ
∗ (Wt) > σλ. Thus special dividends occur only when cash reserves Mt = Wt/λ

are sufficiently large. In this case, when the project performs well (i.e., dB1
t > 0), outside

equity holders inject cash in the firm in order to raise cash reserves.11 But when the project

performs bad (i.e., dB1
t < 0), outside equity holders receive positive special dividends. This

payout policy is used to hedge against model uncertainty so that cash reserves track the

agent’s continuation value, i.e., Mt = Wt/λ. This ensures that the liquidation time and the

payout time coincide with those in the robust contract.

Following Bolton, Chen, and Wang (2013), we can interpret positive special dividends as

equity repurchases because our model does not have taxes or other features to distinguish

between these two. Because the firm’s market value is high (low) when dB1
t > (<) 0, our

model predicts that the firm times the market by issuing equity when its market value is

10In the model of DeMarzo et al. (2012), dividends can be negative and they provide the same interpretation.
11In the Leland (1994) model, equity holders inject capital through new equity issues for the purpose of

avoiding costly bankruptcy.
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high and repurchasing equity when its market value is low. This result is consistent with the

empirical evidence in Baker and Wurgler (2002) and references cited therein.

4.2 Asset Prices

To price securities, we consider a representative agent equilibrium setting. The principal

represents a representative investor who trades equity and debt with the payoffs given in the

previous subsection, while the agent represents insiders restricted from trading. Suppose that

the risk-free rate is exogenously given at r. We price securities using the principal’s pricing

kernel which is based on his worst-case belief Qh∗
. Specifically, equity value per share is given

by

St = EQh∗

t

[∫ τ

t

e−r(s−t) 1

λ
dC∗

s +
1

1− λ

∫ τ

t

e−r(s−t)

(

σ −
φ∗ (λMs)

λ

)

dB1
s

]

,

where τ = inf {t ≥ 0 : Mt = 0} is the liquidation time. By a similar analysis in Anderson,

Hansen and Sargent (2003), we can show that the principal’s fear of model misspecification

generates a market price of model uncertainty. This market price of model uncertainty is

given by −h∗ (λMt) , where h∗ (λMt) is the worst-case density generator in (20).

Proposition 5 The local expected equity premium under the measure P 1 is given by

1

1− λ

[

σ −
φ∗ (λMt)

λ

]
−h∗ (λMt)

S (Mt)
+

φ∗ (λMt)

λ

S′ (Mt)

S (Mt)
[−h∗ (λMt)] , (31)

for Mt ∈
[
0, W̄ /λ

]
, where h∗ and φ∗ are given in Proposition 2 and St = S (Mt) for a function

S given in Appendix B1.

The equity premium contains two components. The first component is due to the exposure

of special dividends to the Brownian motion uncertainty. This component is negative because

the factor loading [σ − φ∗ (λMt) /λ] / (1− λ) < 0 and special dividends are intertemporal

hedges. The second component is due to the exposure of the stock price to the Brownian

motion uncertainty. This component is positive whenever S′ (M) > 0. Since the first compo-

nent is zero for sufficiently small values of M, the equity premium is positive for these values.

In all our numerical examples below, we find that the hedge component is small so that the

equity premium is also positive for high values of M and approaches zero when M = W̄/λ

(since h∗
(
W̄

)
= 0).

Debt value satisfies

Dt = EQh∗

t

[∫ τ

t

e−r(s−t) [µ− (γ − r)Ms] ds+ e−r(τ−t)L

]

.
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The credit yield spread ∆t is defined as

∫ ∞

t

e−(r+∆t)(s−t)ds = EQh∗

t

[∫ τ

t

e−r(s−t)ds

]

.

Solving yields ∆t = rTt/ (1− Tt) , where Tt = EQh∗

t

[
e−r(τ−t)

]
for all t ∈ [0, τ ] represents the

Arrow-Debreu price at time t of one unit claim paid at the time of default.

The following result is similar to Proposition 6 in Biais et al (2007).

Proposition 6 At any time t ≥ 0, the following holds:

Dt + (1− λ)St = F (Wt) +Mt −
θ

2
EP 1

t

[∫ τ

t

e−r(s−t)zsh
∗ (Ws)

2 ds

]

. (32)

The left-hand side of (32) is the market value of outside securities, i.e., the present value

of the cash flows these securities will distribute. The right-hand side of (32) represents the

assets generating these cash flows. The last term is the entropy cost, which is subtracted to

obtain the operating cash flows allocated to the principal (outside investors),

EQh∗

t

[∫ τ

t

e−r(s−t)(dYs − dC∗
s ) + e−r(τ−t)L

]

.

4.3 Empirical Implications

In Appendix B we show that the stock price, equity premium, debt value, and credit yield

spreads are functions of the state variable, the level of cash reserves M. Figure 4 plots these

functions for three values of θ. The benchmark model corresponds to θ = ∞. The figure

shows that the stock price is an increasing function of M, while the equity premium and the

credit yield spread are decreasing functions of M. Moreover, the payout boundary M̄ (or W̄ )

increases with ambiguity aversion, implying that a more ambiguity averse principal wants to

delay dividend payout in order to reduce the likelihood of liquidation. The principal’s aversion

to model uncertainty generates a positive equity premium, which approaches infinity as M

goes to zero and decreases to zero as M rises to the payout boundary. The equity premium

is high for financially distressed or recently established firms with low cash reserves. This

also implies that the equity premium is high in recessions since cash reserves are low in bad

times. Intuitively, when M is low, the incentive constraint binds and the ambiguity averse

principal bears more uncertainty and hence demanding a higher equity premium. But when

M is large, the agent can share the principal’s uncertainty since the optimal sensitivity φ∗
t

is state dependent. This leads the principal to bear less uncertainty, thereby reducing the

equity premium.
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Figure 4: Stock prices, equity premiums, debt values, and credit yield spreads for

the robust contracting problem. The parameter values are µ = 10, r = 0.10, γ = 0.15,
λ = 0.20, σ = 5, and L = 0.

Our model predicts that the equity premium and the credit yield spread are positively

related: both are high for distressed firms with low cash reserves. This result is useful to

test the relation between cross-sectional excess stock returns and distress risk (Fama and

French (1993, 1995, 1996)). Our model prediction is consistent with the empirical evidence

documented by Friewald, Wagner and Zechner (2014) that firms’ equity premiums increase

with credit yield spreads estimated from CDS spreads. It merits emphasis that one has

to be cautious to interpret our model’s cross-sectional asset pricing implications, since our

implementation is based on a one-on-one contract. While our key insights may carry over to

an equilibrium setting with many firms, a thorough analysis should be an interesting future

research topic and is beyond the scope of this paper.

Figure 4 also shows that debt value decreases with the ambiguity aversion parameter 1/θ,

while the equity premium and the credit yield spread increase with 1/θ. Thus our model can

generate both a high equity premium and a high credit yield spread in a unified framework

by raising the ambiguity aversion parameter 1/θ. Though our model is too stylized to be

confronted with the data, it can help explain the credit spread puzzle and the equity premium

puzzle. Chen, Collin-Dufresne, and Goldstein (2009) study these two puzzles by comparing

the Epstein-Zin preferences and the Campbell-Cochrane habit formation preferences. Our

paper contributes to this literature by introducing robustness and ambiguity aversion.

To generate time-varying equity premium or credit yield spread, the existing literature

typically introduces one of the following assumptions: time-varying risk aversion as in the
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habit formation model of Campbell and Cochrane (1999), time-varying economic uncertainty

combined with Epstein-Zin preferences as in the long-run risk model of Bansal and Yaron

(2004), or regime-switching consumption and learning under ambiguity as in Ju and Miao

(2012). By contrast, in our contracting model, investors are risk neutral with distorted beliefs,

dividends are endogenous, and the driving state process is identically and independently

distributed.

Interestingly, unlike in the benchmark model, here the equity price may not be a concave

function of the cash reserves. This happens when 1/θ is sufficiently large. In this case the

stock price is convex for low levels of cash reserves and concave for high levels of cash reserves.

This result is related to the non-concavity of the principal’s value function.

To gain intuition, we rewrite the equity valuation equation (B.1) in Appendix B as

[φ∗ (λM)]2

2λ2

S′′ (M)

S (M)
= r − γM

S′ (M)

S (M)

+
−h∗ (λM)

(1− λ)S (M)

[

σ −
φ∗ (λMs)

λ

]

+
−h∗ (λM)φ∗ (λM)

λ

S′ (M)

S (M)
.

The expression on the second line is the expected equity premium. When θ → ∞, φ∗ (λM) →

σλ and h∗ (λM) → 0 so that the expected equity premium goes to zero. Then the first line

above reduces to the ODE in Biais et al (2007). Proposition 7 of their paper shows that equity

value S (M) is concave. However, when investors are ambiguity averse with a sufficiently small

θ > 0, the equity premium is positive and large for a small M. This positive value on the

second line above can make S′′ (M) > 0 for a small M.

Intuitively, the marginal value to equity S′ (M) consists of three components. First, an

increase in M pushes cash reserves away from the liquidation boundary. The associated

marginal benefit decreases with M . Second, an increase in M pushes cash reserves closer to

the payout boundary. This raises the frequency of dividend payout, but also depletes cash

reserves. The associated marginal benefit decreases with the level of cash reserves M . Third,

an increase in M from a low level pushes cash reserves closer to Ŵ/λ, allowing equity holders

to have better ambiguity sharing. This marginal benefit increases with M when M is small.

This component is unique in our robust contracting problem and may dominate the other

two components when M is sufficiently small. In this case S′ (M) increases with M so that

S is convex. In addition, the equity premium decreases with M because investors bear less

ambiguity. But when M is sufficiently large, the first two components dominate so that S is

concave.

Finally, we examine the impact of the parameter λ, which describes the severity of the

agency problem. We focus on the implications for the stock market performance such as stock
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Figure 5: Stock prices, equity premiums, belief distortions, and optimal sensitiv-

ities for the robust contracting problem. The parameter values are θ = 50, µ = 10,
r = 0.10, γ = 0.15, σ = 5, and L = 0. Low values of M are not displayed for a better view of
graphs.

prices and returns. Figure 5 shows that there is no monotonic relation between stock prices

and λ, but the expected equity premium decreases with λ. Intuitively, when λ is higher, the

agency problem is more severe. To incentivize the agent, the principal should pay the agent

more frequently, resulting in a smaller payout boundary. A more frequent dividend payout

raises stock prices, but also depletes cash reserves and raises default risk, thereby reducing

stock prices. The net effect is ambiguous. This result is different from that in Biais et al (2007)

where stock prices decrease monotonically with λ. Figure 5 shows that their result holds in

our model when cash reserves are sufficiently high. But when cash reserves are sufficiently

low, the preceding positive effect dominates so that stock prices increase with λ. For empirical

work, one has to be cautious to interpret the parameter λ since it describes both the exogenous

severity of the agency problem and the endogenous insider ownership. In an empirical study,

Demsetz and Villalonga (2001) show that there is no systematic relation between ownership

structure and stock prices once ownership structure is treated as an endogenous variable.

Why does the expected equity premium decrease with λ? As Figure 5 shows, for a higher

λ, the agent is exposed more to the project cash flow uncertainty (i.e., φ (M) is larger).

Thus investors (the principal) are exposed less to uncertainty and hence the expected equity

premium and the market price of uncertainty (−h (M)) are lower. We can interpret firms

with a smaller λ as those with better corporate governance. Then our result is consistent

with the evidence, documented by Gompers, Isshi and Metrick (2003), that firms with better
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corporate governance earn higher returns.

5 Concluding Remarks

Contracting problems involve at least two parties. Introducing ambiguity or robustness into

such problems must consider which party faces ambiguity and what it is ambiguous about. In

this paper we have focused on the case where the principal does not trust the distribution of

the project cash flow chosen by the agent. But the agent trusts it. The principal is averse to

model ambiguity. This case is particularly interesting because it generates time-varying equity

premium and has interesting asset pricing implications. In particular, the equity premium

and the credit yield spread are high for distressed firms with low cash reserves.

One may argue that ambiguity aversion is similar to risk aversion. As in Hansen et al

(2006), we establish a limited observational equivalence result in the online appendix, which

states that our robust contracting problem delivers similar results to those in a contracting

problem where the principal’s preferences are represented by a special class of recursive utility

(Epstein and Zin (1989) and Duffie and Epstein (1992)). Although many models of ambi-

guity in decision theory admit some form of observational equivalence to standard expected

utility, we believe that the interpretation based on ambiguity aversion and robustness helps

us understand many empirical puzzles in corporate finance and asset pricing. For example,

from a quantitative point of view, an implausibly high risk aversion parameter is often needed

to explain a high equity premium. But the high equity premium could be due to ambiguity

aversion instead of high risk aversion (Chen and Epstein (2002), Hansen and Sargent (2010),

and Ju and Miao (2012)). In our model, the principal is risk neutral, but his concerns about

robustness generate an incentive for him to share model uncertainty with the agent. Unlike

risk sharing induced by risk aversion, ambiguity sharing is caused essentially by the endoge-

nous belief heterogeneity between the principal and the agent (also see Epstein and Miao

(2003)).

In the online appendix we also study a contracting problem with risk aversion. We suppose

that the principal has time-additive expected exponential utility and show that the solution to

this contracting problem is similar to ours under some special assumptions. In future research

it would be interesting to incorporate both risk aversion and ambiguity aversion and study

how they interact with each other. Such an analysis would be mathematically complicated

because the principal’s wealth level will be an additional state variable in addition to the

agent’s continuation value. For analytical tractability, special assumptions are needed to

remove one state variable (e.g., Maenhout (2004)).

Another direction for future research is to consider other types of ambiguity. For example,
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the agent may face ambiguity about the project cash flows or both the principal and the agent

may face ambiguity. Our paper focuses on contracting problems under moral hazard with

binary actions. It would be interesting to generalize our analysis to a more general principal-

agent problem such as that in Sannikov (2008). Finally, it would also be interesting to extend

our approach to dynamic contracts with hidden information and study robust mechanism

design problems in continuous time.
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Appendices

A Proofs

Proof of Proposition 1: Define Ha as the set of density generators associated with an

effort process a. Let Qh ∈ Pa be the measure induced by h ∈ Ha. Define Γ (w) as the set of

progressively measurable processes (φ,C, a) such that (i) φ satisfies

EQh

[∫ t

0

(
e−γsφs

)2
ds

]

< ∞ for all t > 0,

(ii) C is increasing, right continuous with left limits and satisfies

EQh

[(∫ t

0
e−rsdCs

)2
]

< ∞ for all t > 0,

(iii) at ∈ {0, 1} , and (iv) (Wt) satisfies (10), with boundary conditions W0 = w and Wt = 0

for t ≥ inf {t ≥ 0 : Wt ≤ 0} . For any (φ,C, a) ∈ Γ (w) and h ∈ Ha, define the principal’s

objective function as

J (φ,C, a, h;w)

= EQh

[∫ τ

0
e−rt(dYt − dCt) + e−rτL

]

+
θ

2
EP a

[∫ τ

0
e−rtzth

2
t dt

]

= EQh

[∫ τ

0
e−rt(µatdt+ htσdt− dCt) + e−rτL

]

+
θ

2
EQh

[∫ τ

0
e−rth2t dt

]

, (A.1)

where we have used the fact that dYt = µatdt+htσdt+σdBh
t and Bh

t is a standard Brownian

motion under the measure Qh. We can then write the first-best robust contracting problem

as

F (w) = sup
(φ,C,a)∈Γ(w)

inf
h∈Ha

J (φ,C, a, h;w) , w ≥ 0. (A.2)

Define an operator as

D(φ,a,h)F (W ) = µa+ σh+ F ′(W )(γW + hφ− λµ (1− a)) +
F ′′(W )

2
φ2 +

θh2

2
. (A.3)

We can describe the optimality conditions stated in the proposition as variational inequalities:

0 = min

{

rF (W )− sup
a∈{0,1},φ∈R

inf
h∈R

D(φ,a,h)F (W ) , F ′ (W ) + 1

}

, (A.4)
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for all W ≥ 0 and the boundary conditions are given in the proposition. In particular, we can

check that under condition (15), the policies (φ∗, a∗, h∗) stated in the proposition satisfy

rF (W ) = sup
a∈{0,1},φ∈R

inf
h∈R

D(φ,a,h)F (W ) = D(φ∗,a∗,h∗)F (W ) ,

for W ∈
[
0, W̄

]
and F ′ (W ) = −1 for W ≥ W̄ . By (18) and the boundary conditions, we can

show that rF
(
W̄

)
= µ− γW̄ . Thus, for W ≥ W̄ ,

rF (W )−D(φ∗,a∗,h∗)F (W ) = rF
(
W̄

)
− r

(
W − W̄

)
− (µ− γW )

= µ− γW̄ − r
(
W − W̄

)
− (µ− γW )

= (γ − r)
(
W − W̄

)
≥ 0.

We now show that F is the value function in five steps. Step 1. Define the following

process:

G
(φ,C,a,h)
t =

∫ t

0
e−rs (dYs − dCs) + θ

∫ t

0
e−rsh

2
s

2
ds+ e−rtF (Wt) , (A.5)

where (Wt) satisfies (10).

Step 2. Fix a process hφ = (hφt ) defined as

hφt ≡ −
φtF

′ (Wt) + σ

θ
.

By (20), h∗t ≡ h∗ (Wt) = hφ
∗

t , where φ∗
t ≡ φ∗ (Wt) . Consider any candidate choice (φ,C, a) ∈

Γ (w). By Ito’s Lemma under Qh∗
,

ertdG
(φ,C,a,hφ)
t = µatdt+ σhφt dt+ σdBhφ

t − dCc
t +

θ(hφt )
2

2
dt

+F ′ (Wt)
[

γWtdt− dCc
t − λµ (1− at) dt+ hφt φtdt+ φtdB

hφ

t

]

+
1

2
F ′′ (Wt)φ

2
tdt− rF (Wt) dt+∆F (Wt)−∆Ct

=

[

D

(

φt,at,h
φ
t

)

F (Wt)− rF (Wt)

]

dt−
(
1 + F ′ (Wt)

)
dCc

t

+
(
σ + φtF

′ (Wt)
)
dBhφ

t +∆F (Wt)−∆Ct,

where Cc is the continuous part of C, ∆Ct = Ct−Ct− is the jump, and ∆F (Wt) = F (Wt)−
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F (Wt−) . By the variational inequalities (A.4) and dCc
t ≥ 0,

(
1 + F ′ (Wt)

)
dCc

t ≥ 0,

D

(

φt,at,h
φ
t

)

F (Wt)− rF (Wt) ≤ D

(

φ∗
t ,a

∗
t ,h

φ∗

t

)

F (Wt)− rF (Wt) ≤ 0,

where a∗t ≡ a∗ (Wt) = 1 and the first inequality on the second line follows from condition (15).

Since F ′ (Ws) is bounded on
[
0, W̄

]
and F ′ (Ws) = −1 on [W̄ ,∞),

EQhφ
[∫ t

0
e−rs

(
σ + φsF

′ (Ws)
)
dBhφ

s

]

= 0.

Since F ′ (W ) ≥ −1 for W ≥ 0,

∆F (Wt)−∆Ct = F (Wt −∆Ct)− F (Wt)−∆Ct = −

∫ Wt

Wt−∆Ct

[
F ′ (c) + 1

]
dc ≤ 0.

It follows that G
(φ,C,a,hφ)
t is a

(

Qhφ

,Ft

)

-supermartingale. This implies that G
(φ,C,a,hφ)
0 ≥

EQhφ
[

G
(φ,C,a,hφ)
t∧τ

]

for any finite time t ≥ 0. Taking limit as t → ∞, we have

G
(φ,C,a,hφ)
0 ≥ EQhφ

[

G
(φ,C,a,hφ)
τ

]

≥ inf
h∈Ha

EQh
[

G(φ,C,a,h)
τ

]

.

Taking supremum for (φ,C, a) ∈ Γ (w) and using (A.5), we obtain

F (w) = F (W0) = G
(φ,C,a,hφ)
0 ≥ sup

(φ,C,a)∈Γ(w)
EQhφ

[

G
(φ,C,a,hφ)
τ

]

≥ sup
(φ,C,a)∈Γ(w)

inf
h∈Ha

EQh
[

G(φ,C,a,h)
τ

]

.
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Step 3. Fix (φ∗, C∗, a∗) and consider any process (ht) ∈ Ha∗ . Use Ito’s Lemma to derive

ertdG
(φ∗,C∗,a∗,h)
t = µa∗t dt+ σhtdt+ σdBh

t − dC∗c
t +

θh2t
2

dt

+F ′ (Wt)
[

γWtdt− dC∗c
t − λµ (1− a∗t ) dt+ htφ

∗
tdt+ φ∗

tdB
h
t

]

+
1

2
F ′′ (Wt)φ

∗2
t dt− rF (Wt) dt+∆F (Wt)−∆C∗

t

=
[

D(φ∗
t ,a

∗
t ,ht)F (Wt)− rF (Wt)

]

dt−
(
1 + F ′ (Wt)

)
dC∗c

t

+
(
σ + φ∗

tF
′ (Wt)

)
dBh

t +∆F (Wt)−∆C∗
t

≥
[

D(φ∗
t ,a

∗
t ,h

∗
t )F (Wt)− rF (Wt)

]

dt−
(
1 + F ′ (Wt)

)
dC∗c

t

+
(
σ + φ∗

tF
′ (Wt)

)
dBh

t +∆F (Wt)−∆C∗
t .

Note that D(φ∗
t ,a

∗
t ,h

∗
t )F (Wt)− rF (Wt) = 0. In addition, by (22),

∫ t

0
e−rs

(
1 + F ′ (Ws)

)
dCc∗

s =

∫ t

0
e−rs

(
1 + F ′ (Ws)

)
1{Ws=W̄}dC

c∗
s = 0.

We also know that C∗ jumps only at t = 0 when w > W̄ so that

∆F (W0)−∆C∗
0 = F

(
W̄

)
− F (w)−

(
w − W̄

)
= 0.

ThusG
(φ∗,C∗,a∗,h)
t is a

(
Qh,Ft

)
-submartingale. This implies thatG

(φ∗,C∗,a∗,h)
0 ≤ EQh

[

G
(φ∗,C∗,a∗,h)
t∧τ

]

for any finite time t. Taking limit as t → ∞ yields

F (w) = G
(φ∗,C∗,a∗,h)
0 ≤ EQh

[

G(φ∗,C∗,a∗,h)
τ

]

.

Taking infimum for h ∈ Ha∗ yields

F (w) ≤ inf
h∈Ha∗

EQh
[

G(φ∗,C∗,a∗,h)
τ

]

≤ sup
(φ,C,a)∈Γ(w)

inf
h∈Ha

EQh
[

G(φ,C,a,h)
τ

]

.

Step 4. By Steps 2 and 3, we deduce that

F (w) = sup
(φ,C,a)∈Γ(w)

EQhφ
[

G
(φ,C,a,hφ)
τ

]

= inf
h∈Ha∗

EQh
[

G(φ∗,C∗,a∗,h)
τ

]

= sup
(φ,C,a)∈Γ(w)

inf
h∈Ha

EQh
[

G(φ,C,a,h)
τ

]

.
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Since F (Wτ ) = L, it follows from (A.5) that

F (w) = sup
(φ,C,a)∈Γ(w)

J
(

φ,C, a, hφ;w
)

= inf
h∈Ha∗

J (φ∗, C∗, a∗, h;w)

= sup
(φ,C,a)∈Γ(w)

inf
h∈Ha

J (φ,C, a, h;w) .

Step 5. Evaluating at the processes (φ∗, C∗, a∗, h∗) induced by the policies described in

Proposition 1, we show that

F (w) = J (φ∗, C∗, a∗, h∗;w) .

Consider first w ∈
[
0, W̄

]
. In this case C∗ has no jump. As in Step 2, we can easily check

that G
(φ∗,C∗,a∗,h∗)
t is a

(
Qh∗

,Ft

)
-martingale. Thus

F (w) = EQh
[

G(φ∗,C∗,a∗,h∗)
τ

]

= J (φ∗, C∗, a∗, h∗;w) .

Consider next w > W̄ . In this case C∗
0 = w − W̄ and the agent’s initial continuation value

jumps to W̄ . By definition of J and the previous case, we can derive

J (φ∗, C∗, a∗, h∗;w) = −
(
w − W̄

)
+ J

(
φ∗, C∗, a∗, h∗; W̄

)
= −

(
w − W̄

)
+ F

(
W̄

)
= F (w) .

We conclude that (φ∗, C∗, a∗, h∗) is optimal for the first-best robust contracting problem.

The boundary condition (19) follows from the fact that the principal can deliver W = 0 to the

agent who always exerts high effort and never gets paid. In this case W = 0 is an absorbing

state and the principal obtains the value µ/r− σ2/ (2rθ) . If condition (17) holds, the project

is never liquidated, i.e., τ = ∞. Q.E.D.

Proof of Propositions 2 and 3: Define J as in (A.1). We modify condition (iii) in the

definition of the feasible set Γ (w) to incorporate the incentive constraint as follows: if at = 0,

then φt ≤ σλ and if at = 1, then φt ≥ σλ. The optimality condition described in Propositions

2 and 3 can be summarized by the following variational inequalities:

0 = min

{

rF (W )− sup
(a,φ)∈Λ

inf
h∈R

D(φ,a,h)F (W ) , F ′ (W ) + 1

}

, (A.6)

for all W ≥ 0, where

Λ = {(0, ϕ) : ϕ ≤ σλ} ∪ {(1, ϕ) : ϕ ≥ σλ} .
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The boundary conditions are given in Proposition 2. It is easy to verify that under conditions

(15) and (29), a∗ (W ) = 1, φ∗ (W ) , and h∗ (W ) described in Proposition 2 achieves the

preceding maxmin. Unlike in the first-best contract, delivering the agent W = 0 who always

exerts high effort is not incentive compatible. Thus the principal will liquidate the project at

W = 0 so that F (0) = L. The rest of the proof is the same as that for Proposition 1. Q.E.D.

Proof of Proposition 4: We adapt Lemma 6 in DeMarzo and Sannikov (2006). We use

the Envelope Theorem to differentiate ODE (26) with respect to θ to obtain

r
∂F (W )

∂θ
=

∂F ′(W )

∂θ
γW +

φ∗ (W )2

2

∂F ′′(W )

∂θ
+

[φ∗ (W )F ′ (W ) + σ]2

2θ2

−
[φ∗ (W )F ′ (W ) + σ]φ∗ (W )

θ

∂F ′(W )

∂θ
.

Under measure Qh∗
, it follows from (20) and (21) that (Wt) satisfies

dWt = γWtdt− dC∗
t −

[φ∗ (Wt)F
′ (Wt) + σ]φ∗ (Wt)

θ
dt+ φ∗ (Wt) dB

h∗

t ,

where
(
Bh∗

t

)
is a standard Brownian motion under Qh∗

. Using the Feynman-Kac formula, we

obtain that the solution to the above ODE for ∂F (W )/∂θ is

∂F (W )

∂θ
= EQh∗

[
∫ τ

t

e−r(s−t) [φ
∗ (Ws)F

′ (Ws) + σ]2

2θ2
ds|Wt = W

]

≥ 0,

as desired. Q.E.D.

Proof of Proposition 5: The equity premium is defined as

1

St








dC∗
t

λ
+

1

1− λ

[

σ −
φ∗ (Wt)

λ

]

dB1
t

︸ ︷︷ ︸

dividends

+ dSt
︸︷︷︸

capital gains

− rStdt








. (A.7)

By Ito’s Lemma,

dSt = dS (Mt) = S′ (Mt) γMtdt+ S′ (Mt)
φ∗ (λMt)

λ
dB1

t (A.8)

−
S′ (Mt)

λ
dC∗

t +
[φ∗ (λMt)]

2

2λ2 S′′ (Mt) dt.

Plugging (A.8) and (B.1) into (A.7) and noting the fact that Ct increases only when S′ (Mt) =

1, we can compute the local expected equity premium under measure P 1 given in the propo-
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sition. Q.E.D.

Proof of Proposition 6: It follows from (21) and Girsanov’s Theorem that

dWt = γWtdt− dC∗
t + φ∗ (Wt) h

∗ (Wt) dt+ φ∗ (Wt) dB
h∗

t .

By Ito’s Lemma,

e−rT∧τWT∧τ = e−rtWt +

∫ T∧τ

t

e−rs (γ − r)Wsds+

∫ T∧τ

t

e−rsφ∗ (Ws) dB
h∗

s

−

∫ T∧τ

t

e−rsdC∗
s +

∫ T∧τ

t

e−rsφ∗ (Ws)h
∗ (Ws) ds,

for any T > t, where τ = inf {t ≥ 0 : Wt = 0} . Taking expectations with respect to Qh∗
and

letting T → ∞, we use Mt = Wt/λ and Wτ = 0 to derive

Mt = EQh∗

t

[∫ τ

t

e−r(s−t)

(
1

λ
dC∗

s − (γ − r)Msds −
φ∗ (Ws) h

∗ (Ws)

λ
ds

)]

.

It follows that

Dt + (1− λ)St

= EQh∗

t

[∫ τ

t

e−r(s−t) (µ− (γ − r)Ms) ds+ e−r(τ−t)L

]

+EQh∗

t

[∫ τ

t

e−r(s−t)1− λ

λ
dC∗

s

]

+ EQh∗

t

[∫ τ

t

e−r(s−t)

(

σ −
φ∗ (Ws)

λ

)

dB1
s

]

= EQh∗

t

[∫ τ

t

e−r(s−t) (dYs − dC∗
s ) + e−r(τ−t)L

]

+EQh∗

t

[∫ τ

t

e−r(s−t)

(
1

λ
dC∗

s − (γ − r)Msds−
φ∗ (Ws) h

∗ (Ws)

λ
ds

)]

,

where we have used the fact that dYt = µdt+ σh∗ (Wt) + σdBh∗

t . The expression on the last

last line is Mt. We then obtain the desired result. Q.E.D.

B Asset Pricing Formulas

In this appendix we follow DeMarzo and Sannikov (2006) and Biais et al (2007) to represent

asset prices as ODEs. We use the cash reserves M as a state variable and write debt value,

equity price and credit yield spreads as functions of M . Under the worst-case belief Qh∗
, we
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use Girsanov’s Theorem to write the cash reserve dynamics as

dMt = γMtdt+
φ∗ (λMt) h

∗ (λMt)

λ
dt+

φ∗ (λMt)

λ
dBh∗

t −
1

λ
dC∗

t ,

where φ∗, h∗, and C∗ are given by (27), (20), and (22), respectively. Thus the equity price

St = S (Mt) satisfies the ODE

rS (M) =
1

1− λ

[

σ −
φ∗ (λMs)

λ

]

h∗ (λM) (B.1)

+

(

γM +
φ∗ (λM)h∗ (λM)

λ

)

S′ (M) +
[φ∗ (λM)]2

2λ2 S′′ (M) ,

with the boundary conditions S (0) = 0 and S′
(
W̄/λ

)
= 1.

The bond price Dt = D (Mt) satisfies the ODE

rD (M) = µ− (γ − r)M +

(

γM +
φ∗ (λM) h∗ (λM)

λ

)

D′ (M) +
[φ∗ (λM)]2

2λ2 D′′ (M) ,

with boundary conditions D (0) = L and D′
(
W̄/λ

)
= 0. The Arrow-Debreu price of one unit

claim paid at the time of default, Tt = T (Mt) , satisfies the ODE

rT (M) =

(

γM +
φ∗ (λM)h∗ (λM)

λ

)

T ′ (M) +
[φ∗ (λM)]2

2λ2 T ′′ (M) ,

subject to the boundary conditions T (0) = 1 and T ′
(
W̄/λ

)
= 0.
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