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1 Introduction

Our paper is motivated by two empirical observations as shown in Figure 1.1 First, since 1980,

nominal interest rates on US government bonds have steadily declined. They are lower than the

US nominal GDP growth rates on average over 1950-2018 and also in each of the recent 10 years.

According to current forecasts of GDP growth, this is expected to remain the case for the foreseeable

future. Second, the US government has experienced fiscal deficits for many years, especially since

early 2000s. The average primary-deficits-to-GDP ratio over 1950-2019 is 0.48%. Moreover, public

debt has risen since mid 1970. While it dropped in late 1990s, it started to rise again since 2000,

reaching a peak of 70% of GDP in 2019. Similar patterns of declining safe rates and rising public

debt for many other countries are documented by Rachel and Smith (2015) and Reinhart and

Rogoff (2010).

A. Safe rates and GDP growth

GDP growth

Adjusted rate

Portfolio return

B. Debt/GDP ratio C. Surplus/GDP ratio

Figure 1: Nominal Safe rates and GDP growth, public-debt/GDP ratios, and primary-
surpluses/GDP ratios. All vertical axes are in percentage.

Low interest rates and high public debt pose serious challenges to policy makers and academic

researchers. In this paper we address the following positive questions: What are the implications

of low interest rates for public debt policy? Can permanent primary deficits be sustained in the

long run? What coordination of monetary and fiscal policy is needed to provide a nominal anchor

and price stability? How does the economy respond to fiscal and monetary policy shocks?

To address these questions, we build a dynamic new Keynesian (DNK) model with financial

1In Panel A, the data of nominal GDP growth rates and tax adjusted safe rates over 1950-2018 are taken from
Blanchard (2019). The data of nominal returns on the entire portfolio of US government bonds over 1950-2017 is taken
from Hall et al. (2018). Because the data are quite volatile, we follow Rachel and Smith (2015) and plot the moving
averages over the past 5 years in Panel A. The data of the market value of publicly held federal debt in Panel B over
1950-2019 is taken from Hall et al. (2018). Since we consider the budget constraint of the consolidated government,
we exclude the public debt held by government institutions such as the central bank. The surplus-to-GDP data for
Panel C is imputed from budget identity and taken from Cochrane (2019).

2



frictions. Our critical assumption is that entrepreneurs face credit constraints and uninsurable

idiosyncratic investment shocks (Kiyotaki and Moore (1997, 2019)). They can only trade one-period

riskfree private and government bonds. The two types of bonds are perfect substitutes except

that they are issued by different suppliers. Public bonds have a crowding-in effect in addition

to the usual crowding-out effect. In particular, public bonds provide liquidity services because

they can raise owners’ net worth and relax credit constraints. When the investment shock is

sufficiently high, productive entrepreneurs sell bonds to finance real investment. Unproductive

entrepreneurs are willing to buy bonds despite their low returns for precautionary reasons, because

unproductive entrepreneurs anticipate that they may become productive in the future and need to

finance real investment using bonds. The low interest rate on the bonds can support a positive

value of government bonds even though these bonds are unbacked by taxes or even when they are

rolled over to finance principal and interest payments as well as primary deficits.

We characterize the (nonstochastic) steady states of our detrended equilibrium system. We

show that if the long-run surplus is positive, then there is a unique steady state in which the real

interest rate is higher than the economic growth rate and the real value of public debt is equal to

the present value of future surpluses discounted by the real interest rate. Low interest rates are

possible in the steady state only when the government runs permanent primary deficits or when

there is zero deficit/surplus. There are multiple steady states for a given long-run primary-deficit-

to-output ratio, if it is not too high. In this case all steady-state interest rates are lower than the

economic growth rate and all steady-state real values of public debt are positive. If the long-run

surplus/deficit is zero, then there are exactly two steady states. In one steady state, public debt

has no value; and in the other, public debt has a positive value, which is a pure bubble.

The multiplicity of steady states is generated by the debt Laffer curve that gives a non-monotonic

relation between the total interest expense and the real interest rate. Such non-monotonicity is

due to the positive relation between the interest rate and public debt. In our model with financial

frictions, an increase in public debt reduces the liquidity premium and raises the real interest rate.

Under a reasonable calibration when the long-run deficit-to-GDP ratio is set at 0.445%, our

model delivers exactly two steady states, one of which is associated with a lower interest rate, a

lower output level, and a lower debt-to-GDP ratio (labeled steady state L), and the other is labeled

steady state H. The debt-to-GDP ratio in steady state L is targeted at the average 35.9% of the US

data over 1950-2019. We find that, for the real version of our calibrated model, there is a unique

bounded equilibrium around steady state L and there is no bounded equilibrium around steady

state H as in Kaas (2016).2 By contrast, for our monetary model, the results are very different as

the price level or inflation must also be determined in equilibrium.

2As in the literature including our monetary model, we treat the real public debt as predetermined. The equilibrium
determinacy is different if the real debt is treated as a non-predetermined variable (see Kaas (2016)).
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We follow Leeper’s (1991) approach by specifying feedback rules for monetary and fiscal policy

and study what policy rules can produce a unique locally stable solution for both inflation and public

debt. According to Leeper (1991), monetary policy is active if the interest rate rule satisfies the

Taylor principle; otherwise, it is passive. Fiscal policy is passive if the government can raise enough

taxes (primary surplus) to stabilize debt dynamics when public debt rises; otherwise it is active.

The critical value for the fiscal policy response parameter is the steady-state interest expense.3

Leeper (1991) argues that an active policy must be combined with a passive policy to achieve

equilibrium determinacy. An active monetary policy and passive fiscal policy mix corresponds to

the conventional case (regime M). An active fiscal policy and passive monetary policy mix (regime

F) is associated with the fiscal theory of the price level (FTPL).

Relative to many studies in the literature, we find the following novel results in addition to the

above steady-state analysis:

1. There are three regions of the policy parameter space for each of the two steady states. These

regions categorize local equilibrium determinacy around each steady state. The first region

generates explosive solutions, the second region generates multiple bounded equilibria, and

the third region generates a unique stable equilibrium. These regions are different for different

steady states. Moreover, both active and passive monetary policies can achieve equilibrium

determinacy, even if fiscal policy is passive.

2. The government can select a particular steady state by specifying a fiscal target (debt and

tax level) as that steady-state value. Then the deterministic detrended equilibrium system

will converge to the intended steady state along a saddle path. Thus a complete specification

of fiscal policy must include both fiscal target and policy response coefficient.4

3. An active monetary policy can be combined with a debt rollover fiscal policy to stabilize

debt and inflation in a world with low interest rates. This corresponds to regime M in which

monetary policy controls inflation and fiscal policy stabilizes public debt. In this regime, tax

cuts or an increase in government transfer or spending financed by debt can pay for itself

when the interest rate is lower than the economic growth rate. But the stimulative effect is

small because of the crowding-out effect of persistent debt.

4. The standard FTPL views public debt as the present value of future surpluses, which may

explode when the interest rate is lower than the economic growth rate. We decompose the

real value of public debt into a fundamental component and a bubble component. The fun-

damental component is equal to the present value of future surpluses/deficits and the bubble

3Woodford (2003, p.312) calls a passive fiscal policy rule locally Ricardian and an active rule otherwise.
4Benhabib, Schmitt-Grohe, and Uribe (2002) show that multiple steady states can exist for the interest-rate rule

under the zero lower bound on nominal interest rates. They discuss several fiscal and monetary policies that can
select a unique equilibrium around the intended steady state.
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component is equal to the present value of liquidity services provided by the government

bonds. Both components are discounted by the household stochastic discount factor (SDF),

i.e., intertemporal marginal rate of substitution, and are both finite because the implied

discount rate is asymptotically higher than the economic growth rate.

5. According to the standard FTPL, the transmission of shocks relies on the revaluation of

public debt as the present value. Our decomposition of debt value complements the standard

FTPL under low interest rates. In this case a shock to either nominal interest rate or primary

surplus affects the value of public debt through both its fundamental and bubble components.

In regime F the fiscal policies discussed earlier have a much larger stimulative effect and can

generate persistent high inflation.

6. In a liquidity trap with an occasionally binding zero lower bound (ZLB) on nominal interest

rates generated by a credit crunch, regime F dominates regime M in terms of welfare. The

debt rollover fiscal policy combined with either an active or passive monetary policy is not

optimal. By contrast, a more “irresponsible” fiscal policy, that cuts net taxes as the debt level

rises, combined with a pegged nominal interest rate policy is optimal within a set of policy

rules discussed earlier because this policy can generate future higher inflation and stimulate

aggregate demand.

Our results have some implications for the US and Japan experiences. First, Clarida, Gali,

and Gertler (2000) and Lubik and Schorfheide (2004) document evidence that the Fed interest

rate policy was passive prior to 1980 and then it became active during the Volcker–Greenspan

era. According to Leeper (1991), to ensure price determinacy, fiscal policy must be active prior

to 1980 and must shift to be passive after 1980. Our model shows that both active and passive

monetary policies can achieve price determinacy even if fiscal policy remains passive. Second,

Japan has mostly run primary deficits since 1960s and with no primary surpluses in sight, but

inflation has not risen much. This seems inconsistent with the FTPL as the present value of future

deficits discounted by the low real interest rate may explode to negative infinity. Our model shows

that public debt contains a bubble component,5 which must be included in its valuation when the

interest rate is lower than the economic growth rate. Once taking into account this component,

a large set of monetary and fiscal policy response parameters in either regime M or regime F can

achieve stable debt and inflation dynamics given persistent fiscal deficits.

Related literature. Our paper is related to three strands of the literature. First, our paper is

closely related to the recent literature on the implications of low interest rates for monetary and

fiscal policies. Bullard and Russell (1999), Chalk (2000), Blanchard (2019), and Brumm et al.

5See Jiang et al. (2019) for evidence.
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(2021) study public debt policy based on the overlapping generations (OLG) model of Diamond

(1965). In a dynamically inefficient economy, the government can rollover public debt at a low

interest rate or run Ponzi schemes to support permanent deficits. Kaas (2016) studies similar

questions in a model with infinitely-lived agents, in which entrepreneurs are subject to uninsurable

idiosyncratic productivity risk and credit constraints. Reis (2021) studies similar questions in a

continuous-time setup. Brunnermeier, Merkel, and Sannikov (2020a) also study similar questions

in a continuous-time model with uninsurable idiosyncratic capital return risk, but without credit

constraints. Like us, Brunnermeier, Merkel, and Sannikov (2020a) and Sims (2020) emphasize the

importance of the positive relation between public debt and the real interest rate to generate a

debt Laffer curve. Unlike our paper, all these papers do not study the interactions of monetary

and fiscal policies.

Reis (2021) takes inflation as given and analyzes how inflation affects the fiscal space and fiscal

capacity. In a representative agent model with distortionary taxes, Sims (2019) shows that when

the low interest rate on debt arises from its providing liquidity services, zero fiscal cost is equivalent

to finance through seigniorage, which is generally optimal. The interest rate in his model is always

higher than the economic growth rate.

Bassetto and Cui (2018) revisit the implications of the FTPL with low interest rates which are

generated by sources such as dynamic inefficiency, liquidity premium of public debt, or its favorable

risk profile. Like us, they show that the interest-rate-peg policy discussed in Woodford (1995,

2001) may not pin down a unique equilibrium price level. Brunnermeier, Merkel, and Sannikov

(2020b) also revisit the FTPL under the interest-rate-peg policy and show that a particular fiscal

policy can pin down a unique equilibrium price level. Like us, they emphasize that public debt

contains a bubble component when interest rates are low. Both papers derive multiple steady states.

Unlike these two papers, our paper considers general feedback rules for monetary and fiscal policies

following Leeper (1991) (with the interest-rate-peg policy as a special case), analyzes determinacy

regions of policy parameter space, and studies dynamic responses of the economy to monetary and

fiscal policy shocks.

Similar to these papers and the early paper by Woodford (1990), we show that there are multiple

steady states with low interest rates generated by the liquidity premium under incomplete markets

and credit constraints and that public debt contains a bubble component under persistent primary

deficits. The liquidity premium of public debt can also be generated in models with monetary search

frictions (e.g., Berentsen and Waller (2018), Bassetto and Cui (2018), and Dominguez and Gomis-

Porqueras (2019)). In these models monetary policy is nonneutral in the long run. By contrast, we

adopt the DNK framework that is more amenable to quantitative analysis and Bayesian estimation

(e.g., Lubik and Schorfheide (2004)).

Second, our paper is related to the literature on the fiscal and monetary policy interactions
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surveyed by Canzoneri, Cumby, and Diba (2010) and Leeper and Leith (2016), and particularly

related to the FTPL developed primarily by Leeper (1991), Woodford (1994, 1995), Sims (1994),

and Cochrane (1998).6 This literature is too large for us to cite all relevant papers. We mention

three closely related papers by Cui (2016), Canzoneri et al. (2011), and Billi and Walsh (2021). Cui

(2016) studies a DNK model based on Kiyotaki and Moore (2019) with endogenous fluctuations in

liquidity. Also using a DNK model, Canzoneri et al. (2011) argue that government bonds provide

liquidity services and are imperfect substitutes for money. Both papers feature a unique steady

state and derive three regions of policy parameter space similar to ours. Using a standard DNK

model, Billi and Walsh (2021) show that an “irresponsible” fiscal policy combined with a passive

monetary policy can stabilize inflation and debt and improve welfare in a liquidity trap.7 All these

three papers do not study the case when interest rates are lower than the economic growth rate.

Third, our paper is related to the literature on asset bubbles surveyed by Miao (2014) and

Martin and Ventura (2018). Asset bubbles can emerge in either dynamically inefficient OLG models

(Tirole (1985)) or in models with infinitely-lived agents facing financial frictions or under incomplete

markets. Our model is based on Miao and Wang (2012), Miao, Wang, and Zhou (2015), Hirano

and Yanagawa (2017), Miao and Wang (2018), Kiyotaki and Moore (2019), Dong, Miao, and Wang

(2020), and Biswas, Hanson, and Phan (2020), in which credit constraints are important for the

emergence of a bubble. Unlike these papers, we focus on the interactions of monetary and fiscal

policies under low interest rates, which pose new issues and generate new insights absent from these

papers.

2 Model

In this section we present a cashless DNK model with financial frictions and consider an infinite-

horizon economy consisting of households, firms, retailers, and a government (fiscal/monetary au-

thority).

2.1 Households

There is a continuum of identical households of measure unity. The representative household is an

extended family consisting of workers, entrepreneurs, and retailers. Each entrepreneur runs a firm

and workers supply labor to firms. The family and firms can trade one-period riskfree nominal

private and government bonds. The two types of bonds are perfect substitutes except that the

private bonds are in zero net supply and the government bonds are issued by the government only.

Entrepreneurs and retailers hand in their dividends to households who are shareholders.

6Bassetto (2002) revisits the FTPL in a game theoretic framework.
7There is a large literature on monetary policy given the ZLB constraints. Early important papers include

Eggertsson and Woodford (2003, 2006) and Eggertsson (2006). See Billi and Walsh (2021) for additional references.
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Each household chooses consumption {Ct}, labor supply {Nt}, and real bond holdings {Dht}
to maximize utility

max
{Ct,Dht,Nt}

E

[ ∞∑
t=0

βt (lnCt − ψNt)

]
, (1)

subject to

Ct +Dht = WtNt + Υt +
Rt−1
Πt

Dht−1 − Tt, (2)

where β ∈ (0, 1) is the subjective discount factor, Wt is the real wage, Rt−1 is the nominal interest

rate between periods t − 1 and t, Πt = Pt/Pt−1 is the gross inflation rate, Υt denotes total real

dividends from entrepreneurs and retailers, and Tt denotes net real lump-sum taxes. Here Pt denotes

the aggregate price level in period t. Assume that households cannot borrow so that Dht ≥ 0 for all

t. To flesh out our insights in a simplest possible way, we follow much of the literature (e.g., Leeper

(1991), Canzoneri, Cumby, and Diba (2010), and Leeper and Leith (2016)) and do not consider

distortionary taxes.

The first-order conditions imply that

Wt =
ψ

Λt
, (3)

1 ≥Etβ
Λt+1

Λt

Rt
Πt+1

, with equality when Dht > 0, (4)

where Λt = 1/Ct denotes the household marginal utility. We will show later that the household will

not hold any bonds (i.e., Dht = 0) in an equilibrium around the neighborhood of a steady state,

because the real return on the bonds is too low.

2.2 Entrepreneurs

Each entrepreneur j ∈ [0, 1] runs a firm that combines labor Njt and capital Kjt−1 to produce an

intermediate (wholesale) good j in period t according to the production function

Yjt = Kα
jt−1 (AtNjt)

1−α , α ∈ (0, 1) ,

where At denotes the labor-augmenting technology that grows at the rate g. For simplicity we

assume that At is deterministic with A0 = 1.

The entrepreneur sells wholesale goods to retailers at the real price pwt. The static profit

maximization problem yields

RktKjt−1 = max
Njt

pwtK
α
jt−1 (AtNjt)

1−α −WtNjt,

where we can show that

Rkt = α

(
(1− α)At

Wt

) 1−α
α

p
1
α
wt, (5)
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and the first-order condition gives labor demand

Wt = (1− α) pwtAtK
α
jt−1 (AtNjt)

−α . (6)

Here we may interpret Rkt as the capital return, which is also equal to the social marginal product

of capital as will be shown later.

At the beginning of period t, the entrepreneur faces idiosyncratic investment-specific shock εjt

and makes investment Ijt to increase his capital stock so that the law of motion for capital follows

Kjt = (1− δ)Kjt−1 + εjtIjt, (7)

where δ ∈ (0, 1) represents the depreciation rate. Suppose that the cumulative distribution function

of εjt is F and the density function is f on [εmin, εmax] ⊂ (0,∞) and εjt is independently and

identically distributed across firms and over time. Assume that there is no insurance market

against the idiosyncratic investment-specific shock and that investment is irreversible at the firm

level so that Ijt ≥ 0.

Entrepreneur j can hold Bjt units of private bonds and Djt ≥ 0 units of government bonds in

terms of the consumption good. His flow-of-funds constraints are given by

Cjt + Ijt +Bjt +Djt = RktKjt−1 +
Rt−1
Πt

Bjt−1 +
Rt−1
Πt

Djt−1, (8)

where Cjt denotes real dividends. Entrepreneur j can use its capital as collateral to borrow and

faces the following borrowing constraint due to imperfect contract enforcement:8

Bjt ≥ −µKjt−1, µ ∈ [0, 1). (9)

The parameter µ reflects the degree of financial frictions and will play an important role in our

model. Suppose that equity finance is so costly that the firm does not issue any new equity.9 Thus

we impose the constraint

Cjt ≥ 0. (10)

The entrepreneur’s objective is to maximize the discounted present value of dividends. We can

write his decision problem using dynamic programming

Vt (Kjt−1, Bjt−1, Djt−1, εjt) = max
{Ijt,Djt,Bjt}

Cjt + βEt
Λt+1

Λt
Vt+1 (Kjt, Bjt, Djt, εjt+1) , (11)

subject to (7), (8), (9), and (10), where we have used the household’s intertemporal marginal rate

of substitution as the SDF because all firms are owned by households. Here Vt (·) denotes the value

function.
8Unlike Kiyotaki and Moore (1997), we do not use future capital as collateral. Using future capital as collateral

will complicate algebra significantly without changing our key insights. See Caballero and Krishnamurthy (2006),
Miao and Wang (2018), and Miao, Wang, and Zhou (2015) for related discussions.

9Our key insights will not change as long as new equity issues are sufficiently limited (see Miao and Wang (2018)
and Miao, Wang, and Xu (2015)).

9



Define Tobin’s (marginal) Q as

qkt =
∂

∂Kjt
Etβ

Λt+1

Λt
Vt+1 (Kjt, Bjt, Djt, εjt+1) .

The following proposition characterizes entrepreneur j’s optimal decisions:

Proposition 1 Suppose that ε∗t ≡ 1/qkt ∈ (εmin, εmax) in an equilibrium. Then, for εjt ≥ ε∗t , we

have Bjt = −µKjt−1, Djt = 0,

Ijt = (Rkt + µ)Kjt−1 +
Rt−1
Πt

Djt−1; (12)

and for εjt < ε∗t , we have Ijt = 0, but Bjt and Djt are indeterminate. Moreover, qkt and Rt satisfy

qkt =βEt
Λt+1

Λt
Rkt+1

(
1 + qlt+1

)
+ βEt

Λt+1

Λt
qkt+1(1− δ) + βµEt

Λt+1

Λt
qlt+1, (13)

1 =βEt
Λt+1

Λt

Rt
Πt+1

(
1 + qlt+1

)
, (14)

where

qlt ≡
∫ εmax

ε∗t

(
qkt ε− 1

)
dF (ε). (15)

The transversality condition holds

lim
i→∞

Et
βiΛt+i

Λt

(
qkt+iKjt+i +Bjt+i +Djt+i

)
= 0. (16)

This proposition shows that there is an investment cutoff ε∗t such that entrepreneur j makes

real investment if εjt ≥ ε∗t . The cutoff ε∗t is equal to the inverse of Tobin’s Q when the investment

profit is exactly zero. The entrepreneur uses his internal funds RktKjt−1, private debt µKjt−1,

and the principal and interest value of government bonds Rt−1Djt−1/Πt to finance investment

expenditures as shown in (12). If εjt < ε∗t , he does not make real investment and buys bonds from

other productive entrepreneurs. Because entrepreneurs are effectively risk neutral as shown in (11),

they are indifferent between specific levels of bond holdings. Only aggregate level is determined

in equilibrium by market clearing. Thus the interest rates on private and public bonds are the

same and satisfy the asset pricing equation (14). Unlike the standard equation without financial

frictions, there is a liquidity premium term qlt+1 in (14).

Intuitively, both private and government bonds raise entrepreneurs’ net worth and help them

relax credit constraints. Purchasing one dollar of bonds today not only generates a benefit of the

principal plus interest tomorrow, but also allows a productive, credit-constrained entrepreneur with

εjt+1 > ε∗t+1 to finance investment so that he makes qkt+1ε
j
t+1 − 1 dollars of profits tomorrow. The

integral term in (15) gives the expected profits generated by holding bonds.

Define the real interest rate as

Rrt =

{
βEt

Λt+1

Λt

(
1 + qlt+1

)}−1
. (17)
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Then the real interest rate is negatively related to the liquidity premium and is not equal to the

inverse of the household SDF βΛt+1/Λt in the deterministic case. Due to the liquidity premium,

the real interest rate can be lower than the economic growth rate, but the inverse of the household

SDF is greater than the economic growth rate. This property is important for the valuation of

public debt studied in Section 2.6.

Equation (13) is an asset-pricing equation for Tobin’s Q. Unlike the standard equation without

financial frictions, the liquidity premium term also appears in (13) because capital return raises an

entrepreneur’s net worth and also because capital is used as collateral in our model.

The transversality condition (16) says that each entrepreneur does not leave any positive value

of assets in the long run. It is necessary for optimality. We will show later that this condition

cannot rule out a bubble in public debt.

2.3 Retailers

Retailers are monopolistically competitive. Their role is to introduce nominal price rigidities. In

each period t they buy intermediate goods from entrepreneurs at the real price pwt and sell good

j at the nominal price Pjt. Intermediate goods are transformed into final goods according to the

CES aggregator

Yt =

[∫ 1

0
Yjt

σ−1
σ dj

] σ
σ−1

, σ > 1. (18)

Thus retailers face demand given by

Yjt =

(
Pjt
Pt

)−σ
Yt, (19)

where the price index is given by

Pt ≡
[∫ 1

0
Pjt

1−σdj

] 1
1−σ

. (20)

To introduce price stickiness, we assume that each retailer is free to change its price in any

period only with probability 1− ξ, following Calvo (1983). To introduce trend inflation, we follow

Erceg, Henderson, and Levin (2000) and assume that whenever the retailer is not allowed to reset

its price, its price is automatically increased at the steady-state inflation rate. The retailer selling

good j chooses the nominal price P ∗jt in period t to maximize the discounted present value of real

profits

max
P ∗
t

∞∑
k=0

ξkEt

[
βkΛt+k

Λt

(
ΠkP ∗jt
Pt+k

− pw,t+k

)
Y ∗jt+k

]
, (21)

subject to the demand curve

Y ∗jt+k =

(
ΠkP ∗jt
Pt+k

)−σ
Yt+k, k ≥ 0, (22)
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where Π denotes the steady-state inflation target. We use the household intertemporal marginal

rate of substitution as the stochastic discount factor because retailers must hand in all profits to

households who are the shareholders.

The first-order condition gives the pricing rule

P ∗jt = P ∗t ≡
σ

σ − 1

Et
∑∞

k=0 (βξ)k Λt+kpw,t+kP
σ
t+kYt+k(Π

k)−σ

Et
∑∞

k=0 (βξ)k Λt+kP
σ−1
t+k (Πk)1−σYt+k

(23)

for all j. Let p∗t = P ∗t /Pt. We can then write the pricing rule in a recursive form as follows

p∗t =
σ

σ − 1

Γat
Γbt
, (24)

where

Γat = ΛtpwtYt + βξEt
(

Πt+1

Π

)σ
Γat+1, (25)

Γbt = ΛtYt + βξEt
(

Πt+1

Π

)σ−1
Γbt+1. (26)

It follows from (20) and Calvo price setting that

1 =

[
ξ

(
Π

Πt

)1−σ
+ (1− ξ) p∗1−σt

] 1
1−σ

. (27)

2.4 Monetary and Fiscal Policies

In each period t, the government issues one-period riskfree nominal debt (PtDt) , where Dt denotes

real debt. The government budget constraint is given by

Gt +
Rt−1Dt−1

Πt
= Tt +Dt, t ≥ 0, (28)

where Gt denotes real government spending and R−1P−1D−1 > 0 is given. Let St ≡ Tt−Gt denote

the real primary surplus. Then we rewrite (28) as

Rt−1Dt−1
Πt

= St +Dt. (29)

Following Leeper (1991), suppose that the government may adjust real lump-sum taxes in

response to the real value of public debt. Because our model features long-run growth, we consider

detrended policy rule as in Cui (2016):

τ t/y = τ/y + φd(dt−1 − d)/y + zτ ,t, (30)

where τ t = Tt/At, dt = Dt/At, and yt = Yt/At, and the variables τ , d, and y are the corresponding

steady-state values. The parameter φd describes the strength of fiscal adjustment. The variable

zτ ,t follows an AR(1) process

zτ ,t = ρτzτ ,t−1 + ετ ,t,
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where |ρτ | < 1 and ετ ,t is a normal white noise with mean zero and variance σ2τ .

Assume that the detrended government spending Gat = Gt/At follows the following AR(1)

process

lnGat − lnGa = ρG (lnGa,t−1 − lnGa) + εGt, (31)

where Ga is the steady-state value of Gat, |ρG| < 1, and εGt is a normal white noise with mean zero

and variance σ2G.

The monetary authority sets the nominal interest rate as a function of the current inflation

rate:

Rt = R

(
Πt

Π

)φπ
exp(zmt), (32)

where R and Π denote the nominal interest rate and the inflation rate targets (steady-state values).

The variable zmt follows an AR(1) process

zmt = ρmzmt−1 + εmt,

where |ρm| < 1 and εmt is a normal white noise with mean zero and variance σ2m. The parameter

φπ describes the strength of the interest rate adjustment in response to inflation. Assume that all

shocks in the model are independent of each other.

2.5 Equilibrium

Equations (4) and (14) suggest that the interest rate is too low for the household to hold any

government bonds so that Dht = 0 in equilibrium. Thus the market-clearing conditions for private

and government bonds are given by∫
Bjtdj = 0,

∫
Djtdj = Dt.

Define aggregate investment, aggregate labor, and aggregate capital as It =
∫
Ijtdj, Nt =∫

Njtdj, and Kt =
∫
Kjtdj. The labor demand condition (6) implies that all firms have the same

capital-labor ratio and thus we have

Wt = (1− α)pwtAtK
α
t−1 (AtNt)

−α . (33)

Using (33) to eliminate Wt in (5), we can show that the capital return is equal to the social marginal

product of capital

Rkt = αpwtK
α−1
t−1 (AtNt)

1−α . (34)

By Proposition 1 and the market-clearing conditions described above, we obtain aggregate

investment as follows

It =

(
(µ+Rkt)Kt−1 +

Rt−1
Πt

Dt−1

)
(1− F (ε∗t )) . (35)
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Intuitively, aggregate investment is financed by private debt µKt−1 and the net worth of high

productivity entrepreneurs with εjt ≥ ε∗t . The latter consists of capital return RktKt−1 and the real

value of government bonds Rt−1Dt−1/Πt. Equation (35) shows that public debt has a crowding-in

effect because it raises entrepreneurs’ net worth. Public debt also has a crowding-out effect because

unproductive firms must hold public debt and do not make capital investment. In particular, ε∗t

increases with public debt so that the measure of investing firms (1− F (ε∗t )) decreases with public

debt.

We can also derive the aggregate capital stock from (7) as

Kt = (1− δ)Kt−1 + It

∫ εmax

ε∗t
εdF (ε)

1− F (ε∗t )
, (36)

where the last fraction term represents the average efficiency of investment. Aggregating (19) yields

aggregate output as

Yt =
1

∆t
Kα
t−1 (AtNt)

1−α , (37)

where the price dispersion ∆t =
∫

(Pjt/Pt)
−σ dj satisfies the following recursive condition

∆t = (1− ξ)p∗−σt + ξ

(
Π

Πt

)−σ
∆t−1, (38)

with ∆−1 being exogenously given. The aggregate resource constraint is given by

Ct + It +Gt = Yt. (39)

Given initial conditions for predetermined variables {Kt−1, Rt−1, Dt−1,∆t−1} and a monetary

and fiscal monetary policy mix with exogenous policy shocks {zmt, zτ ,t, εGt}, a competitive equilib-

rium consists of 20 variables {Nt, q
k
t , Rt, q

l
t, p
∗
t , Γat , Γbt , Πt, Dt, Tt, pwt, Wt, Rkt, It, Kt, Yt, ∆t,

Ct,Λt, ε
∗
t } satisfying a system of 20 equations (3), (13), (14), (15), (24), (25), (26), (27), (29), (30),

(32), (33), (34), (35), (36), (37), (38), (39), Λt = 1/Ct, and ε∗t = 1/qkt ∈ (εmin, εmax) .

2.6 Public Debt Valuation

In this subsection we briefly review the basic idea of the FTPL and discuss how to modify it

when the interest rate is lower than the economic growth rate and/or when the government runs

persistent primary deficits.

Following Cochrane (1998, 2020), we can use (14) to rewrite the government budget constraint

(29) as
Rt−1Dt−1

Πt
= St +

RtDt

Rt
= St + Et

βΛt+1

Λt

(
1 + qlt+1

) RtDt

Πt+1
. (40)

To best understand the standard FTPL when St > 0 and Rrt > 1 + g for all t, we consider the

deterministic case and solve (40) forward to derive the asset-pricing equation:

Rt−1Dt−1
Πt

=

∞∑
i=0

St+i
RrtR

r
t+1 · · ·Rrt+i−1

+ lim
T→∞

Rrt+T+1Dt+T+1

RrtR
r
t+1 · · ·Rrt+T

, (41)
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where we have used the deterministic version of (17). Since the primary surplus St+i grows at the

economic growth rate g in the long-run, the first term (present value) on the right-hand side of

equation (41) is finite and the second term (bubble) vanishes.

However, if Rrt < 1 + g or St ≤ 0 for all t, then both the present value and the bubble term in

(41) explode, making this equation hard to interpret. Using (40), we provide another decomposition

of debt value:

Lemma 1 The real (maturity) value of public debt satisfies

Dt−1Rt−1
Πt

= Et
∞∑
i=0

βiΛt+i
Λt

St+i + Et
∞∑
i=0

βi+1Λt+i+1

Λt
qlt+i+1

Dt+iRt+i
Πt+i+1

. (42)

This lemma shows that public debt value can be decomposed into two components. The first

component represents the fundamental value of public debt defined as the present value of current

and future real primary surplus/deficit. The second component is the present value of liquidity

service provided by public debt. This value depends on the agent’s beliefs about future value of

public debt because the flow payoff qlt+i+1Dt+iRt+i/Πt+i+1 depends on debt value itself. As a

result, we may interpret it as a bubble component. This interpretation is especially useful when

the government runs persistent deficits. Then the fundamental value is nonpositive. In particular,

when surplus/deficit is always zero, St = 0 for all t, then the value of public debt is completely

supported by the speculative beliefs about future value.

Notice that the decomposition in (42) is not unique depending on different choices of the SDF.

Our choice of the household SDF is natural and admits intuitive interpretations. The implied long-

run household discount rate is (1 + g) /β − 1 given log utility, which is higher than the economic

growth rate g. But the long-run real interest rate can be lower than the economic growth rate as

shown in Section 3. Thus using the household SDF can ensure both components in (42) have finite

values even when interest rates are lower than the economic growth rate and/or when there are

persistent deficits. Reis (2021) uses the marginal product of capital as the discount rate (which is

higher than the economic growth rate) and derives an equation similar to (42) in continuous time.

Notice that we have already used the transversality condition (16) to derive (42) and it cannot

rule out the bubble component as long as a liquidity premium exists. In standard frictionless model

without liquidity premium
(
qlt = 0 for all t

)
, the real value of public debt is equal to its fundamental

value, which may explode, when the interest rate is lower than the economic growth rate and/or

when the government runs persistent primary deficits (Bassetto and Cui (2018)). In the stochastic

case, Bassetto and Cui (2018) and Cochrane (2020) present examples to show that low interest

rates (less than the economic growth rate) and persistent fiscal deficits on average can generate

a finite fundamental value of public debt when agents are sufficiently risk averse or when risk is
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sufficiently high.10 Then the usual FTPL can ensure price determinacy.

While the conventional monetary regime treats equation (42) as a constraint (implying that

fiscal policy needs to adjust when the present value of future surpluses differs from the real value of

debt), the FTPL views it as an equilibrium condition. Specifically, given a positive predetermined

nominal value of debt (Pt−1Dt−1Rt−1) , the current price Pt will adjust to ensure equation (42)

holds. A shock to the current primary surplus does not have to lead to changes in future primary

surpluses; instead, the price level can adjust to restore equality (42).

We argue that the usual FTPL fails or is incomplete when public debt contains a bubble

component. In this case the bubble component in (42) must be taken into account in the valuation

of public debt when applying the FTPL (see Brunnermeier, Merkel, and Sannikov (2020a,b) for a

similar point). For example, when primary surplus St = 0 for all t, equation (42) becomes

Rt−1Dt−1
Πt

= Dt = Et
∞∑
i=0

βi+1Λt+i+1

Λt
qlt+i+1

Dt+iRt+i
Πt+i+1

. (43)

The fundamental value of debt is zero, but debt can be rolled over and has a finite positive value

as shown in the next section.

3 Steady States

Our model features long-run balanced growth. To study steady states and the dynamics around

the balanced growth path, we first detrend the equilibrium system by using the transformation of

xt = Xt/At for any variable Xt ∈ {Kt, Dt, St, Yt, Wt, Ct, It, Gt}. For marginal utility, the variable

λt = AtΛt has no trend. The capital return Rkt has no trend. The detrended system is provided in

Appendix B. Shutting down all aggregate shocks while keeping idiosyncratic shocks, we focus on

the steady states in which the primary surplus to output ratio s/y is an exogenous constant over

time. We use variables without time subscripts to denote their steady-state values and present the

steady-state system in Appendix C.

3.1 Investment Cutoff

The critical step to solve for a steady state is to derive the investment cutoff ε∗. Once it is de-

termined, other variables can be easily derived as shown in Appendix C. Since monetary policy is

neutral in the steady state, we only need to solve for real variables. We first derive the real interest

rate Rr ≡ R/Π and the capital return Rk. It follows from (14) and qk = 1/ε∗ that

Rr =
(1 + g)/β

1 +
∫ εmax

ε∗ (ε/ε∗ − 1) dF (ε)
≡ Rr(ε∗). (44)

10In the example of Bassetto and Cui (2018), the government must have fewer deficits or levy more taxes in bad
times to maintain low interest rates. This implication seems counterfactual.
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Clearly, Rr is less than (1 + g) /β in the standard DNK model due to financial frictions. It can

be checked that Rr(ε∗) increases with ε∗. Intuitively, as the investment cutoff ε∗ increases, more

efficient firms make investment, Tobin’s Q (qk = 1/ε∗) declines, the liquidity premium declines,

and the real interest rate rises.

Using (13) and qk = 1/ε∗, we obtain

Rk =
[(1 + g)/β − (1− δ)] /ε∗ − µ

∫ εmax

ε∗ (ε/ε∗ − 1) dF (ε)

1 +
∫ εmax

ε∗ (ε/ε∗ − 1) dF (ε)
≡ Rk(ε∗). (45)

The monotonicity of Rk(ε
∗) plays an important role in characterizing the steady-state equilibria.

Lemma 2 For any µ > 0, Rk(ε
∗) has a unique maximum at εk ∈ (εmin, εmax) , which satisfies

µ

∫ εmax

εk

εdF (ε)− (β−1(1 + g)− 1 + δ)F (εk) = 0.

Moreover, ∂Rk(ε
∗)/∂ε∗ > 0 for ε∗ ∈ [εmin, εk] and ∂Rk(ε

∗)/∂ε∗ < 0 for ε∗ ∈ [εk, εmax]. If µ = 0,

we have εk = εmin and ∂Rk(ε
∗)/∂ε∗ < 0 for ε∗ ∈ [εmin, εmax].

This lemma shows that Rk is not monotonic in ε∗. This is because an increase of ε∗ has two

opposing effects: It reduces the liquidity premium and hence raises Rk for a similar intuition

discussed earlier. But it also reduces Tobin’s Q and hence reduces Rk.

Next, dividing (36) by kt ≡ Kt/At, we can derive the steady-state real value of government

liabilities relative to capital as

Rrd

k
=

(g + δ)− (µ+Rk(ε
∗))
∫ εmax

ε∗ εdF (ε)∫ εmax

ε∗ εdF (ε)
≡ Φ(ε∗). (46)

The function Φ(ε∗) represents the maturity value of public debt (including both the principal and

interest) relative to capital. By Lemma 2, Φ(ε∗) increases with ε∗ on [εk, εmax], but may not be

monotonic on [εmin, εmax] .

Lemma 3 There exists a unique solution ε∗ = εl ∈ (εk, εmax) to the equation Φ(ε∗) = 0. For a

sufficiently small µ ≥ 0, we have Φ(ε∗) < 0 on ε∗ ∈ [εmin, εk] .

This lemma shows that there is a unique cutoff εl such that the steady-state value Rrd is equal

to zero by (46). Since Rrd ≥ 0, Lemma 3 and (46) show that any steady-state cutoff ε∗ must satisfy

ε∗ ≥ εl > εk if µ ≥ 0 is sufficiently small. Otherwise, public debt has a negative value by (46).

Throughout our analysis, we will maintain this assumption.

Now we derive the steady-state version of the government budget constraint (29) as(
Rr

1 + g
− 1

)
d

y
=
s

y
. (47)
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The left side of equation (47) represents the interest payment of public debt relative to output and

the right side represents the primary-surplus-to-output ratio. Rewrite the expression on the left

side as (
Rr

1 + g
− 1

)
d

y
=
Rr − (1 + g)

Rr
Rrd

k

k

y

1

1 + g
. (48)

It follows from (34) and (37) that k/y = α(1 + g)pw/Rk, where pw = 1 − 1/σ. Substituting this

expression into (48) and using (44) and (46), we can rewrite (47) as

Ψ (ε∗) ≡ Rr(ε∗)− (1 + g)

Rr(ε∗)

αpw
Rk(ε∗)

Φ(ε∗) =
s

y
. (49)

For any exogenously given steady-state surplus-to-output ratio s/y, equation (49) determines the

steady state cutoff ε∗.

Figure 2: Functions Rr(ε∗), Rk(ε
∗),Φ(ε∗),Ψ(ε∗), and determination of steady state.

Figure 2 illustrates the functions Rr(ε∗), Rk(ε
∗), Φ(ε∗), and Ψ (ε∗) for εmax =∞. As shown in

Panel B, a steady-state investment cutoff is determined by the crossing point of the curve Ψ (ε∗)

and the horizontal line s/y. The steady-state Rrd/k can be read from the curve Φ(ε∗) in Panel D.

This curve crosses the horizontal axis at εl. For Rrd/k ≥ 0, any steady-state cutoff must be higher

than εl. In the next three subsections we consider three cases depending on the signs of s/y. We

will show that there may be multiple steady states because Ψ (ε∗) is not a monotonic function.
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3.2 Government Debt as a Pure Bubble

We first consider the case in which St = 0 for all t. Then public debt is an unbacked asset like

a pure bubble (Diamond (1965) and Tirole (1985)). Its fundamental value is zero. There exists

a steady state in which the detrended debt has no value, i.e., d = 0. There may exist another

steady state in which detrended debt has a finite positive value (d > 0) due to liquidity premium

supported by self-fulfilling beliefs. The following proposition establishes the condition under which

unbacked public debt can be rolled over indefinitely.

Proposition 2 Suppose that µ ≥ 0 is sufficiently small and the steady-state primary-surplus-to-

output ratio is fixed at s/y = 0. Then there always exists a steady state in which the investment

cutoff is εl given in Lemma 3, d = 0, and Rr = Rr(εl). This is the unique steady state if Rr(εl) >

1 + g. If Rr(εl) < 1 + g, then there also exists another steady state in which the investment

cutoff εh ∈ (εl, εmax) is the unique solution to the equation Rr(εh) = 1 + g, the real interest

rate is Rr = 1 + g, and the real value of government liabilities relative to capital is given by

Rrd/k = Φ(εh) > 0.

The condition in this proposition is similar to that in Tirole (1985), Miao and Wang (2018),

and Dong, Miao, and Wang (2020); that is, the real interest rate Rr(εl) in the bubbleless steady

state must be lower than the economic growth rate. Because the steady-state real interest rate in

the standard model without financial frictions is equal to (1 + g)/β > 1 + g, unbacked public debt

cannot be valued or rolled over. Figure 2 presents the case of Rr(εl) < 1 + g. A notable feature is

that Ψ (ε∗) is U-shaped and crosses the horizontal axis at two points εl and εh. Panels A and C of

Figure 2 show that the real interest rate Rr increases with ε∗ and the capital return Rk decreases

with ε∗ for ε∗ > εk, where εk is defined in Lemma 2. Thus the capital stock in the bubbly steady

state is higher than in the bubbleless steady state due to the crowding-in effect of public debt.

The critical assumption to generate a low interest rate is the presence of financial frictions. The

following proposition establishes the impact of the parameter µ, which captures the tightness of

borrowing constraints or the degree of financial frictions.

Proposition 3 As µ decreases, both εl and Rr = Rr(εl) decrease.

This proposition shows that as the borrowing constraints are tighter, the real interest rate

becomes lower and hence the unbacked public debt is more likely to be valued and rolled over.

When the real interest rate is sufficiently low such that Rr(εl) < 1 + g, another steady state

emerges in which the interest rate is equal to the economic growth rate, Rr(εh) = 1 + g. In this

case, the steady-state version of equation (14) becomes

1 = β
(

1 + ql
)
, ql =

∫ εmax

εh

(
ε

εh
− 1

)
dF (ε).
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Thus the liquidity premium satisfies ql = 1/β − 1. Without the liquidity premium, the above

equation cannot hold for β ∈ (0, 1). Since Rr(εh) = 1 + g and public debt Dt grows at the rate

1 + g in the steady state, the transversality condition cannot rule out a bubble in the steady state.

Formally, the steady state version of (43) gives

Rt−1Dt−1
Πt

=

∞∑
i=0

βi+1Λt+i+1

Λt
qlt+i+1

Dt+iRt+i
Πt+i+1

=
DtR

r(εh)

1 + g

βql

1− β
= Dt > 0, (50)

where we have used the following deterministic steady-state properties

Λt+i
Λt

=
Ct
Ct+i

= (1 + g)−i .

In our model government bonds are net worth of entrepreneurs and help them overcome borrow-

ing constraints. They are willing to trade government bonds to insure against their idiosyncratic

investment shocks. Thus government bonds command liquidity premium and can be valued even

though they are not backed by any fiscal surplus.

3.3 Government Debt Backed by Fiscal Surplus

In this subsection we study the case in which there is fiscal surplus in the steady state, i.e., s/y > 0.

Then public debt is backed by fiscal surplus. In this case we have the standard result.

Proposition 4 Suppose that µ ≥ 0 is sufficiently small and the steady-state primary-surplus-to-

output ratio is fixed at s/y > 0. Then there exists a unique steady state in which Rr = Rr(εp) >

1 + g, where εp ∈ (εmin, εmax) is the unique solution to equation (49). The real value of government

liabilities relative to capital is given by Rrd/k = Φ(εp) > 0.

Because Rr > 1 + g and public debt grows at the economic growth rate 1 + g in the steady

state, the bubble component in (41) in the steady state is equal to zero. Thus the real value of

public debt is entirely determined by the present value in (41) discounted by Rr.

To prove Proposition 4. We consider two cases. First, if Rr (εl) > 1 + g, then we can show

that there Ψ (ε∗) is positive and increases with ε∗ on (εl, εmax]. Thus there is a unique steady state

cutoff εp such that (49) holds for s/y > 0 and Rr (εp) > Rr (εp) = 1 + g.

Second, Figure 2 shows the case of Rr (εl) < 1 + g. The curve Ψ (ε∗) crosses the horizontal

line with s/y > 0. In Panel D we ignore the crossing point in the region [εmin, εl] as the implied

Rrd/y < 0. The crossing point εp must be in the region [εh, εmax] . Then we also have Rr (εp) >

Rr (εh) = 1 + g.

3.4 Sustainability of Fiscal Deficits

Can a permanent fiscal deficit be sustained in the long run? What is the maximum sustainable

primary deficit in the long run? The following proposition addresses these questions.
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Proposition 5 Suppose that µ is sufficiently small and that Rr(εl) < 1 + g. For any given s/y ∈
(−s, 0), where

−s = min
ε∗∈[εl,εh]

Ψ(ε∗) < 0,

there exist (at least) two steady states with Rr(εl) < Rr(ε∗l ) < Rr(ε∗h) < Rr(εh) = 1 + g, where

εl < ε∗l < ε∗h < εh and both ε∗l and ε∗h solve equation (49). The real value of government liabilities

relative to capital is given by Rrd/k = Φ(ε∗l ) and Rrd/k = Φ(ε∗h), respectively. If s/y < −s, then

there does not exist a steady state.

The critical condition in this proposition is the same as that in Proposition 2; that is, the steady-

state real interest rate on the unbacked public debt must be lower than the economic growth rate.

This condition can support not only a steady state with a positive value of the unbacked public

debt as in Proposition 2, but also at least two other steady states in which primary deficits last

forever. Figure 2 illustrates the case with exactly two steady states. In these steady states the real

interest rates are less than the economic growth rate.

The multiplicity is due to the non-monotonicity of Ψ (ε∗) , which is similar to a tax Laffer

curve.11 Intuitively, for s/y < 0 and Rr < 1 + g, the government effectively taxes households

−Ψ (ε∗) =

(
1

Rr
− 1

1 + g

)
Rrd

y

to cover primary deficits −s/y > 0 by equations (47) and (49). An increase in the real interest

rate Rr reduces the “tax rate” 1/Rr − 1/ (1 + g) , but it may raise the “tax base” Rrd due to

the liquidity premium. In particular, an increase in Rr reduces the liquidity premium ql by (14),

thereby reducing the capital price qk. Then aggregate capital demand rises. The credit-constrained

entrepreneurs need more public debt value Rrd to raise their net worth to finance investment.

Thus total “taxes” −Ψ (ε∗) may first increase with Rr and later decrease with Rr. This implies

that there may exist multiple interest rates such that Ψ (ε∗) = s/y holds. Equivalently, there

may exist multiple cutoffs ε∗ such that this equation holds because the interest rate Rr increases

monotonically with ε∗.

Now we use (42) to show that the detrended real value of debt in the deterministic steady-state

satisfies

d (1 + g)t−1Rr =
s (1 + g)t

1− β
+

βql

1 + g

d (1 + g)tRr

1− β
, (51)

where the first and second terms on the right-hand side of equation (51) represent the fundamental

and bubble components, respectively. The fundamental value is negative given s < 0. By (14), we

have
(
1 + ql

)
β = (1 + g) /Rr. It follows from (51) and Proposition 5 that

d =
s (1 + g)

Rr − (1 + g)
> 0.

11This curve is similar to but different from the seigniorage Laffer curve in the monetary economics literature.
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Thus a positive value of the bubble component offsets the negative fundamental value to ensure

a positive real value of public debt. The government can keep rolling over debt to finance fiscal

deficits and repay debt at an interest rate lower than the economic growth rate. As discussed in

Section 3.2, entrepreneurs are willing to hold government bonds because these bonds provide self-

insurance against idiosyncratic investment shocks. A positive value of public debt can be supported

in equilibrium.

If the deficit-to-output ratio |s| /y is too high, then the government may issue too much bonds

that exceed the demand capacity of entrepreneurs. As a result an equilibrium does not exist and

primary deficits cannot be sustained.

Brunnermeier, Merkel, and Sannikov (2020a,b) offer a different interpretation by solving (29)

forward discounted by the real interest rate. We then obtain the following equation in the deter-

ministic steady state:

d = lim
T→∞

[
T∑
k=0

(
1 + g

Rr

)k+1

s+

(
1 + g

Rr

)T+1

d

]
. (52)

They interpret the first term on the right-hand side of (52) as the fundamental value and the second

term as the bubble component. If Rr < 1 + g, then the fundamental value explodes to negative

infinity for s < 0. However, the bubble component explodes to positive infinity. The sum of these

two components can be a finite positive value. This interpretation may be less intuitive when used

to discuss the transmission mechanism of shocks.

4 Quantitative Implications

In this section we study quantitative implications of our model by calibrating our model to the US

data at quarterly frequency. We are interested in the following questions: What is the maximum

sustainable level of the primary deficit? What is the implied value of public debt? What is the

stability of the steady states and the local determinacy of equilibria around a steady state? What

are the dynamic responses of the economy to a monetary or fiscal policy shock?

4.1 Calibration

Our model can generate multiple steady states depending on parameter values. To study the

possibility of sustaining permanent primary deficits, we calibrate our model such that the conditions

in Proposition 5 hold. Moreover, we calibrate our model at quarterly frequency such that the

steady state with the lowest interest rate (steady state L) matches some long-run moments in the

US quarterly data over 1950-2019. We choose this steady state because there has been a secular

decline in interest rates across almost all advanced economies.12

12Kaas (2016) also calibrates his model such that the steady state with a lower interest rate matches the data.
Figure 3 Panel D shows that a reduction of the deficit/output ratio leads to a decrease in the debt/output ratio around
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Table 1: Calibrated Parameters at Quarterly Frequency

Parameter Values Description Target

α 0.33 Capital elasticity Capital income share
g 0.79% Labor efficiency growth GDP growth

Π− 1 0.77% Inflation target Inflation rate
G/Y 11.1% Government spending share Government spending to GDP ratio
s/y −0.445% Primary surplus to output ratio Public debt to GDP ratio
ξ 0.75 Price adjustment probability Duration of price adjustments
σ 11 Goods elasticity of substitution Price markup
β 0.992 Discount factor
δ 1.217% Depreciation rate Equity return
µ 0.197 Capital pledgeability Real interest rate
η 0.358 Pareto shape Investment-to-GDP ratio
εmin 0.642 Pareto scale Normalization E [ε] = 1
ψ 3.75 Labor disutility Number of hours worked

The calibrated parameters are listed in Table 1. We first set α = 0.33 and β = 0.99 as in the

standard macroeconomics literature. Set g = 0.0315/4 so that the annual real GDP growth rate is

3.15% as in the data. Set Π = 1 + 0.0309/4 to be consistent with the average annual inflation rate

of 3.09% during the period 1950-2019. We calibrate the steady-state Gt/Yt to match the long-run

average 11.1% in the data. Set the long-run surplus-to-ouput ratio s/y to −0.445%, which ensures

the debt-to-GDP ratio (d/ (4y)) in steady state L to match the long-run average 35.9% in the

data. Set ξ = 0.75 and σ = 11 so that the duration of price adjustments is four quarters and the

steady-state markup is σ/(σ − 1) = 1.1, consistent with the DNK literature. We choose ψ such

that the steady-state labor is equal to 0.25 as in the business cycles literature.

It remains to calibrate three parameters δ, η, and µ. We adopt the Pareto distribution for the

idiosyncratic investment shock F (ε) = 1−(ε/εmin)
− 1
η and set εmin = 1−η so that the unconditional

mean is 1. We set δ = 1.217% so that the steady-state equity (or investment) return Rk/q
k+(1−δ)

is equal to 4% per annum. As is well known the equity premium is about 6% per annum in the

data. Our steady-state target of 4% appears reasonable given that risk premium is absent in the

deterministic steady state. We set η = 0.358 and µ = 0.197 so that the real interest rate and the

investment-to-GDP ratio in the steady state with a lower interest rate are equal to 1.9% per annum

and 17.4%, respectively, as in the data.13 The calibrated µ = 0.197 is in line with those reported

in Miao, Wang, and Xu (2015) and Dong, Miao, and Wang (2020).

steady state L, which is consistent with the conventional wisdom. But steady state H has a perverse comparative
statics implication.

13We use the data of the nominal interest rates for the entire portfolio of the U.S. government bonds from Hall
et al. (2018) and the GDP deflator to obtain real interest rates.
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4.2 Maximum Sustainable Deficit

Using the calibrated parameters given in Table 1, we can calculate the maximum sustainable deficit-

to-output ratio |s| /y as in Proposition 5. As shown in Figure 3, there are two steady states with

primary deficits s/y < 0. The maximum sustainable deficit-to-output ratio |s| /y is 0.45%, which

is smaller than the number of 0.834% in Kaas (2016). When the economy is at its maximum

sustainable deficit-to-output ratio, the annual net real interest rate is 4 ∗ (Rr − 1) = 2% and the

debt-to-GDP ratio is d/(4y) = 39.81%.

As s/y increases from −0.45% to 0, the smaller steady-state interest rate declines until the

investment cutoff decreases to εl. In the meantime, the larger steady-state interest rate increases

to 1 + g until the investment cutoff rises to εh. When s/y further increases from zero to a positive

number, real interest rate Rr increases from 1+g. Moreover, capital, output, and the debt-to-GDP

ratio all increase. As s/y → +∞ , Rr → (1 + g)/β and d/y → +∞.

Figure 3: Steady state values for various primary-surplus-to-output ratios s/y. The dot point in
each curve shows the steady state of the model under the calibration in Table 1.

Figure 3 shows an interesting comparative statics property. As the long-run deficit-to-output

ratio |s| /y declines, the real interest rate, capital, output, and debt-to-GDP ratio in steady state

L all decline. Intuitively, as deficit |s| /y declines, the investment cutoff ε∗ declines, the liquidity

premium increases, and hence the real interest rate declines (see Figure 2). Then the government

reduces debt issuance. But this hurts entrepreneurs because government bonds are their net worth
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used to finance investment spending. As a result, entrepreneurs accumulate less capital and the

steady-state output declines. The opposite results obtain for steady state H as the primary deficit

declines.

Notice that our model generated maximum deficit-to-output ratio is lower than those estimated

in the literature. Using OLG models, Chalk (2000) finds that primary deficits up to 5.2% are

sustainable, while Bullard and Russell (1999) calibrate a similar model with a primary deficit of

1.9%. Using an infinitely-lived agent model with financial frictions, Kaas (2016) finds that the

maximum deficit-to-output ratio is 0.837%.

Chalk (2000) calibrates the real interest rate to a lower value of 1.2% per annum. If we follow

the same calibration strategy as in Section 4.1 but target his value of real interest rate with Rr =

1 + 1.2%/4, we obtain δ = 1.135%, µ = 0.180, and η = 0.356. The new calibration generated

maximum sustainable deficit-to-output ratio is 0.53%. Given this ratio, the net real interest rate is

4∗(Rr−1) = 1.84% per annum and the debt-to-GDP ratio is d/(4y) = 41.12%. Thus the maximum

sustainable deficit-to-output ratio and debt-to-GDP ratio do not change much.

The difference in estimates is likely due to the structural differences between OLG and infinitely-

lived agents models. One possible explanation is that OLG models with hump-shaped earnings

profiles permit the government to roll over larger stocks of debt. For infinitely-lived agents models

with credit constraints, such large deficits are not sustainable for plausible parameter values.

4.3 Local Determinacy

Given our calibrated parameter values in Table 1, there are two steady states for the detrended

system as shown in Figure 3. In this subsection we study the stability of these steady states and

local determinacy of equilibria around each of these steady states. Due to the complexity of our

model, we are unable to derive analytical results. We thus use numerical methods. We first linearize

the detrended system around a steady state and then study the determinacy and stability of the

linearized system using Klein’s (2000) method. The linearized system is presented in Appendix D.

We first consider a real version of our model by removing the pricing and monetary policy block

and setting Πt = 1 for all t. Following Kaas (2016), we set φd = 0 in (30) or assume that Tt/Yt is

exogenously given. We summarize the detrended system by a system of 13 equations for 13 variables

{Rt, Rkt, λt, ε∗t , qkt , qlt, wt, dt, kt, Nt, yt, ct, it} given in Appendix B. The predetermined variables

are {Rt, dt, kt} . The steady-state allocation remains the same as in the monetary model. Using the

same calibration as in Table 1, we find that there is a unique equilibrium around steady state L

and there is no bounded equilibrium around steady state H, a result similar to Kaas (2016).14

Now we consider our monetary model, which generates very different results. In this case we

14Formally, the number of stable eigenvalues is the same as (resp. smaller than) the number of predetermined
variables for the linearized detrended equilibrium system around stead state L (resp. steady state H).
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need to stabilize both inflation and public debt. The determinacy depends on the policy rules

in (30) and (32). The critical parameters are the policy response coefficients (φd, φπ) . Figure 4

presents the determinacy region for the calibrated model under different policy mix (φd, φπ). For

ease of numerical computations, we consider only values of φd in (−1, 1) and φπ ≥ 0.

Figure 4: Local determinacy regions for the policy mix parameters {φd, φπ} for s/y = −0.445%.

As shown in Figure 4, the vertical line φ∗d = 1/β−1 and the horizontal line φ∗π = 1 partition the

policy parameter space into four regions for the flexible-price model of Leeper (1991): (i) unique

equilibrium for φd > 1/β − 1 and φπ > 1 (active monetary policy and passive fiscal policy, regime

M); (ii) unique equilibrium for φd < 1/β− 1 and φπ < 1 (passive monetary policy and active fiscal,

regime F); (iii) no bounded equilibrium for φd < 1/β − 1 and φπ > 1 (active monetary policy

and active fiscal policy); and (iv) indeterminate equilibria for φd > 1/β − 1 and φπ < 1 (passive

monetary policy and passive fiscal policy). This result still holds for the standard DNK model

without capital (e.g., Woodford (2003)).15 It also holds for the standard DNK model with capital

if the distortions in the economy are not too large (e.g., Lubik (2003) and Carlstrom and Fuerst

(2005)).

By contrast, our model with financial frictions delivers different results. We focus our analysis

on the determinacy around steady state L illustrated in Panel A of Figure 4, as the analysis for

steady state H is similar. We find that there are three disjoint regions of the policy parameter

space. The two regions that ensure a unique equilibrium in Leeper (1991) become one region in

our model.16 Unlike in Leeper (1991), the boundaries of this region are nonlinear. The Taylor

principle threshold φ∗π = 1 is no longer the critical value to stabilize inflation and the steady-state

net interest payment Rr/ (1 + g)− 1 is no longer the critical value to stabilize debt dynamics.

15Woodford (2003, Proposition 4.11) considers a fiscal policy rule that reacts to the maturity value of real public
debt Rtdt, instead of dt in (30). But the result is essentially the same.

16Canzoneri et al. (2011) and Cui (2016) obtain similar results in different models.
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To understand the intuition, we use the linearized fiscal policy rule equation and the government

budget constraint to derive

d̃t =

(
Rr

1 + g
− φd

)
d̃t−1 +

Rr

1 + g

d

y

(
R̂t−1 − Π̂t

)
+
Ga
y
Ĝat − zτ ,t, (53)

where a variable with a tilde denotes derivation from its steady state relative to steady-state output

(e.g., d̃t = (dt − d)/y) and a variable with a hat denotes log deviation from its steady state (e.g.,

Π̂t = (Πt − Π)/Π). In the standard model without financial frictions (e.g., Leeper (1991)), the

steady-state real interest expense is given by Rr/(1 + g) − 1 = 1/β − 1 and the short-run real

interest rate R̂t−1 − Et−1Π̂t is independent of public debt d̃t−1. Thus we obtain the standard

critical value 1/β − 1. By contrast, the long-run real interest expense in our calibrated model with

financial frictions is Rr/(1 + g) − 1, which is less than zero and lower than 1/β − 1. Importantly,

the real interest rate R̂t−1 − Et−1Π̂t responds to public debt d̃t−1 due to the liquidity premium.17

Thus the stability of debt cannot be determined by the coefficient of d̃t−1 in (53) alone.

Let us still apply Leeper’s (1991) definition of passive/active policy thresholds φ∗π = 1 and

φ∗d = Rr/ (1 + g) − 1.18 We also keep his terminology of regime M and regime F. Then Figure 4

shows that both active and passive monetary policy can be combined with a passive fiscal policy

to ensure price determinacy. Policy parameters in regime M may not ensure determinacy. We

need fiscal policy to be more passive to ensure determinacy. Formally, for φπ > 1, the fiscal policy

parameter φd must be sufficiently larger than Rr/(1 + g)− 1 to ensure determinacy because of the

positive relation between the real interest rate and public debt. For φπ < 1, we need to solve for d̃t

as a forward-looking variable by repeated substitution. Thus the fiscal policy parameter φd must

be small to ensure the coefficient of d̃t−1 to be large. But we do not need φd < Rr/ (1 + g) − 1

as R̂t−1 − Π̂t is positively related to d̃t−1. There are two nonlinear boundaries for the determinacy

region. Both boundaries are increasing curves.

An important feature of our model is that there may exist two steady states given the same

long-run primary-deficit-to-output ratio (see Figures 2 and 3). While the determinacy property

around steady state H is similar to that for the other steady state as illustrated in Panel B of

Figure 4, the multiplicity of the steady states generates some interesting implications absent from

the literature.

First, a fiscal and monetary policy mix is important not only for local determinacy of equilibria

around a particular steady state, but also for selecting a particular steady state. We will show in

Section 4.5 that the debt and tax target will play an important role.

Second, the determinacy region for the two steady states are different as illustrated in Figure

4. This means that, given the same policy response coefficients φd and φπ, the local equilibrium

17See Dominguez and Gomis-Porqueras (2019) for a similar discussion.
18More formally, monetary policy is active if |φπ| > 1, and passive if |φπ| < 1. Fiscal policy is active if
|Rr/ (1 + g)− φd| > 1, and passive if |Rr/ (1 + g)− φd| < 1.
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is determinate around one steady state, but may be indeterminate around the other steady state.

One particular example is that for an economy around steady state L, a policy mix with φd = 0

and φπ = 1.5 implies that the model has a unique bounded solution and the economy is in regime

M. However, for the same policy mix, if the economy is around steady state H, the model does

not have any bounded solutions. In this case, the strong reaction of monetary policy to inflation

(φπ > 1) will increase the interest expense and lead to an explosive path for public debt. Another

example is that around the steady state H, a policy mix with φd = 0 and φπ = 0.8 can guarantee

equilibrium determinacy. However, the same policy mix leads to indeterminacy around steady state

L.

Third, Woodford (1995, 2001) discusses the interest-rate-peg policy which corresponds to φd =

φπ = 0 in our model. As shown in Panel B of Figure 4, these policy parameters determine a unique

equilibrium around steady state H. However, they fall in the indeterminacy region for steady state

L as shown in Panel A of Figure 4.19 The intuition is as follows.

The fiscal rule φd = 0 is an active policy in the standard DNK model, in which the steady-

state interest rate R∗ for log utility satisfies R∗ = (1 + g) /β > (1 + g). With positive interest

expenses (R∗ > 1+g) and without raising taxes for φd = 0, the government must raise an explosive

amount of debt eventually to cover accumulated interest expenses starting from any initially given

government liabilities. To obtain a unique bounded equilibrium, debt value must be derived as

a forward-looking solution and the initial inflation is adjusted to ensure the government budget

constraint is satisfied (see equations (29) and (42)). This also suggests that the stabilization of

public debt constantly relies on the debt revaluation through surprise inflation, with the latter

being possible if monetary policy is passive (e.g., φπ = 0). This is regime F discussed in Leeper

(1991) and Woodford (1995, 2001).

By contrast, the fiscal rule φd = 0 is a passive policy in our calibrated model because Rr <

(1 + g). Importantly, the real interest rate R̂t−1 − Et−1Π̂t responds to debt value d̃t−1 due to the

liquidity premium. We are unable to derive a closed-form solution to check determinacy. Our

numerical results show that the fiscal rule φd = 0 is passive enough to stabilize public debt by

the fiscal authority itself for the local equilibrium around steady state L. When monetary policy

is passive with φπ = 0, inflation is also stabilized given any initial level of inflation. Thus local

equilibria around steady state L are indeterminate of degree one.

Our numerical results also show that the interest rate response to debt is so strong that debt

dynamics cannot be stabilized by the fiscal authority itself around steady state H for φd = 0. We

then obtain a unique saddle-path equilibrium around that steady state given φd = φπ = 0 as in

regime F of the standard DNK model discussed above.

19Bassetto and Cui (2018) find a similar result in different models.
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4.4 Dynamic Responses

In this subsection we study the impulses responses of the calibrated model economy to a one percent

shock to the lump-sum tax/transfer in (30), government spending in (31), and the nominal interest

rate in (32), respectively.20 We suppose that the economy initially stays at steady state L and

study local dynamics of the detrended equilibrium system around this steady state after a shock.

For regime M, we set φd = 0, φπ = 1.5, and for regime F, we set φd = Rr/ (1 + g)− 1 = −0.0031,

φπ = 0.8. These parameter values imply that taxes do not respond to public debt in regime M and

taxes are cut by the amount of debt interest in response to an increase in public debt in regime

F. These policy mixes can lead to equilibrium determinacy as shown in Figure 4. To introduce

persistence, we set ρG = 0.8 and ρm = 0.5, but set ρτ = 0.

We use numerical experiments to answer the following questions:21 Can conventional contrac-

tionary monetary policy through open market sales of debt without raising future taxes (or sur-

pluses) stabilize debt and inflation? What is the impact of a tax cut or an increase in government

transfers/spending financed by debt, which is rolled over subsequently, on the macroeconomy? How

does monetary policy coordinate with such fiscal policies to stabilize debt and inflation dynamics?

How does the FTPL work in an economy with low interest rates?

Monetary Policy Shock. We first consider the impact of a one percentage point increase in the

nominal interest rate (a contractionary monetary policy shock) as shown in Figure 5. For regime

M, we obtain the conventional impulse responses. In particular, the real interest rate rises, but

consumption, investment, labor, output, and inflation all decline on impact. The evolution of the

real value of public debt is backward-looking. The initial decline in inflation leads to a higher real

value of debt liabilities. Without adjustments of taxes (φd = 0), the government has to issue more

public debt. The rising interest expense further raises future debt value. Given the low steady-

state real interest rate Rr < 1 + g, debt can eventually pay for itself. However, debt rises for a few

periods because the real interest rate rises with debt. It takes a long time for debt to revert back

to its steady-state value as the long-run coefficient of d̃t−1 in (53) is Rr/ (1 + g) = 0.9969. This is

in contrast to the conventional wisdom which calls for an increase in future taxes to finance debt

because the conventional real interest rate is higher than the economic growth rate.

Figure 5 also shows the relationship among real interest (R̂rt ), real debt (d̃t), liquidity premium(
q̂lt
)
, and Tobin’s Q

(
q̂kt
)
. In particular, both the liquidity premium and Tobin’s Q decline as the

nominal interest rate rises on impact.

20See Kim (2003) for impulse responses to various shocks in a standard DNK model without capital. We have
conducted a similar analysis for a standard DNK model with capital. Such results are available upon request.

21We use the perfect-foresight, deterministic simulations algorithm implemented in Dynare (Adjemian et al. (2011)).
The algorithm adopts nonlinear methods that apply to models with large shocks or with the ZLB. The log-linear
solutions for small shocks are quite close to the nonlinear solutions when the ZLB never binds.
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Figure 5: Impulse response functions to a positive 1% innovation shock to the nominal interest rate
starting from steady state L. All vertical axes represent percentage points.

For regime F, a positive interest-rate shock also generates a contractionary impact on quantities

initially. But there are two major differences from regime M. First, consumption, investment,

and output rise above the steady state for some periods before they revert. The intuition is

that government liabilities rise given a positive shock to the nominal interest rate. In the next

period, entrepreneurs make more investment and hire more workers due to the positive wealth

effect of government bonds. Households raise consumption as their wages rise. The initial drop of

consumption, investment, labor, and output is due to the initial rise of the real interest rate given

the passive interest rate rule φπ = 0.8.

Second, inflation rises on impact, but the real value of public debt declines. According to

the conventional interpretation based on the FTPL (e.g., Kim (2003)), the nominal government

liabilities grow more rapidly relative to the present value of future surpluses when there is a positive

shock to the nominal interest rate. In the next period, the real value of government liabilities

exceeds the present value at the given price level, which induces households and entrepreneurs to

raise consumption and investment. This aggregate-demand increase pushes up inflation and output

in the next period. Inflation also rises in the current period by the Phillips curve relation because

prices are sticky.22 This argument could fail because the present value discounted by the usual

household SDF may explode when the real interest rate is lower than the economic growth rate.

22In the flexible price model of Leeper (1991), the impact of the interest-rate shock is delayed without affecting the
current inflation.
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By contrast, we decompose the real value of public debt into a fundamental component and a

bubble component in regime F of our calibrated model with long-run fiscal deficits in Lemma 1.

Both components are discounted by the household SDF and the implied discount rate is higher than

the economic growth rate in the long run. The initial drop of consumption raises marginal utility

Λt on impact and hence lowers the household SDF βΛt+1/Λt. Given fiscal deficits, the fundament

value of public debt in (42) is negative and rises on impact. Given φd = Rr/ (1 + g)− 1 = −0.0031

in (30), tax τ̃ t does not change initially and then is negatively related to debt d̃t−1. The bubble

component (d̃bt) of public debt in (42) declines due to the decline of the liquidity premium as shown

in the last panel of Figure 5 and this effect dominates. Thus the initial price or inflation must rise

to satisfy the government budget constraint as nominal debt is predetermined (see (29) and (42)).

In regime F equation (42) is an equilibrium condition.

Government Spending Shock. Next we study the impact of an initial increase in government

spending by 1% from the steady state as shown in Figure 6. By the resource constraint, if consump-

tion and investment do not respond, output would rise by about 0.1% given that the steady-state

government spending to output ratio is about 11%.

Regime M gives the conventional story. An increase in government spending raises aggregate

demand and inflation. Given the active interest-rate rule and sticky prices, both the nominal and

real interest rates rise, thereby crowding out consumption and investment. Thus output rises by

less than 0.1%. Moreover, the increase in government spending is financed by the public debt,

which is rolled over without increasing taxes given φd = 0. The real value of public debt evolves

as a backward-looking variable and rises as interest rates rise. The debt can pay for itself as the

long-run real interest rate is less than the economic growth rate, but the reversion to the steady

state takes a long time. Thus the crowding-out effect on investment is long lasting.

Regime F tells a different story. Households with non-Ricardian expectations do not think that

an increase in government spending raises their tax burden. Quite the contrary, they think primary

deficits rise even more as the government also cuts taxes given φd = Rr/ (1 + g) − 1 < 0. Thus

the fundamental value of public debt (which is negative in our calibrated model) declines. This

effect dominates the rise of the bubble component in the last panel of Figure 6, causing the sum of

the two present values on the right-hand side of (42) to fall. At the initial price level, the public

debt value held by entrepreneurs exceeds that sum, and this represents a positive wealth effect.

Entrepreneurs increase investments and households increase consumption until the price level rises

enough to eliminate the discrepancy. Given the passive interest-rate rule φπ = 0.8, the nominal

interest rate rises on impact, but the real interest rate falls. This further stimulates consumption

and investment. Firms also hire more labor. Thus the initial output response is 0.32%, much larger

than 0.1% and the increase in inflation is about 10 times larger than in regime M. The impact fiscal
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Figure 6: Impulse response functions to a positive 1% government spending shock starting from
steady state L. All vertical axes represent percentage points.

multiplier (∆y0/∆Ga,0) is 2.85 in regime F, while it is 0.70 in regime M.

Transfer Shock. Now we consider the impact of a 1% transfer shock as shown in Figure 7. This

shock is effectively the same as the reduction of the initial lump-sum tax by 1% of output financed

by debt. In the standard DNK model without financial frictions, this shock does not affect the real

economy and inflation in regime M, because Ricardian equivalence holds and the determination of

inflation is independent of the fiscal authority’s behavior.

For our model with financial frictions, this shock has an impact on the real economy, but

the quantitative effect is very small in regime M. Unlike in the standard DNK model, the real

value of debt in our model does not increase one-to-one as the lump-sum transfer rises on impact

because inflation responds to the transfer shock. The public debt can pay for itself given φd = 0 as

Rr < 1 + g. However, as the coefficient of debt in (53) is close to 1 as discussed earlier, it takes a

long time for the debt to revert back to its steady-state value. Moreover, as households do not hold

any bonds, they increase consumption and reduce labor supply when there is a lump-sum transfer

or reduction in lump-sum taxes. But persistent debt crowds out entrepreneurs’ investment, causing

output to fall on impact.

By contrast, a positive transfer shock has a significant expansionary impact on the economy in

regime F. According to the standard FTPL, the real value of public debt declines in response to

the shock because its present value of future surpluses falls, holding the discount rate (real interest
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Figure 7: Impulse response functions to a positive 1% fiscal transfer shock to households starting
from steady state L. All vertical axes represent percentage points.

rate) constant. Then the initial price level or inflation must increase to balance the government

budget. Given the passive interest-rate rule φπ = 0.8, the nominal interest rate increases less than

the rise of inflation so that the real interest rate declines on impact, leading to an economic expan-

sion. Moreover, the positive wealth effect of public debt on entrepreneurs stimulates investment

significantly. As discussed earlier, this argument could fail in the standard FTPL when the real

interest rate is less than the economic growth rate and when the government runs persistent deficits

as the present value discounted by the real interest rate would explode.

In our model public debt contains a bubble component as shown in Lemma 1. In response to

a positive transfer shock, the (negative) fundamental value of public debt falls. But the bubble

component rises due to the increase in the liquidity premium so that the real value of public debt

Dt rises on impact. This increase is lower than the increase of the fiscal deficit (or the decline

of surplus St) so that the right-hand side of (29) declines on impact. To satisfy (29) or (42), the

initial price level or inflation rises by about 2.5 percentage points. Given the fiscal policy parameter

φd = Rr/ (1 + g)− 1 = −0.0031, the government also cuts lump-sum taxes from the second period

on. But the real debt burden is reduced through persistent inflation. Then the rest of the usual

FTPL goes through as discussed earlier.

The above policy experiments merit further discussions. First, the above positive transfer shock

essentially increases primary deficits because our calibrated economy features deficits in the steady
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state. Our results suggest that temporarily increasing deficits can lead to a short-run expansion

and persistent inflation in regime F. Second, because entrepreneurs make investment in our model,

making transfers to entrepreneurs instead of households can relax their credit constraints, and hence

it may have a larger stimulative effect on investment. In additional results available upon request,

we find that it is indeed the case but the quantitative effect is similar to that in Figure 7, when

each entrepreneur receives equal transfer. If we allow taxes to respond to debt in regime M, then

debt can revert to the steady state much faster and hence its crowding-out effect will be weaker.

The positive wealth effect can dominate the crowding-out effect, causing the initial investment to

rise in regime M. Third, we find that although debt-financed transfer and rolling over debt can

have zero fiscal cost given low interest rates, its welfare effect on households is very small (close to

zero). This is due to the large crowding-out effect in regime M and the large increase of labor in

regime F.

4.5 Fiscal Target as an Equilibrium Selection Device

As argued by Beck-Friis and Willems (2017) and Billi and Walsh (2021), raising the debt target

can improve welfare in regime F in a standard DNK model because of the positive wealth effect

of public bonds. In this subsection we show that the debt target can be used as an equilibrium

selection device in our model with multiple equilibria.

To illustrate this point, we conduct two numerical experiments. First, under our baseline

calibration in Table 1, there are two steady states. The debt-to-GDP ratio is equal to 35.9% and

43.4% for steady states L and H, respectively. Suppose that the economy is initially in steady

state L. In period 1, the government announces that the debt/GDP target is set to the level 43.4%

in steady state H. Then the steady-state tax/output ratio τ/y in (30) must change accordingly.

Can the economy transition from steady state L to steady state H? The answer depends on the

fiscal-monetary policy regime. As an example, we set φπ = 1.5 and φd = 0.2. We can verify that

this policy mix represents regime M and generates a unique equilibrium around both steady states.

Figure 8 presents the transition dynamics. We find that the government cuts taxes in period

1 under the fiscal rule (30) with φd = 0.2 and the higher debt target. The household raises

consumption and reduces labor in period 1 due to the positive wealth effect. The government

gradually issues more debt over time to achieve the higher debt target. Higher debt crowds out

investment and reduces aggregate demand in the short run. Thus inflation and output decline in

the short run. Under the active monetary policy with φπ = 1.5, the nominal interest rate decreases

on impact so that the real interest rate also decreases and then both rates gradually rise to higher

levels.

Because government bonds provide liquidity and are net worth in our model, higher debt even-

tually stimulates consumption and aggregate demand. But aggregate investment reaches a lower
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percentage deviations from the original steady state L. All vertical axes are in percentage points.

level than that in the initial steady state because fewer efficient entrepreneurs make investment,

albeit each investing entrepreneur makes more investment. As the average investment efficiency is

higher, the economy eventually reaches steady state H with higher output and higher capital.

Second, we study an experiment in which the economy can transit from steady state L to the

steady state with the interest rate higher than the economic growth rate (Rr > 1 + g). Proposition

4 shows that the economy has a unique steady state with Rr > 1 + g if the economy has a long-run

fiscal surplus. As an example, we set the long-run surplus-to-output ratio as 4.45%. The implied

steady-state debt/GDP ratio is given by d/ (4y) = 120%. We still choose the same policy mix

φπ = 1.5 and φd = 0.2, which also represents regime M and generates a unique equilibrium around

the Rr > 1 + g steady state. Figure 8 shows that the transition dynamics are similar to those

in the first experiment. The main difference is that the Rr > 1 + g steady state features higher

consumption and output levels.

5 Policy Interactions in a Liquidity Trap

In this section we study the impact of monetary and fiscal policy interactions when negative demand

shocks cause the economy to enter a liquidity trap. We suppose that negative demand shocks

originate from adverse financial shocks due to a credit crunch. As shown in Buera and Moll
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(2015), Cui (2016), and Buera and Nicolini (2020), a credit crunch in the form of tightening of

credit/collateral constraints can cause the ZLB to bind because reducing productive entrepreneurs’

borrowing capacity will reduce the supply of private bonds and hence interest rates.

To introduce a ZLB, we modify the interest rate rule (32) as

Rt = max

{
1, R

(
Πt

Π

)φπ}
. (54)

We also allow the parameter µ in the credit constraints (9) to be time varying, denoted by µt. For

simplicity we consider a perfect foresight equilibrium around steady state L following a deterministic

negative shock to µt. In particular, let µt decrease by 50% for t = 0, 1, ..., 7 from the baseline value

in Table 1 and then return to the baseline value for t ≥ 8. We shut down all other shocks in the

model.

Figure 9 presents the dynamic responses for the following four policy mixes:

� Policy 1, Regime M: φd = 0.2, φπ = 1.5.

� Policy 2, Regime M: φd = 0, φπ = 1.5, debt rollover.

� Policy 3, Regime F: φd = Rr/ (1 + g)− 1 = −0.0031, φπ = 0.8.

� Policy 4, Regime F: φd = −0.2, φπ = 0.8.

As shown in Section 4.3, the first two policy mixes represent regime M and the last two represent

regime F. Each of them ensures a unique equilibrium around steady state L. Figure 9 shows that the

ZLB binds for t = 0, 1, 2, 3, 4 under policy 1. On impact, inflation, output, investment, and labor

all decline as aggregate demand falls, but consumption and public debt rise. As is well known,

demand shocks cannot generate comovement among consumption, investment, and output in a

standard real business cycle model. Basu and Bundick (2017) argue that the countercyclical price

markup channel in a DNK model can help resolve this issue. In our model the price markup 1/pwt

rises on impact in response to the negative demand shock, causing the labor demand to fall. Thus

output also falls, but this effect is not strong enough to cause consumption to decline on impact as

investment declines too much under policy 1.23

The initial deflation raises the government real debt liabilities so that the government must

raise new debt to fulfill its budget. Given φd = 0.2 under policy 1, the government raises taxes to

pay off its debt on impact. As the real interest rate is lower than the economic growth rate and

declines in the short run, the real debt value falls below its steady state level before it eventually

rises back to that level.

23We find that a smaller φπ causes the price markup to rise more and thus consumption is more likely to decline
on impact.
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Under policy 2, there is no fiscal policy response and the government simply rolls over debt.

Compared to policy 1, policy 2 implies that the real debt value stays at lower levels for a longer

time. The reason is that the government cuts taxes when the real debt value falls below its steady

state level under policy 1 and thus it must issue relatively more debt than under policy 2. Because

public debt provides liquidity services and crowds in investment, we find that policy 1 dominates

policy 2 in terms of welfare by computing household life-time utility, though the dynamic responses

of aggregate quantities under policies 1 and 2 are quite similar as shown in Figure 9.

We now consider policies 3 and 4 under regime F. For both policies, there is deflation on

impact, but inflation gradually rises above the target level before it returns to that level. Because

the government actually cuts taxes when debt rises, it must rely on inflation to decrease the real

value of public debt such that the government budget constraints can be satisfied. Because of the

weak responses of the nominal interest rate (φπ = 0.8), the ZLB binds for 1 and 2 periods under

policies 3 and 4, respectively, less frequently than under polices 3 and 4. The real value of public

debt stays above its steady-state level before it returns to that level.

Consumption, investment, labor, and output all decline on impact, in contrast to polices 1 and

2 in regime M. This is due to the larger increase in the price markup under policies 3 and 4 in

regime F. The short-run negative impact on the economy is larger under policies 3 and 4. But in

the medium and long run, the economy recovers faster from the recession. The main reason is that
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higher inflation in the future stimulates aggregate demand.

We find that policies 3 and 4 in regime F dominates policies 1 and 2 in regime M in terms of

welfare.24 We also find that policy 4 with φd = −0.2 dominates policy 3 with φd = −0.0031 in terms

of welfare because the former policy can generate higher future inflation. When we search policy

parameters φd ∈ [−0.2, 0.2] and φπ ∈ [0, 3] to ensure unique equilibrium to maximize household

utility (1), we find that the regime F policy mix at the corner φd = −0.2 and φπ = 0 is optimal.

Intuitively, if φπ > 0, the nominal interest rate must drop in response to a negative demand shock.

Then the government issues less debt to satisfy its budget constraints as interest expenses decline,

compared to the case of φπ = 0. Thus the positive wealth and liquidity effects of government bonds

are weaker for φπ > 0.

So far, we have focused on the equilibrium around steady state L with long-run fiscal deficits.

As shown in Section 3, the economy has another steady state with a higher real interest rate. By

contrast, the economy has a unique steady state in which the real interest rate is higher than the

economic growth rate if there is a long-run fiscal surplus. We have conducted a similar analysis

for the unique equilibrium around each of these two steady states (see Appendix E). Unlike our

previous results, we find that the debt rollover policy φd = 0 is sustainable only in regime F, i.e.,

we must have a passive monetary policy with φπ < 1. But we still find that regime F dominates

regime M in terms of welfare in response to adverse financial shocks. Moreover, the debt rollover

policy is not optimal.

6 Conclusion

We have provided a DNK model with financial frictions to study the interactions of monetary and

fiscal polices in a world with low interest rates and high public debt. The main challenge for interest

rates lower than the economic growth rate is how to value public debt. Our key insight is that the

public debt value contains a bubble component generated by the liquidity service. Once taking this

component into account, we can modify the usual FTPL and apply the standard tool to analyze

the interactions of fiscal and monetary polices.

We confirm a result in Blanchard (2019) that public debt may have no fiscal cost in a world with

low interest rates, i.e., debt rollover can be feasible. Such a fiscal policy can be combined with an

active monetary policy to stabilize debt and inflation if the steady-state interest rate is sufficiently

low. By contrast, the debt rollover policy must be combined with a passive monetary policy when

interest rates are higher than the economic growth rate. In both cases, this fiscal policy is not

optimal in terms of welfare, especially when the economy enters a liquidity trap.

24Billi and Walsh (2021) find a similar result in a standard DNK model with an occasionally binding ZLB, in which
interest rates are higher than the economic growth rate. Away from the ZLB, Schmitt-Grohé and Uribe (2007) show
that regime M dominates regime F in a standard DNK model.
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We also find that the debt-financed tax cuts/transfers in regime M have a very small stimulative

effect due to the large crowding-out effect of persistent debt. But this fiscal policy in regime F has

a large stimulative effect and generates high and persistent inflation.

Our paper has focused on positive policy questions by assuming lump-sum taxes. It would be

interesting to study some normative questions by assuming distortionary taxes: What are optimal

monetary and fiscal policies in a world with low interest rates? What is the welfare cost of a

monetary and fiscal policy given persistent primary deficits and low interest rates? We leave these

questions for future research.
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For Online Publication Appendix

A Proofs

Proof of Proposition 1: The entrepreneur’s objective is to solve the following dynamic pro-

gramming problem:

Vt (Kjt−1, Bjt−1, Djt−1, εjt) = max
{Ijt,Djt,Bjt}

Cjt + βEt
Λt+1

Λt
Vt+1 (Kjt, Bjt, Djt, εjt+1) , (A.1)

subject to

Kjt = (1− δ)Kjt−1 + εjtIjt, (A.2)

Bjt ≥ −µKjt−1, (A.3)

Cjt + Ijt +Bjt +Djt = RktKjt−1 +
Rt−1
Πt

Bjt−1 +
Rt−1
Πt

Djt−1, (A.4)

Cjt ≥ 0. (A.5)

We conjecture that the value function takes the following form

Vt (Kjt−1, Bjt−1, Djt−1, εjt) = φkt (εjt)Kjt−1 + φbt (εjt)Bjt−1 + φdt (εjt)Djt−1, (A.6)

where φit(εjt), i ∈ {k, b, d}, satisfy

qkt = βEt
Λt+1

Λt

∫
φkt+1(ε)dF (ε), (A.7)

1 = βEt
Λt+1

Λt

∫
φbt+1(ε)dF (ε), (A.8)

1 = βEt
Λt+1

Λt

∫
φdt+1(ε)dF (ε). (A.9)

Substituting (A.2), (A.4), and the above conjecture into the Bellman equation (A.1), we have

Vt (Kjt−1, Bjt−1, Djt−1, εjt)

= max
{Ijt,Djt,Bjt}

(
Rkt + (1− δ)βEt

Λt+1

Λt

∫
φkt+1(ε)dF (ε)

)
Kjt−1

+
Rt−1
Πt

Bjt−1 +
Rt−1
Πt

Djt−1 +

[
βEt

Λt+1

Λt

∫
φkt+1(ε)dF (ε)εjt − 1

]
Ijt

+

[
βEt

Λt+1

Λt

∫
φbt+1(ε)dF (ε)− 1

]
Bjt +

[
βEt

Λt+1

Λt

∫
φdt+1(ε)dF (ε)− 1

]
Djt. (A.10)

Optimal choices of Bjt and Djt imply that (A.8) and (A.9) must hold in equilibrium. Otherwise,

all entrepreneurs will either save or borrow at the same time, contradicting the market-clearing

conditions for bonds.
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Since Ijt ≥ 0 and Cjt ≥ 0, it follows that Ijt = 0 if εjt < 1/qkt ≡ ε∗t ; but the firm makes as much

investment as possible so that Cjt = 0 if εjt > ε∗t . It follows from (A.4) that when εjt > ε∗t , we have

Ijt = −Bjt −Djt +RktKjt−1 +
Rt−1
Πt

Bjt−1 +
Rt−1
Πt

Djt−1, (A.11)

Djt = 0, Bjt = −µKjt−1. (A.12)

Consider first the case where εjt < ε∗t and Ijt = 0. The entrepreneurs are indifferent between

borrowing and saving. Substituting the decision rules into (A.10) and reorganizing yield

Vt (Kjt−1, Bjt−1, Djt−1, εjt)

= max
{Ijt,Djt,Bjt}

(
Rkt + (1− δ)qkt

)
Kjt−1 +

Rt−1
Πt

Bjt−1 +
Rt−1
Πt

Djt−1.

Notice that (A.8) and (A.9) ensure that the indeterminacy of Bjt and Djt does not affect the value

function.

Matching the coefficients, we have

φkt (εjt) = Rkt + (1− δ)qkt ,

φbt(εjt) = φdt (εjt) =
Rt−1
Πt

.

Next we consider the case where εjt > ε∗t . Substituting (A.11) and (A.12) into (A.10) and

reorganizing yield

Vt (Kjt−1, Bjt−1, Djt−1, εjt)

= max
{Ijt,Djt,Bjt}

(
Rkt + (1− δ)qkt +Rkt

(
qkt εjt − 1

)
− µ

(
1− qkt εjt

))
Kjt−1

+
Rt−1
Πt

(
qkt εjt

)
Bjt−1 +

Rt−1
Πt

(
qkt εjt

)
Djt−1.

Matching the coefficients yields

φkt (εjt) = Rkt

(
1 +

(
εjt
ε∗t
− 1

))
+ (1− δ)qkt + µ

(
εjt
ε∗t
− 1

)
,

φbt(εjt) = φdt (εjt) =
Rt−1
Πt

(
qkt εjt

)
=
Rt−1
Πt

(
1 +

(
εjt
ε∗t
− 1

))
.

Combining the two cases above, we have

φkt (εjt) = Rkt

(
1 + max

(
εjt
ε∗t
− 1, 0

))
+ (1− δ)qkt + µmax

(
εjt
ε∗t
− 1, 0

)
,

φbt(εjt) = φdt (εjt) =
Rt−1
Πt

(
1 + max

(
εjt
ε∗t
− 1, 0

))
,

for εjt ∈ [εmin, εmax] . Substituting these two equations into (A.7), (A.8) and (A.9), we obtain (13)

and (14).
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Finally, for the entrepreneur’s objective to be finite, the value function must satisfy the following

condition by the Bellman equation (A.1):

lim
i→∞

Et
βiΛt+i

Λt
Vt+i (Kj,t+i−1, Bj,t+i−1, Dj,t+i−1, εj,t+i) = 0.

Using equations (A.6)-(A.9) we can derive the transversality condition (16). Q.E.D.

Proof of Lemma 1: To simplify notations, we define

Mt+1 =
βΛt+1

Λt
, M l

t+1 =
βΛt+1

Λt

(
1 + qlt+1

)
, xt =

Dt−1Rt−1
Πt

. (A.13)

Then we can rewrite (40) as

xt = St + EtMt+1xt+1 + Et
(
M l
t+1 −Mt+1

)
xt+1.

Leading the above equation by one period and multiplying by Mt+1, we obtain

Mt+1xt+1 = Mt+1St+1 + Et+1Mt+1Mt+2xt+2 + Et+1Mt+1

(
M l
t+2 −Mt+2

)
xt+2.

Following similar procedures recursively until period t+ T, we have

Mt+1Mt+2...Mt+Txt+T = Mt+1Mt+2...Mt+TSt+T + Et+TMt+1Mt+2Mt+T+1xt+T+1

+Et+TMt+1Mt+2...Mt+T+1

(
M l
t+T+1 −Mt+T+1

)
xt+T+1.

Taking conditional expectations Et on the two sides of above system of T + 1 equations and using

(A.13), we obtain

Dt−1Rt−1
Πt

= Et
T∑
i=0

βiΛt+i
Λt

St+i + Et
T∑
i=0

βi+1Λt+i+1

Λt
qlt+i+1

Dt+iRt+i
Πt+i+1

+ Et
βT+1Λt+1+T

Λt

Dt+TRt+T
ΠT+1

.

(A.14)

Summing over j in (16) and using the market-clearing conditions, we have

lim
i→∞

Et
βiΛt+i

Λt

(
qkt+iKt+i +Dt+i

)
= 0.

Since Kt+i > 0 and qkt+i > 0, we have

lim
i→∞

Et
βiΛt+i

Λt
Dt+i = 0. (A.15)

Since qlt+1+T ≥ 0, it follows from (14) that

0 ≤ Et
βT+1Λt+1+T

Λt

Dt+TRt+T
Πt+T+1

≤ Et
βTΛt+T

Λt
β

Λt+1+T

Λt+T
(1 + qlt+1+T )

Dt+TRt+T
Πt+T+1

= Et
βTΛt+T

Λt
Et+T

βΛt+1+T

Λt+T
(1 + qlt+1+T )

Dt+TRt+T
Πt+T+1

= Et
βTΛt+T

Λt
Dt+T .

Thus,

lim
T→∞

Et
βT+1Λt+1+T

Λt

Dt+TRt+T
Πt+T+1

= 0.

Taking limit in (A.14) as T →∞ gives (42). Q.E.D.
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Proof of Lemma 2: Taking derivative of Rk(ε
∗) in (45) and reorganizing yields

∂Rk(ε
∗)

∂ε∗
=
µ
∫ εmax

ε∗ εdF (ε)− (β−1(1 + g)− 1 + δ)F (ε∗)[∫ εmax

εmin
max (ε, ε∗) dF (ε)

]2 . (A.16)

The numerator in (A.16) is strictly decreasing in ε∗, with the maximum and the minimum being

µE [ε] ≥ 0 and −(β−1(1 + g)− 1 + δ) < 0, respectively. Hence, by the intermediate value theorem,

there exists a unique threshold εk ∈ [εmin, εmax] such that

µ

∫ εmax

εk

εdF (ε)− (β−1(1 + g)− 1 + δ)F (εk) = 0.

And it follows that ∂Rk(ε
∗)/∂ε∗ > 0 if ε∗ < εk; ∂Rk(ε

∗)/∂ε∗ ≤ 0 if ε∗ ≥ εk. Moreover, we have

εk = εk(µ) strictly increasing and limµ→0 εk = εmin. Q.E.D.

Proof of Lemma 3: By Lemma 2, on [εk, εmax], Rk(ε
∗) is decreasing and thus Φ(ε∗) is increasing.

By (45), we compute

Rk(εk) =
(1 + g)/β − 1 + δ − µ

∫ εmax

εk
εdF (ε) + µεk(1− F (εk))

εkF (εk) +
∫ εmax

εk
εdF (ε)

. (A.17)

By Lemma 1, we have
∂Rk(ε

∗)

∂ε∗
|εk = 0.

Thus,

µ

∫ εmax

εk

εdF (ε)− (β−1(1 + g)− 1 + δ)F (εk) = 0. (A.18)

Using this equation, we can eliminate F (εk) in (A.17) to obtain

Rk(εk) =
(1 + g)/β − 1 + δ − µ

∫ εmax

εk
εdF (ε)∫ εmax

εk
εdF (ε)

.

Substituting this expression into (46) yields

Φ(εk) = −(β−1 − 1)(1 + g)∫ εmax

εk
εdF (ε)

< 0.

Since Φ(εmax) = +∞ and Φ(εk) < 0 and Φ is increasing on [εk, εmax], it follows from the

intermediate value theorem that there exists a unique value εl ∈ (εk, εmax) such that Φ(εl) = 0.

By (45), we have

Rk(εmin) =
(1 + g)/β − 1 + δ − µ(E [ε]− εmin)

E [ε]
.

Substituting this expression into (46) yields

Φ(εmin) = −(β−1 − 1)(1 + g) + µεmin

Eε
< 0.
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When µ = 0, we have

Φ(εmin) = −(β−1 − 1)(1 + g)

Eε
< 0.

By (A.18), εk is an implicit continuous function of µ and εk → εmin as µ → 0. By continuity, for

sufficiently small µ ≥ 0, we have Φ(ε∗) < 0 for ε∗ ∈ [εmin, εk] . Q.E.D.

Proof of Proposition 2: By the assumption and Lemma 3, the investment cutoff ε∗ in any

steady state must satisfy ε∗ ≥ εk. Since Φ(εl) = 0, by (46) and setting ε∗ = εl, we have d = 0. Thus

(47) or (49) is satisfied for s = 0. We deduce that ε∗ = εl is the steady-state cutoff for s = 0. This

is the only steady state with d = 0 because Φ(ε∗) increases with ε∗ ∈ [εk, εmax] by Lemma 2.

Suppose that there is another steady state with d > 0 if Rr(εl) > 1 + g. Then (47) implies

that Rr (ε∗) = 1 + g for s = 0. Since Rr (ε∗) increases with ε∗ and since Rr(εl) > 1 + g, we must

have the steady state cutoff ε∗ < εl. Since Rk (ε∗) decreases with ε∗ on (εk, εl) , it follows (46) that

Φ increases with ε∗ on (εk, εl). Thus we have Φ (ε∗) < Φ (εl) = 0 for ε∗ ∈ (εk, εl), contradicting

equation (46) as d > 0 and Rr > 0.

If Rr(εl) < 1 + g, we show that there is another steady state with d > 0. It follows from (47) we

must have Rr = 1+g. Since Rr (ε∗) is a continuous and increasing function and since Rr(εl) < 1+g

and Rr(εmax) = (1 + g)/β > 1 + g, by the intermediate value theorem there is a unique solution

ε∗ = εh ∈ (εl, εmax) such that Rr(ε∗) = 1 + g. We then have Rr = Rr(εh) = 1 + g in the steady

state. It follows from (46) that Rrd/k = Φ(εh). Q.E.D.

Proof of Proposition 3: Recall that εl satisfies Φ(ε∗l ) = 0. Total differentiating this equation

and reorganizing yield

dεl
dµ

= −

(
1 + ∂Rk(εl)

∂µ

) ∫ εmax

εl
εdF (ε)

∂Rk(εl)
∂εl

∫ εmax

εl
εdF (ε)− (µ+Rk(εl))εlF ′(εl)

.

By (45), we have 1 + ∂Rk(εl)/∂µ > 0 and that ∂Rk(εl)/∂εl < 0. Thus we have dεl/dµ > 0. By

(44), Rr (ε∗) increases with ε∗. It follows that both εl and Rr(εl) increase with µ. Q.E.D.

Proof of Proposition 4: By Lemma 2, for a sufficiently small µ ≥ 0, we only need to consider

steady-state the investment cutoffs in [εk, εmax] . It follows from Lemma 1 that Rk (ε∗) is a decreasing

function of ε∗ ∈ [εk, εmax] . Thus Φ(ε∗) increases with ε∗ ∈ [εk, εmax] by (46). We also know that

Rr(ε∗) increases with ε∗ ∈ [εmin, εmax] . By (49) we have

Ψ (ε∗) =

[
1− 1 + g

Rr(ε∗)

]
αpw
Rk(ε∗)

Φ(ε∗). (A.19)

Thus Ψ (ε∗) is a product of three increasing functions on [εk, εmax] . Since Φ(εl) = 0 and Φ(ε∗) <

Φ(εl) = 0 for ε∗ ∈ [εk, εl] , we will focus on the region [εl, εmax] as equation (46) must hold with

Rrd ≥ 0. On this region Φ(ε∗) ≥ 0.
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Suppose that Rr (εl) > 1 + g. Then we have

1− 1 + g

Rr(ε∗)
> 1− 1 + g

Rr(εl)
> 0

for ε∗ > εl > εk. Since Φ(εl) = 0, we have Φ(ε∗) > 0 for ε∗ > εl. Thus, as a product of three

positive increasing functions on [εl, εmax], Ψ (ε∗) increases with ε∗ ∈ [εl, εmax] . Since Ψ (εl) = 0 and

Ψ (εmax) = +∞, it follows from the intermediate value theorem that there exists a unique solution

εp ∈ (εl, εmax) to equation (49). Then Rr (εp) > Rr (εl) > 1 + g.

Suppose that Rr (εl) < 1 + g. Then Proposition 2 shows that there exists εh ∈ (εl, εmax) such

that Rr(εh) = 1 + g and Ψ (εh) = 0. Thus Rr(ε∗) > 1 + g for ε∗ ∈ [εh, εmax] by the monotonicity

of Rr (ε∗) . It follows that Ψ (ε∗) increases with ε∗ ∈ [εh, εmax] because Ψ (ε∗) is a product of three

positive increasing functions on [εh, εmax] . The intermediate value theorem implies that there exists

a unique cutoff εp ∈ (εh, εmax) such that Ψ (εp) = s/y > 0. Then we have Rr (εp) > Rr (εh) = 1+g.

For ε∗ ∈ (εl, εh) , we have Rr(ε∗) < Rr (εh) = 1 + g and thus Ψ (ε∗) < 0. There cannot exist a

steady state with s/y > 0 by (49). Q.E.D.

Proof of Proposition 5: As in the proof of Proposition 4, for a sufficiently small µ ≥ 0, we

only need to consider the region [εl, εmax] for the steady state investment cutoff. By assumption,

Rr (εl) < 1 + g. By the proof of Proposition 4, Ψ (ε∗) is positive and increases with ε∗ ∈ (εh, εmax].

But Ψ (ε∗) is negative for ε∗ ∈ (εl, εh) . Moreover, Ψ (εh) = Ψ (εl) = 0. Let s be defined as in the

proposition. By the intermediate value theorem, for any s/y ∈ (−s, 0) , there exist at least two

steady-state cutoffs ε∗l and ε∗h with εl < ε∗l < ε∗h < εh such that (49) holds. Q.E.D.

B Detrended Equilibrium System

The model exhibits long-run growth. To find a steady state and to study the dynamics around a

steady state, we need to detrend the model around a long-run growth path. We consider transfor-

mations of xt = Xt/At for any variable Xt ∈ {Kt, Dt, St, Yt, Wt, Ct, It}. For the marginal utility,

we denote λt = AtΛt. Then the detrended system can be summarized by the following 20 equations

in 20 variables {Rkt, kt, Rt, qkt , qlt, ε
∗
t , dt, τ t, Πt, p

∗
t , Γat , Γbt , ∆t, wt, λt, pwt, Nt, yt, ct, it}, where

{R−1, ∆−1, d−1, k−1} and {zmt, zτ ,t, Gat} are given exogenously:

1. The capital return,

Rkt = α (1 + g)1−α pwtk
α−1
t−1 N

1−α
t . (B.1)

2. Evolution of capital,

(1 + g)kt = (1− δ)kt−1 +

(
(µ+Rkt) kt−1 +

Rt−1
Πt

dt−1

)∫ εmax

ε∗t

εdF (ε). (B.2)
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3. The nominal interest rate,

1 =
β

1 + g
Et
λt+1

λt

Rt
Πt+1

(
1 + qlt+1

)
. (B.3)

4. Tobin’s Q,

qkt =
β

1 + g
Et
λt+1

λt
Rkt+1

(
1 + qlt+1

)
+

β

1 + g
Et
λt+1

λt
qkt+1(1− δ) +

βµ

1 + g
Et
λt+1

λt
qlt+1. (B.4)

5. Liquidity premium,

qlt =

∫ εmax

ε∗t

(
qkt ε− 1

)
dF (ε). (B.5)

6. Investment cutoff,

ε∗t = 1/qkt . (B.6)

7. Government budget constraint,

Rt−1
Πt

dt−1
1 + g

= τ t −Gat + dt. (B.7)

8. Fiscal policy rule,

(τ t − τ) /y = φd(dt−1 − d)/y + zτ ,t. (B.8)

9. Monetary policy rule,

Rt = R

(
Πt

Π

)φπ
exp(zmt). (B.9)

10. Pricing rule,

p∗t =
σ

σ − 1

Γat
Γbt
. (B.10)

11. Numerator in the pricing rule,

Γat = λtpwtyt + βξEt
(

Πt+1

Π

)σ
Γat+1. (B.11)

12. Denominator in the pricing rule,

Γbt = λtyt + βξEt
(

Πt+1

Π

)σ−1
Γbt+1. (B.12)

13. Evolution of inflation,

1 =

[
ξ

(
Π

Πt

)1−σ
+ (1− ξ) p∗1−σt

] 1
1−σ

. (B.13)

14. Price dispersion,

∆t = (1− ξ)p∗−σt + ξ

(
Π

Πt

)−σ
∆t−1. (B.14)
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15. Labor demand,

wt = (1− α) (1 + g)−α pwtk
α
t−1 (Nt)

−α . (B.15)

16. Labor supply,

wt =
ψ

λt
. (B.16)

17. Marginal utility,

λt = 1/ct. (B.17)

18. Aggregate output,

yt = ∆−1t (1 + g)−α kαt−1 (Nt)
1−α . (B.18)

19. Aggregate investment,

(1 + g)it =

(
(µ+Rkt) kt−1 +

Rt−1
Πt

dt−1

)
(1− F (ε∗t )) . (B.19)

20. Resource constraint,

ct + it +Gat = yt. (B.20)

For the real version of our model, we set pwt = 1 − 1/σ, Πt = ∆t = 1, and Rt = Rrt in

the above system and the detrended equilibrium system consists of 13 equations (B.1)-(B.7), and

(B.15)-(B.20) in 13 variables {Rt, Rkt, λt, ε∗t , qkt , qlt, wt, dt, kt, Nt, yt, ct, it}.

C Steady-State System

We study the nonstochastic steady state of the detrended system with s/y and Π being exogenously

given. Define real interest rate as Rr = R/Π. Let variables without time subscripts denote their

steady state values. By the steady-state version of (B.13), we obtain p∗ = 1. It then follows

from (B.14) that ∆ = 1. Combining (B.10), (B.11), and (B.12), we have pw = 1 − 1/σ, Γa =

pwΓb = pwλy/(1 − βξ). With w and λ being eliminated by using (B.16) and (B.17), and noting

that zτ = zm = 0, we obtain a steady-state system of 11 equations in 11 variables {Rr, Rk, ε∗, qk,
d, k, N , y, c, i, ql} :

1. The capital return,

Rk = (1− 1/σ)α (1 + g)1−α kα−1N1−α. (C.1)

2. Evolution of capital,

(g + δ)k = ((µ+Rk) k +Rrd)

∫ εmax

ε∗
εdF (ε). (C.2)
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3. Nominal interest rate,

1 =
β

1 + g
Rr
(

1 + ql
)
. (C.3)

4. Tobin’s Q,

qk =
β

1 + g
Rk

(
1 + ql

)
+

β

1 + g
qk(1− δ) +

β

1 + g
µql. (C.4)

5. Liquidity premium,

ql =

∫ εmax

ε∗

(
qkε− 1

)
dF (ε). (C.5)

6. Investment cutoff,

ε∗ = 1/qk. (C.6)

7. Government budget constraint, (
Rr

1 + g
− 1

)
d

y
=
s

y
. (C.7)

8. Labor demand,

ψc = (1− 1/σ) (1− α) (1 + g)−α kαN−α. (C.8)

9. Aggregate output,

y = (1 + g)−α kαN1−α. (C.9)

10. Aggregate investment,

(1 + g)i = [(µ+Rk) k +Rrd] (1− F (ε∗)) . (C.10)

11. Resource constraint,

c+ i+Ga = y. (C.11)

As discussed in Section 3, the investment cutoff ε∗ can be solved for by combining (C.3),

(C.4), (C.5), (C.6), and (C.7). Given the inflation target Π, we obtain the nominal interest rate

R = Rr(ε∗)Π. By (C.6), qk = 1/ε∗. By (C.5), we derive ql. With Rr = Rr(ε∗), Rk = Rk(ε
∗) and

Rrd/k = Φ(ε∗), we can determine y/k from Rk = (1 − 1/σ)(1 + g)αy/k and d/k = Φ(ε∗)/Rr(ε∗).

Noticing that equation (C.10) pins down the value of i/k, we can derive i/y = (i/k)/(y/k). Using

the resource constraint and the exogenously given Ga/y by calibration, we obtain c/y = 1−Ga/y−
i/y. Dividing (C.8) over (C.9) and reorganizing yield the steady-state value of labor:

N = (1− 1/σ)
1− α
ψ

/(
c

y
).

Then by noting that Rk = Rk(ε
∗) = (1−1/σ)α(1+g)1−αkα−1N1−α, we can solve for k. Combining

with the ratios given above, we can then determine y, d, i, c, w, and s. Finally, we have Γa =

(1− 1/σ)Γb = (1− 1/σ)(y/c)/(1− βξ).
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D Linearized System

Let x̂t = (xt − x)/x denote the log deviation from steady state for any variable xt except for the

surplus st and public debt dt. For these two variables we consider level deviation relative to output,

d̃t = (dt − d) /y and τ̃ t = (τ t − τ) /y, instead of log deviation, because d may be zero and τ may

be negative.

By standard linearization of the DNK model, we know the deviation of price dispersion ∆̂t is

of second-order. Thus we ignore the law of motion for the price dispersion. Moreover, the supply

block can be summarized by the New-Keynesian Phillips curve. Hence, we can further eliminate

p̂∗t , Γ̂at , and Γ̂bt . Then the linearized model can be summarized by a system of 16 equations in 16

variables, R̂kt, k̂t, R̂t, q̂
k
t , q̂lt, ε̂

∗
t , d̃t, τ̃ t, Π̂t, p̂wt, ŵt, λ̂t, N̂t, ŷt, ĉt, and ît, where R̂−1, d̃−1, and k̂−1

are predetermined, and zτ ,t, zmt, and Ĝat are exogenous AR(1) processes:

1. The capital return,

R̂kt = p̂wt + (α− 1)k̂t−1 + (1− α)N̂t. (D.1)

2. Evolution of capital,

(1 + g)k̂t =(1− δ)k̂t−1 −
(
µ+Rk +

Rrd

k

)
ε∗2f(ε∗)ε̂∗t (D.2)

+

∫ εmax

ε∗
εdF (ε)

(
(µ+Rk)k̂t−1 +RkR̂kt +

Rrd

k

(
R̂t−1 − Π̂t

)
+
Rry

k
d̃t−1

)
.

3. Nominal interest rate,

R̂t − EtΠ̂t+1 = Et
(
λ̂t − λ̂t+1

)
− ql

1 + ql
Etq̂lt+1. (D.3)

4. Tobin’s Q,

q̂kt =Et
(
λ̂t+1 − λ̂t

)
+

β

1 + g

Rk(1 + ql)

qk
EtR̂kt+1 (D.4)

+
β

1 + g

(µ+Rk) q
l

qk
Etq̂lt+1 +

β

1 + g
(1− δ)Etq̂kt+1.

5. Liquidity premium,

q̂lt = −
∫ εmax

ε∗ εdF

qlε∗
ε̂∗t . (D.5)

6. Investment cutoff,

ε̂∗t = −q̂kt . (D.6)

7. Government budget constraint,

τ̃ t + d̃t =
Ga
y
Ĝat +

Rr

1 + g
d̃t−1 +

Rr

1 + g

d

y

(
R̂t−1 − Π̂t

)
. (D.7)
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8. Fiscal policy rule,

τ̃ t = φdd̃t−1 + zτ ,t. (D.8)

9. Monetary policy rule,

R̂t = φπΠ̂t + zmt. (D.9)

10. New-Keynesian Phillips curve,

Π̂t = βEtΠ̂t+1 + κp̂wt, (D.10)

where κ = (1− ξ)(1− βξ)/ξ.

11. Labor demand,

ŵt = p̂wt + αk̂t−1 − αN̂t. (D.11)

12. Labor supply,

ŵt = −λ̂t. (D.12)

13. Marginal utility,

λ̂t = −ĉt. (D.13)

14. Aggregate output,

ŷt = αk̂t−1 + (1− α)N̂t. (D.14)

15. Aggregate investment,

(1 + g)
i

k
ît = [1− F (ε∗)]

[
(µ+Rk)k̂t−1 +RkR̂kt +

Rrd

k
R̂t−1 −

Rrd

k
Π̂t +

Rry

k
d̃t−1

]
(D.15)

−
(
µ+Rk +

Rrd

k

)
f(ε∗)ε∗ε̂∗t .

16. Resource constraint,
c

y
ĉt +

i

y
ît +

Ga
y
Ĝat = ŷt. (D.16)

E Additional Results

In this appendix we present some additional results not reported in the main text. First, Figure

10 shows the determinacy region for the steady state in which the interest rate is higher than the

economic growth rate. We set the long-run s/y = 4.45% and fix other parameter values as in Table

1. The implied debt to GDP ratio is 120%.

Next we study welfare for different policy parameter mixes φd ∈ [−0.2, 0.2] and φπ ∈ [0, 3] given

adverse financial shocks as in Section 5. We consider parameter values in the set such that the

model admits a unique equilibrium. Figures 11, 12, and 13 present the welfare losses in terms of the
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consumption equivalent relative to the steady state without the financial shock for the equilibria

around the three steady states, respectively. We find that the welfare loss is the smallest when

φd = −0.2 and φπ = 0 in regime F.

Figure 10: Determinacy region for the steady state with Rr > 1 + g.
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Figure 11: Welfare loss in response to financial shocks under different policy mixes around steady
state L.

Figure 12: Welfare loss in response to financial shocks under different policy mixes around steady
state H.
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Figure 13: Welfare loss in response to financial shocks under different policy mixes around the
steady state with Rr > 1 + g.
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