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Abstract
We adopt the posterior-based approach to study dynamic discrete choice problems
under rational inattention.We provide necessary and sufficient conditions to character-
ize the solution for general uniformly posterior-separable cost functions. We propose
an efficient algorithm to solve these conditions and apply our model to explain phe-
nomena such as perceptual distance, status quo bias, confirmation bias, and belief
polarization. A key condition for our approach to work is the concavity of the dif-
ference between the generalized entropy of the current posterior and the discounted
generalized entropy of the prior beliefs about the future states.

Keywords Rational inattention · Endogenous information acquisition · Entropy ·
Dynamic discrete choice · Dynamic programming

JEL Classification D11 · D81 · D83

1 Introduction

Economic agents often make dynamic discrete choices, such as whether to stay at
home or take a job and which job to take, when to replace a car and which new car to
buy, when to invest in a project and which project to invest, and so on. When making
these decisions people often face imperfect information about payoffs. People must
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choose what information to acquire and when to acquire it given their limited attention
to the available information.

We adopt the rational inattention (RI) framework introduced by Sims (1998, 2003)
to study the optimal information acquisition and choice behavior in a dynamic discrete
choice model. In the model a decision maker (DM) can choose a signal about a payoff-
relevant state of the world before taking an action in each period. The state follows a
finiteMarkov chainwith a transition kernel depending on the current states and actions.
The DM receives flow utilities, that depend on the current states and chosen actions,
and pays a utility cost to acquire information, that is proportional to the reduction in
the uncertainty measured by a generalized entropy function of his beliefs. The DM’s
objective is to maximize the expected discounted utility less the utility cost of the
information he acquires. We call this problem the dynamic RI problem.

The existing literature typically adopts the Shannon (1948) entropy cost function.
Despite many appealing features of this specification, the experimental literature in
economics and psychology establishes some behavior that violates key features of the
Shannonmodel (see, e.g.,Woodford (2012), Caplin andDean (2013) (henceforth CD),
Dean and Neligh (2019), and Dewan and Neligh (2020)). Motivated by this evidence,
CD (2013), Caplin et al. (2022) (henceforth CDL)), Pomatto et al. (2023), Hébert and
Woodford (2021), andBloedel and Zhong (2021) proposemore flexible cost functions.
While they provide solutions in a static setup given these cost functions, how to extend
their analysis to a dynamic setup is still an open question. The goal of our paper is to
fill this gap.

We make three contributions to the literature. First, we characterize the solution to
the dynamic RI problem using the posterior-based approach. To apply this approach,
we focus on the class of uniformly posterior-separable (UPS) cost functions proposed
by CD (2013) and CDL (2022). Solving the dynamic RI problem is difficult because
the current information acquisition affects future beliefs, which in turn influence the
continuation value in a nonlinear way. The continuation value may not be concave
in the revised prior beliefs following any history reached with positive probabilities.1

By dynamic programming, the current choice and the continuation value are linked
by the Bellman equation. It is unclear whether this dynamic programming problem is
concave.

Steiner et al. (2017) (henceforth SSM) solve the dynamic RI problem in the special
case of the Shannon entropy using the choice-based approach. They first transform
the problem into an unconstrained control problem and then take coordinate-wise
first-order conditions to provide a dynamic logit characterization. We argue that this
approach does not work for general UPS cost functions. Our posterior-based approach
is built on the insights of CD (2013) in a static model and takes into account the
issue of joint concavity in a dynamic setting. We derive the posterior-based Bellman
equation using the predictive distribution as the state variable. This distribution given
any history can be viewed as the prior belief about the future states at that history. It
is revised from the current posterior through the state transition kernel.

We reduce the dynamic RI problem to a collection of interconnected static prob-
lems using the Bellman equation. The static problem in each period is to solve the

1 We can show that it is actually convex for the Shannon entropy case, see Proposition 7 in Appendix A.
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concavification of a collection of net utilities as functions of the posterior. Each net
utility function consists of the current net utility and the continuation value. It is crit-
ical for all net utility functions to be concave for the concavification problem to be
solvable. We show that the overall net utilities are concave under the assumption that
the difference between the generalized entropy of the current posterior and the dis-
counted generalized entropy of the prior belief about the future states is concave. This
assumption reflects the convexity of the intertemporal information cost in a dynamic
model. It is also important for us to establish a recommendation lemma similar to
those in SSM (2017) and Ravid (2020), which states that the signal-based formulation
is equivalent to our posterior-based formulation with actions as signals.

Under the above assumption, we provide a tractable first-order characterization for
the dynamic RI problem using the result in CD (2013). This characterization gives
necessary and sufficient conditions for optimal solutions. It is reduced to the dynamic
logit characterization of SSM (2017) in the special Shannon entropy case.

Our second contribution is to propose a characterization ofMarkovian solutions and
an efficient algorithm to find such a solution. For a Markovian solution, the predictive
distribution of the next-period states depends only on the current action, the default rule
(i.e., the distribution of actions conditioned on a history of actions) depends only on
the last period action, and the choice rule (i.e., the distribution of actions conditioned
on a history of both states and actions) depends only on the current state and the last
period action. Our characterization generalizes that of SSM (2017) by allowing corner
solutions and UPS cost functions.

Our algorithm extends the forward-backward Arimoto–Blahut algorithm of Tanaka
et al. (2022) to infinite-horizon models with discounting and UPS cost functions.
This algorithm is based on the Arimoto–Blahut algorithm for solving static channel
capacity and rate distortion problems with Shannon entropy in information theory in
the engineering literature (Arimoto (1972) and Blahut (1972)).

Our third contribution is to apply our theoretical results and numerical methods
to solve some economic examples based on the perception task problem and the
matching state problem often studied in the literature. We show that RI can help
explain some phenomena documented in the psychology literature, such as perceptual
distance, status quo bias, confirmation bias, and belief polarization. As a starting point,
we prove that the dynamic RI solution is the same as the repeated static solution if
the initial prior and the transition kernel are the same. For the static perception task
problem we adopt the total information cost of Bloedel and Zhong (2021) and show
that it can generate sigmoid-shaped choice responses unlike the step function for the
Shannon entropy cost. This solution is repeated in the dynamic case if the preceding
condition is satisfied.

For thematching state problem, we followCD (2013) to adopt the Shorrocks (1980)
entropy function that includes the Shannon entropy as a special case. We find that the
status quo bias discussed by SSM (2017) does not arise when the decision horizon is
sufficiently long. We also show that there is a positive feedback between beliefs and
actions when the state transition kernel depends on actions. This property is useful to
understand the preceding behavioral biases.
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The Shorrocks entropy function incorporates a curvature parameter that affects the
marginal information cost, thereby affecting both static and dynamic choice proba-
bilities as well as the timing of choices. We find that the status quo bias can occur
earlier and the confirmation bias is more likely to occur when the curvature parameter
is larger because it induces a larger marginal information cost.

Our paper is closely related toCD (2013, 2015),Matějka andMcKay (2015) (hence-
forth MM), SSM (2017), and CDL (2019, 2022). SSM (2017) is the first paper that
extends the static model of MM (2015) to a dynamic setting and derives the dynamic
logit rule.2 Their solution method does not apply to the general UPS cost functions
adopted in our paper. Our generalization permits us to study a wide range of economic
and psychological behavior in a dynamic setting.

Our paper is also related to Hébert and Woodford (2018) and Zhong (2022), who
adopt the posterior-based approach to study optimal stopping problems under RI with
general information cost functions in the continuous-time setup.3 Unlike their papers,
ours is the first to study optimal control problems under RI where the concavity of the
objective function is important for the optimality of the first-order conditions. More
importantly, unlike their papers with fixed states over time, states in our model follow
a Markov chain.

Most existing work on RI has focused on models with a continuous choice set,
which are typically set up in the linear-quadratic-Gaussian framework (e.g., Peng
and Xiong (2006), Luo (2008), Maćkowiak and Wiederholt (2009), Mondria (2010),
van Nieuwerburgh and Veldkamp (2010), Miao (2019), Miao and Su (2023), and
Miao et al. (2022)). Woodford (2009) is the first paper that studies a dynamic binary
choice problem under RI (the problem of a firm that decides each period whether
to reconsider its price). Jung et al. (2019) show that rationally inattentive agents can
constrain themselves voluntarily to a discrete choice set evenwhen the initial choice set
is continuous. See Sims (2011) andMaćkowiak et al. (2018) for surveys and references
cited therein.

2 Model

In this section we present the model setup, discounted information costs, and decision
problems. We then establish an important recommendation lemma.

2.1 Setup

Consider a T -period decision problem with T ≤ ∞ and time is denoted by
t = 1, 2, ..., T . Uncertainty is represented by a finite state space X ≡ {1, 2, ..., M}
and a prior distribution μ1 ∈ �(X) , where we use �(Z) to denote the set of (prob-
ability) distributions on any finite set Z and �(Y |Z) to denote the set of conditional

2 See Mattsson and Weibull (2002) and Fudenberg and Strzalecki (2015) for related models.
3 The posterior-based approach is often applied in the Bayesian persuasion literature. See Kamenica (2019)
for a survey and the references cited therein.
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distributions on any finite set Y given any z ∈ Z .4 We also use a bold case letter to
denote any random variable such as x with its realization denoted by a normal case
letter x .

The decision maker (DM) makes choices from a finite action set denoted by A
satisfying |A| ≥ 2. For simplicity we assume that the action set A does not depend on
the current state and has no identical elements. The state transition kernel is given by
π (xt+1|xt , at ) , which defines the probability of any state xt+1 ∈ X given any state
xt ∈ X and any action at ∈ A for t ≥ 1. SSM (2017) show that one can redefine the
state space so that the state transition kernel is independent of the action. We allow
such dependence explicitly so that our model is more flexible in applications and is
also consistent with the literature on Markov decision processes (Rust (1994) and
Puterman (2005)).

The DM receives flow utilities that depend on the current states and actions only.
The period utility function is given by a bounded function u : X × A → R. For
the finite-horizon case with T < ∞, we allow u to be time dependent and include a
terminal utility function U : X → R. SSM (2017) allow u to depend on the entire
history of states and actions, which can generate history-dependent solutions.

Prior to choosing an action in any period t ≥ 1, the DM can acquire costly
information about the history of the state xt , where we use xt to denote the his-
tory {x1, x2, ..., xt } and xtk to denote the history {xk, xk+1, ..., xt } for k < t . More
accurate information will lead to better choices, but are more costly, with information
costs to be discussed later.

We first consider the signal-based formulation. Suppose that there is a signal space
S satisfying |A| ≤ |S| < ∞. At time t, the DM can choose any signal about the state
xt with realizations st in S.By convention, set s0 = s0 = ∅.A strategy is a pair (d, σ )

composed of

1. an information strategy d consisting of a system of signal distributions
dt
(
st |xt , st−1

)
, for all st ∈ St , xt ∈ X , and t ≥ 1;

2. an action strategy σ consisting of a system of mappings σt : St → A, which give
an action at = σt

(
st
)
, for t ≥ 1.

Given an action strategy σ, we denote by σ t
(
st
)
the history of actions up to time

t given the realized signals st . The state transition kernel π and the strategy (d, σ )

induce a sequence of joint distributions for xt+1 and st recursively

μt+1

(
xt+1, st

)
= π

(
xt+1|xt , σt

(
st
))
dt
(
st |xt , st−1

)
μt

(
xt , st−1

)
,

for t ≥ 1, where μ1
(
x1, s0

) = μ1 (x1) is given. Using this sequence of distribu-
tions, we can compute the prior/predictive distribution μt

(
xt |st−1

)
and the posterior

μt
(
xt |st

)
for all t .

4 As convention we define a conditional probability P (C |B) = P (C ∩ B) /P (B) whenever P (B) > 0;
otherwise, set P (C |B) = 0, which does not affect our analysis, but simplifies notation.
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The joint distribution μT+1 ∈ �
(
XT+1 × ST

)
constructed above induces an

expected discounted utility value

E

[
T∑

t=1

β t−1u
(
xt , σt

(
st
))+ βTU (xT+1)

]

,

whereEdenotes an expectation operator andβ ∈ (0, 1)denotes the subjective discount
factor. In the next subsection, we define the information cost function.

2.2 Information costs

In a static setup we follow CD (2013) and CDL (2019, 2022) to define a UPS
information cost function as follows5

CH (μ,μ (·|·) , q) ≡ H (μ) −
∑

s

q (s) H (μ (·|s)) ,

whereμ ∈ �(X) is a prior distribution,μ (·|·) ∈ �(X |S) is a posterior, and q ∈ �(S)

is a marginal distribution of signals that satisfies μ (x) = ∑
s q (s) μ (x |s) . Assume

that H is a differentiable concave function on�(X) (called generalized entropy).6 The
term H (μ)measures the amount of prior uncertainty and the term

∑
s q (s) H (μ (·|s))

measures the amount of uncertainty after acquiring information s. The concavity of
H implies CH (μ,μ (·|·) , q) ≥ 0 and the value of CH (μ,μ(·|·), q) represents the
magnitude of uncertainty reduction by observing information s about the state x.

Our approach applies to any differentiable and concave function H that is implied by
all recent specifications of UPS cost functions such as the Shannonmutual information
of Sims (2003), the Tsallis (1988) entropy cost of CDL (2022), the Shorrocks (1980)
entropy cost of CD (2013) and Dean and Neligh (2019), the neighborhood-based
cost of Hébert and Woodford (2021), and the total information cost of Bloedel and
Zhong (2021). The Tsallis and Shorrocks entropy cost functions are useful to explain
the behavioral responses to changing incentives (CD (2013)) and the last two cost
functions are useful to explain the perceptual distance effect from the experimental
evidence Dean and Neligh (2019).

In this paper we focus on (i) the Shorrocks entropy index

H (ν) = 1 −∑x ν (x)2−ρ

(ρ − 1) (ρ − 2)
, ρ 	= 1, 2, (1)

5 See CDL (2022), Pomatto et al. (2023), Bloedel and Zhong (2021), and Denti (2022) for axiomatization
of general information cost functions and foundations of UPS cost functions.
6 For any finite distribution μ = (μ1, ..., μM ) ∈ � (X) , we write H (μ) = H (μ1, ..., μM ) .

We say H is differentiable on �(X) if H (μ1, ..., μM ) is differentiable on the interior of the set{
(μ1, ..., μM ) ∈ R

M+ :∑M
i=1 μi = 1

}
.
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where the Shannon entropy H (ν) = −∑x ν (x) ln ν (x) is a special case as ρ → 1,
and (ii) the total information cost function with

H (ν) = −
∑

x,y∈X
ωx,yν(x) ln

ν(x)

ν(y)
. (2)

A tractable specification of ωx,y is

ωx,y = 1

(x − y)2
for x 	= y; ωx,y = 0 for x = y, (3)

from Pomatto et al. (2023). Special cases of the total information cost function include
the Wald cost function of Morris and Strack (2019) with two states and the Fisher
information cost function of Hébert and Woodford (2021) in the continuous-state
limit. The total information cost function is the only UPS cost function that exhibits
the constant marginal cost property of Pomatto et al. (2023) and is a special case of
their Bayesian log-likelihood ratio cost function.

In our dynamic setup, for the predictive distribution (prior belief) μt
(·|st−1

)
given

history st−1, we define the conditional information cost in period t of acquiring
information st about the state xt as

CH

(
μt

(
·|st−1

)
, μt

(
·|·, st−1

)
, qt
(
·|st−1

))

= H
(
μt

(
·|st−1

))
−
∑

st

qt
(
st |st−1

)
H
(
μt
(·|st)) ,

where the prior/predictive distribution μt
(·|st−1

)
, the posterior distribution

μt
(·|·, st−1

)
, and the one-step-ahead conditional distribution qt

(·|st−1
)
satisfy

μt

(
xt |st−1

)
=
∑

st

qt
(
st |st−1

)
μt
(
xt |st

)
, t ≥ 1, (4)

and
μt+1

(
xt+1|st

) =
∑

xt

π
(
xt+1|xt , σt

(
st
))

μt
(
xt |st

)
, t ≥ 1. (5)

Equation (4) shows that the posteriorμt
(
xt |st

)
weighted by qt

(
st |st−1

)
must aver-

age to the prior μt
(
xt |st−1

)
given history st−1. Equation (5) shows that the prior

μt+1
(
xt+1|st

)
in the next period given history st is generated from the posterior

μt
(·|st) and the state transition kernel π.

The unconditional information cost in period t of acquiring information st about
the state xt is defined as

I
(
xt ; st |st−1

)
≡
∑

st−1

qt−1

(
st−1

)
CH

(
μt

(
·|st−1

)
, μt

(
·|·, st−1

)
, qt
(
·|st−1

))
,

(6)
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where

qt−1

(
st−1

)
= q0

(
s0
)
q1
(
s1|s0

)
q2
(
s2|s1

)
· · · qt−1

(
st−1|st−2

)
, q0

(
s0
)

≡ 1.

The discounted information cost of acquiring information sT about xT is given by

T∑

t=1

β t−1I
(
xt ; st |st−1

)
.

The undiscounted Shannon mutual information between sT and xT is the special case
where β = 1 and H is the Shannon entropy function.

2.3 Decision problems

We are ready to formulate the DM’s decision problem:

Problem 1 (signal-based dynamic RI problem)

max
d,σ

E

[
T∑

t=1

β t−1u
(
xt , σt

(
st
))+ βTU (xT+1)

]

− λ

T∑

t=1

β t−1I
(
xt ; st |st−1

)

where the expectation is taken with respect to the joint distribution over sequences
xT+1 and sT induced by the transition kernel π and the strategy (d, σ ) .

The parameter λ > 0 measures the shadow price of information in utility units.
When λ = 0, the problem is reduced to the standard Markov decision process formu-
lation described in Puterman (2005) and Rust (1994). When λ > 0, there is a tradeoff
between information acquisition and utility maximization. Acquiring more precise
information about the state of the system helps the DM make a better choice. But this
causes the signal to be statistically more dependent on the state, which generates a
larger information cost.

We are interested in the DM’s action choices. A (stochastic) choice rule {pt } is a
sequence of distributions pt

(
at |xt , at−1

)
over A conditional on xt and at−1 for t ≥ 1,

interpreted as the probability of choosing at given the state xt at the history at−1. By
convention, set a0 = a0 = ∅. We say that a strategy (d, σ ) generates a choice rule
{pt } if

pt
(
at |xt , at−1

)
= Pr

(
σt
(
st
) = at |xt , σ t−1

(
st−1

)
= at−1

)

for all at , xt , and at−1. Conversely, a choice rule {pt } of the form pt
(
at |xt , at−1

)
can

induce a strategy (d, σ ). Specifically, take any finite set S such that |S| = |A| . Fix
any bijection φ : A → S, and for any t, let φt denote the mapping from At to St by
applying φ coordinate-by-coordinate. Define

dt
(
st |xt , st−1

)
= dt

(
φ (at ) |xt , φt−1

(
at−1

))
= pt

(
at |xt , at−1

)
,

123



Dynamic discrete choice under rational inattention

σt
(
st
) = σt

(
φt (at

)) = at .

Insteadof solving the complicatedProblem1,we focus on a special class of informa-
tion strategies in which signals correspond directly to actions. We replace a stochastic
signal st by a stochastic action at with its realization denoted by at , but still keep
other notations in Sect. 2.2 without risk of confusion. Following SSM (2017), we call
{qt } a default rule , which is a sequence of distributions qt

(
at |at−1

)
that assign action

probabilities at date t given history at−1. We then consider another problem related to
Problem 1:

Problem 2 (posterior-based dynamic RI problem)

max E

[
T∑

t=1

β t−1u (xt , at ) + βTU (xT+1)

]

− λ

T∑

t=1

β t−1I
(
xt ; at |at−1

)
, (7)

where the choice variables are sequences of distributions
{
μt
(
xt |at

)}
and{

qt
(
at |at−1

)}
that satisfy (4) and (5) with st replaced by at for all t ≥ 1, and the

expectation is taken with respect to the joint distribution induced by π,
{
μt
(
xt |at

)}
,

and
{
qt
(
at |at−1

)}
.

To establish the equivalence of the above two problems, we introduce the following
assumption for an important recommendation lemmaor the revelation principle similar
to Lemma 1 of SSM (2017) or Lemma 2 of Ravid (2020).

Assumption 1 For any a ∈ A, the function defined by

Ga (ν) ≡ H (ν) − βH

(
∑

x

π (·|x, a) ν (x)

)

, (8)

is concave in ν ∈ �(X) .

This assumption is specific to dynamic RI problems. It is trivially satisfied if β = 0,
which corresponds to the static case. It is also satisfied for any concave H and any
β ∈ (0, 1) in the following two cases: (i) the transition kernel is independent of the past
state, i.e., π (·|x, a) is independent of x for any a ∈ A, so that

∑
x π (·|x, a) ν (x) is

independent of ν; and (ii) the transition kernel is the identity kernel, i.e., π
(
x ′|x, a) =

1 for x = x ′; = 0 for x ′ 	= x, so that Ga (ν) = (1 − β) H (ν). In general, we have to
take into account of discountingβ and the state transition kernelπ.The functionGa (ν)

is equal to the difference of two concave functions and thus may not be concave. In the
two-state case, Ga (ν) can be reduced to a univariate function and hence the concavity
is easy to check. In particular, in Appendix A.4, we apply the Shorrocks entropy index
and the total information cost function to check Assumption 1 in the two-state case.
More generally, we show that Assumption 1 is satisfied for the Shannon entropy for
any π and β ∈ [0, 1].7 In that appendix, we also give other sufficient conditions for
Assumption 1.

7 Miao et al. (2022) prove a related result in the linear-quadratic Gaussian framework.
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The intuition behind Assumption 1 can be best understood in the two-period case
with T = 2. Then we can write the discounted information cost as

I (x1; a1) + βI (x2; a2|a1)

= H (μ1 (·)) −
∑

a1

q1 (a1)

[

H (μ1 (·|a1)) − βH

(
∑

x

π (·|x, a1) μ1 (x |a1)
)]

−β
∑

a2

q2(a
2)H(μ2(·|a2)).

The expression in the third line of the above equation describes the information cost
reduction for μ2(·|a2) chosen in period 2. In period 1, the DM chooses μ1 (·|a1) for
each a1 to be better informed, but incurs information costs. In a dynamic model, these
costs are reflected by two components. The first is H (μ1 (·|a1)) which reduces the
current prior generalized entropy H (μ1 (·)) .As the posteriorμ1 (·|a1) today becomes
the prior

∑
x π (·|x, a1) μ1 (x |a1) in the next period after mixing with the transition

kernel π , the discounted future generalized entropy βH
(∑

x π (·|x, a1) μ1 (x |a1)
)
is

the second component, which raises information costs. Then Ga1 (μ1 (·|a1)) captures
the intertemporal information cost reduction for μ1 (·|a1) . Intuitively, there is an
intertemporal element of when to pay a cost that effectively balances (say) more
learning today against less tomorrow.

The concavity of H (·) and Ga (·) ensures that the information cost reduction in
each period is a concave function,8 so that we can apply Jensen’s inequality to show
that restricting to a special class of information strategies

{
at
}
does not raise the

information cost. This is analogous to the data processing inequality for the Shannon
entropy in information theory (see Theorem 2.8.1 and its corollary in Cover and
Thomas (2006)). Intuitively, as at = σt

(
st
)
is a function of data signals st , post-

processing cannot increase information.

Lemma 1 Let Assumption 1 hold. Then any strategy (d, σ ) solving the dynamic
RI Problem 1 generates sequences of posteriors

{
μt
(
xt |at

)}
and default rules{

qt
(
at |at−1

)}
solvingProblem 2. Conversely any sequences of posteriors

{
μt
(
xt |at

)}

and default rules
{
qt
(
at |at−1

)}
solving Problem 2 induce a strategy (d, σ ) solving

Problem 1.

The intuition behind this lemma is as follows: Restricting to actions as information
signals can achieve the same utility level without raising the information cost due to
the ‘data processing inequality’ discussed earlier. Thus the maximal utility value net
of information costs for Problem 2 is not smaller than that for Problem 1. On the other
hand, as Problem 2 only focuses on a restricted class of information strategies, the
associated maximal net utility value is not larger than that for Problem 1. As a result,
the two problems can achieve the samemaximum. The formal proof along with proofs
for other results in the main text is in Appendix B.

ByLemma1,wewill focus onProblem2by solving sequences of optimal posteriors{
μt
(
xt |at

)}
anddefault rules

{
qt
(
at |at−1

)}
. In the literature, there is another approach

8 Equivalently, the discounted cost of information is convex in the choice variable, the posterior distribution.
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that solves for the choice rules {pt } and default rules {qt } in the Shannon entropy case
(e.g., MM (2015) and SSM (2017)). Using a static example in Appendix A.2, we
show that such a choice-based approach does not apply to RI problems with UPS
information costs.

3 Static case

Before presenting our main results for the dynamic case, starting with the static case
will help us better understand the intuition behind our approach. The static solution
also provides the foundation for the dynamic solution.

When T = 1 and U = 0, Problem 2 is reduced to the following static RI problem:

Problem 3 (static RI problem with UPS cost)

V (μ) ≡ max
q∈�(A),μ(·|·)∈�(X |A)

E [u (x, a)] − λCH (μ,μ (·|·) , q)

subject to
μ (x) =

∑

a

μ (x |a) q (a) , x ∈ X . (9)

Following CD (2013) and CDL (2019), we rewrite this problem as

V (μ) ≡ max
q∈�(A),μ(·|·)∈�(X |A)

∑

a

q (a) Na
H (μ (·|a)) , V (μ) = V (μ) − λH (μ)

(10)
subject to (9), where Na

H (μ (·|a)) denotes the net utility of action a defined as

Na
H (μ (·|a)) ≡

∑

x

μ (x |a) u (x, a) + λH (μ (·|a)) , (11)

and V (μ) is the concave envelope of net utilities for all actions.
CD (2013) and CDL (2022) provide a first-order characterization for the solution

using a geometric approach from convex analysis. It is challenging to generalize their
characterization in the static case to the dynamic case. We now show that their char-
acterization can be simplified to a form that allows such an extension and facilitates
computation in applications. In particular, we show that their three first-order con-
ditions are equivalent to two conditions, one for chosen actions and the other for
unchosen actions.

Before presenting our conditions, we define a function:

f (ν) = H (ν) −
M∑

x=1

Hx (ν)ν(x), ν ∈ �(X), (12)

where Hx (ν) denotes the partial derivative ∂H (ν) /∂ν (x) for x = 1, ..., M,

without the restriction
∑

x ν (x) = 1. Note that we view H (ν) as a function
H (ν(1), . . . , ν(M)) .
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Definition 1 The pair of q ∈ �(A) and μ (·|·) ∈ �(X |A) satisfies

(i) FOC-CA, if for any chosen actions a, b ∈ A with q (a) > 0 and q (b) > 0,

u(x, a) + λHx (μ(·|a)) + λ f (μ(·|a)) = u(x, b) + λHx (μ(·|b)) + λ f (μ(·|b)),
(13)

for any x ∈ X , where this common value is defined as V̂ (x);
(ii) FOC-UA, if for any unchosen action b ∈ A with q (b) = 0 and for μb ∈ �(X)

and x ∈ X such that

u (x, b) + λHx

(
μb
)

−
[
u (M, b) + λHM

(
μb
)]

= V̂ (x) − V̂ (M) , (14)

we have ∑

x

Ix
(
V̂ (x)/λ − u(x, b)/λ − f (μb);μb

)
≤ 1.9 (15)

Condition (i) derives from the fact that the net utility functions of the chosen actions
must support the same hyperplane at their associated posteriors. It says that posterior
probabilities of a given state x following two chosen actions a and b depend on
relative payoffs of the two actions in that state and possibly information costs in
other states. States other than x do not matter for the Shannon entropy case with
Hx (μ(·|a)) = − lnμ(x |a)− 1 and f (·) = 1. Condition (ii) derives from the fact that
the net utility functions of all unchosen actions must lie weakly below this hyperplane.

To better understand (15), suppose that action b is chosen with q(b) > 0. By the
definition of V̂ (x) and Eq. (13), Eq. (14) is satisfied with μb equal to the posterior
distribution μ(·|b). By the definition of V̂ (x), we also have

Ix
(
V̂ (x)/λ − u(x, b)/λ − f (μ(·|b));μ(·|b)) = μ(x |b).

Therefore inequality (15) is satisfied as an equality because μ(·|b) is a probability
distribution. When b is not chosen with q (b) = 0, the posterior μ(·|b) is not well
defined. Then for μb ∈ �(X) satisfying (14), (15) holds as an inequality.

Condition (15) is analogous to condition (3) of CDL (2019) for the Shannon entropy
case. CDL (2019) argue that their condition (3) plays an important role in the conver-
gence of the Arimoto–Blahut algorithm. Our (15) plays a similar role in our algorithm
presented in Appendix C.1.

In Appendix B, we prove that condition FOC-CA is equivalent to conditions (ED)
and (CT) in Lemma 3 of CD (2013), and condition FOC-UA is equivalent to condition
(UB) in that lemma. Because conditions (ED), (CT), and (UB) are necessary and suffi-
cient for the optimality in the static RI problem, FOC-CA and FOC-UA are equivalent
necessary and sufficient conditions as well. See also the equivalent Lagrangian lemma
in CDL (2022) Lemma 1.

9 Here the function Ix (·; ν) : R → [0, 1] is the inverse function of Hx (ν) at its xth component defined as

y = Hx (ν(1), . . . , Ix (y; ν) , . . . , ν(M)),

where the inverse function exists because Hx (ν(1), . . . , ν (x) , . . . , ν(M)) is decreasing in ν (x) due to the
concavity of H . Note that Ix (·; ν) may depend on ν

(
x ′) for any x ′ 	= x .
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Fig. 1 Choice probabilities for the total information cost and Shannon entropy cost

Proposition 1 The pair of μ (·|·) and q satisfying (9) is optimal for Problem 3 if and
only if conditions FOC-CA andFOC-UAhold.Moreover, the value function V satisfies

V (μ) = V (x) − λH(μ) =
∑

x

μ(x)V̂ (x) − λH(μ). (16)

Because V (μ) is equal to the difference of two concave functions V (x) andλH(μ),

it is unclear whether V (μ) is concave. In Proposition 7 of Appendix A, we show that
V (μ) is convex for the Shannon entropy case. We also provide a geometric characteri-
zation of the function V̂ (x) and establish some properties that are useful for analyzing
the dynamic RI problem. The function V̂ (x) can also be interpreted as the realized
net value function after prior uncertainty is resolved. The connection of the definition
of V̂ (x) in Definition 1 and its alternative characterizations are our new discovery in
this paper.

Now we apply our first-order conditions to compute an example with the total
information cost (2) and (3), that can help explain the perceptual distance phenomenon.
Suppose that the prior is uniform, M is an even number, and there are two actions
a = 1, 2. The payoff satisfies: u (x, 2) = 1 if x > M/2, u (x, 1) = 1 if x ≤ M/2, and
u (x, a) = 0, otherwise. Figure 1plots the choice probabilities p (a = 2|x) against
the state x for M = 20 and λ = 1. As in Pomatto et al. (2023), this figure shows that
the choice probabilities for the total information cost have a sigmoid shape similar to
psychometric curves, unlike a step function for the Shannon entropy cost.
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4 Main results

In this section we analyze dynamic RI problems using dynamic programming, provide
necessary and sufficient conditions for optimality, and describe a numerical algorithm
to solve these conditions.

4.1 Dynamic programming

To study Problem2, let V T (μ1) denote themaximized value in (7) for T < ∞. Choos-
ing the predictive/prior distribution as the state variable, we obtain a value function
V T : �(X) → R. For T = ∞, we simply use V (·) to denote the corresponding
value function.

Endow �(X) with the weak topology. Let V denote the set of all continuous
functions on �(X) . Then V is a Banach space. Define a Bellman operator T on this
space as

T v (μ) = max
μp∈�(X |A),q∈�(A)

∑

x,a

q (a) μp (x |a) u (x, a) − λCH
(
μ,μp, q

)

+β
∑

a

q (a) v
(
μ′ (·|a)

)
(17)

subject to

μ (·) =
∑

a

q (a) μp (·|a) , (18)

μ′ (·|a) =
∑

x

π (·|x, a) μp (x |a) . (19)

Analogous to (9) in the static case, Eq. (18) shows that the posterior distribution
μp weighted by q must average to the prior distribution μ. Equation (19) describes
the law of motion for the state variable. The state variable μ′ (·|a) in the next period
is generated from the posterior μp and the state transition kernel π.

By the principle of optimality, V and {V s}Ts=1 satisfy the Bellman equations V =
T V , V s = T V s−1, and

V 0 (μ) =
∑

x

μ (x)U (x) for T < ∞.

Proposition 2 For dynamic RI Problem 2 with T = ∞, there exists a unique function
V on V that satisfies the Bellman equation V = T V . Moreover, limT→∞ V T (μ) =
V (μ) for any μ ∈ �(X) .

After deriving an optimal policy function from the Bellman equation, we can gen-
erate sequences of optimal posteriors

{
μt
(
xt |at

)}
and default rules

{
qt
(
at |at−1

)}
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in a standard way. Unfortunately, both the infinite- and finite-horizon dynamic pro-
gramming problems are difficult to analyze. The optimization problem in (17) is also
difficult to solve, because the value function may not be concave as discussed in the
static case. In particular, the first-order conditions may not be sufficient. The standard
value function iteration method is inefficient and inaccurate because one has to dis-
cretize the state space and optimize globally over a feasible set of μp (·|a) and q (a)

for all a that satisfy constraint (18). To the best of our knowledge, we have not seen
the implementation of the value function iteration method in the RI literature.

4.2 First-order characterization

In this subsection we use our dynamic programming equation to provide a first-order
characterization for an optimal solution and establish sufficiency conditions. The idea
is to work backward and treat the dynamic RI problem as a sequence of two-period
(or essentially static) problems. We can then apply the analysis in the static case of
Sect. 3.

There are two crucial differences from the static first-order conditions by consid-
ering future utility and information costs: (i) the function f in (12) is replaced by a
dynamic version ft ; (ii) the one-period utility function u is replaced by continuation
utility vt .

Specifically, ft is defined as

ft (ν, a) ≡ H(ν) −
∑

x

ν (x) Hx (ν) − β

[

H(ν̃(·|a)) −
∑

x

ν̃(x |a)Hx (ν̃(·|a))

]

,

(20)
for ν ∈ �(X) , a ∈ A, ν̃(·|a) =∑x π(·|x, a)ν(x), t = 1, ..., T − 1, and fT (ν, a) ≡
H(ν) −∑x ν (x) Hx (ν). In the final period T < ∞, the problem is static and fT is
the same as in (12).

Continuation utility vt is defined as

vt (xt , a
t ) = u(xt , at )

+β
∑

xt+1

π(xt+1|xt , at )
[
V̂t+1(xt+1|at ) − λHxt+1(μt+1(·|at ))1{t<T }

]
, (21)

for any at with qt
(
at |at−1

)
> 0 and for t = 1, . . . , T , with V̂T+1(xT+1|aT ) =

U (xT+1), xT+1 ∈ X .10 The function V̂t+1(·|at ) : X → R corresponds to V̂ in (16)
and must be jointly solved from the system of first-order conditions, For the dynamic
RI problem, continuation utility depends on the future realized net value function
V̂t+1(xt+1|at ) and the future predictive distribution μt+1(·|at ).

We now introduce the system of first-order conditions for the dynamic case.

Definition 2 The sequences of {μt (·|at )}Tt=1 and {qt (·|at−1)}Tt=1 satisfy

10 1{t<T } is an indicator function taking value 1 if t < T and 0 if t = T ,
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(i) FOCt -CA, if for any chosen action at ∈ A with qt (at |at−1) > 0 and for any
xt ∈ X ,

V̂t (xt |at−1) = vt (xt , a
t ) + λHxt (μt (·|at )) + λ ft (μt (·|at ), at ); (22)

(ii) FOCt -UA, if for any unchosen action at ∈ A with qt
(
at |at−1

) = 0 and μ
at
t ∈

�(X) such that

[
vt (xt , a

t ) + λHxt (μ
at
t )
]

− [vt (M, at ) + λHM (μ
at
t )
] = V̂t

(
xt |at−1

)
− V̂t

(
M |at−1

)
, (23)

for any xt ∈ X , we have

∑

xt

Ixt
(
V̂t (xt |at−1)/λ − vt (xt , a

t )/λ − ft (μ
at
t , at );μ

at
t

)
≤ 1. (24)

We are ready to present our first main result:

Theorem 1 Suppose that Assumption 1 holds. Then the sequences of {qt (at |at−1)}Tt=1
and {μt (xt |at )}Tt=1 are the optimal solution to dynamic RI Problem 2 if and only if
they satisfy (i) Eqs. (4) and (5) with s replaced by a; and (ii) conditions FOCt -CA
and FOCt -UA for t = 1, . . . , T . The value function given history at−1 reached with
positive probabilities satisfies

V T+1−t (μt (·|at−1)) =
∑

xt

μt (xt |at−1)V̂t (xt |at−1) − λH(μt (·|at−1)), t = 1, ..., T .

(25)

Assumption 1 is critical not only for the recommendation lemma, but also for the
applicability of the posterior-based approach and the sufficiency of the first-order con-
ditions. As discussed in Sect. 2.3, the choice of posterior μt

(·|at) affects information
costs in both periods t and t + 1 because the posterior μt

(·|at) becomes the prior
μt+1

(·|at) after mixing with the transition kernel π . Assumption 1 ensures the con-
cavity of the intertemporal entropy cost reduction and hence the concavity of the net
utility in μt

(·|at) given history at−1. We can then compute the concave envelope of
the net utilities to solve the RI problem as in CD (2013) and CDL (2019, 2022). We
illustrate this point in a two-period RI problem in Appendix A.3.

The modified Eqs. (4) and (5) correspond to (18) and (19) and describe the Bayes
consistency of beliefs and their evolution over time. The first-order conditions FOCt -
CA and FOCt -UA resemble their static counterpart, with the utility function u and
the function f replaced by vt and ft , respectively. It is crucial to recognize that these
first-order conditions are coupled across time: first-order conditions at time t and the
resulting optimal posterior μt (·|at ) depend on the continuation utility vt , which takes
into account the future realized value V̂t+1 and the predictive distribution μt+1(·|at )
for the next period; meanwhile the realized value V̂t+1 and the predictive distribution
μt+1(·|at ) at time t + 1 depend on the optimal posterior μt (·|at ) at time t . All of the

123



Dynamic discrete choice under rational inattention

first-order conditions across time must be solved jointly rather than separately. This
coupling among the first-order conditions also motivates our algorithm in Sect. 4.4.

Equation (25) corresponds to (16) in the static case. This form of the value function
allows us to combine the continuation value with the current utility u and information
costs to compute the current net utility in the Bellman equation. We can then apply
the static analysis in Proposition 1.

For the Shannon entropy case with H (ν) = −∑x ν (x) ln ν (x) , we can verify
that Assumption 1 is satisfied so that we can apply Theorem 1 to derive a dynamic
logit characterization, which is first obtained by SSM (2017) using the choice-based
approach. Unlike their result, we also provide explicit sufficiency conditions. More-
over, as shown inAppendixA.2, their choice-based approach does notwork for general
UPS cost functions beyond the Shannon entropy.

4.3 Markovian solution

Although our first-order characterization is useful for numerical analysis, it is still
complicated and even infeasible to compute for the infinite-horizon case, because the
solution is generally history dependent. For example, the optimal posteriorμt (·|at ) and
default rule qt

(·|at−1
)
may depend on the entire history of actions at−1. To simplify

dynamic solutions, we turn to a Markovian characterization. We define the following
notion of Markovian solution.

Definition 3 An optimal solution to dynamic RI Problem 2 is Markovian if, for
any two different histories at−1 and

{
bt−2, at−1

}
reached with positive probabili-

ties and any t = 1, 2, ..., T , the implied predictive distributions satisfy μt (xt |at−1) =
μt (xt |at−1, bt−2).

Intuitively, the predictive distribution is the state variable in the posterior-based
dynamic programming problem. If this state variable is independent of history of
actions, then there is an optimal solution that is also independent of history of actions.
We thus have our second main result.

Theorem 2 For a Markovian solution to dynamic RI Problem 2, the posterior distri-
bution μt

(
xt |at

)
, the choice rule pt (at |xt , at−1), and the default rule qt (at |at−1) at

any history at−1 reached with positive probabilities take the form of μt
(
xt |att−1

)
,

pt (at |xt , at−1), and qt (at |at−1), respectively, for any t = 1, ..., T .

By this theorem, we simply write the Markovian solution for μt+1
(
xt+1|at

)
,

μt
(
xt |at

)
, and qt

(
at |at−1

)
asμt+1 (xt+1|at ),μt

(
xt |att−1

)
, and qt (at |at−1) , respec-

tively. We can then modify (4) and (5) as

μt (xt |at−1) =
∑

at

μt (xt |att−1)qt (at |at−1), (26)

μt+1 (xt+1|at ) =
∑

xt

π (xt+1|xt , at ) μt
(
xt |att−1

)
, (27)

for any at−1 leading to at with positive probabilities.
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We say that a solution to the dynamic RI problem in (7) is interior if qt (at |at−1) > 0
for any action at ∈ A and any history at−1, t ≥ 1. The following result shows that
any interior solution is Markovian.

Proposition 3 Every interior solution to dynamic RI Problem 2 is Markovian, for
which the optimal posterior distribution μt

(
xt |at

)
takes the form μt (xt |at ) for any

t ≥ 1.

This result relies on the locally invariant posteriors property discovered by CD
(2013), which implies that the optimal posteriors μt

(·|at) for all chosen actions at
with qt (at |at−1) > 0 are independent of the prior μt

(·|at−1
)
in the convex hull of

these posteriors. Thus μt
(·|at) for each at is independent of at−1. It follows from

forward induction that the prior μt+1
(·|at) is also independent of at−1. We then

obtain a Markovian solution for which μt
(
xt |at

)
is also independent of at−1.

Combining Theorems 1 and 2, we can provide necessary and sufficient first-order
conditions for a Markovian solution, which may not be interior, using the posterior-
based approach (see Proposition 8 in Appendix D). This result generalizes Proposition
3 and Lemma 6 of SSM (2017) for the Shannon entropy case to allow corner solutions
and UPS cost functions. Notice that not every dynamic RI problem admits an optimal
Markovian solution. We have solved numerical examples to illustrate this point for
the Shannon entropy case. We have solved numerical examples to illustrate this point
for the Shannon entropy case in Appendix D.

4.4 Numerical methods

In the Markovian case, we have a system of nonlinear difference equations, which is
nontrivial to solve both analytically and numerically. To solve this system numerically,
we extend the forward-backward Arimoto–Blahut algorithm proposed by Tanaka et al.
(2022) to our dynamicRImodelwithUPS costs.We present the algorithm inAppendix
C. Here we sketch the key idea.

For any given prior μ1 (x1), we compute the sequence of prior distributions
{μt+1 (xt+1|at )} forward starting from μ1 (x1|a0) = μ1 (x1). Because the terminal
value V̂T+1(xT+1|aT ) = U (xT+1) is given in the finite-horizon case, we compute the
sequence of values {V̂t (xt |at−1)} backward starting from the terminal time. All other
variables are jointly computed along the forward and backward paths. Taking limits
as T → ∞ , we obtain the infinite-horizon solution.

To facilitate numerical implementation, we replace (27) with the following
equations:

μt+1(xt+1, at ) =
∑

xt ,at−1

π(xt+1|xt , at ) μt (xt |att−1)qt (at |at−1)qt−1(at−1), q0 (a0) = 1,

(28)

μt+1(xt+1|at ) =μt+1(xt+1, at )

qt (at )
, qt (at ) =

∑

xt+1

μt+1(xt+1, at ) > 0. (29)
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Notice that the two μt+1 (xt+1|at ) defined in (29) and (27) may not be identical even
if we use the same notation. If we use Eq. (27) to compute μt+1 (xt+1|at ) , then the
expression on the right-hand side of (27)may depend on at−1 during iterations and thus
the algorithm may fail to converge to an Markovian solution. By contrast, Eqs. (28)
and (29) ensure that at−1 is averaged out during each iteration.

If the solution for sequences of posteriors
{
μt
(
xt |att−1

)}
and conditional default

rules {qt (at |at−1)} is known, Eqs. (28) and (29) can be solved forward in time to
obtain a sequence of predictive distributions {μt+1 (xt+1|at )} . On the other hand, if
the solution for {μt+1 (xt+1|at )} is known, theMarkovian version ofEqs. (21) and (22),
which may be viewed as Bellman equations, can be solved backward in time. At each
time t we use the static algorithm described in Appendix C to solve for

{
μt
(
xt |att−1

)}

and {qt (at |at−1)} . We solve all equations iteratively until convergence and check
whether (27) is satisfied.

Clearly, μt+1 (xt+1|at ) defined in (27) satisfies (29). But conversely μt+1(xt+1|at )
defined in (29) may not satisfy (27) unless μt (·|att−1) is the same for any two different
actions at−1 and bt−1 reaching the same at or there is only one action leading to
at . The following proposition gives sufficient conditions to ensure that our algorithm
generated Markovian solution is optimal and this solution can be either interior or at
the corner.

Proposition 4 If the algorithm converges to a limiting solution such that for any
at ∈ A, t ≥ 2 one of the following two conditions is satisfied: (i) μt (xt |at , at−1) =
μt (xt |at , bt−1) for any at−1 	= bt−1 with qt (at |at−1) > 0 and qt (at |bt−1) > 0; (ii)
there exists a unique at−1 such that qt (at |at−1) = 1 and qt (at |bt−1) = 0 for any
bt−1 	= at−1, then it is an optimal Markovian solution.

We will use the above algorithm to solve some numerical examples in the next
section. By Proposition 4, all numerical solutions for these examples are optimal
Markovian solutions. We can design a similar algorithm for the history-dependent
solution in Theorem 1. This algorithm becomes complicated for long-horizon prob-
lems as the history increases with the horizon and becomes infeasible under infinite
horizon.

5 Applications

To apply our theoretical results, we first establish that the dynamic solution is the
repeated static solution if the transition kernel and the initial prior are uniform in
Sect. 5.1. We then apply this result by extending the static perception task problem in
Sect. 3 to a dynamic setting. Next we study a dynamic matching state problem often
studied in the literature (SSM (2017), CD (2013) and CDL (2019)). This problem
can be used to describe many economic decisions, e.g., consumer choices, project
selection, and job search. We assume that the transition kernel is independent of
actions in Sect. 5.2 and allow it to depend on actions in Sect. 5.3. For simplicity, set
|X | = |A| = 2, μ1 (x1 = 1) = 0.5, u (xt , at ) = 1 if xt = at ; and u (xt , at ) = 0,
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otherwise, throughout Sects. 5.2 and 5.3.11 We adopt the Shorrocks entropy in (1)
and compare the solution with that for the Shannon entropy.12 We will show how the
parameter ρ affects behavioral responses to incentives in a dynamic setting.

5.1 Repeated static solution

It is nontrivial to derive analytical results for general dynamic RI problems. The
simplest possible dynamic solution is the repeated static solution in the sense that
pt
(
at |xt , at−1

) = p1 (at |xt ) , qt
(
at |at−1

) = q1 (at ) , and μt
(
xt |at

) = μ1 (xt |at )
for any t ≥ 1, where p1 (·|·) , q1 (·) , and μ1 (·|·) are the static solution for T = 1. We
are able to derive sufficient conditions for such a solution.

Proposition 5 Suppose that U = 0 and the transition kernel π (·|x, a) is the same as
the initial prior μ1 (·) for any x and a. Then any solution to the dynamic RI Problem
2 is the repeated static solution.

The assumption in the proposition implies that future states are drawn independently
and identically from the same initial prior μ1.13 Then the prior beliefs about the next-
period state given any history reached with positive probabilities is the same as the
initial prior μ1, independent of the current choice variable. Because the prior beliefs
are the only state variable for the dynamic RI problem, the continuation value does
not depend on the current choice variable. By dynamic programming, the solution in
any period only depends on the current payoff, independent of the future continuation
value.

We now apply Proposition 5 by extending the static perception task problem in
Sect. 3 to a dynamic setting. For simplicity, we take π

(
x ′|x, a) = μ1

(
x ′) = 1/M for

any x ′. Then the dynamic solution is the repeated static solution illustrated in Fig. 1.
This figure shows that the dynamic logit solution for the choice probabilities in any
period for the Shannon entropy cost is a step function of the current state. By contrast,
the dynamic solution for the total information cost has a sigmoid shape.

5.2 Transition kernel independent of actions

In the remaining two subsections, we study the matching state problem. Assuming
π (xt+1|xt , at ) = γ whenever xt+1 	= xt for any at ∈ A, we use this example to
illustrate that rationally inattentive behavior exhibits status quo bias over a short hori-
zon, but not over an infinite horizon. Moreover, the infinite-horizon behavior exhibits
inertia.14 As a benchmark, the optimal solution for the case without information cost
(λ = 0) is to choose an action to match the state in each period.

11 Our algorithm works for larger state and action spaces. Computation codes for all numerical examples
are available upon request.
12 We have verified that Assumption 1 is satisfied for all our numerical examples in this section.
13 As discussed in Sect. 2.3, Assumption 1 is satisfied in this case.
14 Following SSM (2017), we define status quo bias as the situation with a zero probability of chang-
ing initial actions and inertia in actions as the situation where actions satisfy Pr

(
at = 1|at−1 = 1

) +
Pr
(
at = 2|at−1 = 2

)
> 1 for all t sufficiently large. We can similarly define inertia in states.
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With information cost λ > 0, we first consider the interior Markovian solution
in the infinite-horizon stationary case, in which pt (at |xt , at−1) , qt (at |at−1) , and
μt (xt |at ) do not depend on time. By Eqs. (4) and (5), we have

q (1|1) μ (2|1) + q (2|1) μ (2|2) = (1 − γ )μ (2|1) + γμ (1|1) .

By payoff symmetry μ (1|1) = μ (2|2) and q (1|1) = q (2|2) . Then we obtain

q (at = 1|at−1 = 1) = q (at = 2|at−1 = 2) = 1 − γ, (30)

as long as μ (2|1) 	= μ (1|1) . By prior symmetry the initial default rule satisfies
q1 (a1 = 1) = q1 (a1 = 2) = 1/2.

Using the forward-backward algorithm, we numerically solve for the whole transi-
tion path. We can verify the above interior solution and find that there is no transition
in this example. In particular, the solution immediately reaches the stationary case in
period 2.

Our solution above verifies part 1 of Proposition 5 in SSM (2017), which considers
more general payoff functions and transition probabilities in the Shannon entropy case.
The DM’s choices exhibit inertia. That is, when the exogenous state is more persistent,
the DM’s choice behavior is also more persistent. For our example, they have the same
persistence 1 − γ .

It is more interesting to analyze the finite-horizon case that admits corner solutions.
SSM (2017) study the two-period case with the Shannon entropy and their Proposition
4 shows thatwhen γ is sufficiently small, q2 (a2 = 1|a1 = 1) = q2 (a2 = 2|a1 = 2) =
1 and Pr (a1 = a2) = 1. That is, if the probability of changing states is sufficiently
small, the DM’s behavior exhibits status quo bias in the sense that he acquires informa-
tion only in the first period and relies on that information in both periods. By contrast,
this result does not hold in the infinite-horizon case. In particular, we always have the
interior solution described in (30) for any γ ∈ (0, 1) given μ1 (x1 = 1) = 0.5.

The intuition behind the above result is the following. In the two-period case, when
γ is sufficiently small, the DM believes that any state in period 1 is more likely to
remain the same in period 2. Thus the DM does not want to acquire new information
and just follows the first-period choice. However, when the horizon becomes longer,
future states are more likely to switch. In particular, the switching probability is given
by 1 − (1 − γ )T , which increases to 1 for γ ∈ (0, 1) as T → ∞. Thus it is more
valuable to acquire new information when the decision horizon is longer. But when
the decision horizon is sufficiently short, the DM will not acquire any information,
e.g., in the terminal period.

Figure 2 illustrates the analysis above for different values of the curvature parameter
ρ for the Shorrocks entropy. We set T = 6, μ1 (x1 = 1) = 0.5, λ = 1, γ = 0.03,
U = 0, and β = 0.8. For the baseline Shannon entropy case with ρ = 1, we find that
q1 (a1 = 1) = 1/2 by symmetry and

qt (at = 2|at = 2) = qt (at = 1|at−1 = 1) =
⎧
⎨

⎩

0.97 for t = 2,
0.9728 for t = 3,
1 for t = 4, 5, 6.
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Fig. 2 Choice probabilities and default rules for different values of ρ. Parameter values are T = 6,μ1(0) =
0.5, π(xt+1|xt , at ) = γ = 0.03 if xt+1 	= xt , β = 0.8, and λ = 1

Thus the status quo bias behavior occurs starting from period 4 on. The
left panel of Fig. 2 presents the paths of pt (at = 1|xt = 1, at−1 = 1) and
pt (at = 1|xt = 1, at−1 = 2) . At time t = 1, they are the same because a0 = ∅.
Then pt (at = 1|xt = 1, at−1 = 1) increases to 1 and pt (at = 1|xt = 1, at−1 = 2)
decreases to zero, consistent with the inertia behavior shown in Proposition 5 of SSM
(2017). Proposition 4 ensures that our computed Markovian solution is optimal. We
also find that, when T → ∞, there is no terminal time and qt (at = 1|at−1 = 1) =
0.96 = 1 − γ for all t ≥ 2.

Next we consider solutions when ρ 	= 1. We find that the status quo bias behavior
occurs earlier when ρ is larger. Moreover, the state dependent choice probabilities
pt (at = xt |xt , at−1) decrease as ρ increases. The intuition is that the marginal cost
of information is larger for a larger ρ so that the DM has less incentive to acquire
new information. Thus the DM is more likely to make mistakes and stick to the old
information.

Our analysis indicates that it is rational inattention combined with the short horizon
that generates the status quo bias. This bias does not exist under infinite horizon. But
the inertia behavior exists in both finite- and infinite-horizon settings. Moreover, the
timing of the status quo bias depends on the marginal cost of information, which
depends on the specification of the information cost function.

5.3 Transition kernel depends on actions

Wenow show that the results are very differentwhen the state transition kernel depends
on actions. For simplicity, assume that π (xt+1|xt , at ) = α ∈ [0, 1] if xt+1 = at , for
t ≥ 1. That is, the probability that the state in the next period confirms the current
action is equal to α and is independent of the current state. We use this example to
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show that status quo bias can persist in the long run and confirmation bias and belief
polarization can also arise.

Notice that the optimal solution in the case without information cost (λ = 0)
is always to choose an action to match the state in each period as in the previous
subsection. Next consider the two-period case with costly information acquisition
(λ > 0).

Proposition 6 Consider the two-period RI model with Shannon entropy. Let U = 0,
β = 1, and π (xt+1|xt , at ) = α ∈ [0, 1] whenever xt+1 = at . Let α∗ ≡ exp(1/λ)

exp(1/λ)+1

and α∗∗ ≡ 1
exp(1/λ)+1 . Then the solution satisfies q1 (1) = 1/2 and Pr (a2 = a1) = 1

for α > α∗ and q1 (1) = 1/2 and Pr (a2 	= a1) = 1 for α < α∗∗. For α ∈ (α∗, α∗∗) ,

the solution is interior with

q2 (1|1) = q2 (2|2) = α (exp (1/λ) + 1) − 1

exp (1/λ) − 1
.

This proposition shows that the status quo bias can emerge for reasons other than
those discussed in the previous subsection. In particular, if α is sufficiently large, the
DM believes that there is a high probability that x2 confirms a1 and thus he does not
reverse his decision. But if α is sufficiently small, he reverses his decision.

Using numerical methods, we find that the solutions for any T > 2 are similar to
those for T = 2. This result is different from the case in which the state transition
kernel is independent of actions. In that case the status quo bias does not occur under
infinite horizon because the probability that the state will eventually switch is equal
to 1. By contrast, for the model in this subsection, the state transition probability is
independent of the current state, but dependent on the current action. If the probability
that the state in the next period matches the current action is sufficiently high, the DM
will not reverse his initial decision in that Pr (at = a1) = 1 for all t > 1.

We are unable to derive an analytical result similar to Proposition 6 for general UPS
cost functions. We thus solve numerical examples using the Shorrocks entropy. Fig-
ure 3illustrates the transition dynamics for different values of ρ. We set the parameter
values T = 6, λ = 1, β = 0.8,U = 0 and α = 0.7. We find that there is no transition
and the solution becomes stationary from the second period on. For this value of α,

we have Pr (a2 = a1) = 1 for ρ = 1.8. For ρ = 1 and 0.7, the solutions are interior,
but ρ = 1.8 generates a corner solution. The difference in ρ is also reflected in the ini-
tial choice probabilities p1 (a1 = 1|x1 = 1). Figure 3 shows that p1 (a1 = 1|x1 = 1)
declines as ρ increases. For a larger value of ρ, the marginal cost of information is
larger and the DM has less incentive to acquire new information. Thus the DM is more
likely to make mistakes.

Imagine that there is a unit mass of ex ante identical individuals in the case of
ρ = 1.8. These individuals face the same decision problemwith the same prior beliefs
and parameter values. Our numerical results above show that half of the individuals
choose action 1 in the first period and then will stick to this action forever with
probability 1 from period 2 on. By contrast, the other half of the individuals choose
action 2 in the first period and then will stick to this action forever with probability 1
from period 2 on.
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Fig. 3 Choice probabilities and default rules for different values of ρ. Parameter values are T = 6,μ1(0) =
0.5, π(xt+1|xt , at ) = α = 0.7 if xt+1 = at , β = 0.8, and λ = 1

There is a positive feedback between beliefs and actions in the model of this sub-
section. When the DM believes that the state in the next period is sufficiently likely
to be consistent with the DM’s current action, he will choose the same action in the
next period in order to match the state. In this case (ρ = 1.8) he acquires information
only in period 1 and uses the same information in the future. Even though the realized
state in the future is different from his initial action, he still mistakenly sticks to the
initial chosen action because processing new information is costly.

The model here has implications for confirmation bias and belief polarization in the
psychology literature. Confirmation bias is the tendency to search for, interpret, favor,
and recall information in a way that confirms one’s preexisting beliefs or hypotheses.
This behavior happens in our model because the DM will stick to his initial choice
if he entertains a strong belief that the future state is likely to be consistent with his
current action. If there are more individuals, belief polarization can occur. Suppose
that all individuals with the same prior about the states have the same beliefs about
state transition probabilities. In the case of ρ = 1.8, if they all believe the future state
is more likely to be consistent with their current actions, then after the same states are
realized over time, half of the individuals will choose only one action forever with
probability 1, but the other half will choose the other action forever with probability
1. In the case of ρ = 1 and 0.7, they do acquire information beyond the first period.
Because pt (1|1, 1) > pt (2|1, 1) and pt (2|1, 2) > pt (1|1, 2) for any t > 0, an
individual acquires information that is more consistent with his previous action and
his beliefs.

Our interpretation of the confirmation bias and belief polarization is similar to
that of Nimark and Sundaresan (2019) (also see Catonini and Mayskaya (2023) for a
different model). In their model, the state does not change over time. Agents update
their prior beliefs about the state by acquiring endogenous signals. They show that
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the beliefs of ex ante identical agents over time can cluster in two distinct groups at
opposite ends of the belief space. Unlike their model, we assume that states follow a
Markov chain.

6 Conclusion

We adopt the posterior-based approach to study dynamic RI problems and provide
necessary and sufficient conditions for optimal solutions for general UPS cost func-
tions. We propose an efficient algorithm to solve these conditions and apply our model
to explain some behavioral biases. Because the class of cost functions considered in
our paper can help explain some behavior that violates the predictions of the RImodels
with the Shannon entropy cost, our approach will find wide applications in dynamic
settings.

Appendix

A Preliminaries

In this appendixwefirst present the solution in the static case related toCD (2013),MM
(2015), and CDL (2019). We then show that the choice-based approach of MM (2015)
and SSM (2017) does not work for the general UPS cost functions. Next we study the
two-period case and illustrate the difficulty of the dynamic model and our solution
approach. Finally, we verify that our Assumption 1 is satisfied by the Shannon entropy
so that the dynamic logit solution of SSM (2017) can be derived by our approach.

A.1 Static case

Notice that Na
H (μ (·|a)) is concave in μ (·|a) by the concavity of H , but the problem

in (10) is not jointly concave in q and μ (·|·) due to the cross product term as pointed
out by CD (2013). Thus one cannot simply use the Kuhn–Tucker conditions to solve
this problem. CD (2013) and CDL (2019) instead propose a geometric approach from
convex analysis and derive necessary and sufficient conditions for optimality.

Before stating some properties of the solution, let us treat the posterior probability
of state M as the residual and define the set

Y =
{

(μ1, ..., μM−1) ∈ R
M−1+ :

M−1∑

m=1

μm ≤ 1

}

as the domain of functions of probability distributions over X and V̂ (x) as the height
of the supporting hyperplane of the net utilities in Y × R at the point with μ (x) = 1
and μ

(
x ′) = 0 for all x ′ 	= x .15

15 Without risk of confusion, we use the same notation V̂ (x) as in Definition 1 because the two functions
are identical as shown in the proof of Proposition 1.
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Proposition 7 Consider Problem 3. (i) The optimal posteriors μ (·|a) for all chosen
actions a with q (a) ∈ (0, 1) are independent of the prior μ ∈ �(X) in the convex
hull of these posteriors. (ii) The optimal payoff for the static RI problem is given by

V (μ) = V (μ) − λH (μ) =
∑

x

μ (x) V̂ (x) − λH (μ) , (A.1)

where V̂ (x) is independent of the prior μ ∈ �(X) in the convex hull of the optimal
posteriorsμ (·|a) for all chosen actions a with q (a) ∈ (0, 1) .16 (iii) V (μ) is concave
in μ and for x = 1, . . . , M − 1 and μ(x) ∈ (0, 1),

∂V (μ)

∂μ(x)
= V̂ (x) − V̂ (M). (A.2)

For the Shannon entropy case, V (μ) is convex in μ.17

Proof (i) It follows from Corollary 1 of CD (2013).
(ii) By definition, V (μ) = ∑

x μ (x) V̂ (x) . By part (i), V̂ (x) is independent of
the prior μ in that convex hull spanned by the optimal posteriors μ (·|a) for all chosen
actions a with q (a) ∈ (0, 1). We obtain the desired result.

(iii) Let q∗
i and μ∗

i (·|·) be the optimal solution corresponds to any prior μi for
i = 1, 2. Let q (a) = θq∗

1 (a) + (1 − θ) q∗
2 (a) for θ ∈ (0, 1) for any chosen action a.

Then we can derive

θV (μ1) + (1 − θ) V (μ2)

= θ
∑

a

q∗
1 (a) Na

H

(
μ∗
1 (·|a)

)+ (1 − θ)
∑

a

q∗
2 (a) Na

H

(
μ∗
1 (·|a)

)

=
∑

a

q (a)

[
θq∗

1 (a)

q (a)
Na
H

(
μ∗
1 (·|a)

)+ (1 − θ) q∗
2 (a)

q (a)
Na
H

(
μ∗
2 (·|a)

)]

≤
∑

a

q (a) Na
H

(
θq∗

1 (a)

q (a)
μ∗
1 (·|a) + (1 − θ) q∗

2 (a)

q (a)
μ∗
2 (·|a)

)

≤ V (θμ1 + (1 − θ) μ2) ,

where the first inequality follows from the concavity of the net utility Na
H , and the

second inequality from the following:

16 Notice that we need at least two chosen actions to form a convex hull. If there is only one chosen action
a, then q (a) = 1 and the posterior is the same as the prior. In this case the convex hull is a degenerate
singleton.
17 Propositions 4 and 5 of Denti et al. (2022) show that V (μ) is convex for any general information cost
function as long as it is experimental.
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∑

a

q (a)

(
θq∗

1 (a)

q (a)
μ∗
1 (·|a) + (1 − θ) q∗

2 (a)

q (a)
μ∗
2 (·|a)

)

= θ
∑

a

q∗
1 (a) μ∗

1 (·|a) + (1 − θ) q∗
2 (a) μ∗

2 (·|a)

= θμ1 (·) + (1 − θ) μ2 (·) .

Thus V (μ) is concave in μ.

If μ is in the convex hull of the optimal posteriors for at least two chosen actions,
then V̂ is independent ofμ in that convex hull.We then obtain (A.2). CDL (2019) show
that the set �(X) can be partitioned into sets of priors, each of which is associated
with a given consideration set. The derivative formula (A.2 ) applies to each set of
priors and crosses boundaries of neighboring sets continuously.

Finally consider the Shannon entropy case. Then Problem 3 can be reformulated
as in (A.3) and (A.4) presented in Appendix A.2 (see MM (2015)). Let θ ∈ (0, 1) , μ,

μ′ ∈ �(X) , and μ∗ = θμ + (1 − θ) μ′. Let p∗ (a|x) and q∗ (a) be the associated
optimal solution. Then

q∗ (a) =
∑

x

p∗ (a|x) μ∗ (x) = θq∗
1 (a) + (1 − θ) q∗

2 (a) ,

where
q∗
1 (a) =

∑

x

p∗ (a|x) μ (x) , q∗
2 (a) =

∑

x

p∗ (a|x) μ′ (x) .

Since Shannon entropy is a concave function, we deduce that

V
(
θμ + (1 − θ) μ′) =

∑

x,a

p∗ (a|x) μ∗ (x)

[
u (x, a) − λ ln

p∗ (a|x)
q∗ (a)

]

=
∑

x,a

p∗ (a|x) μ∗ (x)
[
u (x, a) − λ ln p∗ (a|x)]− λH

(
q∗)

≤ θ
∑

x,a

p∗ (a|x) μ (x)

[
u (x, a) − λ ln

p∗ (a|x)
q∗
1 (a)

]

+ (1 − θ)
∑

x,a

p∗ (a|x) μ′ (x)
[
u (x, a) − λ ln

p∗ (a|x)
q∗
2 (a)

]

≤ θV (μ) + (1 − θ) V
(
μ′) .

Thus V (μ) is convex. �

Part (i) is the locally invariant posteriors (LIP) property discovered by CD (2013).

Part (ii) can be best understood using the geometric approach. Specifically, the optimal
posteriorμ (·|a) is the tangent point of the net utility associated with the chosen action
a and V̂ (x) satisfies

V (μ) =
∑

a

q (a) Na
H (μ (·|a)) =

∑

x

V̂ (x) μ (x) ,
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Fig. 4 The net utility function and concavification

at the optimum.The valueV (μ) is the height aboveμ (x) of the convex hull connecting
Na
H (μ (·|a)) for all chosen actions a. The optimal posteriorμ (·|a) is the tangent point

of V (μ) and Na
H (μ(·|a)) for each a with q(a) ∈ (0, 1). The value V̂ (x) is the height

of the supporting hyperplane at the point with μ (x) = 1 and μ
(
x ′) = 0 for all

x ′ 	= x . This value is independent of the prior μ in the convex hull of the optimal
posteriors. This result does not appear in the literature and is critical for the analysis
of the dynamic model. In particular, this result establishes a useful property of the
value function in the dynamic model, which implies that Eq. (A.2) also holds for the
value function. This equation will be repeatedly applied when we derive first-order
conditions for the dynamic model.

Figure 4 is similar to Figure 5 of CDL (2019) in the case with two states
{
x, x ′}

and two actions {a, b} . Net utilities are represented by the two solid curves. The con-
cavification V (μ) is the concave envelope of these two curves. The optimal posteriors
μ (·|a) andμ (·|b) are given by the tangent points at which the hyperplane supports the
two net utility functions. The value V̂ (x) is given by the height of the hyperplane at
the point with μ (x) = 1. Both the optimal posteriors, V̂ (x) , and V̂

(
x ′) are invariant

to changes ofμ
(
x ′)within the interval

(
μ
(
x ′|a) , μ (x ′|b)) . Ifμ (x ′) ∈ [0, μ (x ′|a)],

then q (a) = 1 and μ
(
x ′|a) = μ

(
x ′) . If μ

(
x ′) ∈ [μ (x ′|b) , 1], then q (b) = 1 and

μ
(
x ′|b) = μ

(
x ′) .

Part (iii) of Proposition 7 shows that V (μ) is a concave function because it is the
concave envelope of net utilities. It is also differentiable and satisfies an envelope
condition. It is unclear whether V (μ) is concave as it is equal to the difference of two
concave functions by (A.1). Part (iii) shows that V (μ) is convex if H is the Shannon
entropy function. This issue poses a difficulty when solving the dynamic RI problem.
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A.2 Failure of the choice-based approach

MM (2015) and SSM (2017) solve RI problems with the Shannon entropy cost using
the choice-based approach. To understand this approach, we notice that Problem 3 for
the Shannon entropy case can be rewritten as

V (μ) = max
q∈�(A),p∈�(X |A)

∑

x,a

p (a|x) μ (x)

[
u (x, a) − λ ln

p (a|x)
q (a)

]
, (A.3)

subject to
q (a) =

∑

x

p (a|x) μ (x) , a ∈ A. (A.4)

Let F (p, q) denote the objective function in (A.3). We can verify that F (p, q) is
jointly concave in (p, q) . Blahut (1972, Theorem 4) establishes the following result:

Lemma 2 Let p ∈ �(A|X) be fixed. Then maxq∈�(A) F (p, q) is a concave
optimization problem and the optimal solution is given by q (a) =∑x μ (x) p (a|x) .

This lemma implies that the static RI problem (A.3) is equivalent to the following
unconstrained optimization problem:

max
p∈�(A|X), q∈�(A)

F (p, q) . (A.5)

Taking first-order conditions with respect to p and q yields the choice-based char-
acterization as in MM (2015) and CDL (2019). CDL (2019) also provide sufficient
conditions for optimality.

To illustrate why the choice-based approach may not work for general UPS cost
functions, we let H be the weighted entropy. Then the cost function becomes

CH (μ,μ(·|·), q) =
∑

x,a

w(x)q (a) μ (x |a) ln
μ (x |a)

μ (x)

=
∑

x,a

w(x)μ(x)p(a|x) ln p(a|x)
q(a)

,

for some weight function w : X → [0, 1] . Following the choice-based approach
described above, we define

F(p, q) =
∑

a,x

μ(x)p(a|x)
[
u(x, a) − λw(x) ln

p(a|x)
q(a)

]
.

One can check that Lemma 2 does not hold in general so that the static RI problem is
not equivalent to the unconstrained problem in (A.5 ) for general UPS cost functions.
Similarly, Lemma2 inSSM(2017) also fails for generalUPS cost functions in dynamic
RI models. Thus the unconstrained coordinate-wise first-order conditions for p and q
cannot be used to characterize the solutions to dynamic RI problems.
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A.3 Two-period case

We study a two-period problem with T = 2 and U = 0 by dynamic programming.
First, consider the problem in period 2 conditional on the history of a chosen action
a1 :

V2 (μ2 (·|a1)) = max
q2(·|a1),μ2(·|·,a1)

∑

a2

q2 (a2|a1) Na2
H

(
μ2

(
·|a2
))

− λH (μ2 (·|a1))
(A.6)

subject to

μ2 (·|a1) =
∑

a2

μ2

(
·|a2
)
q2 (a2|a1) , (A.7)

where the net utility Na2
H is given by

Na2
H

(
μ2

(
·|a2
))

=
∑

x2

μ2

(
x2|a2

)
u (x2, a2) + λH

(
μ2

(
·|a2
))

.

The prior distribution μ2 (·|a1) also satisfies

μ2 (x2|a1) =
∑

x1

π (x2|x1, a1) μ1 (x1|a1) , a1 ∈ A, x2 ∈ X . (A.8)

It follows from Proposition 1 that q2(·|a1) and μ2(·|·, a1) are optimal if and only
if: (i) Equation (A.7) holds. (ii) For any x2 ∈ X , and chosen actions a1 and a2 with
q1 (a1) > 0 and q2 (a2|a1) > 0, we have

V̂2(x2|a1) = u(x2, a2) + λHx2(μ2(·|a2)) + λ f2(μ2

(
·|a2
)
), (A.9)

where
f2(ν) ≡ H(ν) −

∑

x

ν(x) Hx (ν), ν(x) ∈ �(X) . (A.10)

(iii) For any unchosen action a2 and μ
a2
2 ∈ �(X) such that

u (x2, a2) + λHx2

(
μ
a2
2

)− [u (M, a2) + λHM
(
μ
a2
2

)] = V̂2(x2|a1) − V̂2(M |a1)

for x2 = 1, 2, ..., M − 1, we have

∑

x2

Ix2
(
V̂2(x2|a1)/λ − u(x2, a2)/λ − f2(μ

a2
2 );μ

a2
2

) ≤ 1.

By Proposition 7, the value function in period 2 satisfies

123



Dynamic discrete choice under rational inattention

V2 (μ2 (·|a1)) = V 2(μ2(·|a1)) − λH(μ2(·|a1))
=
∑

x2

μ2 (x2|a1) V̂2 (x2|a1) − λH (μ2 (·|a1)) . (A.11)

Next consider the problem in period 1. By dynamic programming, we use (A.11)
to derive

V1 (μ1) = max
q1,μ1(·|·)

∑

a1

q1 (a1) N
a1
G (μ1 (·|a1)) − λH (μ1) , (A.12)

where
μ1(x1) =

∑

a1

q1(a1)μ1(x1|a1), x1 ∈ X . (A.13)

The net utility Na1
G associated with action a1 is

Na1
G (μ1(·|a1)) =

∑

x1

μ1(x1|a1)u(x1, a1) + βV 2(μ2(·|a1)) + λGa1(μ1(·|a1)),
(A.14)

where V 2 is given in (A.11), Ga1 is defined in (8), and μ2 (·|a1) satisfies (A.7 ).
It follows from Proposition 7 that V 2 is concave in μ2(·|a1), and hence concave in

μ1(·|a1) by (A.7). Moreover, Assumption 1 ensures the concavity of Ga1 in μ1(·|a1).
Therefore the net utility Na1

G is concave in μ1(·|a1). We view the problem in period 1
as a static RI problem with the prior belief μ1. Applying our Proposition 1, we derive
the following result.

Lemma 3 Let Assumption 1 hold. Then the pair μ1(·|·) and q1 is optimal for problem
(A.12) if any only if it satisfies the following conditions: (i) Equation (A.13) is satisfied.
(ii) There exists a function V̂1 (x1) such that for any chosen action a1 with q1(a1) > 0
and for any x1 ∈ X ,

V̂1 (x1) = v1(x1, a1) + λHx1(μ1(·|a1)) + λ f1(μ1(·|a1), a1), (A.15)

where f1 and v1 satisfy (20) and (21) with t = 1. (iii) For any unchosen action a1 and
μ
a1
1 ∈ �(X) such that

[
v1(x1, a1) + λHx1(μ

a1
1 )
]− [v1(M, a1) + λHM (μ

a1
1 )
] = V̂1 (x) − V̂1 (M) ,

for x1 ∈ X , we have

∑

x1

Ix1
(
V̂1(x1)/λ − v1(x1, a1)/λ − f1(μ

a1
1 , a1);μ

a1
1

) ≤ 1. (A.16)

Moreover, the optimal value for the two-period RI problem satisfies

V1(μ1) =
∑

x1

μ(x1)V̂1(x1) − λH(μ1).
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Proof First, we rewrite (A.8) as

μ2(x2|a1) =
M−1∑

x1=1

π(x2|x1, a1)μ1(x1|a1) + π(x2|M, a1)

⎛

⎝1 −
M−1∑

x1=1

μ1(x1|a1)
⎞

⎠ ,

(A.17)
and (8) as

Ga1(μ1(·|a1)) = H (μ1(·|a1)) − βH (μ2(·|a1)) (A.18)

Using (A.17), (A.18), and the chain rule, we calculate

∂Ga1(μ1(·|a1))
∂μ1(x1|a1) =Hx1 (μ1(·|a1)) − HM (μ2(·|a1))

− β

M∑

x2=1

Hx2(μ2(·|a1)) [π(x2|x1, a1) − π(x2|M, a1)] ,
(A.19)

for x1 = 1, . . . , M − 1.
Second, using Proposition 7 (iii), Eq. (A.17), and the chain rule, we can derive for

x1 = 1, . . . , M − 1,

∂V 2(μ2(·|a1))
∂μ1(x1|a1) =

M−1∑

x2=1

∂V 2(μ2(·|a1))
∂μ2(x2|a1)

∂μ2(x2|a1)
∂μ1(x1|a1)

=
M−1∑

x2=1

[
V̂2(x2|a1) − V̂2(M |a1)

]
[π(x2|x1, a1) − π(x2|M, a1)]

=
M−1∑

x2=1

V̂2(x2|a1) [π(x2|x1, a1) − π(x2|M, a1)]

−
M−1∑

x2=1

V̂2(M |a1) [π(x2|x1, a1) − π(x2|M, a1)]

=
M∑

x2=1

V̂2(x2|a1)[π(x2|x1, a1) − π(x2|M, a1)], (A.20)

where the last equality uses the equations

M−1∑

x2=1

π(x2|x1, a1) = 1 − π(M |x1, a1),
M−1∑

x2=1

π(x2|M, a1) = 1 − π(M |M, a1).
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Therefore, combining (A.19) and (A.20), we have

∂Na1
G (μ1(·|a1))

∂μ1(x1|a1) = u(x1, a1) − u(M, a1) + β
∂V 2(μ2(·|a1))
∂μ1(x1|a1) + λ

∂Ga1 (μ1(·|a1))
∂μ1(x1|a1)

=[u(x1, a1) + λHx1 (μ1(·|a1))] − [u(M, a1) + λHM (μ1(·|a1))]

+ β

M∑

x2=1

[
V̂2(x2|a1) − λHx2 (μ2(·|a1))

]
[π(x2|x1, a1) − π(x2|M, a1)]

= [v1(x1, a1) + λHx1 (μ1(·|a1))
]− [v1(M, a1) + λHM (μ1(·|a1))] .

(A.21)

We now use Lemma 3 of CD (2013), it is also equivalent to the Lagrangian lemma
in CDL (2022) Lemma 1. Condition (ED) in Lemma 3 of CD (2013) is equivalent to

[
v1(x1, a1) + λHx1(μ1(·|a1))

]− [v1(M, a1) + λHM (μ1(·|a1))]
= [v1(x1, b1) + λHx1(μ1(·|b1))

]− [v1(M, b1) + λHM (μ1(·|b1))] ,
(A.22)

for any chosen actions a1, b1 and x1 = 1, . . . , M − 1. Using (A.14) and (A.21), we
calculate

Na1
G (μ1(·|a1)) −

M−1∑

x1=1

∂Na1
G (μ1(·|a1))

∂μ1(x1|a1) μ1(x1|a1)

= v1(M, a1) + λHM (μ1(·|a1)) + λ f1(μ1 (·|a1) , a1).

(A.23)

Then condition (CT) in CD (2013) is equivalent to

v1(M, a1) + λHM (μ1(·|a1)) + λ f1(μ1(·|a1), a1)
= v1(M, b1) + λHM (μ1(·|b1)) + λ f1(μ1 (·|b1) , b1), (A.24)

for any chosen actions a1 and b1.
The rest of the proof is the same as the proof of Proposition 1 with u, μ(·|·), and f

replaced by v1, μ1(·|·), and f1, respectively. After V̂1 is identified, the expression for
the optimal value follows from Proposition 7 directly. �


A.4 Sufficient conditions for Assumption 1

A.4.1 Shannon entropy case

We first verify Assumption 1 for the Shannon entropy case, H(μ(x)) =
−∑x μ(x) lnμ(x) and provide a dynamic logit characterization.

For any μ, μ̃ ∈ �(X) , define G̃a(μ, μ̃) as

G̃a(μ, μ̃) =
∑

x1,x2

π(x2|x1, a)μ(x1) ln

[
μ̃(x2)

]β

μ(x1)
.
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Therefore,

Ga(ν) = G̃a

(

ν,
∑

x

π(·|x, a)ν(x)

)

.

Notice that G̃a(μ, μ̃) is a convex combination of μ(x1) ln
[μ̃(x2)]β

μ(x1)
for all x1, x2 ∈ X .

The expression μ(x1) ln
[μ̃(x2)]β

μ(x1)
is a jointly concave function of μ(x1) and μ̃(x2) for

any β ∈ (0, 1] . Therefore, G̃a is jointly concave in μ and μ̃.
For any θ ∈ [0, 1] and ν, ν′ ∈ �(X),

Ga (θν + (1 − θ)ν′)

= G̃a

(

θν + (1 − θ)ν′, θ
∑

x

π(·|x, a)ν(x) + (1 − θ)
∑

x

π(·|x, a)ν′(x)
)

≥ θ G̃a

(

ν,
∑

x

π(·|x, a)ν (x)

)

+ (1 − θ)G̃a

(

ν,
∑

x

π(·|x, a)ν′ (x)
)

= θGa(ν) + (1 − θ)Ga(ν′),

where the inequality follows from the definition of a jointly concave function. Thus
Assumption 1 is satisfied for Shannon entropy.

We can then apply Theorem 1 to derive a dynamic logit solution.

Corollary 1 The solution to dynamic RI Problem 2 with the Shannon entropy cost
satisfies the following necessary and sufficient conditions: (i) For t = 1, . . . , T ,

μt (xt |at ) = μt (xt |at−1) exp
(
ṽt (xt , at )/λ

)

∑
bt qt (bt |at−1) exp

(
ṽt (xt , bt , at−1)/λ

) , (A.25)

pt
(
at |xt , at−1

)
= qt (at |at−1) exp

(
ṽt (xt , at )/λ

)

∑
bt qt (bt |at−1) exp

(
ṽt (xt , bt , at−1)/λ

) , (A.26)

qt
(
at |at−1

)
=
∑

xt

pt
(
at |xt , at−1

)
μt

(
xt |at−1

)
, (A.27)

ṽt (xt , a
t ) = u(xt , at ) + β

∑

xt+1

π(xt+1|xt , at )Ṽt+1
(
xt+1, a

t) , (A.28)

Ṽt
(
xt , a

t−1
)

= λ ln

(
∑

at

qt (at |at−1) exp
(
ṽt (xt , a

t )/λ
)
)

, (A.29)

with the terminal condition ṼT+1
(
xT+1, aT

) = U (xT+1). (ii) For any at ∈ A,

∑

xt

μt (xt |at−1) exp
(
ṽt (xt , at )/λ

)

∑
bt qt (bt |at−1) exp

(
ṽt (xt , bt , at−1)/λ

) ≤ 1, (A.30)
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with equality if qt (at |at−1) > 0. Moreover, the value function satisfies

V T−t+1
(
μt

(
·|at−1

))
=
∑

xt

μt

(
xt |at−1

)
Ṽt
(
xt , a

t−1
)

, t = 1, 2, ..., T . (A.31)

Proof We provide a sketch of the proof here. In the Shannon entropy case, we have
ft (μt

(·|at) , at ) = 1 − β for t = 1, . . . , T − 1, and fT (μT
(·|aT ) , aT ) = 1. We

obtain from (22) that

μt (xt |at ) = exp

(
− V̂t (xt |at−1)

λ
+ vt (xt , at )

λ
− β1{t<T }

)
,

where 1 is an indicator function. Using this equation and (4), we can solve for
V̂t (xt |at−1):

V̂t (xt |at−1) = −λ ln

⎛

⎝ μt (xt |at−1)
∑

bt qt (bt |at−1) exp
(

vt (xt ,bt ,at−1)
λ

− β1{t<T }
)

⎞

⎠ .

Define ṽt (xt , at ) = vt (xt , at ) − λβ1{t<T } and define Ṽt
(
xt , at−1

)
as in (A.29).

Combining the previous two equations, we confirm (A.25). Plugging the previous
expression of V̂t (xt |at−1) into (21), we confirm (A.28) for ṽt . Equations (A.26) and
(A.27) follow from the usual probability rules. Inequality (A.30) follows from (24)
and (A.31) follows from (25). �


By this corollary and Theorem 2, we can provide a first-order characterization of a
Markovian solution for the Shannon entropy cost. For space limitations, we will not
state this result.

A.4.2 Two-state case

Consider the two-state case, i.e., M = 2. For any distribution ν = (ν(1), ν(2)), define

h(ν(1)) ≡H(ν) and

ga(ν(1)) ≡Ga(ν) = H(ν) − βH

⎛

⎝
∑

x=1,2

π(·|x, a)ν(x)

⎞

⎠ , a ∈ A.

Both h and ga are univariate functions on [0, 1]. It follows from the concavity of H
that h is concave. We also denote

ν̃a(x) ≡
∑

x ′
π(x |x ′, a)ν(x ′), x = 1, 2.

For notation simplicity, we remove the superscript a.
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Assume that the transition matrix is symmetric for any a ∈ A in the sense that

π(1|2, a) = π(2|1, a), for any a ∈ A. (A.32)

The symmetric property of the transition matrix implies that

min{ν(1), ν(2)} ≤ ν̃(i) ≤ max{̃ν(1), ν̃(2)}, i = 1, 2. (A.33)

This means that the distribution ν̃ = (̃ν(1), ν̃(2)) is closer to the uniform distribution
(1/2, 1/2) than the distribution ν = (ν(1), ν(2)).

To prove (A.33), consider i = 1 and derive

ν̃(1) = π(1|1, a)ν(1) + π(1|2, a)ν(2) = π(1|1, a)ν(1) + π(2|1, a)ν(2)

≥ π(1|1, a)min{ν(1), ν(2)} + π(2|1, a)min{ν(1), ν(2)} = min{ν(1), ν(2)},

where the second equality follows from (A.32). Similarly, we can prove ν̃(1) ≤
max{ν(1), ν(2)}.
Lemma 4 Suppose that β ∈ (0, 1) , h(ν(1)) = h(1− ν(1)) for any ν(1) ∈ [0, 1], and
h

′′
increases on [0, 1/2]. (i) If π is symmetric, i.e., (A.32) holds, then Assumption 1

holds. (ii) Suppose further that the transition kernel π satisfies π(x ′|x, a) ≥ ε for
some ε > 0 and any a ∈ A, x, x ′ ∈ X , and that h

′′
(ν(1)) ≤ −η for some η> 0 and

any ν(1) ∈ [0, 1]. If π is sufficiently close to be symmetric under some matrix norm,
then Assumption 1 also holds.

Proof (i) Because
g(ν(1)) = h(ν(1)) − βh(̃ν(1)),

we can compute

g
′′
(ν(1)) = h

′′
(ν(1)) − β h

′′
(̃ν(1)) [π(1|1, a) − π(1|2, a)]2

≤ h
′′
(ν(1)) − h

′′
(̃ν(1)), (A.34)

where the inequality follows from h
′′
(̃ν(1)) ≤ 0 and β (π(1|1, a) − π(1|2, a))2 < 1.

First consider the case of ν(1) ≤ 1/2. If ν̃(1) ≤ 1/2, because ν̃(1) ≥ ν(1) from
(A.33) and h

′′
increases on [0, 1/2], we have h

′′
(ν (1)) − h

′′
(̃ν (1)) ≤ 0. If ν̃ (1) >

1/2, it follows from h(ν(1)) = h(1 − ν(1)) that h
′′
(̃ν(1)) = h

′′
(1 − ν̃(1)). Due to

1 − ν̃(1) ≥ ν(1) from (A.33) and the fact that h
′′
increases on [0, 1/2], we still have

h
′′
(ν(1))−h

′′
(̃ν(1)) = h

′′
(ν(1))−h

′′
(1− ν̃(1)) ≤ 0. Next for the case of ν (1) > 1/2,

we can work with the variable ν (2) = 1 − ν (1) by the symmetry of h. The same
argument follows.

(ii) Given the additional assumption, we have

ν̃π (x) =
∑

x ′
π(x |x ′, a)ν(x ′) ≥ ε

∑

x ′
ν(x ′) = ε, for x ∈ X , a ∈ A,
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where we introduce the superscript to specify the dependence of ν̃(x) on π . This
inequality implies that ν̃π (1) ∈ [ε, 1 − ε]. Because h ′′

is continuous in the bounded
closed interval [ε, 1−ε], it is also uniformly continuous in the same interval. It follows
that ∣∣∣h

′′
(̃νπ (1)) − h

′′
(̃νπs (1))

∣∣∣ ≤ δ for any δ > 0, (A.35)

when π is sufficiently close to some symmetric transition kernel πs . Meanwhile, for
any δ <

1−β
β

η, we can derive

g
′′
(ν(1)) ≤ h

′′
(ν(1)) − β h

′′
(̃νπ (1)) = (1 − β)h

′′
(ν(1)) + β

[
h

′′
(ν(1)) − h

′′
(̃νπ (1))

]

≤ (1 − β)h
′′
(ν(1)) + βδ + β

[
h

′′
(ν(1)) − h

′′
(̃νπs (1))

]

≤ (1 − β)h
′′
(ν(1)) + βδ

≤ −η(1 − β) + βδ < 0,

where the first inequality follows from (A.34), the second inequality from (A.35), the
third inequality from h

′′
(ν(1)) − h

′′
(̃νπs (1)) ≤ 0 proved in part (i) of the lemma,

the fourth inequality from h
′′
(ν(1)) ≤ −η, and the final inequality from δ <

1−β
β

η.
Therefore Assumption 1 holds. �


To apply this lemma, we first consider the Shorrocks entropy

H(ν) = 1 − ν(1)2−ρ − ν(2)2−ρ

(ρ − 1)(ρ − 2)
, ρ 	= 1, 2.

Then

h(ν(1)) = 1 − ν(1)2−ρ − (1 − ν(1))2−ρ

(ρ − 1)(ρ − 2)
, ρ 	= 1, 2.

The symmetry h(ν(1)) = h(1 − ν(1)) clearly holds. Moreover,

h
′′
(ν(1)) = −ν(1)−ρ − (1 − ν(1))−ρ.

Then h
′′
(ν(1)) ≤ −η holds for some η> 0 and any ν(1) ∈ [0, 1]. Moreover h

′′
is

increasing on [0, 1/2] for ρ /∈ (−1, 0) and decreasing on [0, 1/2] for ρ ∈ (−1, 0).
Thus Lemma 4 holds for the Shorrocks entropy with ρ /∈ (−1, 0).

For the total information cost case,

H(ν) = −ων(1) ln
ν(1)

ν(2)
− ων(2) ln

ν(2)

ν(1)
, ω > 0.

Then

h(ν(1)) = −ων(1) ln
ν(1)

1 − ν(1)
− ω(1 − ν(1)) ln

1 − ν(1)

ν(1)
.
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The symmetry h(ν(1)) = h(1 − ν(1)) clearly holds. Moreover,

h
′′
(ν(1)) = − 2ω

ν(1)
− 2ω

1 − ν(1)
− ω

ν(1)2
− ω

(1 − ν(1))2
.

Then h
′′
(ν(1)) ≤ −η holds for some η> 0 and any ν(1) ∈ [0, 1], and h

′′
is increasing

on [0, 1/2]. Thus Lemma 4 holds for the total information cost function.

A.4.3 Additional cases

Now we provide two other sufficient conditions for Assumption 1 with many states.

Lemma 5 (i) Suppose there exist constants C ≥ C > 0 such that

−C‖ν−μ‖2 ≤ H(ν)−H(μ)−(∇H(μ)
)�

(ν−μ) ≤ −C‖ν−μ‖2, for any ν, μ ∈ �(X),

(A.36)
where ∇H is the gradient vector of H and ‖ · ‖ is the Euclidean norm in R

|X |. Then
Assumption 1 is satisfied for any β ∈ (0, β0] with some β0 ≤ 1 and any transition
kernel π .

(ii) Suppose that only the second inequality in (A.36) holds. Then Assumption 1
is satisfied for any β ∈ (0, β0] with with some β0 ≤ 1 and any transition kernel π

satisfying π(x ′|x, a) ≥ ε for some ε > 0 and for any a ∈ A, x, x ′ ∈ X .

Proof (i) To simplify notation, we omit the superscript a for the function Ga defined
in Assumption 1. For any α ∈ (0, 1), ν1, ν2 ∈ �(X),

G(αν1 + (1 − α)ν2) − αG(ν1) − (1 − α)G(ν2)

= [H(αν1 + (1 − α)ν2) − αH(ν1) − (1 − α)H(ν2)
]

− β
[
H(αν̃1 + (1 − α)ν̃2) − αH(ν̃1) − (1 − α)H(ν̃2)

]
,

(A.37)

where ν̃i (x) ≡ ∑
x ′ π(x |x ′, a)νi (x ′), i = 1, 2. It follows from the second inequality

in (A.36) that

H(ν1) − H(αν1 + (1 − α)ν2) − (∇H(αν1 + (1 − α)ν2)
)�

(1 − α)(ν1 − ν2)

≤ −C(1 − α)2‖ν1 − ν2‖2,
H(ν2) − H(αν1 + (1 − α)ν2) − (∇H(α1ν1 + (1 − α)ν2)

)�
α(ν2 − ν1)

≤ −Cα2‖ν1 − ν2‖2.

Multiplying the first inequality by α and the second inequality by 1−α, and summing
the resulting inequalities, we obtain

H(αν1 + (1 − α)ν2) − αH(ν1) − (1 − α)H(ν2)

≥ Cα(1 − α)‖ν1 − ν2‖2. (A.38)
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Similarly, it follows from the first inequality in (A.36) that

H(αν̃1 + (1 − α)ν̃2) − αH(ν̃1) − (1 − α)H(ν̃2) ≤ Cα(1 − α)‖ν̃1 − ν̃2‖2. (A.39)

Meanwhile,
ν̃1(x) − ν̃2(x) =

∑

x ′
π(x |x ′, a)

(
ν1(x

′) − ν2(x
′)
)

implies ∣∣ν̃1(x) − ν̃2(x)
∣∣ ≤

∑

x ′
π(x |x ′, a)

∣∣ν1(x ′) − ν2(x
′)
∣∣.

Therefore there exists a sufficiently large constant C such that

‖ν̃1 − ν̃2‖2 ≤ C‖ν1 − ν2‖2. (A.40)

Plugging (A.38), (A.39), and (A.40) into (A.37), we obtain

G(αν1 + (1 − α)ν2) − αG(ν1) − (1 − α)G(ν2) ≥ [C − βCC
]
α(1 − α)‖ν1 − ν2‖2,

which is not smaller than zero with β ≤ C
CC

for any α, ν1 and ν2. Therefore G is

concave for β ∈ (0, β0] where β0 = min
{

C
CC

, 1
}
.

(ii) If there exists ε > 0 such that π(x ′|x, a) ≥ ε for any a ∈ A, x, x ′ ∈ X , then
ν̃(x |a) =∑x ′ π(x |x ′, a)ν(x ′) ≥ ε for any a and x . Therefore ν̃ is uniformly bounded
away from the boundary of �(X). In the closed subset �ε(X) = {μ ∈ �(X) | μ(i) ≥
ε, i = 1, . . . , M} of �(X), all second order partial derivatives of H are bounded
uniformly from below. Then the first inequality of (A.36) follows from a second-order
Taylor expansion with the Lagrange remainder. The rest of the proof follows from that
for part (i). �


The second inequality in (A.36) means that H is strongly concave in �(X). It is
satisfied for the Shorrocks entropy index with ρ > 0. This is because the Hessian
matrix for H is Hess(ν) ≡ (Hi j (ν))1≤i, j≤M with Hii (ν) = −ν(i)−ρ and Hi j (ν) = 0
for i 	= j . Therefore, the matrix Hess(ν) + IM , where IM is an M × M identity
matrix, is negative definite for any ν ∈ [0, 1]|X | and ρ > 0, implying that the second
inequality of (A.36) is satisfied.

B Proofs for themain text

Proof Lemma 1 We focus on the finite-horizon case with T < ∞. The result for the
infinite-horizon case can be obtained by taking limits as T → ∞.

First, given a strategy (d, σ ) , we can construct the choice rule {pt } as in Sect. 2
and define a sequence of joint distributions μt

(
xt , at−1

)
as follows

μt+1

(
xt+1, at

)
= π (xt+1|xt , at ) pt

(
at |xt , at−1

)
μt

(
xt , at−1

)
, (B.1)
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for t ≥ 1, where μ1
(
x1, a0

) = μ1 (x1) . We can then construct the sequences
of posteriors

{
μt
(·|at)} and default rules

{
qt
(·|at−1

)}
. The distribution induced

by the strategy (d, σ ) and the sequence of distributions μt
(
xt , at−1

)
give the

same stream of expected utility. Next we show that the discounted information
cost associated with

{
μt+1

(
xt+1, at

)}
,
∑T

t=1 β t−1I(xt ; at |at−1), is not larger than
∑T

t=1 β t−1I(xt ; st |st−1) associated with (d, σ ) . These information costs can be
computed using the posteriors and predictive distributions (priors) induced by the
corresponding joint distributions.

Formally, by the definition of the discounted UPS cost, we compute

I
(
xt ; at |at−1

)
=
∑

at−1

qt−1

(
at−1

)
CH

(
μt

(
·|at−1

)
, μt

(
·|·, at−1

)
, qt
(
·|at−1

))

=
∑

at−1

qt−1

(
at−1

)
H
(
μt

(
·|at−1

))

−
∑

at−1

qt−1

(
at−1

)∑

at

qt
(
at |at−1

)
H
(
μt
(·|at))

=
∑

at−1

qt−1

(
at−1

)
H
(
μt

(
·|at−1

))
−
∑

at

qt
(
at
)
H
(
μt
(·|at)) .

Rearranging the terms in the discounted UPS cost yields

T∑

t=1

β t−1I(xt ; at |at−1)

= H(μ1) +
T−1∑

t=1

∑

at

β t−1qt (a
t )
[
βH

(
μt+1(·|at )

)− H(μt (·|at ))
]

−βT−1
∑

aT

qT (aT )H(μT (·|aT ))

= H(μ1) −
T−1∑

t=1

∑

at

β t−1qt (a
t )Gat (μt (·|at )) − βT−1

∑

aT

qT (aT )H(μT (·|aT )).

(B.2)

We can derive a similar decomposition for
∑T

t=1 β t−1I(xt ; st |st−1).

Now we prove that

∑

at

qt (a
t )Gat (μt (·|at )) ≥

∑

st

qt (s
t )Gat (μt (·|st )),
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where we use qt (at ) and qt
(
st
)
to denote the marginal distributions of at and of st ,

respectively, by abuse of notation. Since at = σ t
(
st
)
, we have

μt (xt |at ) =
∑

st

μt (xt |st )Pr(st |at ), xt ∈ X .

Since Gat is concave, it follows from Jensen’s inequality that

Gat (μt (·|at )) ≥
∑

st

Pr(st |at )Gat (μt (·|st )).

Multiplying both sides by qt (at ) and summing over at , we obtain

∑

at

qt (a
t )Gat (μt (·|at ))

≥
∑

st

∑

at

Pr(st |at )qt (at )Gat (μt (·|st )) =
∑

st

qt (s
t )Gσt(st)(μt (·|st )),

where at = σt
(
st
)
.

Since the generalized entropy H is concave, we can similarly prove that

∑

aT

qT (aT )H(μT (·|aT )) ≥
∑

sT

qT (sT ) H(μT (·|sT )).

Applying the preceding two inequalities to the second and the third terms on the
right-hand side of (B.2), we obtain

T∑

t=1

β t−1I(xt ; at |at−1) ≤
T∑

t=1

β t−1I(xt ; st |st−1).

By the above analysis, we deduce that the optimal value from Problem 1 is not
larger than that from Problem 2.

Conversely, given any sequences of posteriors
{
μt
(
xt |at

)}
and default rules{

qt
(
at |at−1

)}
, we can use the Bayes rule

pt
(
at |xt , at−1

)
= μt

(
xt |at

)
qt
(
at |at−1

)

μt
(
xt |at−1

) , t ≥ 1, (B.3)

to construct the choice rule {pt }, and follow the same argument as in Sect. 2 to construct
a strategy (d, σ ) . The discounted expected payoff from this strategy is identical to
the value of the objective function in Problem 2 given the sequences of posteriors
and default rules. Because histories of actions are a subset of information signals, the
optimal value from Problem 1 is not smaller than that from Problem 2. We then obtain
the desired result. �
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Proof of Proposition 1 Recall that the net utility is defined as

Na
H (μ (·|a)) ≡

∑

x

μ (x |a) u (x, a) + λH (μ (·|a)) . (B.4)

To apply Lemma 3 of CD (2013), we compute

∂Na
H (μ(·|a))

∂μ(x |a)
= u(x, a) + λHx (μ(·|a)) − u(M, a) − λHM (μ(·|a)) , (B.5)

for any x = 1, . . . , M − 1, and

Na
H (μ(·|a)) −

M−1∑

x=1

∂Na
H (μ(·|a))

∂μ(x |a)
μ(x |a)

=
∑

x

μ (x |a) u (x, a) + λH (μ (·|a))

−
M−1∑

x=1

[u(x, a) + λHx (μ(·|a)) − u(M, a) − λHM (μ(·|a))]μ(x |a)

= u(M, a) + λH (μ (·|a)) −
M−1∑

x=1

[λHx (μ(·|a)) − λHM (μ(·|a))]μ(x |a)

= u(M, a) + λHM (μ(·|a)) + λH (μ (·|a)) −
M∑

x=1

λHx (μ(·|a))μ(x |a). (B.6)

We will show that conditions FOC-CA and FOC-UA are equivalent to conditions
(ED), (CT), and (UB) in Lemma 3 of CD (2013), which is also equivalent to the
Lagrangian lemma in CDL (2022) Lemma 1.

Step 1. We rewrite conditions (ED), (CT), and (UB) in explicit forms.
Condition (ED) is equivalent to

u(x, a) + λHx (μ(·|a)) − u(M, a) − λHM (μ(·|a))

= u(x, b) + λHx (μ(·|b)) − u(M, b) − λHM (μ(·|b)) ,

(B.7)

for any chosen actions a, b, and any x = 1, . . . , M − 1.
Condition (CT) is equivalent to
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u(M, a) + λHM (μ(·|a)) + λH (μ (·|a)) −
M∑

x=1

λHx (μ(·|a))μ(x |a)

= u(M, b) + λHM (μ(·|b)) + λH (μ (·|b)) −
M∑

x=1

λHx (μ(·|b))μ(x |b),

(B.8)

for any chosen actions a and b.
Condition (UB) is equivalent to

u (M, b) + λHM

(
μb
)

+ λH
(
μb
)

−
M∑

x=1

λHx (μ
b)μb(x)

≤ u(M, a) + λHM (μ(·|a)) + λH (μ (·|a)) −
M∑

x=1

λHx (μ(·|a))μ(x |a),

(B.9)

for any chosen action a, any unchosen action b, andμb ∈ �(X) such that
∂Nb

H (μb(·))
∂μb(x)

=
∂Na

H (μ(·|a))

∂μ(x |a)
for any x = 1, . . . , M − 1 .

Step 2.We show that condition FOC-CA is equivalent to conditions (ED) and (CT).
Define function f as in (12). Then we can verify that conditions (B.7) and (B.8)

imply (13). Conversely, let (13) hold. Then setting x = M, (13) implies condition
(CT) in (B.8). It follows from (B.8) that

u(M, a)+λHM (μ(·|a))−[u(M, b) + λHM (μ(·|b))] = λ [ f (μ(·|b)) − f (μ(·|a))] .

Condition (13) also implies that

u(x, a) + λHx (μ(·|a)) − [u(x, b) + λHx (μ(·|b))]
= λ f (μ (·|b)) − λ f (μ (·|a)) , (B.10)

Combining the above two equations yield condition (B.7). Thus we have shown that
condition FOC-CA in Proposition 1 is equivalent to conditions (CT) and (ED).

Step 3. We show that function V̂ (x) defined in Proposition 7 of Appendix A.1 is
equal to the common value in (13).

For any chosen action a, the height of the hyperplane passing through Na
H (μ(·|a))

at μ (·) is given by

Na
H (μ(·|a)) −

M−1∑

x=1

∂Na
H (μ(·|a))

∂μ(x |a)
(μ(x |a) − μ(x)).

By conditions (CT) and (ED) in Lemma 3 of CD (2013), the expression above is
independent of any chosen action a. The height of this hyperplane at the prior with
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μ (x) = 1 and μ
(
x ′) = 0 for x ′ 	= x is

V̂ (x) = Na
H (μ(·|a)) −

M−1∑

y=1

∂Na
H (μ(·|a))

∂μ(y|a)
μ(y|a) + ∂Na

H (μ(·|a))

∂μ(x |a)
, (B.11)

V̂ (M) = Na
H (μ(·|a)) −

M−1∑

y=1

∂Na
H (μ(·|a))

∂μ(y|a)
μ(y|a), (B.12)

for x = 1, . . . , M − 1. By (12), (B.6), and (B.12), we have

V̂ (M) = λ f (μ(·|a)) + u(M, a) + λHM (μ(·|a)). (B.13)

By (B.5), (B.11), (B.12), and (B.13), we have

V̂ (x) = λ f (μ(·|a)) + u(M, a) + λHM (μ(·|a)) + ∂Na
H (μ(·|a))

∂μ(x |a)

= λ f (μ(·|a)) + u(x, a) + λHx (μ(·|a)),

for x = 1, ..., M − 1. Thus V̂ (x) is equal to the common value in ( 13).
Step 4. We show that condition (UB) in (B.9) is equivalent to FOC-UA.
By (B.5) and the definition of f , condition (UB) in (B.9) is equivalent to

u(M, b)+λHM (μb)+λ f
(
μb
)

≤ u(M, a)+λHM (μ(·|a))+λ f (μ(·|a)), (B.14)

where q (a) > 0 and μb ∈ �(X) satisfies

[
u(x, b) + λHx (μ

b)
]

−
[
u(M, b) + λHM (μb)

]

= [u(x, a) + λHx (μ(·|a))] − [u(M, a) + λHM (μ(·|a))] , (B.15)

for x = 1, ..., M − 1. Notice that (B.14) and (B.15) imply

u(x, b) + λHx (μ
b) + λ f

(
μb
)

≤ u(x, a) + λHx (μ(·|a)) + λ f (μ(·|a)), (B.16)

for x = 1, 2, ..., M . Conversely, suppose that (B.15) holds but (B.14) fails for some
chosen action a and some action b ∈ A. Then we can check that (B.16) fails too. Thus
we have shown that (B.16) is equivalent to condition (UB) in (B.9) given (B.15).

By (B.16), (13), and the definition of Ix , we obtain

μb(x) ≥ Ix

(
V̂ (x)

λ
− u(x, b)

λ
− f (μb);μb

)
, x = 1, . . . , M . (B.17)

Since
∑

x μb(x) = 1, this inequality implies (15). Here μb satisfies (B.15), which
is equivalent to (14) using ( 13). Conversely, if (B.17) fails for some x , the previous
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argument using (B.15) shows that it also fails for all other x . Hence (15) fails as well.
Therefore (UB) is equivalent to FOC-UA in Proposition 1. �

Proof of Proposition 2 We can easily verify the operator T satisfies the Blackwell suf-
ficient condition. Thus it is a contraction mapping. Since �(X) is compact when
endowed with the weak topology, continuous functions on this space are bounded.
Thus V is a Banach space. We can verify that T maps a function in V into V by the
theorem of the maximum. By the contraction mapping theorem, there is a unique fixed
point V ∈ V such V = T V . Moreover, lims→∞ T sV 0 = V for any V 0 ∈ V. Thus
limT→∞ V T = V . See Stokey, Lucas with Prescott (1989) for a reference of the cited
theorems here. �

Proof of Theorem 1 By (17), the sequence of value functions satisfies the dynamic
programming equations at any history at−1 reached with positive probabilities:

V T−t+1
(
μt

(
·|at−1

))

= max
μt(·|·,at−1),qt(·|at−1)

∑

xt ,at

qt
(
at |at−1

)
μt
(
xt |at

)
u (xt , at )

− λCH

(
μt

(
·|at−1

)
, μt

(
·|·, at−1

)
, qt
(
·|at−1

))

+β
∑

at

qt
(
at |at−1

)
V T−t (μt+1

(·|at)) (B.18)

subject to

μt

(
xt |at−1

)
=
∑

at

qt
(
at |at−1

)
μt
(
xt |at

)
, (B.19)

and
μt+1

(
xt+1|at

) =
∑

xt

π (xt+1|xt , at ) μt
(
xt |at

)
, (B.20)

for t = 1, ..., T . In the last period we have a terminal condition

V 0
(
μT+1

(
·|aT

))
=
∑

xT+1

μT+1

(
xT+1|aT

)
U (xT+1) .

Starting from the last period T , we apply the analysis for the two-period problem
in Appendix A.3 recursively by backward induction. We can then prove Theorem 1.
Without repeating the arguments in Appendix A.3, here we only outline the key steps
and omit the detailed derivation. Plugging equation

V T−t (μt+1
(·|at)) =

∑

xt+1

μt+1
(
xt+1|at

)
V̂t+1

(
xt+1|at

)− λH
(
μt+1

(·|at))

into the above Bellman equation, we obtain

V T−t+1
(
μt

(
·|at−1

))
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= max
μt(·|·,at−1),qt(·|at−1)

∑

xt ,at

qt
(
at |at−1

)
Nat
G

(
μt
(
xt |at

))− λH
(
μt

(
·|at−1

))

where the net utility function is defined as

Nat
G

(
μt
(·|at)) =

∑

xt

μt
(
xt |at

)
u (xt , at )+βV t+1

(
μt+1

(·|at))+λGat
(
μt
(·|at)) ,

where
V t+1

(
μt+1

(·|at)) =
∑

xt+1

μt+1
(
xt+1|at

)
V̂t+1

(
xt+1|at

)
.

By Assumption 1, Gat
(
μt
(·|at)) is concave in μt

(·|at) . The concave envelope
V t+1

(
μt+1

(·|at)) is concave in μt+1
(·|at) by Proposition 7 and hence in the poste-

rior μt
(·|at) by (B.20). Thus the net utility function Nat

G

(
μt
(·|at)) is concave. We

can then use Proposition 1 and Lemma 3 to characterize the solution. �


Proof of Theorem 2 ByDefinition 3, at history at−1 reachedwith positive probabilities,
μt
(·|at−1

)
takes the form μt (·|at−1) . Then the DM solves the following Bellman

equation:

V T−t+1 (μt (·|at−1))

= max
μt(·|·,at−1),qt(·|at−1)

∑

xt ,at

qt
(
at |at−1

)
μt
(
xt |at

)
u (xt , at )

− λCH

(
μt (·|at−1) , μt

(
·|·, at−1

)
, qt
(
·|at−1

))

+β
∑

at

qt
(
at |at−1

)
V T−t (μt+1

(·|at)) (B.21)

subject to

μt (xt |at−1) =
∑

at

qt
(
at |at−1

)
μt
(
xt |at

)
, (B.22)

μt+1
(
xt+1|at

) =
∑

xt

π (xt+1|xt , at ) μt
(
xt |at

)
, (B.23)

for t = 1, ..., T , with the terminal condition:

V 0
(
μT+1

(
·|aT

))
=
∑

x

μT+1

(
x |aT

)
U (x) .

As discussed in Sect. 4.3, the solution is a function of the prior/predictive distribution
μt (xt |at−1) independent of history at−2. Thus the optimal solution for qt

(
at |at−1

)

and μt
(
xt |at

)
takes the form qt (at |at−1) and μt

(
xt |att−1

)
.
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We can compute the state dependent choice probability:

pt+1(at+1|xt+1, a
t ) = μt+1(xt+1|at+1)qt+1(at+1|at )

μt+1(xt+1|at )
= μt+1(xt+1|at+1, at )qt+1(at+1|at )

μt+1(xt+1|at ) = pt+1(at+1|xt+1, at ),

for any μt+1(xt+1|at ) > 0. �

Proof of Proposition 3 The first-period predictive distribution is the prior μ1. The
second-period predictive distribution is μ2(·|a1). Because the solution is interior,
q2(a2|a1) > 0 for any a2 ∈ A. Then all predictive distributions μ2(·|a1) for dif-
ferent a1 are in the interior of the convex hull spanned by optimal posteriors μ2(·|a2).
By the LIP property of CD (2013), μ2(·|a2) is independent of μ2(·|a1) and hence
independent of a1. Thus μ2(·|a2) takes the form μ2(·|a2). The predictive distribution
in period t = 3 is determined by

μ3(x3|a2) =
∑

x2

π(x3|x2, a2)μ2(x2|a2),

which does not depend on a1. We can show that μt+1
(
xt+1|at

)
takes the form of

μt+1 (xt+1|at ) using the same argument by induction. Thus an interior solution is
Markovian. Moreover, the optimal posterior μt

(
xt |at

)
takes the form μt (xt |at ) for

any t ≥ 1. �

Proof of Proposition 4 We first check that the limiting solution from our algorithm
satisfies Eq. (27) using Eqs. (28) and (29). If condition (i) is satisfied, then we have

μt+1(xt+1, at ) =
∑

xt ,at−1

π(xt+1|xt , at )μt (xt |att−1)qt (at |at−1)qt−1(at−1)

=
∑

xt ,at−1

π(xt+1|xt , at )μt (xt |at )qt (at , at−1)

=
∑

xt

π(xt+1|xt , at )μt (xt |at )qt (at ),

where we simply write μt (xt |att−1) = μt (xt |at ) for any at−1 with qt (at |at−1) > 0.
Thereforeμt+1(xt+1|at ) defined in (29) satisfies (27). If condition (ii) is satisfied, then
we have

μt+1(xt+1, at ) =
∑

xt ,at−1

π(xt+1|xt , at )μt (xt |att−1)qt (at |at−1)qt−1(at−1)

=
∑

xt

π(xt+1|xt , at )μt (xt |att−1)qt−1(at−1),

for the unique at−1 leading to at with probability 1. Therefore qt (at ) =∑
at−1

qt (at |at−1)qt−1(at−1) = qt−1(at−1) and ( 27) also holds.
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We then prove that the limiting solution from our algorithm is Markovian. By
Theorem 2, we only need to prove by induction that μt (xt |at−1) does not depend on
the history at−2 for any t = 1, 2, . . . , T . This is trivially true for t = 1 and 2. When
t = 3,

μ3(x3|a21) =
∑

x2

π(x3|x2, a2)μ2(x2|a21) = μ3(x3|a2),

for any a1 leading to a2 with positive probabilities, due to (27) with t = 2. It then
follows from (26) that the posterior μ3(x3|a31) does not depend on a1, i.e., it takes the
form μ3(x3|a32). As a result, using (27) with t = 3, we have

μ4(x4|a31) =
∑

x3

π(x4|x3, a3)μ3(x3|a31) =
∑

x3

π(x4|x2, a3)μ3(x3|a32) = μ4(x4|a3),

for any a2 leading to a3 with positive probabilities. Therefore μ4(x4|a31) does not
depend on the history a21 . By induction, this argument applies to any t ≤ T . �

Proof of Proposition 5 When the transition kernel π (·|xt , at ) = μ1 (·) for any xt and
at , the prior beliefs given any at is the same as μ1 because

μt+1
(
xt+1|at

) =
∑

xt

π (xt+1|xt , at ) μt
(
xt |at

) = μ1 (xt+1) , (B.24)

for any t ≥ 1 and xt+1 ∈ X . Let T < ∞. Then in period T , the solution is the static
solution with priorμ1. In any period t ≤ T , the continuation value V T−t

(
μt+1

(·|at))
given any history at reached with positive probabilities can be written as V T−t (μ1)

independent of history at . Thus we have

∑

at

qt
(
at |at−1

)
V T−t (μt+1

(·|at)) = V T−t (μ1) .

Consider the dynamic programming Eq. (B.18) given history at−1. The prior beliefs
μt
(·|at−1

) = μ1 . The solution forμt
(·|·, at−1

)
andqt

(·|at−1
)
is the sameas the static

solution, independent of history at−1 and the future continuation value V T−t (μ1) .By
backward induction until t = 1, we deduce that the solution in any period is the static
solution. By Bayesian rule, the solution for the choice probabilities pt

(
at |xt , at−1

)
is

also the same as the static solution. For the infinite-horizon case, the result is obtained
by taking limits as T → ∞. �

Proof of Proposition 6 There are two types of solutions. By symmetry of the prob-
lem, we first solve for a symmetric interior solution satisfying q1 (a1 = 1) = 1/2
and q2 (1|1) = q2 (2|2) = z. Interior solutions are Markovian. By Corollary 1, we
compute

Ṽ2 (1, 1) = Ṽ2 (2, 2) = λ ln
[
z exp (1/λ) + 1 − z

]
,

Ṽ2 (1, 2) = Ṽ2 (2, 1) = λ ln
[
(1 − z) exp (1/λ) + z

]
,
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ṽ1 (1, 1) = ṽ1 (2, 2) = 1 + βαṼ2 (1, 1) + β (1 − α) Ṽ2 (2, 1) ,

ṽ1 (1, 2) = ṽ1 (2, 1) = βαṼ2 (2, 2) + β (1 − α) Ṽ2 (1, 2) .

It follows from μ1 (1) = 1/2 that the DM’s initial value is given by

V1 = 1

2
λ ln

1

2

[
exp (̃v1 (1, 1) /λ) + exp (̃v1 (1, 2) /λ)

]

+1

2
λ ln

1

2

[
exp (̃v1 (2, 1) /λ) + exp (̃v1 (2, 2) /λ)

]

= λ ln
1

2

[
exp (̃v1 (1, 1) /λ) + exp (̃v1 (1, 2) /λ)

]
.

Thus maximizing V1 is equivalent to maximizing

(
ze

1
λ + 1 − z

)βα [
(1 − z) e

1
λ + z

]β(1−α)

.

This is a concave function of z. The first-order condition gives

z = α (exp (1/λ) + 1) − 1

exp (1/λ) − 1
.

Thus, if

α∗∗ ≡ 1

exp (1/λ) + 1
< α <

exp (1/λ)

exp (1/λ) + 1
≡ α∗,

then the optimal solution is interior z ∈ (0, 1) . If α ≥ α∗, the solution is at the corner
z = 1. If α ∈ [0, α∗∗] , the solution is at the other corner z = 0. We then obtain the
desired result.

It remains to show that the corner solution in which q1 (1) = 1 is not optimal.
Suppose that it is optimal. Then we use q1 (1) = 1 and Corollary 1 to derive

V1 = 1

2
ṽ1 (1, 1) + 1

2
ṽ1 (2, 1) ,

where ṽ1 (1, 1) and ṽ1 (2, 1) are given earlier. Since exp (x/λ) is a convex function of
x, we obtain that

1

2
ṽ1 (1, 1) + 1

2
ṽ1 (2, 1) < λ ln

1

2

[
exp (̃v1 (1, 1) /λ) + exp (̃v1 (2, 1) /λ)

]
.

Since ṽ1 (2, 1) = ṽ1 (1, 2) for the above symmetric interior solution, we deduce that
the corner solution gives a smaller initial value than the above symmetric interior
solution. Similarly the other corner solution in which q1 (2) = 1 is not optimal. �
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C Forward-backward algorithm

C.1 Static case

Wefirst present an algorithm to solve the static RI Problem 3.18 Our algorithm consists
of seven steps:

1. Initialize μa ∈ �(A) and q ∈ �(A) with q(a) > 0 for all a ∈ A.
2. For any a ∈ A, compute

f (a) = H
(
μa)−

M∑

x=1

Hx (μ
a)μa (x) .

3. For any x ∈ X , compute V̂ (x) that satisfies the equation:

μ(x) =
∑

a

q(a)Ix

(
V̂ (x)

λ
− u(x, a)

λ
− f (a);μa

)
. (C.1)

4. For any a ∈ A and x ∈ X , compute

μa+(x) = Ix

(
V̂ (x)

λ
− u(x, a)

λ
− f (a);μa

)
. (C.2)

5. Update μa and q(a) by
μa+(x) → μa(x),

and
q+(a) =

∑

x

μa+(x) q(a) → q (a) . (C.3)

6. Go back to step 2, until
(
q+, μa+(x)

)
converges to (q, μa(x)) .

7. Find μb ∈ �(X) that satisfies (14). Check whether (15) is satisfied, where V̂ (x)
is the converged value obtained in Step 6. If it is satisfied, then stop and a solution
is found; otherwise, go to step 1 with a new guess.

It follows (C.2) and (C.3) that

q+(a) =
∑

x

Ix

(
V̂ (x)

λ
− u(x, a)

λ
− f (a);μa

)
q(a). (C.4)

This equation shows that there are two types of limits: Either q+(a) = q (a)∈ (0, 1]
when condition (15) holds as equality or q+(a) = q (a) = 0 when it holds as inequal-
ity. In the first case, action a is chosen and hence

∑
x μa(x) = 1 by (C.3). That is, μa

18 Our algorithm and the Arimoto–Blahut algorithm are related to the general block coordinate descent
method in the mathematics literature. See Bertsekas (2016) for a convergence analysis. It is beyond the
scope of this paper to provide a convergence proof.
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is the optimal posterior distributionμ (·|a) . In the second case, action a is not chosen.
Condition (15) ensures the iteration in (C.3) to converge.

Step 7 checks the sufficient condition (15) in Proposition 1. To implement this step,
we use (C.2) to substitute V̂ in ( 14) and derive

Hx

(
μb
)

− HM

(
μb
)

= Hx

(
μb
)

− HM

(
μb
)
, x = 1, ..., M − 1.

We use these M − 1 equations together with
∑M

x=1 μb (x) = 1 to numerically solve
for μb ∈ �(X) . For the Shannon entropy case, we can derive a closed-form solution:
μb(x) = μb(x)/

[∑
x ′ μb(x ′)

]
.

C.2 Dynamic case

Now we present an algorithm to compute a Markovian solution to the dynamic RI
Problem 2. It consists of the following steps:

1. Initialize f (0)
t (at |at−1) ∈ R, q(0)

t (·|at−1) ∈ �(A) , and μ
(0)
t (·|at−1) ∈ �(X) ,

with q(0)
t (at |at−1) > 0 and μ

(0)
t (xt |at−1) > 0 for any xt ∈ X , at , at−1 ∈ A, and

t = 1, . . . , T . Set μ(0)
1 (·|a0) = μ1 (·).

2. Choose a large integer K . For k = 1, 2, . . . , K until q(k)
t (·|·) and μ

(k)
t (·|·) get suf-

ficiently close to q(k−1)
t (·|·) andμ

(k−1)
t (·|·) for all t = 1, . . . , T , do the following:

Backward path: Initialize

v
(k)
T (xT , aT ) = u(xT , aT ) + β

∑

xT+1

π(xT+1|xT , aT )U (xT+1) .

For t = T , T − 1, . . . , 1 do:

• For each at−1 ∈ A, take v
(k)
t , f (k−1)

t (·|at−1), q(k−1)
t (·|at−1), and

μ
(k−1)
t (·|at−1) as the input u, f (·), q(·), μ for the algorithm in the static case

and use the Markovian version of Eqs. (26), (22), (21), and (20) to compute
the update f (k)

t (·|at−1), q
(k)
t (·|at−1), V̂

(k)
t (·|at−1), and μ

(k)
t (·|·, at−1).

• If t ≥ 2, compute

v
(k)
t−1(xt−1, at−1) = u(xt−1, at−1)

+β
∑

xt

π(xt |xt−1, at−1)
[
V̂ (k)
t (xt |at−1) − λHxt (μ

(k−1)
t (·|at−1))

]
.

Forward path: For t = 1, 2, . . . , T − 1 do:

• If t = 1, compute

μ
(k)
2 (x2|a1) =

∑

x1

π(x2|x1, a1)μ(k)
1 (x1|a1).
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• If t ≥ 2, compute

μ
(k)
t+1(xt+1, at ) =

∑

xt ,at−1

π(xt+1|xt , at )μ(k)
t (xt |att−1)q

(k)
t (at |at−1)μ

(k)
t (at−1),

μ
(k)
t+1(xt+1|at ) =μ

(k)
t+1(xt+1, at )

μ
(k)
t+1(at )

, μ
(k)
t+1(at ) =

∑

xt+1

μ
(k)
t+1(xt+1, at ) > 0,

where we set μ(k)
2 (a1) = q(k)

1 (a1).

3. Return q(K )
t (·|·), μ(K )

t (·|·, ·) and V̂ (K )
t (·|·).

4. Check whether the converged solution satisfies (27).

For the infinite horizon case, we increase T until convergence.

D Markovian versus history-dependent solutions

In this appendix we first characterize a Markovian solution and then provide two
numerical examples to illustrate Markovian and history-dependent solutions for the
Shannon entropy case.

Due to Theorem 2, Definition 2 is reduced to the following form for a Markovian
solution.

Definition 4 The sequences of {μt (·|att−1)}Tt=1 and {qt (·|at−1)}Tt=1 satisfy

(i) MFOCt -CA, if for any chosen action at ∈ A with qt (at |at−1) > 0 and for any
xt ∈ X ,

V̂t (xt |at−1) = vt (xt , at ) + λHxt (μt (·|att−1)) + λ ft (μt (·|att−1), at ), (D.1)

where

vt (xt , at ) = u(xt , at )

+β
∑

xt+1

π(xt+1|xt , at )
[
V̂t+1(xt+1|at ) − λHxt+1(μt+1(·|at ))1{t<T }

]
,

(ii) MFOCt -UA, if for any unchosen action at ∈ A with qt (at |at−1) = 0 and μ
at
t ∈

�(X) such that

[
vt (xt , a

t ) + λHxt (μ
at
t )
]− [vt (M, at ) + λHM (μ

at
t )
] = V̂t (xt |at−1) − V̂t (M|at−1) ,

(D.2)
for any xt ∈ X , we have

∑

xt

Ixt
(
V̂t (xt |at−1)/λ − vt (xt , at )/λ − ft (μ

at
t , at );μ

at
t
) ≤ 1. (D.3)

123



Dynamic discrete choice under rational inattention

Fig. 5 Markovian solution

Combining Theorems 1 and 2, we obtain the following characterization of a
Markovian solution.

Proposition 8 Suppose that Assumptions 1 holds. Then the sequences of{
μt
(
xt |att−1

)}T
t=1 and {qt (at |at−1)}Tt=1 are aMarkovian solution to dynamic RI Prob-

lem 2 if and only if they satisfy: (i) the Eqs. (26) and (27); (ii) MFOCt -CA and
MFOCt -UA for t = 1, . . . , T . The value function satisfies

V T+1−t (μt (·|at−1)) =
∑

xt

μt (xt |at−1)V̂t (xt |at−1) − λH(μt (·|at−1)), t = 1, ..., T .

(D.4)

Now we use both the fully history-dependent forward-backward Arimoto–Blahut
algorithm and the Markovian version described in Appendix C to compute numerical
solutions. For the first example, let T = 3, uT+1 = 0, X = A = {1, 2, 3} , and the
transition kernel satisfy π (xt+1|xt , at ) = 1 − γ if xt+1 = xt ; π (xt+1|xt , at ) = γ /2
if xt+1 	= xt , for all at . Let μ1 (1) = 0.2, μ1 (2) = μ1 (3) = 0.4, β = λ = 1,
γ = 0.2, u (x, a) = x − 1 if x = a; u (x, a) = 0, otherwise. Figure 5presents the
solution for this dynamic RI problem. History may matter only in period 3. We find
that q3 (a3 = 2|a2 = 2, a1 = 2) = q3 (2|2, 3) = 0.8723, q3 (3|2, 2) = q3 (3|2, 3) =
0.1277, and q3 (3|3, 2) = q3 (3|3, 3) = 1. The corresponding predictive distributions
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Fig. 6 History-dependent solution

satisfy μ3 (x3|a2 = 2, a1 = 2) = μ3 (x3|2, 3) and μ3 (x3|3, 2) = μ3 (x3|3, 3) for all
x3 ∈ X . Thus the solution is Markovian. Using our algorithm in Appendix C gives an
almost identical numerical solution. Notice that this solution is not interior, a case not
covered by SSM (2017).

For the second example, let T = 3, uT+1 = 0, X = A = {1, 2} , and the transition
kernel satisfyπt (xt+1|xt , at ) = 1−γt if xt+1 = xt ;πt (xt+1|xt , at ) = γt if xt+1 	= xt ,
for all at .Letλ = 10, β = 1, μ1 (1) = 0.7, γ1 = 0.15, γ2 = 0.9, u (x, a) = 5x if x =
a; u (x, a) = 0, otherwise. Figure 6presents the solution for this dynamic RI problem.
We find that the default rules are history dependent as q3 (1|2, 1) 	= q3 (1|2, 2) and
q3 (2|2, 1) 	= q3 (2|2, 2) .The predictive distributions are also history dependent as
μ3 (x3|2, 2) 	= μ3 (x3|2, 1) for x3 ∈ X . Using our algorithm in Appendix C gives a
suboptimalMarkovian solution, which is different from the optimal history-dependent
solution. We find that the welfare loss is very small. In particular, the optimal payoff
in period 1 is 14.4372, and the payoff implied by the Markovian solution is 14.4362.
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