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Abstract

Antibiotic resistance is modeled by future drug-cost increase through current consumption.
Price competition leads to free-riding inefficiency. Competitive rationing drug plans partially mit-
igate resistance. A monopoly fully internalizes free-riding resistance effect, but price may still be
high despite lower cost. Demand and cost configurations determine if consumer surplus becomes
higher under monopoly. A firm may enter with a superior drug; incumbent and entrant compete
under Cournot. The incumbent may deter entry by lowering sales and future cost. Entry deter-
rence reduces resistance, but the new drug is lost. Entry accommodation may exacerbate resistance
because the incumbent does not internalize resistance effects.
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1 Introduction

Antibiotics are medicines that kill bacteria, protozoa, and fungi. From the beginning of antibiotic

use less than 100 years ago, the problem of microbial resistance has been noted. Sir Alexander

Fleming warned in 1945 that “it is not difficult to make microbes resistant to penicillin in the

laboratory...”1 Fleming’s worry was the resistance brought about by under dosage, which would

allow survivors to adapt. Fleming said towards the end of his Nobel lecture: “Moral: If you use

penicillin, use enough.”

Today’s problem is markedly different. According to the World Health Organization (WHO),

antibiotic resistance has been “accelerated by human activities, mainly the overuse and misuse of

antibiotics against infections...”2 The US Center for Disease Control in 2021 estimated that more

than 35,000 people died because of antimicrobial-resistant infections, with more than 2.8 million

infections occurring in the United States.3 Such antibiotic resistance threats are estimated to cost

more than $4.6 billion annually (Nelson et al. 2021). The increased costs due to antibiotic resistance

come from an extended length of stay, additional treatments, and more intensive care required for

patients. Also, the Food and Agriculture Organization of the United Nations claims that antibiotic

resistance “would cost the world $412 billion a year in additional healthcare costs and $443 billion

per year in lost workforce productivity.”4 Based on reports from WHO, pharmaceutical companies

are reluctant to invest in antibiotic development due to the high cost of research and development

as well as the low return compared to other drugs (Klug et al. 2021).5

1https://www.nobelprize.org/uploads/2018/06/fleming-lecture.pdf, p93

2https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance, Overview section

3https://www.cdc.gov/antimicrobial-resistance/stories/partner-estimates.html

4https://www.fao.org/antimicrobial-resistance/news-and-events/news/news-details/en/c/1680317/

5https://www.pewtrusts.org/en/research-and-analysis/articles/2024/07/15/world-health-organization-
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The economic issue of antibiotic resistance is a form of the “tragedy of the commons,” wherein

self-interested individuals free ride and deplete a shared resource, which, in this case, is antibiotics’

power to kill microbes. Other examples of the failure of the sort are over-fishing, over-grazing, and

environmental pollution.6

In this paper, we define antibiotic resistance by the antibiotic becoming more costly, or equiv-

alently lower quality, in the future because of higher current consumption; antibiotics’ powers are

being depleted by use. Current users do not internalize the depletion damage, so there is an

antibiotic-resistance market failure.

We analyze basic economic issues of antibiotic resistance in various market structures and

dynamics in a two-period model. We consider competitive and monopoly, as well as Cournot

competition between an incumbent and a potential entrant. Our basic questions concern market

allocations and how antibiotic resistance is being manifested in different markets. We study various

market outcomes.

In a conventional competitive market, firms sell antibiotics at marginal costs. This leads to

the highest consumption, and antibiotic resistance becomes most serious. The resistance market

failure leads to an inefficient allocation under competition. Then we study an alternative form

of competition in which drug plans sell contracts to consumers. Consumers pay a premium, and

receive medicines under a rationing rule, but at zero monetary cost. We characterize the competitive

drug plan equilibrium. Even in a competitive environment, drug plans internalize some of the cost-

increase (or quality-reduction) consequence of antibiotic use. This results in a higher consumer

surplus from a more efficient allocation. Tragedy of the commons can be avoided to some extent,

warns-that-antibiotic-innovation-still-insufficient

6We focus only on human use of antibiotics. The evidence that animal use of antibiotics leading to
resistance is insignificant; see Adda (2020).
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under an alternative form of competition.

We next consider a monopoly market. A single firm produces antibiotics, so the monopolist does

fully internalize the antimicrobial resistance adverse effect. As a result the monopolist does reduce

resistance from the competitive level, but it reaps the benefit by maximizing its profit optimally.

There are two effects: first, the drug cost is lower due to the monopolist internalizes resistance;

second, the monopolist exploits the lower cost and obtains higher profits. We characterize (necessary

and sufficient) conditions for the monopoly allocation yielding higher consumer surplus than the

competitive allocation.

Possible entrants may provide a relief to antibiotic resistance, so we consider a market with an

incumbent monopolist facing a potential entrant. In the first period, the incumbent monopolist

chooses to sell a quantity of antibiotics, which then determines its cost in the second period. Then

in the second period, the entrant, having a higher quality antibiotic, can enter if its post-entry

profit can cover its fixed and variable costs. We model the post-entry competition by a Cournot

game with firms having drugs with different qualities.

The incumbent can deter entry by making its own future cost low, which makes the entrant

variable profit low. The entry deterrence strategy is favorable for preventing antibiotic resistance:

current consumption is reduced. But of course the loss is the lack of a superior drug, as well as

reduced consumer surplus.

The incumbent can accommodate entry. Under this strategy, the incumbent chooses its quantity

in the first period with the expectation that the entrant will enter in the second period. There

are two effects in play. First, as in standard Cournot interactions, the incumbent’s future profit is

decreasing in its future costs. If the incumbent manages to lower its future cost, the future profit

will increase. This is an incentive to reduce antibiotic resistance. Second, and this is a counter
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effect, because of entry and a reduced market share, the incumbent has less of a concern about

internalizing the cost increase due to resistance. The total effect is the sum of these two, so it is

ambiguous if entry accommodation will actually enhance or reduce antibiotic resistance.

The antibiotic market structure has surprising effects. Whereas it is clear that conventional

perfect competition may lead to antibiotic resistance in the most serious way, drug plan competition

entails some remedies. The monopoly situation is even more subtle. The monopolist may internalize

the antibiotic resistance effect, but its interest is in using the internalization to raise profit, not

to enhance consumer surplus. However, even the monopolist’s pure profit motive may benefit

consumers. Finally, in the potential entry scenario, the effect on antibiotic resistance is nuanced.

Entry deterrence and accommodation yield different incentives for reducing antibiotic resistance.

Our purpose here is to show that conventional policies such as taxes and subsidies simply may

miss the overall market picture. So to speak, throwing money at firms that strive to invent antibi-

otics, penalizing antibiotic use, or subsidizing new antibiotic use should be more firmly grounded in

economic analyses of the basic industry structure. Firms are not stand alone entities; a firm exists

in a market and interacts with other firms. Moreover, when drug-plan competition, rather than

price competition, is available, subsidizing plans may raise overall welfare because it encourages

more consumers to subscribe to drug-plan rationing. One might liken the drug-plan competition

as a form of antibiotic stewardship, and our result provides some foundation for how stewardship

may be structured.

One cannot dismiss the various industry structures here as theoretical curiosities. These market

structures are readily shown empirically. National Sales Perspectives (NSP) aggregates dollar and

unit sales at actual transaction prices from wholesalers, distributors, and pharmaceutical manufac-
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turers that cover 90% of the U.S. pharmaceutical market.7 As an illustration, we consider three

classes of common antibiotics: broad-spectrum penicillins, medium/narrow-spectrum penicillins,

and tetracyclines & combinations. For years between 2017 and 2022, we identify the top four phar-

maceutical companies according to the total dollar sales for each of these three classes. Market

shares are computed as sales divided by the total sales in each quarter of each year.

In each of the following three figures, the horizontal axis lists quarters over the years wheres the

vertical axis measures market shares. Figure 1 plots broad-spectrum penicillin market shares; they

appear to be quite evenly distributed among the top four firms. The broad-spectrum market is

competitive. Figure 2 plots medium/narrow-spectrum penicillin market shares. Pfizer maintained

a very high market share throughout the data period. The medium/narrow spectrum market is

concentrated. Finally, Figure 3 plots the tetracyclines and combinations market shares. There,

market entry and exit are apparent. Almirall S.A. initially held more than 30% market share

but exited the market in Q4 2019, while Paratek Pharmaceuticals entered the market in Q4 2018,

increased its share gradually to take the lead in 2020, and eventually reached over 25% of the market

by 2022. In brief, the NSP data show that competition, monopoly, and imperfect competition do

exist.

7https://www.iqvia.com/insights/the-iqvia-institute/available-iqvia-data
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Figure 1: Broad Spectrum Penicillins Market Shares

Figure 2: Medium/Narrow Spectrum Penicillins Market Shares
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Figure 3: Tetracyclines and Combinations Market Shares

The paper is organized as follows. Section 2 is a literature review. Section 3 presents the

demand and cost structures, and derives the first best. In Section 4, we show internalization

failures under conventional pricing in a competitive market. We then show that managed-care, drug

plan competition can alleviate some internalization failure. Section 5 analyzes how a monopolist

will internalize cost increase, and compares welfare between competitive and monopolist markets.

Section 6 considers the potential entry by a firm with a drug of higher quality. Cournot competition

with differentiated products formalizes post-entry interactions between firms. Finally, Section 7

draws some conclusions. Where proofs of results are not presented in the main sections, they are

collected in the Appendix.

2 Literature Reviews

The extant literature has widely recognized antibiotic resistance. Outterson (2009) and Outterson

et al. (2015) frame antibiotic effectiveness as a common pool resource that is steadily depleted
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through use. An individual consumer, making a short-run antibiotic use decision, fails to consider

the long-run depletion effect of this resource. Outterson et al. (2015) argue that the current rate of

innovation is insufficient to meet the growing challenge of antibiotic resistance, a concern echoed

by the U.S. Center for Disease Control and Prevention in 2024.

The tragedy of the commons problem naturally calls for a Pigouvian remedy. Thus, Giubilini

(2019) advocates for a tax on antibiotic uses because humans should have a moral obligation to

protect the common good. While such taxes may create inequities and unequal access to healthcare,

Giubilini (2019) argues that the antibiotic emergency may justify such drastic measures. Similarly,

Kuhn et al. (2011) extend this approach by incorporating a life-cycle framework for evaluating

healthcare distribution. They highlight the spillover effects of antibiotic use across the life cycle,

necessitating a tax-transfer system to align individual behaviors with social objectives.

Laxminarayan and Brown (2001) use a Susceptible-Infected-Suspectible (SIS) model, adapted

from the standard Susceptible-Infected-Recovery (SIR) framework in epidemiology, to describe

multiple antibiotics use by consumers. Their model shows that using one antibiotic continuously

depletes its effectiveness, and they derive conditions under which consumers should switch between

antibiotics based on cost and drug efficacy. Laxminarayan and Weitzman (2002) contribute to this

by showing that resistance is compounded by uniform treatment strategies and thus favor a mixed

strategy of treatment. Later works by Herrmann and Nkuiya (2009) and Herrmann and Gaudet

(2017) explore the dynamic efficacy of antibiotics under open-access conditions, showing how taxes

and subsidies can be employed to restore efficiency in antibiotic usage.

For monopolies, Hermann (2010) explores pricing policy under patent protection (so entries

are absent) with an SIS model, whereas Hermann et al. (2013) study innovation under incentives

provided by dynamic tax-subsidy policies. In Albert (2021), the SIS model is combined with
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economic components to study the evolution of resistance under imperfect competition, with perfect

competition and monopoly as special cases. The SIS model involves a set of differential equations

and closed form solutions are usually unavailable. Simulations and calibrations are often required

to draw some conclusions. The paper here uses exclusively an economic modeling method, the

primitives being demand and cost functions. The patient-physician interaction in Albert (2021) is

simplified as an overall demand. We are able to model imperfect competition explicitly by Cournot,

and analyze the fundamental market failure in a tractable way.

Currie et al., (2011, 2014) conduct field experiments on antibiotic prescription practices in

China, manipulating physician incentives to observe how they influence prescribing behavior. Their

findings suggest that physicians are more likely to prescribe when patients’ purchase may potentially

benefit physicians financially. In most countries, physicians do not directly benefit from medicine

sales, and these experiments warn against a relaxation of such a regime.

Antibiotic consumption exhibits a behavioral perspective. Filippini et al., (2006, 2009) and Fil-

ippini and Masiero (2012) investigate habit and persistence in antibiotic use and regional variations

in consumption patterns. Their studies reveal that past consumption of antibiotics will indeed lead

to its future consumption. But even in Switzerland, a small country, such regional variations can

be significant, too large to be attributable to price variations. The most recent empirical estimation

concerning the issue of resistance to antibiotics is by Mariuzzo et al. (2024). Using a nested logit

model, they demonstrate how taxes can shift demand from broad-spectrum to narrow-spectrum

antibiotics, a shift that could help mitigate resistance.

Our model integrates these key insights to demonstrate how the different market structures,

including competition, monopoly, and Cournot competition impact antibiotic usage and the de-

velopment of resistance. In competitive markets, because consumers do not internalize the social
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cost of antibiotic use, there will be overconsumption, these costs and resistance levels escalating

over time. In light of this argument, our analysis also says that market-driven consumption typi-

cally results in suboptimal outcomes. We extend this further by examining how the entry of new

firms, particularly those producing higher-quality drugs, can be deterred by incumbent firms in

manipulating consumption patterns in a manner so as to secure their dominance in the market.

In this paper, we focus on how such strategic interventions by incumbents affect incentives

for potential entrants, investigating pathways that could lead to more socially optimal outcomes.

Building on the work of Outterson et al. (2015), who proposed delinking profitability from sales

volume as a solution to the broken market for antibiotic innovation, we explore how different market

structures and entry conditions influence innovation incentives, especially with regards to how drug

resistance alters cost dynamics.

3 Model

3.1 Consumers

There is a unit mass of consumers who may benefit from taking a medicine. The quality of the

medicine is set at 1. (We first study the market with only this medicine available. In Section 6,

we consider two drugs, which have qualities 1 and q > 1.) Consumer benefits are described by

a random variable v defined on a positive interval [v, v] with distribution F (v), which is assumed

to be absolutely continuous. If a consumer with benefit parameter v pays a price p to buy the

medicine, the net utility is v−p. (For now we ignore the usual prescription requirement to purchase

antibiotics.)

From the benefit random variable v, we define a new random variable by the function: w ≡

1 − F (v), which is the share of consumers with benefits higher than v. Now w has a uniform
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distribution on [0, 1]. We will use the term consumer w to denote a consumer with benefit v =

F−1(1− w) ≡ G(w). When v = v, w = 1 and when v = v, w = 0. In other words, consumer w (or

type-w consumer) gets a benefit G(w) from the medicine. On paying a price p for the medicine,

the consumer’s utility is G(w) − p. If consumer w purchases the medicine at price p, so do all

consumers with types lower than w. The downward sloping function G is the demand function;

G(w) is the maximum price to sell to a mass of w consumers.

3.2 Drug resistance and cost

Microbe drug resistance is studied in a two-period model. Consumers consider using the medicine

in each of two periods; consumer benefits are independently and identically drawn from the same

distribution in each period. We also assume that there is no discounting. Denote the masses of

consumers using medicine in periods 1 and 2 by w1 and w2, respectively.

The marginal cost of medicine in period 1 is c0 ≥ 0, and its marginal cost in period 2 depends

on total consumption in period 1. If w consumers use medicine in period 1, the marginal cost in

period 2 becomes C(w), which is an increasing function C : [0, 1] → <+. We set C(0) = c0 and

C(1) = c. In other words, if there is no consumption in period 1, the marginal cost remains at c0,

and if all consumers use medicine, the marginal cost in period 2 is at its highest at c. We further

normalize c0 to 0. This normalization is without loss of generality. If c0 > 0, then consumers with

G(w) < c0 would never consume medicine, so we might just redefine the mass of consumers with

benefits higher than c0 as 1.

We model drug resistance by a cost increase: when more consumers use the medicine (a higher

value of w), its future marginal cost goes up. We do not mean that present consumption raises

future production cost. The interpretation is that certain amounts of medicine and resource are

required for a treatment. Resistance may mean that more medicine and resources, and the extra
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cost is will be needed to deliver the same quality (normalized at 1). The cost increase may also be

due to changes in treatment regiment if the antibiotic is part of a set of drugs.

We can model antibiotic resistance as a quality or valuation reduction, and perhaps that is a

more natural interpretation of resistance. Suppose that consumption by w1 consumers in period 1

reduces valuation by R(w2) in period 2. Let consumer v obtains a benefit v − R(w1) in period 2.

Using, v = G(w), we have v − R(w1) = G(w) − R(w1). This is a parallel shift downward of the

(period 2) demand function G(w) by R(w1). If we set the cost increase in period 2 from consumption

w1 in period 2 as C(w1) = R(w1), we obtain the same model. All results work identically under

the quality reduction formalism. Later in Section 6, we allow a new firm to enter with a more

expensive, higher quality drug. For convenience, we have chosen to keep qualities exogenous, so

antibiotic resistance is reflected in cost.

Remark. Modeling antibiotic resistance as an increase in the constant marginal cost is equivalent

to modeling it as a downward and parallel shift of the demand function; cost increase and quality

reduction are equivalent formalization of antibiotic resistance.

3.3 First best

We now write down a first-best benchmark. An allocation is defined by the sets of consumers who

get the medicine in each period. Obviously, if a type-w consumer gets allocated the medicine, so

should consumers with lower types (who have higher valuations than the w type). Thus, we can

define an allocation by (w1, w2), where types w ≤ wi will be allocated the medicine in period i,

i = 1, 2.

In an allocation (w1, w2), consumers’ total benefit in the two periods is

∫ w1

0
G(w)dw +

∫ w2

0
G(w)dw.
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The total cost incurred under this allocation is

∫ w2

0
C(w1)dw,

where we have used the normalization that medicine cost in period 1 is zero, as well as the rela-

tionship between period 1 consumption and period 2 cost. A first-best allocation is (w∗1, w
∗
2) that

maximizes the total benefit less total cost:

U(w1, w2) ≡
∫ w1

0
G(w)dw +

∫ w2

0
[G(w)− C(w1)]dw. (1)

We assume that the social welfare function (1) is concave, so U in (1) has a negative definite

second-order derivative matrix.8

Using standard first-order conditions, we have the following (with the proof omitted):.

Proposition 1. The first-best allocation (w∗1, w
∗
2) is given by

G(w∗1)− w∗2C ′(w∗1) = 0 (2)

G(w∗2)− C(w∗1) = 0. (3)

Equation (3) in Proposition 1 states that, in period 2, consumers with benefits higher than cost

should use the medicine. Equation (2) in the Proposition shows an intertemporal tradeoff. Raising

the threshold w1 reduces benefit by G(w1) in period 1. However, this period-one consumption

reduction lowers period-two cost by w2C
′(w1). At the first best, these two effects must be equal. If

there was no cost reduction (so that C ′ ≡ 0), we would have a solution of all consumers getting the

medicine in both periods. Proposition 1 explains the rationale for medicine use restraint to avoid

higher costs in the future.

8Straightforward calculation yields: ∂2U/∂w2
1 = g(w1) − w2C

′′(w1), ∂2U/∂w2
2 = g(w2), ∂2U/∂w1∂w2 =

−C ′(w1), where g ≡ G′ < 0 because G′ has the opposite sign as F ′ > 0. Hence we assume that g(w1) −
w2C

′′(w1) < 0, g(w2) < 0, and [g(w1)− w2C
′′(w1)]g(w2)− C ′(w1)2 > 0.
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4 Competition and internalization failure

Medicine gives benefits to consumers, but present consumption raises future costs. Individual

consumers, however, do not internalize the cost increase because a single consumer cannot affect

aggregate consumption. In a competitive market, the medicine’s price is the marginal cost c0 = 0.

At this price, all consumers will purchase medicine in period 1. The (marginal) cost of medicine in

period 2 becomes the highest C(1) = c, and consumers with types below w2, where G(w2) = c will

purchase medicine. Consumer surplus becomes

∫ 1

0
G(x)dx+

∫ w2

0
[G(x)− C(1)]dx <

∫ w∗
1

0
G(x)dx+

∫ w∗
2

0
[G(x)− C(w∗1)]dx. (4)

The inequality follows because the first best allocation (w∗1, w
∗
2) gives higher social surplus than any

other feasible allocation. In other words, allocation (1, w2) where G(w2) = C(1) ≡ c, is feasible in

(1) but only the first-best allocation (w∗1, w
∗
2) yields the highest surplus. In a competitive market,

prices always at marginal costs, so the first-period price does not reflect the true social cost of

consumption. We summarize the “tragedy of the commons” result by the following (with proof

omitted):

Proposition 2. In a competitive market where medicine costs are always equal to marginal costs,

compared to the first best, consumers use medicine excessively in period 1, which drives up cost in

period 2. The total social surplus is below first best.

4.1 Drug plans and internalization

Competition leads to low prices which result in consumers’ excessive use. Can a nonprice mecha-

nism, such as managed care, alleviate the antibiotic resistance problem? A managed care organiza-

tion designs a drug plan, a contract consisting of a premium and provision thresholds (π,w1, w2). In

exchange for a premium π, paid to the plan before consumers learn their types, ex post a consumer
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of type w is given medicine, at no cost, in periods 1 and 2 if w is less than wi in period i, i = 1, 2.

Consumers’ type information is assumed available to the drug plan, so contract implementation

is credible. The drug plan uses efficient rationing. Given quantity wi available in period i, those

consumers with valuations or benefits higher than G(wi) with be allocated the medicine. This in-

terpretation of managed care as delegation and efficient rationing is standard. In recent theoretical

literature, Frank et al. (2000), Glazer and McGuire (2000, 2006) explicitly use rationing allocations

to characterize health plans.

We continue to assume perfect competition, so there are potentially many identical drug plans,

and the medicine, at marginal cost, is available to consumers who do not enroll in a drug plan. It

is important to assume that drug plan enrollees could not pay out of pocket ex post to get around

rationing. Medicines require prescriptions, so a drug plan’s physicians would not prescribe medicine

if doing so would violate the rationing rule. We postulate that a drug plan allows consumers to

gain some benefits (besides the zero out-of-pocket drug expenses). These are common benefits in

managed care networks such as health and treatment information and referral advantages. We

denote this benefit by B > 0; the plan benefit is needed to motivate consumers to surrender

their decisions to a managed care organization. Those consumers who have not enrolled make

independent choices about medicine at costs but cannot get the plan benefit B. We assume that

B is exogenous, but will show how its magnitude will affect allocations.

We consider a representative drug plan; the analysis is the same if we consider multiple plans

and if consumers choose identical plans randomly. Suppose a drug plan sets premium and periods

1 and 2 thresholds (π,w1, w2). Consumers decide whether to join the plan or stay independent

before they learn their types. Suppose that s, 0 ≤ s ≤ 1, is the mass of consumers who have

enrolled in the plan; so 1−s have not and these consumers always choose to use medicine in period

1. The total consumption amount in period 1, given the plan contract, is 1 − s + sw1 consisting
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of independent consumers’ and w1 of enrollees’ uses. Therefore the cost of medicine in period 2 is

C(1− s+ sw1).

Given the mass of enrolled consumers s, a consumer’s expected utility from enrolling in the

plan is ∫ w1

0
G(x)dx+

∫ w2

0
G(x)dx− π +B. (5)

According to the thresholds those consumers with types below wi will be given medicine in period

i, i = 1, 2. The valuation of consumer w is G(w), so the two integrals are the expected benefit from

the plan’s rationing rule. The consumer pays the premium π but enjoys the plan benefit B.

An independent consumer will always purchase the drug in period 1. Given the mass of enrolled

consumers s and the rationing rule w1 in period 1, the medicine’s marginal cost will become

C(1 − s + sw1) in period 2. Those independent consumers with benefit G(w) > C(1 − s + sw1)

will purchase the medicine in period 2. A consumer’s expected utility from staying unenrolled in a

drug plan is ∫ 1

0
G(x)dx+

∫ ŵ

0
[G(x)− C(1− s+ sw1)]dx, (6)

where G(ŵ) = C(1−s+sw1). The first integral is the benefit in period 1 from consuming medicine

at cost 0; the second integral is the benefit of the consumer optimally choosing to purchase when

benefit is higher than cost.

The drug plan’s profit per enrollee is

π − w2C(1− s+ sw1). (7)

It receives a premium π per enrollee; with total medicine consumption 1− s+ sw1 in period 1, in

period 2 the cost for providing the medicine to consumers with types below w2 is w2C(1−s+sw1).

We have focused on one representative drug plan. This might have created the impression that

there was no competition. The single-plan focus is for expositional convenience. The fraction s of
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drug-plan enrollees is interpreted as the aggregate enrollment fraction. One particular drug plan

may only enroll a fraction of s but the cost in period 2 remains the same, namely C(1− s+ sw1)

when each plan sets the threshold w1 in period 1. Now we define an equilibrium.

Definition 1. A Drug Plan Competitive Equilibrium is a drug plan contract (πe, we
1, w

e
2) and an

enrollment share se, 0 ≤ se ≤ 1, such that

1) given s = se, (πe, we
1, w

e
2) maximizes the enrollees’ expected utility in (5), subject to the plan

making a zero profit in (7);

2) consumers maximize their utilities choosing between staying independent and enrolling in the

drug plan, and a fraction se optimally choose to enroll.

Given the enrollment share, a competitive drug plan must choose a premium and rationing

thresholds to maximize ex ante consumer surplus, and make a zero profit. This is the first require-

ment in the definition. Ex ante consumers are identical, so in order for a fraction of consumers to

enroll, all consumers must be indifferent between enrolling in the plan and staying independent.

This is the second requirement. We now characterize drug plan competitive equilibria.

Consider a given share s of consumers enrolling in a drug plan. In a Drug Plan Competitive

Equilibrium, the plan chooses w1 and w2 to maximize consumer’s surplus and charge a zero-profit

premium. Using (5) and setting (7) to zero to obtain the premium π = w2C(1− s+ sw1), for any

given s, we have the optimal drug-plan thresholds as follows:

(w̃1(s), w̃2(s)) = arg max
w1,w2

{∫ w1

0
G(x)dx+

∫ w2

0
G(x)dx− w2C(1− s+ sw1)

}
, (8)

where we have emphasized that the optimal thresholds depend on s. It is obvious that at s = 0

(zero drug plan enrollment), (w̃1, w̃2) = (1, w2), the competitive equilibrium allocation, and that

at s = 1 (full drug plan enrollment), (w̃1, w̃2) = (w∗1, w
∗
2), the first best.

As s increases from 0, a drug plan internalizes more of the cost increase in period 2 due to period
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1 consumption. Hence, it optimally reduces consumption of the medicine in period 1. Because of

the more favorable cost in period 2, the drug plan also raises consumption in period 2. We provide

mild conditions to confirm these monotone effects in the following Lemma, with proof is presented

in the Appendix.

Lemma 1. Suppose that C is linear or its second-order derivative does not take on very large

values. As s increases from 0 towards 1, w̃1(s) monotone decreases from 1 to w∗1, and w̃2(s)

monotone increases from w2 to w∗2.

Next we define a cutoff value on B. Let B ≡
∫ 1

w∗
1

G(x)dx. The integral

∫ 1

w∗
1

G(x)dx is a

consumer’s surplus loss forgoing consumption at 0 < G(w) < G(w∗1). As we will see, any B > B

will induce all consumers to join the drug plan. The proof of the following Proposition is in the

Appendix.

Proposition 3. At each B, 0 ≤ B ≤ B, there is a unique Drug Plan Competitive Equilibrium

(πe, we
1, w

e
2; s

e) given by the unique solution of the following

∫ 1

we
1

G(x)dx = B (9)

G(we
1)− we

2s
eC ′(1− se + sewe

1) = 0 (10)

G(we
2)− C(1− se + sewe

1) = 0 (11)

we
2C(1− se + sewe

1) = πe. (12)

The equilibrium threshold in period 1 is strictly less than 1 but above the first best: w∗1 < we
1 < 1. At

B > B, the unique Drug Plan Competitive Equilibrium is first best, with all consumers enrolling.

In period 2, the concern for further cost increase is irrelevant, independent consumers and

managed care plan enrollees have the same consumption allocation.9 Upon joining a drug plan,

9It is true that enrollees do not pay ex post, but independent consumers do. Managed care plans,
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a consumer experiences a loss of expected surplus in period 1: the consumer will not be given

the medicine if the valuation is less than G(we
1). Hence, the drug plan benefit must compensate

for the loss, and this is the requirement in (9). Now, drug plans compete, so must maximize

consumer surplus. For a given share of consumers joining a drug plan, thresholds we
1 and we

2

maximize enrollees’ surplus, so must satisfy the first-order conditions in (10) and (11). However,

we
1 is already pinned down by (9). Hence, the drug plan enrollee share se in (10) and (11) must

adjust accordingly. The premium must make the drug plan earn zero profit, which is (12). Finally,

(9) and (11) say that consumers are ex ante indifferent between enrolling and staying independent,

so a share se joining is (part of) an equilibrium.

A drug plan bears enrollees’ costs. When a drug plan has enrolled a fraction s of consumers,

it internalizes the cost increase in period 2 due to members’ period 1 consumption. However, it

cannot stop nonmembers from purchasing in period 1. Suppose that the plan reduces members’

period 1 consumption at w1 by 1 unit, the cost increase in period 2 is still C ′(1 − s + sw1) >

C ′(w1). Consumers accept drug-plan rationing because of the plan benefit B. When B is small,

the equilibrium rationing in period 1 cannot be very strong, so we
1 is still close to 1, maximum

consumption. When the benefit B increases, more consumers are willing to join, and the drug plan

can internalize more of the cost consequence of excessive consumption in period 1. As B increases

towards B, the internalization becomes stronger and approaches the first best.

A drug plan with quantity rationing offers a way to alleviate the competitive market’s failure to

internalize the cost increase. But it does have a caveat: there is, indeed, no free lunch. Consumers

have to be “bribed” to give up their control and use of the competitive prices. The importance of

Proposition 3 is that it explains the channel through which the bribe B leads to rationing to reduce

however, are able to enforce their rationing rule. In each case, those consumers with valuations higher than
the marginal cost will be allocated the medicine.
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period 1 consumption—even when drug plans operate in a competitive environment.

A drug plan can be likened to a notion of antibiotic stewardship, a guideline offered by public

health policy makers for practitioners. The CDC has developed the Outpatient Antibiotic Steward-

ship program, which lays out best prescription practices to guide healthcare providers in outpatient

settings10 Our results here can be used as a framework to establish the stewardship guidelines, but

we also warn that the implementation of stewardship may not be costless.

5 Monopoly and internalization

Monopoly is in sharp contrast with competition. Now we let a single pharmaceutical firm sell

to consumers directly. Let the monopolist set medicine prices at p1 and p2 in periods 1 and

2, respectively. These prices are set up at the beginning of period 1. The alternative of the

monopolist sequentially setting pi at the beginning of period i, i = 1, 2, turns out to be exactly the

same. With complete information, the monopolist can anticipate demand responses, so the timing

of the monopolist’s pricing decisions is inconsequential.

Given (p1, p2), let G(w1) = p1 and G(w2) = p2; consumer wi is just indifferent between buying

and forgoing consumption in period i, i = 1, 2. The quantities sold in period i is wi. The marginal

cost in period 2 is C(w1). The monopolist’s profit is

π(w1, w2) ≡ w1G(w1) + w2[G(w2)− C(w1)]. (13)

The monopolist recognizes that the sales amount in period 1, w1, affects its cost in period 2, which

becomes C(w1). The monopolist does internalize the cost increase, but exploits its market power.

We assume that the profit function in (13) is concave. The first-order derivatives of (13) with

10https://www.cdc.gov/antibiotic-use/media/pdfs/Core-Elements-Outpatient-508.pdf
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respect to w1 and w2 are:

∂π

δw1
= w1g(w1) +G(w1)− w2C

′(w1) and
∂π

δw2
= w2g(w2) +G(w2)− C(w1), (14)

where g ≡ G′ < 0. The first two terms in each of the partial derivatives are marginal revenues

in the two periods, each being less than the demands, G(w1) and G(w2). The term w2C
′(w1) is

the incremental cost for serving w2 consumers in period 2 when w1 consumers are served in period

1, so that is the marginal cost for selling to consumers in period 1. Obviously, the marginal cost

in period 2 is C(w1). Setting the first-order derivatives to zero yield the necessary and sufficient

conditions for profit maximization.

In period 2, the optimal priceG(wM
2 ) (or quantity wM

2 ) is characterized by the familiar marginal-

revenue-marginal-cost condition:

G(wM
2 )− C(wM

1 )

G(wM
2 )

= −w
M
2 g(wM

2 )

G(wM
2 )

(15)

which says that the price-cost margin is inversely proportional to the demand elasticity. (Quantity

is w2, so the proportional change in quantity is simply
1

w2
; price is G(w2), so the proportional

change in price is
g(w2)

G(w2)
.) This is the usual under-production result in a monopoly.

In period 1, the optimal price G(wM
1 ) is given by G(wM

1 ) + wM
1 g(wM

1 ) = wM
2 C

′(wM
1 ), which

can be rewritten as

G(wM
1 )− wM

2 C
′(wM

1 )

G(wM
1 )

= −w
M
1 g(wM

1 )

G(wM
1 )

, (16)

which also has an inverse-elasticity interpretation, except that the marginal cost pertains to the

incremental cost in period 2 due to period 1 production. We summarize the above as follows (with

its proof having been laid out above):

Proposition 4. The monopolist’s profit-maximizing prices, (G(wM
1 ), G(wM

2 )), are given by (15)

and (16).

21



Obviously, the consumer surplus from the monopolist’s profit-maximizaing prices will be below

the first best. However, the comparison of consumer surpluses between monopoly and perfect

competition seems to be ambiguous generally. Under competition, the cost in period 2 is at its

maximum due to free riding. Even when consumers purchase at cost, their surplus may be small.

Under monopoly, the usual price-cost margins will mean diminished consumptions in both periods.

The lower consumption in period 1 means a lower cost in period 2, which is a gain from the

allocation under perfect competition.

5.1 Consumer surplus comparison between monopoly and competition

We state the following and then explain the proof.

Proposition 5. i) Suppose that period 1 consumer surplus under competition is more than two

times the consumer surplus in period 1 under monopoly if the monopolist chooses the period 1

profit-maximizing price ignoring any cost increase in period 2; that is

∫ 1

0
G(x)dx ≥ 2

∫ w̃

0
[G(x)−G(w̃)]dx, (17)

where w̃ = arg maxw wG(w). Consumer surplus under competition is at least as high as under

monopoly.

ii) Conversely, if ∫ 1

0
G(x)dx < 2

∫ w̃

0
[G(x)−G(w̃)]dx, (18)

there exist cost functions C such that consumer surplus under competition is lower than under

monopoly.

Period 1 consumer surplus under competition,

∫ 1

0
G(x)dx, is a lower bound of total consumer

surplus for the two periods. The worst that can happen is the complete lack of consumption in

period 2. This will be the case when, after all the consumers purchase in period 1, the cost in
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period 2, C(1), becomes higher than the maximum consumer valuation. So consumers must be

able to do better than the left-hand side of the condition in (17) under competition.

The monopolist will internalize the cost increase, and the profit function in (13), rewritten

here, is w1G(w1)+w2[G(w2)−C(w1)]. Generally the monopolist will price more than G(w̃), where

w̃ = arg maxw wG(w), so period 1 consumer surplus cannot exceed

∫ w̃

0
[G(x) − G(w̃)]dx. Now in

period 2, the cost cannot decrease (and may actually rise), so again the monopolist must not sell

more than w̃. For periods 1 and 2 together, consumer surplus cannot exceed 2

∫ w̃

0
[G(x)−G(w̃)]dx

under monopoly.

The first part of Proposition 5 simply says that if the lower bound of consumer surplus under

competition is greater than the upper bound under monopoly, consumers will be hurt even when

the monopolist internalizes antibiotic-resistance cost increase. This part of Proposition 5 only refers

to the demand function G, so it is valid for all cost functions.

Next, in the second part of Proposition 5, we present costs functions for which monopoly may

improve welfare. For that we suppose that (17) is violated, so (18) holds. Consider a class of

(increasing and convex) cost functions C indexed by w†, defined as follows
at 0 ≤ w < w†, C ′(w) < ε where ε is close to 0

at w† < w < 1, C ′(w) > δ where δ is very large.


The cost function C has arbitrarily small derivatives for w smaller than w†, but very large derivatives

once w exceeds w†. Now let w† be close to 1. The graph of this cost function example is (mirror-

imaged) L-shaped. For such a cost function, in the competitive market, C(1) becomes very high,

so few, if any, consumers purchase in period 2. Therefore, the lower bound consumer surplus in

competition

∫ 1

0
G(x)dx is approximately the actual consumer surplus.

When C ′(w) is very small for w < w† (which is close to 1), the monopolist will choose a period 1

quantity close to w̃; and because the monopolist’s cost only increases slightly, the period 2 quantity
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is also close to w̃. Hence, consumer surplus will be approximately 2

∫ w̃

0
[G(x) − G(w̃)]dx. Now

(18) says that consumer surplus is higher under monopoly. We have exhibited a whole class of cost

functions for consumer-surplus improvements under monopoly.

In this scenario, cost increase due to antibiotic resistance becomes strong only at very high

consumption. Competition results in very high consumption, and that is detrimental. A monopolist

will avoid that high-cost scenario. The deadweight loss due to monopoly pricing is less than the

complete loss of the medicine. Clearly, there are many such examples that will be consistent with

monopoly welfare being higher than competition.

5.2 Monopoly drug plan

Earlier we have considered competitive drug plans. However, full efficiency cannot be maintained

unless such plans confer high benefits aside from drug coverage. We now consider drug plans offered

by a monopolist. Such a drug plan contract is defined by a premium and two thresholds: (π,w1, w2).

In exchange for a premium π, consumers receive the medicine in period 1 if the type is less than wi

in period i, i = 1, 2. The price π is paid upfront, before consumers learn their types. Consumers

do not have to pay any more expenses, but they are rationed according to the contract. There is

no need to include a drug plan benefit here because consumers have no other market options.

Under the contract (π,w1, w2), a consumer’s expected utility is

∫ w1

0
G(x)dx+

∫ w2

0
G(x)dx−π.

The monopolist’s profit is π−w2C(w1). Assume that the consumer’s utility of refusing the contract

is 0. Then given w1 and w2, the highest price Π that will be accepted is

Π =

∫ w1

0
G(x)dx+

∫ w2

0
G(x)dx.

At this price the monopolist’s profit becomes

∫ w1

0
G(x)dx+

∫ w2

0
G(x)dx− w2C(w1),
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which is the social welfare function (1). The monopolist, internalizing cost increase and extracting

all consumer surplus, chooses the first best (w∗1, w
∗
2) to maximize profit. The next result is obvious

and its proof is omitted.

Proposition 6. If the monopolist offers a drug plan, it chooses the first best, and sets a premium

to extract all consumer surplus.

A drug plan is the same as a two-part tariff. For a price Π, a monopolist sells consumers the

rights to purchase medicine at price G(w1) in the first period and price G(w2) in the second period.

The price Π is collected before consumers learn their types. Under this contract (Π, G(w1), G(w2)),

the consumer’s expected utility is

∫ w1

0
[G(x)−G(w1)]dx+

∫ w2

0
[G(x)−G(w2)]dx−Π.

From contract (Π, G(w1), G(w2)), the monopolist’s profit is

Π + w1G(w1) + w2[G(w2)− C(w1)].

Next given w1 and w2, when the consumer’s reservation utility is 0, the highest price Π is

Π =

∫ w1

0
[G(x)−G(w1)]dx+

∫ w2

0
[G(x)−G(w2)]dx

At this maximum price, the monopolist’s profit is

∫ w1

0
[G(x)−G(w1)]dx+

∫ w2

0
[G(x)−G(w2)]dx+ w1G(w1) + w2[G(w2)− C(w1)],

which again simplifies to the social welfare function (1). We record this as:

Corollary 1. The monopolist’s first-best drug plan can be implemented by a two-part tariff.
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6 Entry in period 2: Cournot competition with differentiated
products

We now let there be a potential entrant. Firm 1 is the incumbent monopolist in period 1; Firm 2,

the potential entrant in period 2. In period 1, Firm 1 produces Drug 1, at quality 1. Firm 1’s cost

structure remains the same; if it sells w1 units of Drug 1 in period 1, its marginal cost becomes

C(w1) in period 2. For convenience, we now denote Firm 1’s period 2 cost by c1 = C(w1), due to

its sales of w1 in period 1.

The potential entrant Firm 2 produces Drug 2, a superior medicine, say at quality q > 1, at

constant marginal cost c2 > 0. The entrant has to incur a fixed cost, FC > 0, to enter the market

in period 2. We assume that for some v ∈ [v, v]] we have v = vq − c2, so at costs, high-valuation

consumers prefer Drug 2 and low-valuation consumers prefer Drug 1.

If Firm 2 has entered in period 2, the two firms compete by choosing quantities. Suppose in

period 2, Firm 1 produces w` units of the lower quality Drug 1, and Firm 2 produces wh units of

the higher quality Drug 2. The Cournot construct postulates that there are two prices, p` for Drug

1 and ph for Drug 2, that will clear the market. When consumers are free to choose which product

to purchase, the demand for Drug 1 will be w` at price p` and the demand for Drug 2 will be wh

at price ph.

The prices that clear the market satisfy the following:

p` = G(wh + w`) and G(wh)q − ph = G(wh)− p`. (19)

According to prices in (19) consumer wh is indifferent between buying Drug 2 at quality q and

price ph and buying Drug 1 at quality 1 and price p`, so all consumers with types below wh prefer

to purchase Drug 2. The consumer with type w` + wh is indifferent between buying Drug 1 and

nothing; all consumers with types between wh and w` + wh prefer to purchase Drug 1. The prices
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in (19) clear the market.

After substitution, we write the market-clearing prices as

p` = G(wh + w`) and ph = G(wh)(q − 1) +G(wh + w`).

In period 2, variable profits for Firm 1 and Firm 2 are, respectively, [p` − c1]w` and [ph − c2]wh,

where again c1 = C(w1) is Firm 1’s cost in period 2 after it has produced w1 in period 1. Taking

into account Firm 2’s fixed cost, we write profits as

π1(w`, wh) = w`[G(wh + w`)− c1] (20)

π2(w`, wh) = wh[G(wh)(q − 1) +G(wh + w`)− c2]− FC. (21)

Definition 2. A Cournot equilibrium is (we
` , w

e
h) that are mutual best responses:

we
` = arg max

w`

w`[G(we
h + w`)− c1] (22)

we
h = arg max

wh

wh[G(wh)(q − 1) +G(wh + we
`)− c2]− FC (23)

provided that Firm 2’s equilibrium profit is positive. If Firm 2’s Cournot equilibrium profit is

negative, it does not enter and Firm 1 continues to be a monopolist in period 2.

Lemma 2. For any given Firm 2’s quantity wh, Firm 1’s maximum profit

max
w`

w`[G(wh + w`)− c1],

and profit-maximizing quantity

arg max
w`

w`[G(wh + w`)− c1]

are decreasing in cost c1.

Firm 2’s maximum profit

max
wh

{wh[G(wh)(q − 1) +G(wh + w`)− c2]− FC}

is decreasing in Firm 1’s quantity w`.
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As Firm 1’s cost increases, its profit falls, and its profit-maximizing quantity also decreases. It

is also obvious that Firm 2’s profit falls as Firm 1’s quantity increases, because Firm 2’s residual

demand becomes smaller (proof of Lemma 2 in Appendix).

How do Cournot equilibrium profits vary with costs? In period 2, Firm 1’s cost is c1 = C(w1)

due to w1 units of Drug 1 production in Period 1. To emphasize the subgame defined by c1 = C(w1),

we write explicitly the Cournot equilibrium as (we
`(c1), w

e
h(c1)). A Cournot equilibrium is given by

mutual quantity best responses from the maximization of profits in (20) and (21). The Cournot

equilibrium quantities (we
` , w

e
h) satisfy the respective first-order conditions of the maximization of

(22) with respect to w`, and the maximization of (23) with respect to wh:

G(we
h + we

`)− c1 + we
`g(we

h + we
`) = 0 (24)

G(we
h)(q − 1) +G(we

h + we
`)− c2 + we

h[g(we
h)(q − 1) + g(we

h + we
`)] = 0. (25)

We assume that these reaction functions uniquely determine the Cournot equilibrium. Then we

write the Cournot equilibrium profits as

πe1(c1) ≡ π1(we
`(c1), w

e
h(c1)) = we

`(c1)[G(we
h(c1) + we

`(c1))− c1] (26)

πe2(c1) ≡ π2(we
`(c1), w

e
h(c1)) = we

h(c1)[G(we
h(c1))(q − 1) +G(we

h(c1) + we
`(c1))− c2]− FC. (27)

Firm 2’s equilibrium profit is its maximized profit from choosing wh optimally against Firm 1’s

quantity we
`(c1). Hence, we apply the envelope theorem to obtain

dπe2(c1)

dc1
=
∂π2(w

e
`(c1), w

e
h(c1))

∂w`

dwe
`(c1)

dc1
= we

h(c1)g(we
h(c1) + we

`(c1))
dwe

`(c1)

dc1
,

which is positive if Firm 1’s Cournot equilibrium quantity is decreasing in Firm 1’s own cost, namely

dwe
`(c1)

dc1
< 0.

The following is standard comparative static results on Cournot equilibria, and its proof is in

the Appendix.
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Lemma 3. Suppose that the demand function G is concave. Firm 1’s Cournot equilibrium quantity

we
`(c1) is decreasing in its own cost. Firm 2’s Cournot equilibrium quantity we

h(c1) is increasing in

the rival’s cost.

6.1 Entry deterrence and accommodation

What are incumbent Firm 1’s choices in period 1 to affect entry? We begin with:

Definition 3 (Entry deterrence). Given any FC, suppose that Firm 1 chooses a quantity in period

1 so low that in period 2, Firm 1’s cost will not allow Firm 2 to earn a positive profit, then we call

it an entry deterrence quantity.

Formally, define wD
1 , with cD1 = C(wD

1 ), by

πe2(c
D
1 ) = we

h(cD1 )[G(we
h(cD1 ))(q − 1) +G(we

h(cD1 ) + we
`(c

D
1 ))− c2]− FC = 0, (28)

where πe2(c
D
1 ) ≡ π2(w

e
`(c

D
1 ), we

h(cD1 )) is Firm 2’s Cournot equilibrium profit post entry. Firm 1’s

quantity in period 1, w1, is said to deter entry if w1 ≤ wD
1 .

Firm 1 deters entry by producing w1 smaller than the critical level wD
1 which makes Firm 2’s

Cournot equilibrium profit vanish in period 2. By Lemmas 2 and 3, the value of wD
1 is well defined.

Equation (28) defines a functional relationship between the fixed cost FC and cD1 . Firm 2’s Cournot

equilibrium profit is decreasing in Firm 1’s cost. Hence, inverting (28), we obtain c1 = φ(FC). The

function φ gives Firm 1’s period 1 (highest) cost to deter entry. In case Firm 2’s fixed cost is so

low that entry cannot be prevented, then we just set φ(FC) to be an arbitrary negative number.

If the monopoly quantity wM
1 in Proposition 4 results in a cost C(wM

1 ) ≤ φ(FC), then entry is

deterred automatically. Next, if the monopoly quantity is higher, C(wM
1 ) > φ(FC), Firm 1 can still

deter entry by suppressing production; in this case, it retains monopoly power. So suppose that

Firm 1 produces w1 ≤ wD
1 < wM

1 . The profit in period 1 becomes w1G(w1). Then in period 2 its
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cost is c1 = C(w1). Because entry has been deterred, Firm 1’s period 2 profit is w[G(w)− C(w1)]

from producing w in period 2. Given entry deterrence, Firm 1’s period 2 maximum profit is

maxw w[G(w)− C(w1)]. The optimal quantity to deter entry is given by

arg max
w1≤wD

1

{w1G(w1) + max
w

w[G(w)− C(w1)]}. (29)

We present the following results, and its proof is in the Appendix.

Proposition 7. If Firm 1 deters entry by producing w1 with C(w1) ≤ φ(FC), it reduces antibiotic

resistance compared to the monopoly level in Proposition 4. That is, in an equilibrium without

entry, in period 1 Firm 1 produces less than wM
1 in Proposition 4, Firm 1’s profit falls from the

monopoly level, but the cost increase in period 2 is lower than the monopoly regime.

Suppose the entry deterrence quantity is below the monopoly level: φ(FC) = C(wD
1 ) < C(wM

1 ).

Without the restriction w1 ≤ wD
1 , Firm 1 would have chosen the monopoly quantities wM

1 and wM
2

in Proposition 4, but doing so violates the entry-deterrence requirement that Firm 1 must produce

less than wM
1 . Hence, Firm 1’s period 1 quantity must be wD

1 . As a result, the cost increase in

period 2 would be lower than the monopoly level. Firm 1 effectively raises its price in period 1, but

the cost in period 2 becomes lower. Firm 1 would be earning less than the full monopoly profit,

but is able to deter entry.

Next, we consider the entry-accommodation strategy. Here, in period 1 Firm 1 produces w1

with C(w1) > φ(FC). This means a higher profit in period 1 than deterrence, but now Firm 2

enters, and the Cournot equilibrium results. In this case, Firm 1’s profit in the two periods sum to

w1G(w1) + max
w`

w`[G(we
h + w`)− C(w1)] = w1G(w1) + we

` [G(we
h + we

`)− C(w1)],

where (we
` , w

e
h) are the Cournot equilibrium quantities. Firm 1’s period 1 equilibrium quantity w1

30



solves

max
w1≥wD

1

{w1G(w1) + we
`(w1)[G(we

h(c1) + we
`(c1))− c1]}, (30)

where c1 = C(w1), and (we
`(c1), w

e
h(c1)) are the Cournot equilibrium quantities in period 2. We

present the following (with its proof in the Appendix).

Proposition 8. If Firm 1 accommodates entry by producing w1 where C(w1) > φ(FC), it may or

may not exacerbate antibiotic resistance compared to the monopoly level in Proposition 4. That is,

Firm 1’s profit falls from the monopoly level, but the cost in period 2 may be higher or lower than

the monopoly regime.

Under entry accommodation, the first-order derivative of Firm 1’s profit with respect to quantity

w1 is

w1g(w1) +G(w1) + we
`(w1)[g(we

h(w1) + we
`(w1))]

dwe
h(w1)

dw1
− we

`(w1)C
′(w1).

This is to be compared with the optimal monopoly choice of period 1 quantity, characterized by

w1g(w1) +G(w1)− w2C
′(w1),

where w1 and w2 are optimal quantities in the two periods under monopoly. The extra term under

entry accommodation in Cournot competition is

we
`(w1)[g(we

h(w1) + we
`(w1))]

dwe
h(w1)

dw1
. (31)

By Lemma 3, Firm 2’s quantity is increasing in Firm 1’s period 1 cost, so the derivative
dwe

h(w)

dw

is positive, but g is negative, being the slope of the demand function. This extra, negative term

compared to the monopoly situation can be interpreted as follows.

A monopoly Firm 1 fully internalizes the cost increase in period 2, so reduces quantity from

the one-period monopoly level. In the accommodated entry Cournot competition scenario, Firm 1
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faces a residual demand function, not the full market of consumers, so there is less of an incentive

to reduce cost in period 1; this is an incentive to produce more in period 1, leading to more drug

resistance. But there is an additional, strategic consideration, and this is reflected by the extra

term in (31). Firm 1 earns more period 2 profit when its cost is low; this lower cost actually makes

Firm 2 reduce its quantity (wh), which raises Firm 1’s residual demand. All else equal, Firm 1

has an incentive to reduce cost in period 2 by restricting quantity in period 1. This reduces drug

resistance. Whether entry accommodation leads to more or less drug resistance relative to the

monopoly regime is due to two opposite effects, so is ambiguous.

The policy implications of results in potential entry are these. Market equilibria are inefficient,

partly because of imperfect competition, and partly because of the incumbent Firm 1 failing to

internalizing the cost increase due to antibiotic resistance. The obvious consideration is whether

entry is to be encouraged, and to what extent. Cost subsidization for the entrant encourages

entry. Marginal-cost subsidization and fixed-cost subsidization work somewhat different. Fixed-

cost does not affect quantity decisions after entry (in period 2), given the incumbent’s cost in

period 2. However, for the same incumbent cost, marginal cost subsidization will alter the Cournot

equilibrium. We do not attempt an analysis of subsidization of the entrant’s cost; it appears to be

a fairly mechanical way to crank out pros and cons.

7 Conclusion

We set up a formal theory of antibiotic resistance. The excessive use of an antibiotic degrades its

power to kill micro-organisms. We model it as an increase in cost or a decrease in quality. The

degradation like the depletion of a common resource, a sort of the tragedy of the commons. Whereas

the extant literature has recognized this, we analyze equilibrium outcomes in perfect competition,

monopoly, and imperfect competition under potential entry.

32



It is not the purpose here to propose new policy recommendations. Indeed, many scholars

and practitioners have thought long and hard about policies to combat antibiotic resistance. Our

purpose here is simply to reframe the resistance problem in the light of market structures. Indeed,

we do not take it as given that resistance is to be completely eliminated. The cost of doing so may

be exceedingly high because current consumer surplus loss may be too high to compensate future

consumer surplus gain.

The primitives in our model are a demand function and a cost function. The role of educating

consumers and persuading them to use antibiotics more judiciously is like changing the demand

function. The ultimate technological advance is to avoid resistance, so that the cost function is

flat, not increasing in current consumption. Welfare improvement may originate from policies other

than taxes, subsidies, or some sort of performance based contracting.
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Appendix

Proof of Lemma 1

The first-order conditions with respect to w1 and w2 are (10) and (11) in Proposition 3. Equations

(10) and (11) define w1 and w2 as implicit functions of s. We differentiate (10) to obtain

G′(w1)
dw1

ds
−w2

[
sC ′′(1− s+ sw1)(−1 + w1 + s

dw1

ds
) + C ′(1− s+ sw1)

]
−sC ′(1−s+sw1)

dw2

ds
= 0.

Next, we differentiate (11) to obtain

G′(w2)
dw2

ds
− C ′(1− s+ sw1)(−1 + w1)− sC ′(1− s+ sw1)

dw1

ds
= 0.

Collecting terms and simplifying, we obtain

[G′(w1)− s2w2C
′′(1− s+ sw1)]

dw1

ds
− sC ′(1− s+ sw1)

dw2

ds

= w2

[
sC ′′(1− s+ sw1)(−1 + w1) + C ′(1− s+ sw1)

]
−sC ′(1− s+ sw1)

dw1

ds
+G′(w2)

dw2

ds
= C ′(1− s+ sw1)(−1 + w1).

We rewrite the two simultaneous equations in matrix form

 G′(w1)− s2w2C
′′(1− s+ sw1) −sC ′(1− s+ sw1)

−sC ′(1− s+ sw1) G′(w2)




dw1

ds

dw2

ds



=

 w2 [sC ′′(1− s+ sw1)(−1 + w1) + C ′(1− s+ sw1)]

C ′(1− s+ sw1)(−1 + w1)

 .
The determinant of the left-hand side parameter matrix is positive due to the second-order

conditions for the maximization of (8); we call this determinant |A|. We then apply Cramer’s rule

to solve for the derivatives
dw1

ds
and

dw2

ds
. After simplification we have

dw1

ds
=
w2G

′(w2) [C ′(1− s+ sw1)− sC ′′(1− s+ sw1)(1− w1)]− sC ′(1− s+ sw1)
2(1− w1)

|A|
.
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Next, we have

dw2

ds
=
−
[
G′(w1)− s2w2C

′′(1− s+ sw1)
]
C ′(1− s+ sw1)(1− w1)

|A|

+
sC ′(1− s+ sw1)w2 [C ′(1− s+ sw1)− sC ′′(1− s+ sw1)(1− w1)]

|A|
.

Hence, if C ′′ is sufficiently small,
dw1

ds
is negative, and

dw2

ds
is positive.

Proof of Proposition 3

We construct the unique Drug Plan Competitive Equilibrium in the following way. First, for any

given B < B, find we
1 to satisfy (9). Because B < B, such a we

1 satisfies w∗1 < we
1 < 1. Second,

given we
1, choose se and we

2 to satisfy (10) and (11). Finally, set premium πe by (12).

Now we confirm that we have a Drug Plan Competitive Equilibrium. Because B < B, such

a we
1 from (9) has w∗1 < we

1 < 1. Equations (10) and (11) are the first-order conditions for

(w̃1(s), w̃2(s)) in (8). The concavity of the social welfare function (1) implies that the objective in

(8) is concave. Hence, given s, (w̃1(s), w̃2(s)) is unique. By Lemma 1, as s varies between 0 and 1,

w̃1(s) monotone decreases from 1 to w∗1. Hence, there is an se such that (10) and (11) would hold

for that s = se. Then obviously , we
2 = w̃2(s

e). By construction, consumers, ex ante, are indifferent

between enrolling and staying independent, so it is optimal for se of consumers to join. We have

constructed the unique Drug Plan Competitive Equilibrium for B < B.

Finally, consider B > B. At B = B, all consumers optimally choosing the drug plan is an

equilibrium. Any higher B will not change the equilibrium.

Proof of Lemma 2

By the envelope theorem, Firm 1’s maximum profit has a derivative with respect to cost c1 equal

to the partial derivative of the profit function with respect to cost c1, and this partial derivative is
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−w` < 0. Next, the cross partial of Firm 1’s profit with respect to cost c1 and quantity w` is

∂2w`[G(wh + w`)− c1]
∂c1∂w`

= −1.

The derivative of Firm 1’s profit-maximizing quantity with respect to cost has the same sign as

this cross partial, so it is also negative.

By the envelope theorem again, Firm 2’s maximum profit has a derivative with respect to Firm

1’s quantity equal to the partial derivative with respect to w`, which is whG
′(wh +w`) < 0 because

the demand G is a decreasing function.

Proof of Lemma 3

Totally differentiating the first-order conditions respectively for the maximizations of (20) and (21)

(which then define a Cournot equilibrium in (22) and (23)) we have

∂2π1(w
e
` , w

e
h)

∂w2
`

dw` +
∂2π1(w

e
` , w

e
h)

∂w`∂wh
dwh = −

∂2π1(w
e
` , w

e
h)

∂w`∂c1
dc1

∂2π2(w
e
` , w

e
h)

∂wh∂w`
dw` +

∂2π2(w
e
` , w

e
h)

∂w2
h

dwh = −
∂2π2(w

e
` , w

e
h)

∂wh∂c2
dc2,

and from (24) and (25) they turn out to be

[
2g(we

h + we
`) + g′(we

h + we
`)
]

dw` +
[
g(we

h + we
`) + we

`g
′(we

h + we
`)
]

dwh = dc1

[
g(we

h + we
`) + we

hg
′(we

h + we
`)
]

dw`+{2g(we
h+we

`)+w
e
hg
′(we

h+we
`)+(q−1)[2g(we

h)+g′(we
h)]}dwh = 0.

We express this system in matrix form 2g(we
h + we

`) + g′(we
h + we

`) g(we
h + we

`) + we
`g
′(we

h + we
`)

g(we
h + we

`) + we
hg
′(we

h + we
`) 2g(we

h + we
`) + we

hg
′(we

h + we
`) + (q − 1)[2g(we

h) + g′(we
h)]

dw`

dwh



=

dc1

0

 .
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We use Cramer’s Rule to compute

dwe
`

dc1
=

det(A`)

det(A)
,

where det(A) is the determinant of the coefficient matrix A and det(A`) is the determinant of the

matrix obtained by replacing the first column of A with the transpose of (1, 0).

The determinant of A is

det(A) =
[
2g(we

h + we
`) + g′(we

h + we
`)
]
×
{

2g(we
h + we

`) + we
hg
′(we

h + we
`) + (q − 1)[2g(we

h) + g′(we
h)]
}

−
[
g(we

h + we
`) + we

`g
′(we

h + we
`)
]
×
[
g(we

h + we
`) + we

hg
′(we

h + we
`)
]
.

The determinant of A` is

det(A`) = [dc1]×
{

2g(we
h + we

`) + we
hg
′(we

h + we
`) + (q − 1)[2g(we

h) + g′(we
h)]
}

−
[
g(we

h + we
`) + we

`g
′(we

h + we
`)
]
× 0

= dc1 ×
{

2g(we
h + we

`) + we
hg
′(we

h + we
`) + (q − 1)[2g(we

h) + g′(we
h)]
}
.

By the concavity of the demand function, we have g′(w) ≤ 0, so det(A) is positive and det(A`) is

negative. Therefore,

dwe
`

dc1
=

det(A`)

det(A)
< 0.

Next, det(Ah) is the determinant of the matrix obtained by replacing the second column of A

with (dc1, 0)T and therefore

det(Ah) =
[
2g(we

h + we
`) + g′(we

h + we
`)
]
· 0−

[
g(we

h + we
`) + we

hg
′(we

h + we
`)
]
· dc1

= −
[
g(we

h + we
`) + we

hg
′(we

h + we
`)
]
· dc1.

By the concavity of the demand function, we have g′(w) ≤ 0, so det(Ah) is positive. Recall that

det(A) is positive; thus we get

dwe
h

dc1
=

det(Ah)

det(A)
> 0.
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Proof of Proposition 7

Let cM1 = C(wM
1 ), where wM

1 is the monopoly period 1 quantity in Proposition 4. Either the

monopoly period 1 quantity yields a cost cM1 = C(wM
1 ) below or above the deterrence threshold.

That is, either cM1 ≤ φ(FC), or cM1 > φ(FC). If cM1 ≤ φ(FC) = C(wD
1 ), Firm 1’s monopoly

quantity wM
1 already deters entry, so the cost increase in period 2 will remain the same. If cM1 >

φ(FC), then Firm 1 must produce a period 1 quantity less than wD
1 . The constraint w1 ≤ wD

1 in (29)

binds. Because cM1 > φ(FC) = C(w1), we have w1 < wM
1 . Firm 1 produces less than the monopoly

level. Firm 1’s total profit must decrease because of the binding constraint w1 ≤ wD
1 < wM

1 .

Proof of Proposition 8

Recall that wM
1 > wD

1 so that the period 1 monopoly quantity is larger than the entry deterrence

threshold. To accommodate entry, Firm 1 chooses quantities according to (30). The monopolist

chooses (w1, w2) to maximize profit in (13). The two maximization problems are respectively:

max
w1≥wD

1

{w1G(w1) + we
`(w1)[G(we

h(w1) + we
`(w1))− C(w1)]} and

max
w1,w2

w1G(w1) + w2[G(w2)− C(w1)].

The first-order derivative of Firm 1’s entry-accommodating equilibrium profit with respect to

w1 is

w1g(w1) +G(w1)− we
`(w1)C

′(w1) + we
`(w1)[g(we

h(w1) + we
`(w1))]

dwe
h(w1)

dw1
,

where we have ignored the derivatives with respect to we
`(w1), by the envelope theorem. Notice

that we
`(w1) must be less than what Firm 1 would have chosen if it was the only firm in period

2. Also, the last term, we
`(w1)g(we

h(w1) + we
`(w1))

dwe
h(w1)

dw1
, is negative because g is negative and

dwe
h(w1)

dw1
> 0 by Lemma 3. It is possible that w1 may be higher or lower than wM

1 .
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