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ABSTRACT

This paper axiomatizes an intertemporal version of multiple-priors utility. A
central axiom is dynamic consistency, which leads to a recursive structure for
utility, to �rectangular�sets of priors and to prior-by-prior Bayesian updating as
the updating rule for such sets of priors. It is argued that dynamic consistency is
intuitive in a wide range of situations and that the model is consistent with a rich
set of possibilities for dynamic behavior under ambiguity. Journal of Economic
Literature Classi�cation Numbers: D81, D9
Key words: ambiguity, multiple-priors, dynamic consistency, Ellsberg Paradox,

robust control, updating beliefs, recursive utility.
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1. INTRODUCTION

1.1. Outline

The Ellsberg Paradox [9] illustrates that aversion to ambiguity, as distinct from
risk, is behaviorally meaningful. Motivated by subsequent related experimental
evidence and by intuition that ambiguity aversion is important much more widely,
particularly in market settings, this paper addresses the following question: �Does
there exist an axiomatically well-founded model of intertemporal utility that accom-
modates ambiguity aversion?�We provide a positive response that builds on the
atemporal multiple-priors model of Gilboa and Schmeidler [16]. Because intertem-
poral utility is also recursive, we refer to it as recursive multiple-priors utility.
We view intertemporal utility as a summary of dynamic behavior in settings

where complete commitment to a future course of action is not possible. Ac-
cordingly, foundations are provided by axioms imposed on the entire utility (or
preference) process, rather than merely on initial utility. Importantly, axioms do
not simply apply to conditional preference after each history separately. To ensure
that dynamic behavior is completely determined by preferences, a connection be-
tween conditional preferences is needed. This connection is provided by dynamic
consistency.
There is another reason to assume dynamic consistency. In the Bayesian

model, dynamic consistency delivers a compelling normative argument for Bayesian
updating. In contrast, in nonprobabilistic models of beliefs there is no consensus
about how to update (see Gilboa and Schmeidler [17] for some of the updating
rules that have been studied). It is natural, therefore, to assume dynamic consis-
tency in the multiple-priors framework to see if a unique updating rule is implied.
Our axiomatization is formulated in the domain of Anscombe-Aumann acts

[2], suitably adapted to the multi-period setting, where we adopt a simple set of
axioms. The essential axioms are roughly that (i) conditional preference at each
time-event pair satis�es the Gilboa-Schmeidler axioms (appropriately translated
to the intertemporal setting), and (ii) the process of conditional preferences is
dynamically consistent.
The resulting representation for the utility of a consumption process c = (ct)

is
Vt(c) = min

Q2P
EQ

�
�s�t �

s�t u(cs) j Ft
�
, (1.1)

where P is the agent�s set of priors over the state space and the �-algebra Ft
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represents information available at time t.1 An essential feature is that P is
restricted by the noted axioms to satisfy not only the regularity conditions for
sets of priors in the atemporal model, but also a property that (following Chen
and Epstein [7]) we call rectangularity. Because of rectangularity, utilities satisfy
the recursive relation

Vt(c) = min
Q2P

EQ
�
���1s=t �

s�t u(cs) + ���tV� (c) j Ft
�

(1.2)

for all � > t, which in turn delivers dynamic consistency. As is apparent from
these functional forms, the corresponding updating rule for sets of priors is Bayes�
Rule applied prior by prior.
The close parallel between the foundations provided here for dynamic modeling

with ambiguity and those that justify traditional expected utility modeling are
sharper when specialized to the case where consumption takes place only at the
(�nite) terminal time. In that setting, we have the following results, where the
�rst is well known and the second is a variant of our main theorem:

Bayesian result If conditional preferences at every time-event pair satisfy ex-
pected utility theory, then they are dynamically consistent if and only if
each prior is updated by Bayes�Rule.

Multiple-priors result If conditional preferences at every time-event pair sat-
isfy multiple-priors utility theory (suitably adapted), then they are dynam-
ically consistent if and only if each set of priors is rectangular and it is
updated by Bayes�Rule applied prior by prior.

Besides clarifying the nature of our analysis, the close parallel also supports our
view that recursive multiple-priors utility is the counterpart of the Bayesian model
for a setting with ambiguity. A similar parallel exists in the paper�s setting of
consumption streams, if one adds the usual assumptions of stationarity and in-
tertemporal separability that lead to the additivity and geometric discounting in
(1.1).

1.2. Related Literature

Conclude this introduction with mention of related literature. The model (1.1)
is essentially that adopted in Epstein and Wang [13], though without axiomatic

1A limitation of our model is that each Ft is assumed to be �nitely generated; that is, we
deal with event trees.
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foundations; a continuous-time counterpart is formulated in Chen and Epstein [7].2

A related nonaxiomatic model based on robust control theory has been proposed
by Hansen and Sargent and several coauthors; see [1] and [18], for example. While
these authors refer to �model uncertainty�rather than �ambiguity�as we do here,
their model is also motivated in part by the Ellsberg Paradox and it is proposed as
an intertemporal version of the Gilboa-Schmeidler model. In Section 5 we clarify
the behavioral content of the robust control model and draw comparisons with
recursive multiple-priors.
There is a small literature on axiomatic models of intertemporal utility under

risk or uncertainty. For the case of risky consumption processes, that is, where
objects of choice are suitably de�ned lotteries (probability measures), recursive
models are axiomatized in Kreps and Porteus [24], Epstein [10] and Chew and
Epstein [8]. Skiadas [30] axiomatizes recursive utility when the domain consists of
consumption processes, or Savage-style acts, rather than lotteries. However, his
model is still restricted to choice between risky prospects; in general terms, it is
related to the previously cited papers in the same way that Savage extends von-
Neumann Morgenstern. Two papers that axiomatize intertemporal utility that
admit a role for ambiguity are Klibano¤ [22] and Wang [33]. They adopt di¤er-
ent and more complicated preference domains and axioms. This permits them to
derive a range of results that are not delivered here. Wang axiomatizes a repre-
sentation similar to (1.1). However, our model provides a simpler axiomatization
and hence also a clearer and sharper response to the question posed in the opening
paragraph. (See Section 3.2 for further comparison.)
Sarin and Wakker [28, p. 94] observe (in their special setting) that a rec-

tangular set of priors implies dynamic consistency. Finally, after completion of
earlier versions of this paper, we learned of independent work by Wakai [31] who
arrives at a characterization similar to our main result in the context of exploring
conditions for the no-trade theorem to be valid when agents have multiple-priors
preferences.

2A counterpart of (1.1) appears also in [3] in a social choice setting where t indexes individuals
rather than time. However, no axiomatization is provided.
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2. THE MODEL

2.1. Domain

Time is discrete and varies over T = f0; 1; :::; Tg. We focus on the �nite horizon
setting T <1 because of its relative simplicity. However, Appendix B considers
the in�nite horizon case and thus we adopt notation and formulations (of axioms,
for example) that are compatible with both settings.
The state space is 
. The information structure is represented by the �ltration

fFtgT0 that is given and �xed throughout. We assume that F0 is trivial and that
for each �nite t, Ft is generated by a �nite partition; Ft (!) denotes the partition
component containing !. Thus if ! is the true state, then at t the decision-maker
knows that Ft (!) is true. One can think of this information structure also in
terms of an event tree.
Consumption in any single period lies in the set C; for example, C = R1+.

Thus we are interested primarily in C-valued adapted consumption processes and
how they are ranked. However, as is common in axiomatic work, we suppose that
preference is de�ned on a larger domain, where the outcome in any period is a
(simple) lottery over C, that is, a probability measure on C having �nite support;
the set of such lotteries is denoted�s (C). Thus, adapting the Anscombe-Aumann
formulation to our dynamic setting, we consider �s(C)-valued adapted processes,
or acts of the form h = (ht), where each ht : 
 �! �s(C) is Ft-measurable.3
The set of all such acts, denoted H, is a mixture space under the obvious mixture
operation.4

An adapted consumption process c = (ct) can be identi�ed with the act h
such that for each ! and �nite t, ht(!) assigns probability 1 to ct (!). In this
way, the domain of ultimate interest can be viewed as a subspace of H. Another
important subset of H is (�s(C))

T+1, referred to as the subset of lottery acts. To
elaborate, identify the act h = (ht) for which each ht is constant at the lottery `t
with ` = (`t) 2 (�s(C))

T+1. Consumption levels delivered by any lottery act `
depend on time and on the realization of each lottery `t but not on the state !.
Thus lottery acts involve risk but not ambiguity.

3Alternatively, one might consider acts of the form h : 
 �! �s(C
T+1), which correspond

precisely to Anscombe-Aumann acts where the deterministic outcome set is CT+1. However,
such a speci�cation leaves open the question how to restrict h to respect the information struc-
ture.

4In the in�nite horizon setting, we will deal with a suitable subset of H as explained in
Appendix B.
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The acts (`0; h�0) and (`0; `1; h�0;1) have the obvious meanings. Similarly,�
`��;�(�+k); q; q

0� denotes the lottery act `0 in which `0t = `t for t 6= � ; � + k,
`0� = q and `0�+k = q0.
Finally, note that Gilboa and Schmeidler also adopt the Anscombe-Aumann

framework. For axiomatizations of the atemporal multiple-priors model in a Sav-
age framework see Klibano¤et al [5] and Ghirardato et al [15]. The latter provides
a procedure for translating axiomatizations formulated in the Anscombe-Aumann
domain into a Savage-style domain. We suspect that their procedure could be
adapted to our setting.

2.2. Axioms

The decision maker has a preference ordering on H at any time-event pair repre-
sented by (t; !). Denote by �t;! the latter preference ordering, thought of as the
ordering conditional on information prevailing at (t; !). We impose axioms on the
collection of preference orderings f�t;!g � f�t;!: (t; !) 2 T � 
g.
The �rst axiom formalizes what is usually meant by �conditional preference.�

Axiom 1 (Conditional Preference - CP). For each t and !:
(i) �t;! =�t;!� if Ft(!) = Ft(!�).
(ii) If h0� (!

0) = h� (!
0) 8 � � t and !0 2 Ft(!), then h0 �t;! h.

Part (i) ensures that the conditional preference ordering depends only on available
information. Part (ii) re�ects the fact that Ft(!) is known at t if ! is realized.
Accordingly, (ii) states that at (t; !) only the corresponding continuations of acts
matter for preference. This rules out the possibility that the decision-maker, in
evaluating h at (t; !), cares about the nature of h on parts of the event tree that
are inconsistent with her current information about which states are conceivable.
Next we assume that each conditional ordering �t;! satis�es the appropriate

versions of the Gilboa-Schmeidler axioms. We state these explicitly both for the
convenience of the reader and also because our formal setup di¤ers slightly from
that in [16] as explained below in the proof of our theorem (Lemma A.1).

Axiom 2 (Multiple-Priors - MP). For each t and !: (i) �t;! is complete and
transitive. (ii) For all h; h0 and lottery acts `, and for all � in (0; 1), h0 �t;! h
if and only if �h0 + (1� �) ` �t;! �h + (1� �) `. (iii) If h00 �t;! h0 �t;! h,
then �h00 + (1� �)h �t;! h0 �t;! �h00 + (1� �)h for some � and � in (0; 1).
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(iv) If h0 (!0) �t;! h (!0) for all !0, then h0 �t;! h.5 (v) If h0 �t;! h, then
�h0 + (1� �)h �t;! h for all � in (0; 1). (vi) h0 �t;! h for some h0 and h.

Gilboa and Schmeidler refer to their versions of the component axioms respec-
tively as Weak Order, Certainty Independence, Continuity, Monotonicity, Uncer-
tainty Aversion and Non-degeneracy, which names suggest interpretations. The
motivation they o¤er applies here as well. We refer the reader to [16] and Appen-
dix A for further discussion.
The next axiom restricts preferences only over (the purely risky) lottery acts.6

Axiom 3 (Risk Preference - RP). For any lottery act `, for all p; p0; q and q0

in �s (C), if �
`��;�(�+1); p; p

0� �t;! �`��;�(�+1); q; q0�
for some !; t and � � t, then it is true for every !; t and � � t.

Because beliefs about likelihoods are irrelevant to the evaluation of lottery acts,
their ranking should not depend on the state. This property is imposed via the
indicated invariance with respect to !. Invariance with respect to � imposes the
following form of time stationarity in the ranking �t;! of lottery acts (`0; :::; `T ):
The ranking of (p; p0) versus (q; q0), where these single-period lotteries are delivered
at times � and � +1 respectively, (and where `��;�(�+1) describes payo¤s at other
times in both prospects), does not depend on � . Invariance with respect to t
requires that (`0; :::; `t�1; p; p0; `t+1:::) is preferred to (`0; :::; `t�1; q; q0; `t+1:::) at
time 0 if and only if the same ranking prevails at time t. If we assume CP,
whereby only the time t continuations matter when ranking acts at t, then the
ranking at t can be viewed as one between (p; p0; `t+1:::) and (q; q0; `t+1:::), and we
arrive at a familiar form of stationarity (see Koopmans [23]).
The Risk Preference axiom is satis�ed if the ranking of lottery acts induced

by each �t;! may be represented by a utility function of the form

Ut (`0; :::; `T ;!) = ���t �
��t u(`� )

for some � > 0 and u : �s(C) �! R1. Since this speci�cation is common, indeed
it is typically assumed further that u conforms to vNM theory, and since the axiom

5For any given !0, h0 (!0) and h (!0) are the lottery acts that deliver lotteries h0� (!
0) and

h� (!
0) in every period � and in every state.

6It would be unnecessary in a model where consumption occurs only at the terminal time.
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imposes no restrictions on how the decision-maker addresses ambiguity, which is
our principal focus, we view RP as uncontentious in the present setting.
A central axiom is dynamic consistency. To state it, de�ne nullity in the usual

way. For any � > t, say that the event A in F� is �t;!-null if

h0(�) = h(�) on Ac =) h0 �t;! h.

Axiom 4 (Dynamic Consistency - DC). For every t and ! and for all acts
h0 and h, if h0� (�) = h� (�) for all � � t and if h0 �t+1;!0 h for all !0, then h0 �t;! h;
and the latter ranking is strict if the former ranking is strict at every !0 in a
�t;!-nonnull event.

According to the hypothesis, h0 and h are identical for times up to t, while h0

is ranked (weakly) better in every state at t+ 1. �Therefore�, it should be ranked
better also at (t; !). A stronger and more customary version of the axiom would
require the same conclusion given the weaker hypothesis that

h0t(!) = ht(!) and h0 �t+1;!0 h for all !0 2 Ft(!).

In fact, given CP, the two versions are equivalent.
Dynamic consistency may be limiting (see the example in Section 4.1). On

the other hand, doing without leaves behavior unexplained unless one adds as-
sumptions about how the con�ict between di¤erent selves is resolved. Further
motivation for assuming dynamic consistency was provided in the introduction.
The �nal axiom is adopted purely for simplicity.

Axiom 5 (Full Support - FS). Each nonempty event in [Tt=0Ft is �0-nonnull.

More generally, if a component of the partition de�ned by some Ft were null
according to �0, we could discard it and apply the preceding axioms to the smaller
state space. In a general formulation without FS, the preceding axioms would be
modi�ed so as to apply only for a suitable subset of states rather than for all !.

3. THE REPRESENTATION RESULT

3.1. Rectangularity

Dynamic consistency of the expected utility model is due to the law of iterated
expectations and this, in turn, is due to the familiar decomposition of a probability
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measure in terms of its conditionals and marginals in the form:

pt (!) =

Z



pt+1 dp
+1
t (!) . (3.1)

Here, for any measure p on (
;FT ), pt (!) = p(� j Ft) (!) is its Ft-conditional and
p+1t is the restriction of pt to Ft+1. A set of priors P on (
;FT ) is rectangular if its
induced sets of conditionals and marginals admit a corresponding decomposition.
To de�ne rectangularity precisely, de�ne the set of Bayesian updates by

Pt(!) = fpt(!) : p 2 Pg ,

and de�ne the set of conditional one-step-ahead measures by

P+1t (!) = fp+1t (!) : p 2 Pg.

These sets can be viewed as realizations of Ft-measurable correspondences into
�(
;FT ) and �(
;Ft+1) respectively.7
Because the FS axiom will deliver measures having full support on FT , we

formulate the following simpler de�nition that is appropriate for that case and
avoiding thereby reference to �a:e:�quali�cations.

De�nition 3.1. P is fFtg-rectangular if for all t and !,

Pt(!) = f
Z



pt+1(!
0) dm : pt+1(!

0) 2 Pt+1(!0) 8!0;m 2 P+1t (!)g, (3.2)

or Pt(!) =
Z
Pt+1 dP+1t (!).

When P is the singleton fpg, (3.2) reduces to (3.1). The key feature is that
the decomposition on the right includes combinations of a marginal from P+1t (!)
with any measurable selection of conditionals. This will typically involve �foreign�
conditionals, that is, combining the marginal of some p with the conditionals
of measures other than p. Thus the essential content of rectangularity is ���,
asserting that P is suitably large. Indeed, the inclusion ���in (3.2) is true for

7For each t, �(
;Ft) denotes the set of probability measures on the �-algebra Ft.
When we refer to p+1t as a selection from P+1t , or when we write p+1t (!) 2 P+1t (!) for all

!, then it is understood that ! 7�! p+1t (!) is Ft-measurable; in other words, selections are
understood to be measurable.
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any P: for given p in P, simply apply the decomposition (3.1). An additional
observation is that rectangularity of P implies that of each Pt(!).
To illustrate, if t = 0 and if F1 corresponds to the binary partition fF1; F 01g,

then the set on the right consists of all probability mixtures of the form

m(F1) p (� j F1) + m(F 01) p
0 (� j F 01) ,

where m is a measure in P (restricted to F1) and where p (� j F1) and p0 (� j F 01),
measures on FT , are eventwise conditionals of some measures p and p0 in P. If
p = p0 = m above, then this mixture equals p and thus lies in P. Rectangularity
requires that the mixture lie in P even if the noted measures are distinct.
An important feature of rectangularity is that it implies that P is uniquely

determined by the process of conditional 1-step-ahead correspondences P+1t . More
precisely, begin with an arbitrary set of correspondences8

P+1t : 
  �(
;Ft+1) , (3.3)

where P+1t is Ft-measurable for each t. Because each measure in P+1t (!) is a
measure on Ft+1, think of P+1t (!) as the set of conditional 1-step-ahead measures
describing beliefs about the �next step�. Then there exists a unique rectangular
set of priors P whose 1-step-ahead conditionals are given by the P+1t �s, that is,

P+1t (!) = P+1t (!) for all t and !. (3.4)

The asserted set P can be constructed by backward induction using the relation9

Pt(!) = f
Z

pt+1 dm : pt+1(!
0) 2 Pt+1(!0) 8!0; m 2 P+1t (!)g. (3.5)

It is readily seen that the set P constructed in this way is the set of all measures
p whose 1-step-ahead conditionals conform with the P+1t �s, that is,

P = fp 2 �(
;FT ) : p+1t 2 P+1t (!) for all t and !g.

Further, every rectangular set P can be described in this way; simply use (3.4) to
de�ne P+1t .

8Thus P+1t denotes a primitive correspondence while the calligraphic P+1t denotes a corre-
spondence induced by a primitive set of priors P. Similar notation is adopted throughout.

9At T , the decision-maker knows whether or not any given event in FT has occurred. Thus
PT (!0) consists of the single measure p, where p(A) = 1A(!

0) for A in FT . The proof that (3.5)
implies (3.4) is similar to Step 3 in the proof of our theorem.
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Rectangularity can be illustrated geometrically in the probability simplex. Let

 = fR;B;Gg, corresponding to the three colors of balls in an Ellsberg urn, and
refer to Figure 1 for the corresponding probability simplex.10 For the �ltration,
take fFtg where all information is revealed at time 2, while

F1 = ffGg; fR;Bgg ,

that is, the decision-maker learns at t = 1 whether or not the ball is green.

� � � �insert Figure 1 here � � �

Every rectangular set of priors P is determined by the speci�cation of 1-step-
ahead conditional measures. Thus consider 1-step-ahead beliefs at time 0, that is,
time 0 beliefs about the likelihood of G. Given ambiguity, these are naturally rep-
resented by a probability interval for G. Because the probability of G is constant
along any line parallel to the face opposite G, the noted interval is de�ned by
the region between the two negatively sloped lines shown. At time 1, conditional
beliefs are trivial if G has been revealed to be true. Given fR;Bg, conditional
beliefs are described by an interval for the conditional probability of R. Because
the conditional probability of R is constant along any ray emanating from G, an
interval is determined by the region between the two rays shown. The collection
of all probability measures satisfying both interval bounds is the rectangular set
P; and all rectangular sets in the simplex have this form.

To conclude, some features of rectangularity (in the general setting) merit em-
phasis. First, rectangularity imposes no restrictions on 1-step-ahead conditionals
- these can be speci�ed arbitrarily. Moreover, the rectangular set P constructed as
above from the 1-step-ahead conditionals, induces these same sets of conditionals

10The vertex R denotes red with probability 1. More generally, a point p in the simplex
delivers red with probability given by the shortest distance between p and the face opposite R.
Similarly for other colors.
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and is the largest set of priors to do so. Third, any set of priors induces a small-
est rectangular set containing it; for example, P is the smallest rectangular set
containing P 0. More speci�cally, P 0 induces sets of 1-step-ahead conditionals and
these generate P as described above. Because induced 1-step-ahead conditionals
are precisely what one needs to compute utility by backward induction, we can
view P as precisely the enlargement of P 0 needed in order to incorporate the logic
of backward induction. Hence the connection between rectangularity and dynamic
consistency. Finally, rectangularity is tied to the �ltration. For example, if the
information learned at time 1 is whether or not the color is R, then a rectangular
set would have a similar geometric representation but from the perspective of the
vertex R. In particular, while P 0 is rectangular relative to the new �ltration, P is
not.

3.2. The Theorem

We need some further terminology. Say that a measure p in �(
;FT ) has full
support if

p (A) > 0 for every ; 6= A 2 FT .
Say that u : �s(C) �! R1 is mixture linear if u (�p+ (1� �)q) = �u(p) + (1�
�)u(q) for all p and q in �s(C) and 0 � � � 1.
We can now state our main result.

Theorem 3.2. The following statements are equivalent:
(a) f�t;!g satisfy CP, MP, RP, DC and FS.
(b) There exists P � �(
;FT ), closed, convex and fFtg-rectangular, with all

measures in P having full support, � > 0 and a mixture linear and nonconstant
u : �s(C) �! R1 such that: for every t and !, �t;! is represented by Vt(�; !),
where

Vt(h; !) = min
m2Pt(!)

Z
���t �

��t u(h� ) dm. (3.6)

Moreover, � and P are unique and u is unique up to a positive linear transforma-
tion.

Because consumption processes form a subset of H in the way described in
Section 2.1, the theorem delivers the representation promised in the introduction.
In particular, in (b), rectangularity of P implies that utilities satisfy the recursive
relation

Vt(h; !) = min
m2P+1t (!)

Z
[u(ht(!)) + �Vt+1(h)] dm, (3.7)
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which extends (1.2) to the domain H.
Another point made in the introduction was the parallel with foundations for

the Bayesian model. In that connection, note that one obtains an axiomatization
of the subjective expected additive (geometric discounting) utility model, with
Bayesian updating, if the multiple-priors axiom MP is strengthened to the appro-
priate versions of the Anscombe-Aumann axioms; more precisely, if MP (ii) and
(v) are replaced by the independence axiom on the domain H.
A representation analogous to that in the theorem is axiomatized in Wang [33,

Theorems 5.3-5.4]. In addition to the greater complexity of his framework, due
primarily to the more complicated domain assumed for preference, it delivers only
the special case where each set of conditional 1-step-ahead measures P+1t (!) is
the core of a convex capacity [29]; this restriction is not made explicit but it is
clear from the proof. Moreover, because his Theorem 5.4 includes an assumption
about functional form, it falls short of providing axiomatic underpinnings for his
counterpart of (3.6).
To apply our model, one needs to begin with the speci�cation of a rectangular

set P (in the same way that to apply the Savage model, the modeler needs to
select a prior). We showed in the previous section that this can be done by
specifying 1-step-ahead correspondences fP+1t g. Moreover, any speci�cation of
fP+1t g is admissible and generates, by backward recursion, a unique rectangular
set of priors. Thus rectangularity is consistent with any speci�cation of conditional
beliefs about �the next step�. Examples of such speci�cations are provided in the
next section. The noted backward recursion underlies the dynamic consistency
of preference, which in turn delivers tractability as demonstrated in [13], [7] and
[11].11

Consider brie�y some extensions of the theorem. It is straightforward to char-
acterize the model in which � is restricted to be less than 1. For example, the
following additional axiom on the ranking of lottery acts would characterize (3.6)
with � < 1: For any p0 and p in �s (C), if (p0; p0; :::; p0) �0 (p; p; :::; p), then
(p0; p; p; :::; p) �0 (p; p0; p; :::; p). Two other extensions are discussed next.
An in�nite horizon framework is desirable for the usual reasons and also be-

cause it would permit study of the long-run persistence of ambiguity. In our �nite
horizon model, the decision-maker knows at T the truth or falsity of any event in

11It is worth mentioning that frequently successful analysis does not require an explicit solution
for the set P arising from the backward recursion (3.5). The recursive relation for utility, and
hence the 1-step-ahead correspondences, often su¢ ce, as shown in the cited papers.

14



FT and thus �eventually�there is neither risk nor ambiguity. However, this need
not be the case if we take T = 1. Appendix B provides a representation result
in an in�nite horizon setting. Of particular note is that the set of measures P that
it delivers is (mutually) locally absolutely continuous, that is, mutually absolutely
continuous on [1t=0Ft. However, measures in P need not be mutually absolutely
continuous on the limiting �-algebra F1, and thus they need not merge asymptot-
ically to a single measure as in Blackwell and Dubins [4]. In that sense, the model
permits ambiguity to persist even in the long run after repeated observations (see
our paper [12] for more details).
A �nal extension has recently been achieved by Hayashi [21]. A generalization

of (3.7) is the recursive relation

Vt(h) = min
m2P+1t (!)

W

�
ht;

Z
Vt+1(h) dm

�
, (3.8)

for a suitable aggregator function W (strictly increasing in its second argument).
If P is a singleton, then this recursive relation is analogous to that axiomatized
in Kreps and Porteus [24] and Skiadas [30] that is motivated in Epstein and Zin
[14] by the desire to disentangle willingness to substitute intertemporally from
attitudes towards risk. A continuous-time version of (3.8) is provided in [7], where
it is argued that it permits a three-way separation between the two noted aspects
of preference and attitudes towards ambiguity. As for an axiomatization of (3.8),
the implied ordering �t;! satis�es CP and DC and it weakens RP in ways that are
well understood from studies of risk preference. In addition, it violates MP, but
satis�es the Gilboa-Schmeidler axioms on the subdomain of acts that are Ft+1-
measurable. It seems clear from [24] and [30] that axiomatization of (3.8) would
require a more complicated hierarchical domain for preference. Hayashi describes
an axiomatization in the context of such a domain. (Klibano¤ [22] and Wang [33]
deliver related representations.)

4. EXAMPLES

Our objective in this section is to cast further light on the scope of the theorem
and on rectangularity. Section 4.1 shows, in the context of a dynamic version
of the classic Ellsberg urn example, that dynamic consistency is problematic in
some settings. However, there are many other settings, including those that are
typical in dynamic modeling in macroeconomics and �nance, where backward
induction and hence dynamic consistency are natural. The remaining examples
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illustrate such settings. Sections 4.2 and 4.3 show how a rich set of models of
dynamic behavior can easily be constructed by specifying the process of 1-step-
ahead conditionals. These, in turn, lead naturally to a rectangular set of priors
through the logic of backward induction. For concreteness, these examples specify
relatively simple types of history dependence for these conditionals.12 Much more
general history dependence can be accommodated as explained further in Section
4.4. The examples, particularly the last one, also illustrate why the time zero
set of priors P is not in general equal to the natural set of �possible probability
laws�or �possible models of the environment�that the decision-maker may have
in mind.

4.1. Ellsberg

Consider the 3-color Ellsberg urn experiment in which there are 30 balls that are
red and 60 that are either blue or green. A ball is drawn at random from the urn
at time 0. The goal is to model the decision-maker�s preferences over acts that
pay o¤ according to the color of the ball that is drawn. A natural state space is

 = fR;B;Gg. To introduce dynamics in a simple way, suppose that the color is
revealed to the decision-maker at t = 2, leaving essentially a 3-period model. At
the intermediate stage time 1, the decision-maker is told whether or not the color
drawn is G. Thus the �ltration is fFtg, where Ft is the power set for all t � 2
and

F1 = ffR;Bg; fGgg :
To see that dynamic consistency may be problematic in this setting, consider

the ranking of (1; 0; 1) versus (0; 1; 1), where the former denotes the act that pays
1 unit of consumption (or utils) at time 2 in the states R and G and where the
latter is interpreted similarly. (There is no consumption in other periods.) The
time 0 ranking

(1; 0; 1) �0 (0; 1; 1) . (4.1)

is intuitive in an atemporal setting and arguably also in the present dynamic
setting. This ranking is supported by the set of priors P 0, where

P 0 =
�
p =

�
1
3
; pB;

2
3
� pB

�
: 1
6
� pB � 1

2

	
. (4.2)

Ambiguity about the number of blue versus green balls is re�ected in the range
of probabilities for pB. Assuming for the moment that P 0 is indeed the initial set
12In the language of time series analysis, the models of Sections 4.2 and 4.3 permit the inter-

pretation that the �set of possible models�does not contain models with �hidden state variables�.
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of priors, then the conditional rankings at time 1 depend on how P 0 is updated.
Under prior by prior Bayesian updating, one concludes that

(1; 0; 1) �1;fR;Bg (0; 1; 1) and (1; 0; 1) �1;fGg (0; 1; 1) , (4.3)

in contradiction to dynamic consistency.13

To clarify the connection to our theorem, note that P 0 is not fFtg-rectangular
(see Figure 1 and recall its discussion in Section 3.1). Thus it is not surprising
that P 0 leads to a violation of dynamic consistency. Our modeling approach would
suggest replacing P 0 by the smallest fFtg-rectangular set containing P 0, which is
readily seen to be given by the set P,14

P =
��

1
3

1
3
+ p0B

1
3
+ pB

; pB

1
3
+ p0B

1
3
+ pB

; 2
3
� p0B

�
: 1
6
� pB; p

0
B � 1

2

�
:

Because P is fFtg-rectangular, it would ensure dynamic consistency. However,
this would be at the cost of reversing the ranking (4.1). Therefore, the lesson we
take from this is not that it is impossible to deliver dynamic consistency within
the multiple-priors framework, but rather that in some settings, ambiguity may
render dynamic consistency problematic.
The essence of these problematic settings seems clear. Begin with any spec-

i�cation of 1-step-ahead beliefs. These determine 1-step-ahead preferences, by
which we mean the collection of conditional preference orders at any (t; !) over
acts that are Ft+1-measurable. Backward induction leads to a utility process over
all acts satisfying dynamic consistency. In this construction of utility, 1-step-ahead
beliefs or preferences are unrestricted. A di¢ culty arises only if there are intuitive
conditional choices that are not expressible in terms of 1-step-ahead preferences;
thus they involve acts that are not measurable with respect to the next period�s
information. The choice (4.1) is an example because the acts given there are not
F1-measurable.
We turn now to examples, based on speci�cations that are common in applied

dynamic modeling, where the appeal of dynamic consistency seems to us to be
unquali�ed.

13�1;fR;Bg denotes the common preference order �1;R=�1;B .
14As described in 3.1, P and P 0, induce the identical 1-step-ahead conditionals and thus

generate the same rankings at any t of acts that are Ft+1-measurable. In particular, they both
lead to (4.3).
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4.2. Ambiguous Random Walk

In many dynamic settings, the description of the environment is most naturally
expressed in terms of 1-step-ahead correspondences and thus a rectangular spec-
i�cation of the set of priors. As a stylistic benchmark example, suppose that
uncertainty is driven by an integer-valued state process Wt which begins at the
value zero (W0 = 0). All processes of interest are adapted to fFtg, where
Ft = � (Ws : s � t) de�nes a �ltration on the state space 
 = NT+1. The
decision-maker�s subjective view of the law of motion of Wt is that, given t and
conditional on the realized value of Wt, then Wt+1 � Wt = �1. However, she
is not completely con�dent about the transition probabilities. Thus she thinks in
terms of a set of transition probability measures, or equivalently, in terms of an in-
terval [1��

2
; 1+�

2
] for the probability that the increment equal +1, where 0 � � � 1

parametrizes the extent of ambiguity.
As an initial speci�cation, suppose that the same interval describes conditional

beliefs at every realized Wt, re�ecting the view that the increments Wt+1 �Wt

are una¤ected by current (or past) values of the state process (a type of IID
assumption for increments) and also by the calendar time t (a form of stationarity).
The conditional 1-step ahead correspondences P+1t are de�ned thereby and they
in turn determine a rectangular set of priors P, as described in (3.3)-(3.5). If
there is no ambiguity (� = 0), then P is a singleton and it describes a random
walk. More generally, P describes an ambiguous random walk.
A rich range of generalizations of this model are possible, including the next

example, in which P+1t depends on history re�ecting learning. In all such cases,
a rectangular set of priors emerges naturally and dynamic consistency is unprob-
lematic.15

4.3. Conditional Ambiguity

The ambiguous random walk features ambiguity about both the conditional mean
and the conditional variance, parametrized by �. The idea is easily generalized.
As a further example of the rich dynamics that is compatible with rectangularity,
consider the following �autoregressive conditional ambiguity�model. The state

15In the �rst two examples, �ltrations are not generated by �nite partitions. Thus they �t
into our framework only after suitable extension.

18



process is now (yt),

yt = ayt�1 + b"t +
p
htut

ht = �0 + �1ht�1 +

�
yt�1 �

a+ a

2
yt�2

�2
(a; �1) 2 [a; a]� [�; �] � (�1; 1)� [0; 1)

"t 2 [�"t; "t]; "t = �"t�1 +

�
yt �

a+ a

2
yt�1

�2
where ut is white noise, and a, a, �0 > 0, �, �, � 2 (0; 1) and a0 are �xed
parameters.
If b = 0, a = a and � = �, the model reduces to a standard AR(1) with

zero mean and GARCH(1; 1) errors. More generally, the decision-maker�s beliefs
re�ect con�dence that the next observation is generated by a density from this
class, but there is ambiguity about the conditional mean and variance.16 Since
each admissible vector of these parameters determines a 1-step-ahead conditional
measure, a set of such measures, and hence also a rectangular set of priors, are
determined by the given speci�cation which thus �ts directly into our framework.
This model captures time-varying conditional ambiguity that can depend both

on the level of yt and the �surprises�that occur relative to the �center� forecast
a+a
2
yt�1. As one example of the former, if b = 0 and a = �a, then the interval

for the conditional mean [�ayt�1; ayt�1] is wider, the further away was the last
observation from zero. Given recursive multiple-priors utility, such an observa-
tion would induce �greater pessimism�for a decision-maker with a value function
increasing in yt. As another example, if 1 > a > a > 0, the decision maker is
con�dent that there is mean reversion in yt. Again assuming an increasing value
function, we would now have asymmetric behavior, in that the decision-maker
fears that bad times (yt < 0) last longer (a = a) than good times, in which mean
reversion is expected to occur more quickly (a = a).
If � < �, the interval for the conditional variance increases if there have been

a lot of �surprises�(relative to the forecast a+a
2
yt�1) in the recent past. Finally,

if b > 0, the term "t provides a link between forecast errors and ambiguity about
the conditional mean. Assuming for simplicity that a = a = 0, surprises widen

16The somewhat unusual speci�cation of the conditional variance equation re�ects the fact
that the �forecast error�that feeds into the behavior of the conditional variance is measured with
respect to a+a

2 yt�1, the center of the interval of means that was thought possible at t� 1.
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the interval [�b"t; b"t] for the mean. An increase in ambiguity caused by a large
surprise is persistent as the ambiguity is resolved gradually.

4.4. An Entropy-Based Set of Priors

In the preceding two examples, the most natural description of the environment
(or of the set of �possible probability laws�) is in terms of 1-step-ahead beliefs.
The �nal example shows that dynamic consistency can be natural even where the
primitive description does not have the 1-step-ahead form.
Suppose the set of probability models considered possible by the decision-

maker is given by
Prob = fQ 2 Q : d (Q;P ) � r g, (4.4)

where Q � �(
;FT ) is a family of probability measures, P 2 Q is a ref-
erence measure, d denotes relative entropy and r determines the size of the
set. (Q and P are assumed mutually absolutely continuous and d(Q;P ) �
���0�

� EQ

h
log
�
dQ�
dP�

�i
, where Q� and P� denote the restrictions of Q and P

to F� .) As described in the next section, such sets of priors have been adopted in
the robust control approach, which explains the superscript attached to P. The
set Prob is not rectangular and thus is not admissible in our model. Because this
speci�cation may seem natural, some readers may be concerned that our model
limits unduly the dimensions of ambiguity that can be accommodated.
The key point concerns the interpretation of sets of priors. In particular, there

is an important conceptual distinction between the set of probability laws that the
decision-maker views as possible, such as Prob, and the set of priors P that is part
of the representation of preference. Only the latter includes elements of reasoning
or processing, backward induction for example, on the part of the decision-maker.
Thus the description of the environment represented by Prob is consistent with
our model and the use of a rectangular set of priors in the following sense:17

Determine the 1-step-ahead sets of conditionals P+1t implied by applying Bayes�
Rule prior-by-prior to Prob. Then use the P+1t �s to construct, via the backward
recursion (3.5), a new time 0 set of priors P. This set is rectangular and, though
larger than Prob, yields the identical 1-step-ahead conditionals. Indeed, because
P is the smallest rectangular set containing Prob, it is the minimal enlargement
of Prob needed in order to accommodate the logic of backward induction. Thus P
17The argument that follows applies equally to any time 0 set of measures and not just to

that given by (4.4).
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may be viewed as the natural vehicle for both capturing the set of possible models
Prob and simultaneously representing a dynamically consistent preference process.
The question remains whether the dynamic behavior implied by P is intuitive.

In particular, is there intuitive choice behavior, paralleling (4.1) from the Ellsberg
example, that is contradicted by P? No such behavior is apparent to us, though
admittedly, we cannot prove that all the behavioral implications of P are intuitive.
The 1-step-ahead conditionals constructed as above from (4.4) will involve rel-

ative entropy in their de�nitions. Because, entropy plays a large role in related
statistical theory, as well as in the robust control modeling approach, we con-
clude by adding that there is a more direct way to build relative entropy into
parametric speci�cations of sets of priors. For example, de�ne the 1-step-ahead
correspondence at any t and ! directly as a relative entropy neighborhood of the
1-step-ahead conditional of a reference measure, much as in (5.4) below, and then
work with the corresponding rectangular set of time 0 priors.

5. COMPARISON WITH ROBUST CONTROL

In work with several coauthors, Hansen and Sargent have adapted and extended
robust control theory to economic settings. Because there now exist a number
of descriptive and normative applications of the robust control model,18 we take
this opportunity to compare their approach with ours. Hansen and Sargent [19]
describe the utility speci�cation that supports (or is implicit in) the robust control
approach. We take this utility speci�cation as the economic foundations for their
approach and thus we use it as the basis for comparison. To permit a clearer com-
parison of the two models, we translate the description in [19] into the framework
of this paper, thereby modifying their model somewhat, but not in ways that are
germane to the comparison.19

The entropy-based model described in the preceding section can be viewed as
a reformulation of the robust control approach that �ts into our framework. Thus
the reader may wish to refer back to Section 4.4 after reading the comparison that
follows.
18For descriptive (e.g., asset pricing) applications, see [20], [1] and [18]. Normative applications

are typically to optimal monetary policy in a setting where the monetary authority does not
know precisely the true model describing the environment; see, for example, [18], [25] and [26].
19For example, we use discrete rather than continuous time, we exclude time nonseparabilities

due to habit formation and we refer to the natural extension of their model from the domain of
consumption processes to our domain H.
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5.1. Utility Speci�cation

We are interested in the collection f�t;!g of conditional preferences, with repre-
senting utility functions fVt(�; !)g, implied by the robust control model. Fix a
�reference model�P , a measure in �(
;FT ), and a set of �possible models�(or
priors)Prob0 � �(
;FT ), containing P . Utility at time 0 is given by

V0(h) = min
m2Prob0

Z
���0 �

� u(h� ) dm, h 2 H, (5.1)

for some � and u as in our theorem. Here the time 0 set of priors Prob0 has the
parametric form (4.4) for radius r = r0 > 0.
To de�ne subsequent utility functions Vt(�; !), specify an updating rule for the

set of priors. This is done by �rst �xing an act h�; for example, Hansen and
Sargent take h� to be optimal relative to �0 in a planning problem of interest,
having time 0 feasible set �. Let Q� be a minimizing measure in (5.1) when
h = h�, and let rt(!) denote the relative entropy between Q� and the reference
measure conditional on time t information, that is,20

rt(!) = d (Q�(� j Ft)(!); P (� j Ft)(!)) . (5.2)

Finally, de�ne

Vt(h; !) = min
m2Probt (!)

Z
���t �

��t u(h� ) dm, h 2 H, (5.3)

for the updated set of measures Probt (!) given by

Probt (!) =
�
Q(� j Ft)(!) : Q 2 Prob0 ; d (Q(� j Ft)(!); P (� j Ft)(!)) � rt(!)

	
.

(5.4)
This completes our outline of the utility speci�cation.21

At one level, the di¤erence between the robust control and recursive multiple-
priors models is a matter of alternative restrictions on initial sets of priors and
on updating rules. Our model delivers rectangular sets of priors that are up-
dated prior-by-prior, while robust control delivers sets of priors constrained by
relative entropy and updated by (5.4). In what follows, we clarify the behavioral
signi�cance of these formal di¤erences.
20As in (4.4), d denotes relative entropy.
21When h = h� in (5.1) and (5.3), the minimizations over measures can be characterized

via Lagrangeans and deliver the multipliers �0 and �t (!). Under the speci�cation described,
�t (!) = �0 for all t and !, a fact that plays an important role in the discussion and empirical
implementation of the robust control model.
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5.2. Discussion

For any given h� or �, it is immediate that in common with recursive multiple-
priors, axioms CP, MP and RP are satis�ed. A di¤erence between the models is
that the robust control model violates DC. However, its construction delivers the
following weaker form of dynamic consistency:

Axiom 6 (h�-DC). For every t and ! and for every act h, if h� (!) = h�� (!) for
all � � t and if h �t+1;!0 h� for all !0, then h �t;! h�; and the latter ranking is
strict if the former ranking is strict at every !0 in a �t;!-nonnull event.

The di¤erence from DC is that here only comparisons with the given h� are con-
sidered. Under h�-DC, if h� is optimal at time 0 in the feasible set �, then it will
be carried out in (almost) all future contingencies. Under DC, the ranking of any
two acts is time consistent.
Which set of assumptions on preferences is appropriate will typically depend

on the application. In many descriptive modeling contexts, the goal is to describe
an agent who solves a single intertemporal optimization problem. A typical ex-
ample is consumption-savings decisions for given prices. Both axioms DC and
h�-DC permit the interpretation that a plan that the agent would choose ex ante
under commitment would in fact be carried out ex post under discretion. One
might argue that the stronger axiom DC is not needed if one is interested only in
rationalizing h� as an optimum in �.
However, rationalization of a single optimum cannot be the entire point. If it

were, then there would be no need to deviate from the Bayesian model since, if the
speci�cation (5.1)-(5.3) rationalizes h�, then so does the Bayesian model where
the decision-maker uses the single prior Q�. In fact, given alternative models
that rationalize a given set of data, or here h�, it is standard practice to evaluate
them based also on how they accord with behavior in other settings (Ellsberg-type
behavior, for example) or even with introspection, say about concern with model
misspeci�cation. These auxiliary criteria support the non-Bayesian alternative,
whether robust control or recursive multiple-priors.
To distinguish between these two models, consider comparative statics predic-

tions which provide another litmus test that extends beyond the framework of the
particular planning problem of interest. In contrast with recursive multiple-priors,
according to the robust control model behavior at any time-event pair may depend
on what might have happened in unrealized parts of the tree. This feature of the
robust control model is apparent directly from the speci�cation (5.2) and (5.4) for
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updating at (t; !). Because Q� depends on the entire process h� and not just on
values of h� realized along the path leading to (t; !), conditional preference �t;!
in general depends also on what might have happened ex ante.
To illustrate, consider consumption-savings models. Let the planning problem

of prime interest be associated with the feasible set � corresponding to the time
0 budget constraint

E
�
�T0 �

t �t ct
�
� y0,

where the expectation is with respect to a reference measure P , (�t) is the state-
price density process, �0 = 1 and where y0 denotes initial wealth. Preferences are
as in the robust control model with the added assumption that the utility index
u is a power function, u (c) = c�=�, 0 6= � < 1. Consider now a change to
feasible set �0, where �0t = �t for all t > 1, but where y00 and �

0
1 may di¤er from

their counterparts in �. To simplify, suppose that the �ltration is such that F1
corresponds to the binary partition fF1a; F1bg, where each component has positive
probability under P , and that state prices di¤er only in period 1 and then only
in event F1b:

�01 = (�01a; �
0
1b) ; �1 = (�1a; �1b) , �01a = �1a and �01b 6= �1b.

Let c and c0 be the corresponding optimal plans. Suppose �nally that y00 has been
chosen so that22

y01 � y00 � c00 = y0 � c0 � y1.

Then, as shown at the end of this subsection, the two optimal plans satisfy

P f! 2 F1a : (c01(!); :::; c0T (!)) 6= (c1(!); :::; cT (!))g > 0, (5.5)

that is, continuations from time 1 and event F1a di¤er. Because in each case
the time 0 optimal plan is carried out under discretion, the decision-maker when
reoptimizing at time 1 and event F1a will make di¤erent choices across the two
situations. This is so in spite of the fact that the two time 1 optimization problems
share common initial wealth levels (y01 = y1) and common state price processes
for the relevant horizon, that is, they have identical feasible sets.
The formal reason for the di¤ering behavior across the two continuation prob-

lems is that, according to the robust control model, the agent has di¤erent utility
functions in these two situations; more particularly, the updated set of priors (5.4)

22By the homotheticity of preference, c00 is a linearly homogeneous function of y
0
0 and thus

one can rescale y00 to ensure the equality.
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di¤ers at time 1 and event F1a across the two situations. It remains to under-
stand �why�this is the case and ultimately �why�choices di¤er even though it is
the �same decision-maker�in either case.23 Admittedly, past consumption levels
c00 and c0 di¤er, but time nonseparabilities (e.g., habit formation) are ruled out
in the robust control model that we are employing. The other way in which the
two histories at t = 1 di¤er is in the preceding time 0 plans contingent on the
unrealized event F1b, or alternatively, in the state prices that would have applied
had the event F1b been realized. It is this di¤erence in unrealized parts of the tree
that leads to di¤erent behavior across the two continuation problems.
Finally, we sketch a proof of (5.5): Suppose the contrary and let Q� and

Q�� be minimizing measures given c and c0 respectively. The key point is that
even though c0 and c agree in their continuations beyond F1a, the corresponding
supporting measures, conditioned on F1a, di¤er. (This is because the Lagrange
multipliers for the two minimizations are distinct.) However, the noted eventwise
conditionals Q� (� j F1a) and Q�� (� j F1a) are minimizing for the continuations of
c0 and c. Since the latter are identical by hypothesis, it follows that

Q� (� j F1a) = Q�� (� j F1a) ,

which is a contradiction.

6. CONCLUDING REMARKS

We have speci�ed an axiomatic model of dynamic preference that extends the
Gilboa-Schmeidler atemporal model. The model delivers dynamic consistency
and permits a rich variety of dynamics and model uncertainty. Further, it per-
mits the next logical step in modeling behavior under ambiguity, namely learning.
Because rectangular sets of priors are equivalently speci�ed through a process
fP+1t g of conditional 1-step-ahead correspondences, a theory of learning amounts
to a speci�cation of this process, that is, to a description of how histories are
mapped into views about the next step and ultimately about the entire future
trajectory. Our general model imposes no restrictions on how the decision-maker
responds to data. However, intuitively plausible forms of response can be de-
scribed, leading to a model of learning that is as well-founded as the Bayesian one
[12].

23It is not the case that the two situations feature di¤erent information and therefore �natu-
rally�di¤erent conditional beliefs. The same event tree applies in both cases.
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A related normative application of recursive multiple-priors is to econometric
estimation and forecasting. Chamberlain [6] describes a minimax approach and
cites Gilboa and Schmeidler for foundations. When the statistical decision prob-
lem is sequential, however, one must rely on a dynamic model such as recursive
multiple-priors for axiomatic foundations.

A. APPENDIX: Proof of Theorem

Only the direction (a) =) (b) is nontrivial.

Lemma A.1. There exist 0 < �, u : �s(C) �! R1 mixture linear and non-
constant, and Pt : 
  �(
;FT ) that is convex-valued, closed-valued and Ft-
measurable, such that for each t and !,

p (Ft(!)) = 1 for all p 2 Pt (!) (A.1)

and �t;! is represented by

Vt(h; !) = minm2Pt(!)

Z �
���t �

��t u(h� )
�
dm. (A.2)

Moreover, each Pt(!) is unique and u is unique up to a positive linear transfor-
mation.

Proof. The Gilboa-Schmeidler theorem does not apply directly because our
domain H is not formulated as the set of all measurable maps from 
 into the set
of lotteries over some outcome set, which is the structure they assume for their
domain. However, we can reformulate H in such a way as to make their theorem
applicable.
De�ne T = f0; 1; :::; Tg. Each h in H can be viewed as the mapping from

T � 
 into �s (C) that takes (t; !0) into ht(!0). Further the adapted nature of h
corresponds to measurability of the above map with respect to �, where � is the
�-algebra on T �
 generated by all sets of the form ftg �E, where E lies in Ft.
Thus H consists of all �-measurable maps from the expanded state space T � 

into �s (C).
Moreover, by MP each �t;! satis�es the Gilboa-Schmeidler axioms on this

domain. Focus �rst on the ordering �0 at time 0. Then, by [16, Theorem 1],
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there exists v : �s (C) �! R1, mixture linear and nonconstant, and a convex
and closed set Q � �(T � 
;�), such that �0 is represented by

V0 (h) = minq2Q

Z
v (h(� ; !0)) dq(� ; !0). (A.3)

We argue now that Q has more structure than stated above. The point is that
our axiomMP is stronger than what is required to deliver the preceding representa-
tion. The issue is the relevant notion of a �constant act�. In the abstract framework
with (expanded) state space T � 
, there is nothing that distinguishes between
the two components of the state. Thus constant acts are maps h that are constant
on T � 
. Consequently, direct translation of the Gilboa-Schmeidler analysis as-
sumes MP(ii) only for lottery acts ` for which `� = `0 for all � . Similarly, their
analysis adopts the weakening of (iv) whereby: if for every (� ; !0), the act that
delivers h0� (!

0) in every time and state is weakly preferred to the corresponding act
constructed from h, then h0 �0 h. To clarify, our version of Monotonicity states, in
contrast, that if for every !0, the lottery act (h00(!

0); :::; h0T (!
0)) is weakly preferred

to the corresponding act derived from h, then h0 �0 h.
Our strengthening of these Gilboa-Schmeidler axioms is intuitive once one

recognizes that there is a clear conceptual distinction between the two components
of the expanded state (� ; !0). For example, Gilboa and Schmeidler suggest that
in a general mixture �h+ (1� �)g, g may hedge the variation across states in h,
thus reducing ambiguity and leading to violations of Independence. However, no
such hedging occurs if g is a constant act, which justi�es Certainty Independence.
In our setting, it is plausible to assume that hedging across time is not of value,
which justi�es our stronger axiom MP(ii).
Turn now to the added implications of our stronger axiom MP. By (ii), �0

satis�es the independence axiom on the set of lottery acts where it is represented
by

V0 (`) = minq2Q

Z
v (`� (!

0)) dq(� ; !0) = minm2mrgT Q

Z
v (`� ) dm(�),

where mrgTQ denotes the set of all T -marginals of measures in Q. Therefore,
mrgTQ must be a singleton, that is, all measures in Q induce the identical prob-
ability measure, denoted �, on T . Consequently, for any h,

V0(h) = minq2Q��

�
��

Z



v (h(� ; !0)) dq(!0 j �)
�
. (A.4)
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Monotonicity in the form MP(iv) implies that

V0(h
0) = V0(h) whenever �� �� v (h0(� ; �)) = �� �� v (h(� ; �)) . (A.5)

Deduce that

V0(h) = minp2P0

Z



[�� �� v (h(� ; !
0))] dp(!0), for all h, (A.6)

for some closed and convex P0 � �(
;FT ).
(Argue as follows:24 De�ne X = v (�s (C)) and consider the domain D of all

Anscombe-Aumann acts on (
;FT ) with elementary outcomes in X. For generic
element  , denote byE (!) the mean of the lottery  (!) onX; thus ! 7�! E (!)
is a Savage-style act with outcomes in X. De�ne U : D �! R1 by

U( ) = V0(h), for any h satisfying E (�) = v (�� �� h(� ; �)) .

Then U is well-de�ned by (A.5), and its induced preference satis�es the axioms in
[16, Theorem 1]. Thus, U admits a multiple-priors representation, perhaps after a
monotonic transformation '. Because risk linearity was built into U , deduce that

'(V0(h)) = min
p2P0

Z
v (�� �� h(� ; !

0)) dp(!0),

for some P0 � �(
;FT ).
Consider next the ranking of acts in Dt, the set of all acts h 2 H such that

h(� ; �) � m� 2 �s(C), for all � 6= t, where v(m�) = 0; the existence of such m� is
wlog. Then on Dt,

'(V0(h)) = min
p2P0

Z



�t v (h(t; !
0)) dp(!0);

while from (A.4),

V0(h) = minq2Q

�Z



�t v (h(t; !
0)) dq(!0 j t)

�
:

From the uniqueness of the set of priors in the multiple-priors representation,
conclude that Qt � fq(� j t) : q 2 Qg and P0 coincide when viewed as measures
on Ft. This is true for any t. Finally, therefore, (A.4) implies (A.6).)
24We suspect that a shorter argument is possible, but we have not been able to �nd one.
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Argue similarly for each conditional ordering �t;! to conclude that it is repre-
sented by

Vt(h; !) = minPt(!)

Z
Ut(h0; :::; hT ;!) dp

where Ut(�; !) : (�s(C))
T �! R1 is mixture linear and has the form

Ut(`;!) = ���t �� (t; !) vt (`� ;!) � ���t vt;� (`� ;!) .

Condition (A.1) follows from CP. By RP, Ut(�;!) and Ut(�;!0) are ordinally
equivalent for every ! and !0, with t �xed. Since both are mixture linear, they
must be equal (after suitable a¢ ne transformations). Thus we can write

Ut (`) = ���t vt;� (`� ) : (A.7)

RP implies further that the ordering on �s(C) � �s(C) that is represented
by

(p; p0) 7�! vt;� (p) + vt;�+1(p
0)

is the same for all t and � such that t � � � T � 1. In particular, for �xed t,
the above ranking does not depend on � in the indicated range. This is a form of
stationarity and it implies, by familiar arguments (Koopmans [23] or Rader [27,
pp. 162-3], for example) and after suitable cardinal transformations, that

vt;� = (bt)
��t vt;t

for some bt > 0. Because the noted ordering is invariant also with respect to t,
conclude that bt is independent of t and hence that vt;� = ���t vt;t. Once again,
the invariance yields (after suitable cardinal transformations) that vt;t = v0;0 � u
for all t. This establishes

Ut (`) = ���t �
��tu (`� ) (A.8)

and hence also (A.2).

From the Lemma,

Vt(h; !) = u(ht) + � minm2Pt(!)

Z �
���t+1�

��t�1 u(h� )
�
dm:

� u(ht) + � Wt(h; !).
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For each t, ! and lottery `t, de�ne

Dt;!;`t = f(Vt+1(h; !0))!02Ft(!) : h 2 H; ht = `tg.

Then we can viewDt;!;`t as a subset ofRV (Ft(!); Ft+1), the set ofFt+1-measurable
(real-valued) random variables de�ned on Ft(!). Below, by Vt+1(h; �) we mean
such a random variable, that is, the restriction of the second argument to Ft(!)
is understood even where not stated explicitly.
De�ne � : Dt;!;`t �! R1 by

�(Vt+1(h; �)) = Wt(h; !). (A.9)

DC implies that � is well-de�ned and increasing on Dt;!;`t in the sense that

Vt+1(h
0; �) � Vt+1(h; �) on Ft(!) =) �(Vt+1(h

0; �)) � �(Vt+1(h; �)). (A.10)

Lemma A.2. There exists Q � �(Ft(!); Ft+1), convex and closed, such that

�(x) = min
q2Q

Z
x dq, for all x 2 Dt;!;`t. (A.11)

Proof. Adapt the arguments in [16, pp. 146-7].

(i) � is homogenous on Dt;!;`t: Let Vt+1(h
0; �) = �Vt+1(h; �) on Ft (!) for 0 < � �

1. We need to show that

Wt(h
0; !) = �Wt(h; !).

Let h00� (�) = �h� (�) + (1 � �)`� for � > t and = `t and de�ned arbitrarily for
� < t. Then h00 lies in Dt;!;`t, u (h

00
� (�)) = �u (h� (�)) + (1��)u(`�) = �u (h� (�))

for � > t , Wt(h
00; !) = �Wt(h; !) and

Vt+1(h
00; �) = �Vt+1(h; �) = Vt+1(h

0; �) on Ft (!) .

By DC, conclude that Wt(h
0; !) = Wt(h

00; !) = �Wt(h; !).

(ii) Extend � by homogeneity to RVsimple(Ft(!); Ft+1): Because

fu(h(�)) : h 2 Ft+1g � Dt;!;`t,
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deduce that RVsimple(Ft(!); Ft+1) = [�2R1 (�Dt;!;`t). (We can assume wlog that
9`1 and `2 with u(`1) < �1 and u(`2) > 1.) Thus a unique extension exists.
Then � satis�es homogeneity there and the following form of monotonicity:

x0(�) � x(�) =) �(x0) � �(x). (A.12)

(iii) � satis�es Certainty Additivity: On Dt;!;`t, argue as follows. For all lotteries
` 2 (�s(C))

T+1, �(�Vt+1(h; �) + (1� �)Vt+1(`; �)) = �(Vt+1(�h+ (1� �)`; �)) =
Wt(�h + (1 � �)`; !) = �Wt(h; !) + (1 � �)Wt(`; !) = ��(Vt+1(h; �)) + (1 �
�)�(Vt+1(`; �)), that is,

�(�Vt+1(h; �) + (1� �)Vt+1(`; �)) = ��(Vt+1(h; �)) + (1� �)�(Vt+1(`; �)).

On RVsimple(Ft(!); Ft+1), argue as in [16, pp. 146-7].

(iv) � is superadditive: Prove �rst that

�
�
1
2
Vt+1(h

0; �) + 1
2
Vt+1(h; �)

�
� 1

2
� (Vt+1(h

0; �)) + 1
2
� (Vt+1(h; �))

= 1
2
Wt(h

0; !) + 1
2
Wt(h; !).

Suppose that Wt(h
0; !) = Wt(h; !). Then because of the de�nition of Wt(�; !),

Wt

�
1
2
h0 + 1

2
h; !

�
� Wt(h; !) =

1
2
Wt(h

0; !) + 1
2
Wt(h; !).

Proceed as in [16, p. 147].

The remainder of the proof is subdivided into a sequence of steps.
Step 1: Show that Q = P+1t (!), the set of restrictions to Ft+1 of measures in
Pt(!), that is, the set of 1-period ahead marginals. Apply (A.9) and the preceding
lemmas to conclude that for any Ft+1-measurable h in Dt;!;`t,

min
pt2P+1t (!)

Z �
���t+1 �

��t�1u(h� )
�
dpt = min

p2Pt(!)

Z �
���t+1 �

��t�1u(h� )
�
dp

� Wt(h; !) = min
q2Q

Z
Vt+1 (h; �) dq

= min
q2Q

Z �
���t+1 �

��t�1u(h� (�))
�
dq.

Thus uniqueness of the representing set of priors [16, Theorem 1] delivers the
desired result since both P+1t (!) and Q are convex and closed.
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Step 2: The measures in P+1t (!) are mutually absolutely continuous. The strict
ranking component in DC implies that, for any h0 and h in Dt;!;`t, if Vt+1(h

0; �) �
Vt+1(h; �) and if E = f!0 2 Ft(!) : V1(h0; !0) > V1(h; !

0)g is Vt(�; !)-nonnull,
then Vt(h0; !) > Vt(h; !), or equivalently, Wt(h

0; !) > Wt(h; !). Because Vt(�; !)
satis�es MP, the noted nonnullity is equivalent to

p(E) > 0 for some p in Pt(!).

Because E is in Ft+1, there is a further equivalence with

q(E) > 0 for some q in P+1t (!).

From Step 1 and (A.9), conclude that

min
q2P+1t (!)

Z
Vt+1(h

0; �) dq > min
q2P+1t (!)

Z
Vt+1(h; �) dq

if Vt+1(h0; �) � Vt+1(h; �) with strict inequality on an event having positive q-
probability for some q in P+1t (!). In particular, for any Ft+1-measurable h0 and
h in Dt;!;`t,

min
q2P+1t (!)

Z �
���t+1 �

��t�1u(h0� (�))
�
dq > min

q2P+1t (!)

Z �
���t+1 �

��t�1u(h� (�))
�
dq

if
�
���t+1 �

��t�1u(h0� (�))
�
�
�
���t+1 �

��t�1u(h� (�))
�
with strict inequality on an

event having positive q-probability for some q in P+1t (!). Apply the preceding to
the acts having, for � � t,

h0� = (`0 if E; `� if Ec) and h� = (` if E; `� if Ec) ,

where the lotteries `0 and ` are such that u(`0) > u(`) > u(`�). Conclude that
maxP+1t (!)m(E) > 0 =) minP+1t (!)m(E) > 0.

Step 3: If p(�) =
R
pt+1(!

0)(�) dm(!0) for some measurable pt+1 : (
;Ft+1) �!
�(
;Ft+2) such that pt+1(�) 2 Pt+1(�) and m 2 P+1t (!), then

p (�) = m (�) on Ft+1, and (A.13)

pt+1(!
0)(�) = p (� j Ft+1) (!0) a:e:[p]. (A.14)
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Because Ft+1 corresponds to a �nite partition, then by (A.1),

pt+1(!
0)(E) =

�
0 if E \ Ft+1(!0) = ;
1 if E � Ft+1(!0).

In particular, if E 2 Ft+1, then the above two cases are exhaustive and

p(E) =

Z



pt+1(!
0)(E) dm(!0) = m ([fFt+1(!0) : F1(!0) � Eg) = m(E),

proving (A.13). Further,

p(E) = m(Ft+1(!0)) pt+1(!0)(E) for any E � Ft+1(!0),

E not necessarily in Ft+1. Take also E = Ft+1(!). Then pt+1(!0)(Ft+1(!0)) = 1
and hence

p(Ft+1(!0)) = m(Ft+1(!0)).
Thus if p(Ft+1(!0)) 6= 0, or equivalently if m(Ft+1(!0)) 6= 0, then

p (E j Ft+1) (!0) =
p(E \ Ft+1(!0))
p(Ft+1(!0))

= pt+1(!
0)(E).

This proves (A.14).

Step 4: From (A.9) and Step 1,

min
p2Pt(!)

Z �
���t+1 �

��t�1u(h� )
�
dp � Wt (h; !) =

min
m2P+1t (!)

Z
Vt+1(h; !

0) dm(!0) =

min
m2P+1t (!)

Z �
min

pt+12Pt+1(!0)

Z �
���t+1 �

��t�1u(h� )
�
dpt+1

�
dm(!0)

= min
p2Pt(!)

Z �
���t+1 �

��t�1u(h� )
�
dp, where

Pt(!) �
�
p(�) =

Z
pt+1(!

0)(�) dm : m 2 P+1t (!); pt+1(�) 2 Pt+1(�)
�
: (A.15)
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Thus Pt(!) and Pt(!) represent the same preference order. They must coincide
because each is convex and closed.
It is immediate that Pt(!) is closed. To see that it is convex, let

R
pt+1(!

0)(�) dm
and

R
p0t+1(!

0)(�) dm0 lie in Pt(!). Then the 12=
1
2
mixture equals

R
p00t+1(!

0)(�) dm00,
where

p00t+1(!
0)(�) =

1
2
m(!0) pt+1(!

0)(�) + 1
2
m0(!0) p0t+1(!

0)(�)
1
2
m(!0) + 1

2
m0(!0)

if the denominator is positive and equal to any measure in Pt+1(!0) otherwise, (in
such way that p001(!

0)(�) is the same for all !0�s in the same component of the Ft+1
partition), and where

m00(�) = 1
2
m(�) + 1

2
m0(�).

For each !, p00t+1(!
0)(�) lies in Pt+1(!0) because the latter is convex; convexity of

mrgPt(!) implies that it contains m00(�). Thus
R
p00t+1(!

0)(�) dm00 lies in Pt(!).
Similarly for other mixtures.

Step 5: Axiom FS implies that every measure in P0 has full support on FT . From
Step 4,

Pt(!) �
�
p(�) =

Z
pt+1(!

0)(�) dm : m 2 P+1t (!); pt+1(�) 2 Pt+1(�)
�
,

for every t and !. Use the full support observation and Step 3, particularly the
appropriate version of (A.14), to prove by induction that for every t and !: (i)
Pt(!) equals the set of all Bayesian Ft-updates of measures in P0; and (ii) each
measure in Pt(!) has full support on Ft(!).
Finally, de�ne P = P0.

B. APPENDIX: In�nite Horizon

For reasons given in Section 3.2, this appendix axiomatizes an in�nite horizon
version of recursive multiple-priors. Thus set T = 1 and interpret the formalism
surrounding our axioms and the de�nition of rectangularity in the obvious way.
Assume that FT = F1 = � ([11 Ft). Though we continue to assume that each
Ft corresponds to a �nite partition of 
, that is not the case for the limiting �-
algebra F1. Measures in�(
;F1) are required to be �nitely (but not necessarily
countably) additive. On�(
;F1), adopt the weak topology induced by the set of
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all bounded measurable real-valued functions. Say that a measure p in �(
;F1)
has full local support if

p (A) > 0 for every ; 6= A 2 [1t=0Ft.

We are given preferences f�t;!g � f�t;!: (t; !) 2 T �
g on the domain H,
de�ned as above. Continue to adopt axioms CP, MP, RP, DC and FS.
Though the range of any ht is �nite for any act h in H, the range of h, viewed

as a mapping from T � 
 into �s (C), need not be �nite given that T = 1. To
handle the complications caused by this in�nity, assume the existence of best and
worst lotteries in the following sense.25

Axiom 7 (Best-Worst - BW). For each (t; !) 2 T � 
, there exist lotteries
p� and p�� in �s (C) such that (p�)

1
0 �t;! (p)

1
0 �t;! (p��)10 for all p in �s (C).

In addition, impose a form of impatience whereby the distant future receives
little weight in each conditional preference order.

Axiom 8 (Impatience -IMP). For any (t; !) in T � 
, p in �s (C) and acts
h; h� and h�� in H, if h� �t;! h �t;! h�� and hn = (h0; :::; hn; p; p; :::), then
h� �t;! hn �t;! h�� for all su¢ ciently large n.

Before stating the theorem, we point out a change in the uniqueness property of
the representing set of priors P due to the in�nite horizon setting. It is apparent
from (3.6) that utilities depend only on the probabilities assigned to events in
[11 F� . Thus uniqueness on F1 = � ([11 F� ) is not to be expected because one
could change arbitrarily probabilities assigned to events in F1 n ([11 F� ) without
a¤ecting utilities. Even in the case of a singleton prior, the latter is uniquely
determined by its values on [11 F� only if the prior is countably additive, but
countable additivity is not implied by our axioms (nor by those in [16]). Thus the
following theorem refers only to the set of priors P being unique on [11 F� , by
which we mean that if any other set P 0 also satis�es the conditions in part (b),
then the set of all restrictions to [11 F� of measures in P coincides with the set
constructed from P 0.
To clarify further, the uniqueness assertion in [16, Theorem 1], translated into

our setting, does yield uniqueness of the appropriate set of priors on the expanded

25Relaxation of BW is possible by more e¢ cient application of [16, Proposition 4.1] than
below.
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state space T � 
. However, this does not deliver uniqueness of the set of priors
on 
 because, roughly speaking, the T -marginal is given by the discount factor �t
with � < 1 and this washes out e¤ects of probabilities assigned to events in F1 n
([11 F� ).
Theorem B.1. Let T = 1 and let f�t;!g be a collection of binary relations on
H. The following statements are equivalent:
(a) f�t;!g satisfy CP, MP, RP, DC, FS, BW and IMP on H.
(b) There exists P � �(
;F1), closed, convex and fFtg-rectangular, with

all measures in P having full local support, 0 < � < 1 and a mixture linear and
nonconstant u : �s(C) �! R1, where max�s(C) u and min�s(C) u exist, such that:
for every t and !, �t;! is represented on H by Vt(�; !), where

Vt(h; !) = min
m2Pt(!)

Z
���t �

��t u(h� ) dm.

Moreover, � is unique, P is unique on [11 F� and u is unique up to a positive
linear transformation.

Proof. Necessity of the axioms is routine. To verify IMP, note that

���t �
��t u(hn� ) �!

n�!1
���t �

��t u(h� )

in the sup norm topology, while the Maximum Theorem implies that the mapping
X 7�! minm2P

R
X dm, from the space of bounded F1-measurable functions into

the reals, is sup-norm continuous.
To prove su¢ ciency, adapt the proof of Theorem 3.2 above. Gilboa and

Schmeidler�s central representation result (Theorem 1) does not apply directly
to H as in the �nite horizon case. That is because it deals only with the domain
of �nite-ranged acts, which in our setting equals the proper subset of H consist-
ing of acts h that have �nite range when viewed as mappings from T � 
 to
�s (C). However, because of BW, their extension result Proposition 4.1 delivers
a multiple-priors representation on H for �t;!.
Now proceed as in the proof of Theorem 3.2 to deliver the asserted representa-

tion in terms of P, � and u. Use IMP to complete the counterpart of Lemma A.1,
for example (A.8). BW implies that V0(�) is bounded above and below. Because
u is not constant, conclude that � < 1. Existence of the noted maximum and
minimum for u follows from BW.
Finally, the asserted uniqueness of P follows from [16], just as in the �nite

horizon setting, by restricting time 0 preference to acts h = (h� ) such that every
h� is Ft-measurable for some �xed t.
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