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Abstract

This paper formulates a model of utility for a continuous time framework
that captures the decision-maker�s concern with ambiguity about both the
drift and volatility of the driving process. At a technical level, the analy-
sis requires a signi�cant departure from existing continuous time modeling
because it cannot be done within a probability space framework. This is
because ambiguity about volatility leads invariably to a set of nonequivalent
priors, that is, to priors that disagree about which scenarios are possible.
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1. Introduction

This paper formulates a model of utility for a continuous time framework that
captures the decision-maker�s concern with ambiguity or model uncertainty. The
paper�s novelty lies in the range of model uncertainty that is accommodated.
Speci�cally, aversion to ambiguity about both drift and volatility is captured.
At a technical level, the analysis requires a signi�cant departure from existing
continuous time modeling because it cannot be done within a probability space
framework. This is because ambiguity about volatility leads invariably to an
undominated set of priors. In fact, priors are typically nonequivalent (not mutually
absolutely continuous) - they disagree about which scenarios are possible.
The model of utility is a continuous time version of multiple priors (or maxmin)

utility formulated by Gilboa and Schmeidler [13] for a static setting. Related
continuous time models are provided by Chen and Epstein [3] and also Hansen,
Sargent and coauthors (see Anderson et al. [1], for example).1 In these papers,
ambiguity is modeled so as to retain the property that all priors are equivalent.
This universal restriction is driven by the technical demands of continuous time
modeling, speci�cally by the need to work within a probability space framework.
Notably, in order to describe ambiguity authors invariably rely on Girsanov�s the-
orem for changing measures. It provides a tractable characterization of alternative
hypotheses about the true probability law, but it also limits alternative hypothe-
ses to correspond to measures that are both mutually equivalent and that di¤er
from one another only in what they imply about drift. This paper de�nes a more
general framework within which one can model the utility of an individual who
is not completely con�dent in any single probability law for volatility or in which
future events are possible.
Economic motivation for our model, some applications to asset pricing, and

also an informal intuitive outline of the construction of utility (without proofs), are
provided in a companion paper Epstein and Ji [8].2 The present paper provides
a mathematically rigorous treatment of utility. Thus, for example, it provides
the foundations for an equilibrium analysis of asset markets in the presence of
ambiguous volatility. The reader is referred to [8] for further discussion of the

1The discrete time counterpart of the former is axiomatized in Epstein and Schneider [9].
2Economic motivation is provided in part by the importance of stochastic volatility modeling

in both �nancial economics and macroeconomics, the evidence that the dynamics of volatility are
complicated and di¢ cult to pin down empirically, and the presumption that complete con�dence
in any single parametric speci�cation is often unwarranted and implausible.
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framework and its economic rationale.3

The challenge in formulating the model is that it cannot be done within a
probability space framework.4 Typically, the ambient framework is a probability
space (
; P0), it is assumed that B = (Bt) is a Brownian motion under P0, and
importantly, P0 is used to de�ne null events. Thus random variables and sto-
chastic processes are de�ned only up to the P0-almost sure quali�cation and P0
is an essential part of the de�nition of all formal domains. However, ambiguity
about volatility implies that nullity (or possibility) cannot be de�ned by any sin-
gle probability measure. This is easily illustrated. Let B be a Brownian motion
under P0 and denote by P � and P � the probability distributions over continuous
paths induced by P0 and the two processes (�Bt) and (�Bt), where, for simplicity,
� and � are constants. Then P � and P � are mutually singular (and hence not
equivalent) because

P �(fhBiT = �2Tg) = 1 = P �(fhBiT = �2Tg). (1.1)

To overcome the resulting di¢ culty, we de�ne appropriate domains of stochastic
processes by using the entire set of priors to de�ne the almost sure quali�cation.
For example, equality of two random variables will be taken to mean almost sure
equality for every prior in the decision maker�s set of priors. This so-called quasi-
sure stochastic analysis was developed by Denis and Martini [6]. See also Soner et
al. [34] and Denis et al. [4] for elaboration on why a probability space framework
is inadequate and for a comparison of quasisure analysis with related approaches.5

Prominent among the latter is the seminal contribution of G-expectation due to
Peng [29, 31, 32, 33], wherein a nonlinear expectations operator is de�ned by a
set of undominated measures. We combine elements of both quasisure analysis
and G-expectation. Conditioning, or updating, is obviously a crucial ingredient in
modeling dynamic preferences. In this respect we adapt the approach in Soner et

3For example, an occasional reaction is that ambiguity about volatility is implausible because
one can estimate the law of motion for volatility (of asset prices, for example) extremely well.
However, this perspective presumes a stationary environment and relies on a tight connection
between the past and future that we relax. For similar reasons we reject the suggestion that
one can discriminate readily between nonequivalent laws of motion and hence that there is no
loss of empirical relevance in restricting priors to be equivalent. See the companion paper for
elaboration on these and other matters of interpretation.

4Where the set of priors is �nite (or countable), a dominating measure is easily constructed.
However, the set of priors in our model is not countable, and a suitable probability space
framework does not exist outside of the extreme case where there is no ambiguity about volatility.

5Related developments are provided by Bion-Nadal et al. [2] and Soner et al. [35, 36].
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al. [37] and Nutz [25] to conditioning undominated sets of measures.6 However,
these analyses do not apply o¤-the-shelf because, for example, they permit am-
biguity about volatility but not about drift. In particular, accommodating both
kinds of ambiguity necessitates a novel construction of the set of priors.7

Besides those already mentioned, there are only a few relevant papers in the
literature on continuous time utility theory. Denis and Kervarec [5] formulate mul-
tiple priors utility functions and study optimization in a continuous-time frame-
work; they do not assume equivalence of measures but they restrict attention to
the case where only terminal consumption matters and where all decisions are
made at a single ex ante stage. Bion-Nadal and Kervarec [2] study risk measures
(which can be viewed as a form of utility function) in the absence of certainty
about what is possible.
Section 2 is the heart of the paper and presents the model of utility, begin-

ning with the construction of the set of priors and the de�nition of (nonlinear)
conditional expectation. Proofs are collected in appendices.

2. Utility

2.1. Preliminaries

Time t varies over the �nite horizon [0; T ]. Paths or trajectories of the driving
process are assumed to be continuous and thus are modeled by elements of Cd([0; T ]),
the set of all Rd-valued continuous functions on [0; T ], endowed with the sup norm.
The generic path is ! = (!t)t2[0;T ], where we write !t instead of ! (t). All relevant
paths begin at 0 and thus we de�ne the canonical state space to be


 =
�
! = (!t) 2 Cd([0; T ]) : !0 = 0

	
.

The coordinate process (Bt), where Bt(!) = !t, is denoted by B. Information
is modeled by the �ltration F = fFtg generated by B. Let P0 be the Wiener
measure on 
 so that B is a Brownian motion under P0. It is a reference measure
only in the mathematical sense of facilitating the description of the individual�s
set of priors; but the latter need not contain P0.
De�ne also the set of paths over the time interval [0; t]:

t
 =
�
t! =

�
t!s
�
2 Cd([0; t]) :t !0 = 0

	
.

6Peng [29, 30] provides a related approach to conditioning.
7See Section 2.3 for comparison with a related paper (Nutz [26]) written after the �rst version

of this paper was circulated.
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Identify t
 with a subspace of 
 by identifying any t! with the function on [0; T ]
that is constant at level t!t on [t; T ]. Note that the �ltration Ft is the Borel �-�eld
on t
. (Below, for any topological space we always adopt the Borel �-�eld even
where not mentioned explicitly.)
Consumption processes c take values in C, a convex subset of R`. The domain

of consumption processes is denoted D. Because we are interested in describing
dynamic choice, we need to specify not only ex ante utility over D, but a suitable
process of (conditional) utility functions.
The key is construction of the set of priors. The primitive is the individual�s

hypotheses about drift and volatility. These are used to specify the set of priors.
Conditioning is treated next. Finally, these components are applied to de�ne a
recursive process of utility functions.

2.2. Drift and Volatility Hypotheses

Before moving to the general setup, we outline brie�y a special case where d = 1
and there is ambiguity only about volatility. Accordingly, suppose that (speak-
ing informally) the individual is certain that the driving process B = (Bt) is a
martingale, but that its volatility is known only up to the interval [�; �]. In par-
ticular, she does not take a stand on any particular parametric model of volatility
dynamics.
To be more precise about the meaning of volatility, recall that the quadratic

variation process of (Bt) is de�ned by

hBit(!) = lim
4tk!0

�
tk�t

j Btk+1(!)�Btk(!) j2 (2.1)

where 0 = t1 < : : : < tn = t and4tk = tk+1�tk. (By Follmer [11] and Karandikar
[19], the above limit exists almost surely for every measure that makes B a mar-
tingale, thus giving a universal stochastic process hBi; because the individual is
certain that B is a martingale, this limited universality is all we need.) Then the
volatility (�t) of B is de�ned by

dhBit = �2t dt.

Therefore, the interval constraint on volatility can be written also in the form

�2t � hBit � �2t. (2.2)

The model that follows is much more general. Importantly, the interval [�; �]
can be time and state varying, and the dependence on history of the interval at
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time t is unrestricted, thus permitting any model of how ambiguity varies with
observation (that is, learning) to be accommodated. In addition, the model admits
multidimensional driving processes (d > 1) and also ambiguity about drift, thus
relaxing the assumption of certainty that B is a martingale.
In general, the individual is not certain that the driving process has zero drift

and/or unit variance. Accordingly, she entertains a range of alternative hypotheses
X� = (X�

t ) parametrized by � = (�t). Here �t = (�t; �t) is an F-progressively
measurable process with values in Rd�Rd�d that describes a conceivable process
for drift � = (�t) and for volatility � = (�t). The primitive is the process of
correspondences (�t), where, for each t,

�t : 
 Rd � Rd�d.

Roughly, �t (!) gives the set of admissible drift and volatility pairs at t along the
trajectory !. The idea is that each � parametrizes the driving process X� = (X�

t )
given by the unique solution to the following stochastic di¤erential equation (SDE)
under P0:

dX�
t = �t(X

�
� )dt+ �t(X

�
� )dBt, X�

0 = 0, t 2 [0; T ]. (2.3)

We assume that only ��s for which a unique strong solution exists are adopted as
hypotheses. Therefore, denote by �SDE the set of all processes � that ensure a
unique strong solution X� to the SDE,8 and de�ne the set � of admissible drift
and volatility processes by

� =
�
� 2 �SDE : �t (!) 2 �t (!) for all (t; !) 2 [0; T ]� 


	
. (2.4)

We impose the following technical regularity conditions on (�t):

(i) Measurability: The correspondence (t; !) 7�! �t(!) on [0; s]�
 is B([0; s])�
Fs-measurable for every 0 < s � T .

(ii) Uniform Boundedness: There is a compact subset K in Rd�Rd�d such that
�t : 
 K each t.

(iii) Compact-Convex : Each �t is compact-valued and convex-valued.

(iv) Uniform Nondegeneracy: There exists â, a d�d real-valued positive de�nite
matrix, such that for every t and !, if (�t; �t) 2 �t(!), then �t�>t � â.

8By uniqueness we mean that P0
��
sup0�t�T j X�

t �X 0
t j> 0

	�
= 0 for any other strong

solution (X 0
t). A Lipschitz condition and boundedness are su¢ cient for existence of a unique

solution, but these properties are not necessary and a Lipschitz condition is not imposed.
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(v) Uniform Continuity: The process (�t) is uniformly continuous in the sense
de�ned in Appendix A.

(vi) Uniform Interiority: There exists � > 0 such that ri��t(!) 6= ? for all
t and !, where ri��t(!) is the �-relative interior of �t(!). (For any D �
(Rd �Rd�d) and � > 0, ri�D � fx 2 D : (x+B�(x))\ (a¤D) � Dg, where
a¤D is the a¢ ne hull of D and B�(x) denotes the open ball of radius �.)

(vii) Uniform A¢ ne Hull : The a¢ ne hulls of �t0(!0) and �t(!) are the same for
every (t0; !0) and (t; !) in [0; T ]� 
.

Conditions (i)-(iii) parallel assumptions made by Chen and Epstein [3]. A form
of Nondegeneracy is standard in �nancial economics. The remaining conditions
are adapted from Nutz [25] and are imposed in order to accommodate ambiguity
in volatility. The major di¤erences from Nutz�assumptions are in (vi) and (vii).
Translated into our setting, he assumes that int��t(!) 6= ?, where, for any D,
int��t(!) = fx 2 D : (x + B�(x)) � Dg. By weakening his requirement to
deal with relative interiors, we are able to broaden the scope of the model in
important ways (see the �rst three examples below). Because each�t(!) is convex,
if it also has nonempty interior then its a¢ ne hull is all of Rd � Rd�d. Then
ri��t(!) = int��t(!) 6= ? and also (vii) is implied. In this sense, (vi)-(vii) are
jointly weaker than assuming int��t(!) 6= ?.
We illustrate the scope of the model through some examples.

Example 2.1 (Ambiguous drift). If �t (!) � Rd�f�t (!)g for every t and !,
for some volatility process �, then there is ambiguity only about drift. If d = 1,
it is modeled by the random and time varying interval [�t; �t]. The regularity
conditions above for (�t) are satis�ed if: �2t � a > 0 and �t��t > 0 everywhere,
and if �t and �t are continuous in ! uniformly in t. This special case corresponds
to the Chen and Epstein [3] model.

Example 2.2 (Ambiguous volatility). If �t (!) � f�t (!)g � Rd�d for every
t and !, for some drift process �, then there is ambiguity only about volatility.
If d = 1, it is modeled by the random and time varying interval [�t; �t]. The
regularity conditions for (�t) are satis�ed if: �t >�t � a > 0 everywhere, and if
�t and �t are continuous in ! uniformly in t.
A generalization is important. Allow d � 1 and let �t = 0. Then (speaking

informally) there is certainty that B is a martingale in spite of uncertainty about
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the true probability law. Volatility (�t) is a process of d � d matrices. Let the
admissible volatility processes (�t) be those satisfying �t 2 �, where � is any
compact convex subset of Rd�d such that, for all � in �, ��> � â for some
positive de�nite matrix ba.9 This speci�cation is essentially equivalent to Peng�s
[31] notion of G-Brownian motion.10

Example 2.3 (Robust stochastic volatility). This is a special case of the pre-
ceding example but we describe it separately in order to highlight the connection
of our model to the stochastic volatility literature. By a stochastic volatility model
we mean the hypothesis that the driving process has zero drift and that its volatil-
ity is stochastic and is described by a single process (�t) satisfying regularity con-
ditions of the sort given above. The speci�cation of a single process for volatility
indicates the individual�s complete con�dence in the implied dynamics. Suppose,
however, that (�1t ) and (�

2
t ) describe two alternative stochastic volatility models

that are put forth by expert econometricians; for instance, they might conform
to the Hull and White [17] and Heston [15] parametric forms respectively.11 The
models have comparable empirical credentials and are not easily distinguished em-
pirically, but their implications for optimal choice (or for the pricing of derivative
securities, which is a context in which stochastic volatility models are used heav-
ily) di¤er signi�cantly. Faced with these two models, the individual might place
probability 1

2
on each being the true model. But why should she be certain that

either one is true? Both (�1t ) and (�
2
t ) may �t data well to some approximation,

but other approximating models may do as well. An intermediate model such as�
1
2
�1t +

1
2
�2t
�
is one alternative, but there are many others that �lie between�(�1t )

and (�2t ) and that plausibly should be taken into account. Accordingly, (assuming
d = 1), let

�t (!) = minf�1t (!) ; �2t (!)g and �t (!) = maxf�1t (!) ; �2t (!)g,

and admit all volatility processes with values lying in the interval [�t (!) ; �t (!)]
for every !.

9Given symmetric matrices A0 and A, A0 � A if A0 �A is positive semide�nite.
10Peng provides generalizations of Itô�s Lemma and Itô integration appropriate for G-

Brownian motion that we exploit in our companion paper in deriving asset pricing implications.
11However, these functonal forms would lead to violation of the Uniform Boundedness regu-

larity condition (ii).
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Example 2.4 (Joint ambiguity). The model is �exible in the way it relates
ambiguity about drift and ambiguity about volatility. For example, a form of
independence is modeled if (taking d = 1)

�t(!) = [�t (!) ; �t (!)]� [�t (!) ; �t (!)], (2.5)

the Cartesian product of the intervals described in the preceding two examples.
An alternative hypothesis is that drift and volatility are thought to move

together. This is captured by specifying, for example,

�t(!) = f(�; �) 2 R2 : � = �min + z; �2 = �2min + 2z=
; 0 � z � zt (!)g, (2.6)

where �min, �2min and 
 > 0 are �xed and known parameters. The regularity
conditions for (�t) are satis�ed if zt is positive everywhere and continuous in !
uniformly in t. This speci�cation is adapted from Epstein and Schneider [10].

Example 2.5 (Markovian ambiguity). Assume that (�t) satis�es:

!0t = !t =) �t (!
0) = �t (!) .

Then ambiguity depends only on the current state and not on history. Note,
however, that according to (2.4), the drift and volatility processes deemed possible
are not necessarily Markovian - �t can depend on the complete history at any time.
Thus the individual is not certain that the driving process is Markovian, but the
set of processes that she considers possible at any given time is independent of
history beyond the prevailing state.

2.3. Priors, expectation and conditional expectation

We proceed to translate the set � of hypotheses about drift and volatility into a
set of priors. Each � induces (via P0) a probability measure P � on (
;FT ) given
by

P �(A) = P0(f! : X�(!) 2 A), A 2 FT .
Therefore, we arrive at the set of priors P� given by

P�= fP � : � 2 �g: (2.7)

Fix � and denote the set of priors P� simply by P. This is the set of priors
used, as in the Gilboa-Schmeidler model, to de�ne utility and to describe choice
between consumption processes.12

12The set P is relatively compact in the topology induced by bounded continuous functions
(this is a direct consequence of Gihman and Skorohod [12, Theorem 3.10]).
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Remark 1. If all alternative hypotheses display unit variance, then ambiguity
is limited to the drift as in the Chen-Epstein model, and one can show that, as
in [3], measures in P are pairwise equivalent. At the other extreme, if they all
display zero drift, then ambiguity is limited to volatility and many measures in
P are mutually singular. Nonequivalence of priors prevails in the general model
when both drift and volatility are ambiguous.

Given P, we de�ne (nonlinear) expectation as follows. For a random variable
� on (
;FT ), if supP2P EP � <1 de�ne

Ê� = sup
P2P

EP �: (2.8)

Because we will assume that the individual is concerned with worst-case scenarios,
below we use the fact that

inf
P2P

EP � = �Ê[��].

The crucial remaining ingredient of the model, and the focus of most of the
work in the appendices, is conditioning. A naive approach to de�ning conditional
expectation would be to use the standard conditional expectation EP [� j Ft] for
each P in P and then to take the (essential) supremum over P. Such an approach
immediately encounters a roadblock due to the nonequivalence of priors. The
conditional expectation EP [� j Ft] is well de�ned only P -almost surely, while to
be a meaningful object for analysis, a random variable must be well de�ned from
the perspective of every measure in P. In the following, we say that a property
holds quasisurely (q:s: for short) if it holds P -a:s: for every P 2 P.13 In other
words, and speaking very informally, conditional beliefs must be de�ned at every
node deemed possible by some measure in P. The economic rationale is that
even if P (A) = 0, for some A 2 Ft and t > 0, if also Q (A) > 0 for some other
prior in P, then ex ante the individual does not totally dismiss the possibility
of A occurring when she formulates consumption plans: if she is guided by the
worst case scenario, then minP 02P P 0 (
nA) < 1 implies that she would reject a

13Throughout, when Z is a random variable, Z � 0 quasisurely means that the inequality is
valid P -a:s: for every P in P . If Z = (Zt) is a process, by the statement �Zt � 0 for every t
quasisurely (q.s.)�we mean that for every t there exists Gt � 
 such that Zt (!) � 0 for all
! 2 Gt and P (Gt) = 1 for all P in P . If Zt = 0 for every t quasisurely, then Z = 0 in M2(0; T )

(because Ê[
Z T

0

j Zt j2 dt] �
Z T

0

Ê[j Zt j2]dt), but the converse is not valid in general.
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bet against A that promised a su¢ ciently poor prize (low consumption stream) if
A occurs. Therefore, a model of dynamic choice by a sophisticated and forward-
looking individual should specify her consumption plan contingent on arriving at
(A; t).
This di¢ culty can be overcome because for every admissible hypothesis �,

�t (!) is de�ned for every (t; !), that is, the primitives specify a hypothesized
instantaneous drift-volatility pair everywhere in the tree. This feature of the
model resembles the approach adopted in the theory of extensive form games,
namely the use of conditional probability systems, whereby conditional beliefs at
every node are speci�ed as primitives, obviating the need to update. It resembles
also the approach in the discrete time model in Epstein and Schneider [9], where
roughly, conditional beliefs about the next instant for every time and history are
adopted as primitives and are pasted together by backward induction to deliver
the ex ante set of priors.
To proceed, recall the construction of the set of priors through (2.3) and the set

� of admissible drift and volatility processes. If � = (�s) is a conceivable scenario
ex ante, then (�s (t!; �))t�s�T is seen by the individual ex ante as a conceivable
continuation from time t along the history !. We assume that then it is also
a conceivable scenario ex post conditionally on (t; !), thus ruling out surprises
or unanticipated changes in outlook. Accordingly, X�;t;! = (X�;t;!

s )t�s�T is a
conceivable conditional scenario for the driving process if it solves the following
SDE under P0:�

dX�;t;!
s = �s(X

�;t;!
� )ds+ �s(X

�;t;!
� )dBs; t � s � T

X�;t;!
s = !s; 0 � s � t.

(2.9)

The solution X�;t;! induces a probability measure P �;!t 2 �(
), denoted simply
by P !t with � suppressed when it is understood that P = P �. For each P in P,
the measure P !t 2 �(
) is de�ned for every t and !, and, importantly, it is a
version of the regular Ft-conditional probability of P (see Lemma B.2).
The set of all such conditionals obtained as � varies over � is denoted P!t , that

is,
P!t = fP !t : P 2 Pg . (2.10)

We take P!t to be the individual�s set of priors conditional on (t; !).14

14The evident parallel with the earlier construction of the ex ante set P can be expressed
more formally because the construction via (2.9) can be expressed in terms of a process of
correspondences (�t;!s )t�s�T , �

t;!
s : Cd([t; T ])  Rd � Rd�d, satisfying counterparts of the

regularity conditions (i)-(vii) on the time interval [t; T ].
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The sets of conditionals in (2.10) lead to the following (nonlinear) conditional
expectation on UCb (
), the set of all bounded and uniformly continuous functions
on 
:

Ê[� j Ft] (!) = sup
P2P!t

EP �, for every � 2 UCb (
) and (t; !) 2 [0; T ]� 
: (2.11)

Conditional expectation is de�ned thereby on UCb (
), but this domain is not large
enough for our purposes.15 For example, the conditional expectation of � need not
be (uniformly) continuous in ! even if � is bounded and uniformly continuous,
which is an obstacle to dealing with stochastic processes and recursive modeling.
(Similarly, if one were to use the space Cb (
) of bounded continuous functions.)
Thus we consider the larger domain cL2(
), the completion of UCb (
) under

the norm k � k� (Ê[j � j2]) 12 .16 Denis et al. [4] show that a random vari-
able � de�ned on 
 lies in cL2(
) if and only if: (i) � is quasicontinuous - for
every � > 0 there exists an open set G � 
 with P (G) < � for every P in P
such that � is continuous on 
nG; and (ii) � is uniformly integrable in the sense
that limn!1 supP2P E

P
�
j � j2 1fj�j>ng

�
= 0. This characterization is inspired by

Lusin�s Theorem for the classical case which implies that when P = fPg, thencL2(
) reduces to the familiar space of P -squared integrable random variables. For
general P, cL2(
) is a proper subset of the set of measurable random variables �
for which supP2P E

P (j � j2) <1.17 However, it is large in the sense of containing
many discontinuous random variables; for example,cL2(
) contains every bounded
and lower semicontinuous function on 
 (see the proof of Lemma B.8).
Another aspect of cL2(
) warrants emphasis. Two random variables �0 and �

are identi�ed incL2(
) if and only if k �0�� k= 0, which means that �0 = � almost
surely with respect to P for every P in P. In that case, say that the equality
obtains quasisurely and write �0 = � q:s: Thus �0 and � are distinguished whenever
they di¤er with positive probability for some measure in P. Accordingly, the spacecL2(
) provides a more detailed picture of random variables than does any single
measure in P.
15The de�nition is restricted to UCb (
) in order to ensure the measurability of Ê[� j Ft] (�)

and proof of a suitable form of the law of iterated expectations. Indeed, Appendix B, speci�cally
(B.2), shows that conditional expectation has a di¤erent representation when random variables
outside UCb (
) are considered.
16It coincides with the completion of Cb (
); see [4].
17For example, if P is the set of all Dirac measures with support in 
, then cL2(
) = Cb (
).
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The next theorem (proven in Appendix B) shows that conditional expectation
admits a suitably unique and well behaved extension from UCb (
) to all ofcL2(
).
Accordingly, the sets P!t determine the conditional expectation for all random
variables considered in the sequel.

Theorem 2.6 (Conditioning). The mapping Ê[� j Ft] on UCb(
) de�ned in
(2.11) can be extended uniquely to a 1-Lipschitz continuous mapping Ê[� j Ft] :cL2(
)! cL2(t
), where 1-Lipschitz continuity means that

k Ê[�0 j Ft]� Ê[� j Ft] kcL2�k �0 � � kcL2 for all �0; � 2 cL2(
):
Moreover, the extension satis�es, for all � and � in cL2(
) and for all t 2 [0; T ],

Ê[Ê[� j Ft] j Fs] = Ê[� j Fs]; for 0 � s � t � T , (2.12)

and:
(i) If � � �, then Ê[� j Ft] � Ê[� j Ft].
(ii) If � is Ft-measurable, then Ê[� j Ft] = �.
(iii) Ê[� j Ft] + Ê[� j Ft] � Ê[� + � j Ft] with equality if � is Ft-measurable.
(iv) Ê[�� j Ft] = �+Ê[� j Ft] + ��Ê[�� j Ft], if � is Ft-measurable.

The Lipschitz property is familiar from the classical case of a single prior,
where it is implied by Jensen�s inequality (see the proof of Lemma B.8). The law
of iterated expectations (2.12) is intimately tied to dynamic consistency of the
preferences discussed below. The nonlinearity expressed in (iii) re�ects the nons-
ingleton nature of the set of priors. Other properties have clear interpretations.

Remark 2. In a paper written after ours was posted and widely circulated, Nutz
[26, Theorem 5.1] also constructs a sublinear conditional expectation accommo-
dating ambiguity about both drift and volatility. He induces priors via an SDE
of the form

dXt = �t(X�; vt)dt+ �t(X�; vt)dBt, X0 = x, t 2 [0; T ],

where the control vt takes values in a �xed nonempty Borel subset U of Rm.
Then, when vt changes, so does �t = (�t; �t). We induce priors via (2.3) and we
require only that (�t) falls in the set � of processes. A second di¤erence is that we
assume directly that � has the "feedback" form, i.e., � is a progressively measurable
functional ofX�. Nutz�s Assumption 2.1 is more general, but it is di¢ cult to verify.
As he points out in Remark 2.2, the usual way to guarantee Assumption 2.1 would
be to assume that � has the "feedback" form�our assumption.
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2.4. The de�nition of utility

Because we turn to consideration of processes, we de�ne M2;0(0; T ), the class of
processes � of the form

�t(!) =

N�1X
i=0

�i(!)1[ti;ti+1)(t);

where �i 2 cL2(ti
), 0 � i � N � 1, and 0 = t0 < � � � < tN = T .18 Roughly, each
such � is a step function in random variables from the spaces cL2(ti
). For the
usual technical reasons, we consider also suitable limits of such processes. Thus
de�ne M2(0; T ) to be the completion of M2;0(0; T ) under the norm

k � kM2(0;T )� (Ê[
Z T

0

j �t j2 dt])
1
2 :

Consumption at every time takes values in C, a convex subset of Rd+. Con-
sumption processes c = (ct) lie in D, a subset of M2(0; T ).
For each c in D, we de�ne a utility process (Vt (c)), where Vt (c) is the utility of

the continuation (cs)0�s�t and V0 (c) is the utility of the entire process c. We often
suppress the dependence on c and write simply (Vt). We de�ne utility following
Du¢ e and Epstein [7]. This is done in order that our model retain the �exibility
to partially separate intertemporal substitution from other aspects of preference
(here uncertainty, rather than risk by which we mean �probabilistic uncertainty�).
Let � and P = P� be as above. The other primitive component is the

aggregator f : C � R1 ! R1. It is assumed to satisfy:
(i) f is Borel measurable.
(ii) Uniform Lipschitz for aggregator: There exists a positive constant K such

that
j f(c; v0)� f(c; v) j� K j v0 � v j , for all (c; v0; v) 2 C � R2:

(iii) (f(ct; v))0�t�T 2M2(0; T ) for each v 2 R and c 2 D.

We de�ne Vt by

Vt = �Ê[�
R T
t
f(cs; Vs)ds j Ft] . (2.13)

18The space ti
 was de�ned in Section 2.1.
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This de�nition of utility generalizes both Du¢ e and Epstein [7], where there is
no ambiguity, and Chen and Epstein [3], where ambiguity is con�ned to drift.
Formally, they use di¤erent sets of priors: a singleton set in the former paper and
a suitable set of equivalent priors in the latter paper.
Our main result follows (see Appendix C for a proof).

Theorem 2.7 (Utility). Let (�t) and f satisfy the above assumptions. Fix
c 2 D. Then:
(a) There exists a unique process (Vt) in M2(0; T ) solving (2.13).
(b) The process (Vt) is the unique solution in M2(0; T ) to VT = 0 and

Vt = � bE ��Z �

t

f(cs; Vs) ds � V� j Ft
�
, 0 � t < � � T: (2.14)

Part (a) proves that utility is well de�ned by (2.13). Recursivity is established
in (b).
The most commonly used aggregator has the form

f (ct; v) = u (ct)� �v, � � 0, (2.15)

in which case utility admits the closed-form expression

Vt = �Ê[�
Z T

t

u(cs)e
��sds j Ft]: (2.16)

More generally, closed form expressions are rare. The following example illus-
trates the e¤ect of volatility ambiguity.

Example 2.8 (Closed form). Consider the consumption process c satisfying
(under P0)

d log ct = s>�tdBt, c0 > 0 given, (2.17)

where s is constant and the volatility matrix �t is restricted only to lie in the
compact and convex set �, as in Example 2.2, corresponding to Peng�s [31] notion
of G-Brownian motion. Utility is de�ned by the standard aggregator,

Vt (c) = �Ê[�
Z T

t

u(cs)e
��(s�t)ds j Ft].

where the felicity function u is given by

u (ct) = (ct)
�=�, 0 6= � < 1.
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Then the conditional utilities Vt (c) can be expressed in closed form. To do so,
de�ne � and � as the respective solutions to

min
�2�

tr
�
��>ss>

�
and max

�2�
tr
�
��>ss>

�
: (2.18)

(If d = 1, then � is a compact interval and � and � are its left and right endpoints.)
Let P � be the measure on 
 induced by P0 and X�, where

X�
t = �>Bt, for all t and !;

de�ne P �� similarly using � and X��. They are worst-case (or minimizing) mea-
sures in that19

V0 (c) =

8<: EP
�
hR T
0
��1(c� )

�e���d�
i
if � < 0

EP
��
hR T
0
��1(c� )

�e���d�
i
if � > 0

(2.19)

This follows from Levy et al. [21] and Peng [33], because u (ct) = ��1 exp (� log ct)
and x 7�! e�x=� is concave if � < 0 and convex if � > 0. From (2.17), almost
surely with respect to P (�� ),

��1c�t = ��1c�0 exp

�
�

Z t

0

s>��dB�

�
.

It follows that utility can be computed as if the volatility �t were constant and
equal to � (if � < 0) or � (if � > 0).
For t > 0, employ the regular conditionals of P � and P ��, which have a simple

form. For example, following (2.9), for every (t; !), (P �)!t is the measure on 

induced by the SDE �

dX� = �dB� ; t � � � T
X� = !� ; 0 � � � t

Thus under (P �)!t , B� �Bt is N
�
0; ��> (� � t)

�
for t � � � T . Further, (P �)!t is

the worst case measure in P!t if � < 0; similarly, (P ��)!t is the worst case measure
in P!t if � > 0. Repeat the argument used above for t = 0 to obtain

Vt (c) =

8<: E(P
�)!t

hR T
t
��1(c� )

�e��(��t)d�
i
if � < 0

E(P
��)!t

hR T
t
��1(c� )

�e��(��t)d�
i
if � > 0

19That the minimizing measure corresponds to constant volatility is a feature of this example.
More generally, the minimizing measure in P de�nes a speci�c stochastic volatility model.
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and, by computing the expectations, that

Vt (c) =

�
��1c�t �


�1(1� e��
(T�t)) if � < 0
��1c�t 


�1(1� e�
(T�t)) if � > 0

where
�
 , � � 1

2
�2s>��>s, 
 , � � 1

2
�2s>��>s.

Utility has a range of natural properties. Most noteworthy is that the process
(Vt) satis�es the recursive relation (2.14). However, though such recursivity is typ-
ically thought to imply dynamic consistency, the nonequivalence of priors compli-
cates matters. The noted recursivity implies the following weak form of dynamic
consistency: For any 0 < t < T , and any two consumption processes c0 and c that
coincide on [0; t],

[Vt (c
0) � Vt (c) q:s:] =) V0 (c

0) � V0 (c) .

Typically, (see Du¢ e and Epstein [7, p. 373] for example), dynamic consistency
is de�ned so as to deal also with strict rankings, that is, if also Vt (c0) > Vt (c) on a
�non-negligible�set of states, then V0 (c0) > V0 (c). This added requirement rules
out the possibility that c0 is chosen ex ante though it is indi¤erent to c, and yet
it is not implemented fully because the individual switches to the conditionally
strictly preferable c for some states at time t. The issue is how to specify �non-
negligible�. When all priors are equivalent, then positive probability according
to any single prior is the natural speci�cation. In the absence of equivalence a
similarly natural speci�cation is unclear. In particular, as illustrated in [8], it is
possible that c0 and c be indi¤erent ex ante and yet that: (i) c0 � c on [0; T ] and
they coincide on [0; t]; (ii) there exists t > 0, an event Nt 2 Ft, with P (Nt) > 0 for
some P 2 P, such that c0� > c� for t < � � T and ! 2 N� . Then monotonicity of
preference would imply that c0 be weakly preferable to c at t and strictly preferable
conditionally on (t; Nt), contrary to the strict form of dynamic consistency.20 The
fact that utility is recursive but not strictly so suggests that, given an optimization
problem, though not every time 0 optimal plan may be pursued subsequently at
all relevant nodes, under suitable regularity conditions there will exist at least one
time 0 optimal plan that will be implemented. This is the case for an example in
[8], but a general analysis remains to be done.

20The reason that c0 and c are indi¤erent ex ante is that Nt is ex ante null according to the
worst-case measure for c.
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A. Appendix: Uniform Continuity

De�ne the shifted canonical space by


t � f! 2 Cd([t; T ]) j !t = 0g:

Denote by Bt the canonical process on 
t, (a shift of B), by P t0 the probability
measure on 
t such that Bt is a Brownian motion, and by F t = fF t

�gt���T the
�ltration generated by Bt.
Fix 0 � s � t � T: For ! 2 
s and ~! 2 
t, the concatenation of ! and ~! at t

is the path

(! 
t ~!)� , !�1[s;t)(�) + (!t + ~!� )1[t;T ](�); s � � � T:

Given an F s
T -measurable random variable � on 
s and ! 2 
s, de�ne the shifted

random variable �t;! on 
t by

�t;!(~!) , �(! 
t ~!); ~! 2 
t:

For anF s-progressively measurable process (X� )s���T , the shifted process (X t;!
� )t���T

is F t-progressively measurable.
Let (�s)0�s�T be a process of correspondences as in Section 2.2. For each (t; !)

in [0; T ]� 
, de�ne a new process of correspondences (�t;!s )t�s�T by:

�t;!s (~!) , �s(! 
t ~!); ~! 2 
t:

Then
�t;!s : 
t  Rd � Rd�d.

The new process inherits conditions (i)-(iv) and (vi). The same is true for (v),
which we de�ne next.
The following de�nition is adapted from Nutz [25, Defn. 3.2]. Say that (�t) is

uniformly continuous if for all � > 0 and (t; !) 2 [0; T ]�
 there exists �(t; !; �) > 0
such that if sup0�s�t j !s � !0s j� �, then

ri��t;!s (~!) � ri��t;!
0

s (~!) for all (s; ~!) 2 [t; T ]� 
t:

The process (�t), and hence also �, are �xed throughout the appendices. Thus
we write P instead of P�. De�ne P0 � P by

P0 � fP 2 P : 9� > 0 �t(!) 2 ri��t(!) for all (t; !) 2 [0; T ]� 
g: (A.1)
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B. Appendix: Conditioning

Theorem 2.6 is proven here.
In fact, we prove more than is stated in the theorem because we prove also

the following representation for conditional expectation. For each t 2 [0; T ] and
P 2 P, de�ne

P(t; P ) = fP 0 2 P : P 0 = P on Ftg: (B.1)

Then for each � 2 cL2(
), t 2 [0; T ] and P 2 P,21
Ê[� j Ft] = ess sup

P 02P(t;P )
EP 0 [� j Ft], P -a:e: (B.2)

Perspective on this representation follows from considering the special case
where all measures in P are equivalent. Fix a measure P0 in P. Then the condition
(B.2) becomes

Ê[� j Ft] = ess sup
P 02P(t;P )

EP 0 [� j Ft], P0-a:e:, for every P 2 P :

Accordingly, the random variable on the right side is (up to P0-nullity) indepen-
dent of P . Apply [P2PP(t; P ) = P to conclude that22

Ê[� j Ft] = ess sup
P 02P

EP 0 [� j Ft], P0-a:s:

In other words, conditioning amounts to applying the usual Bayesian conditioning
to each measure in P and taking the upper envelope of the resulting expectations.
This coincides with the prior-by-prior Bayesian updating rule in the Chen-Epstein
model (apart from the di¤erent convention there of formulating expectations using
in�ma rather than suprema). When the set P is undominated, di¤erent measures
in P typically provide di¤erent perspectives on any random variable. Accordingly,
(B.2) describes Ê[� j Ft] completely by describing how it appears when seen
through the lens of every measure in P.
21Because all measures in P(t; P ) coincide with P on Ft, essential supremum is de�ned as in

the classical case (see He et al. [14, pp. 8-9], for example). Thus the right hand side of (B.2) is
de�ned to be any random variable �� satisfying: (i) �� is Ft-measurable, EP 0 [� j Ft] � �� P -a:e:
and (ii) �� � ��� P -a:e: for any other random variable ��� satisfying (i).
22The P0-null event can be chosen independently of P by He et al. [14, Theorem 1.3]: LetH be

a non-empty family of random variables on any probability space. Then the essential supremum
exists and there is a countable number of elements (�n) of H such that esssupH = _

n
�n:
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Our proof adapts arguments from Nutz [25]. He constructs a time consis-
tent sublinear expectation in a setting with ambiguity about volatility but not
about drift. Because of this di¤erence and because we use a di¤erent approach to
construct the set of priors, his results do not apply directly.
For any probability measure P on the canonical space 
, a corresponding

regular conditional probability P !t is de�ned to be any mapping P
!
t : 
 � FT !

[0; 1] satisfying the following conditions:
(i) for any !, P !t is a probability measure on (
;FT ).
(ii) for any A 2 FT , ! ! P !t (A) is Ft-measurable.
(iii) for any A 2 FT , EP [1A j Ft](!) = P !t (A); P -a:e:

Of course, P !t is not de�ned uniquely by these properties. We will �x a version
de�ned via (2.9) after proving in Lemma B.2 that P !t de�ned there satis�es the
conditions characterizing a regular conditional probability. This explains our use
of the same notation P !t in both instances.
If P is a probability on 
s and ! 2 
s, for any A 2 F t

T we de�ne

P t;!(A) , P !t (! 
t A);

where ! 
t A , f! 
t ~! j ~! 2 Ag.
For each (t; !) 2 [0; T ]� 
, let

�s(~!) = (�s(~!); �s(~!)) 2 ri��t;!s (~!) for all (s; ~!) 2 [t; T ]� 
t;

where � > 0 is some constant. Let X t;� = (X t;�
s ) be the solution of the following

equation (under P t0)

dX t;�
s = �s(X

t;�
� )ds+ �s(X

t;�
� )dB

t
s, X

t;�
t = 0, s 2 [t; T ]:

Then X t;� and P t0 induce a probability measure P
t;� on 
t.

Remark 3. For nonspecialists we emphasize the di¤erence between the preceding
SDE and (2.9). The former is de�ned on the time interval [t; T ], and is a shifted
version of (2.3), while (2.9) is de�ned on the full interval [0; T ]. This di¤erence is
re�ected also in the di¤erence between the induced measures: the shifted measure
P t0 2 �(
t) and the conditional measure P !t 2 �(
). Part of the analysis to
follow concerns shifted SDE�s, random variables and measures and their relation
to unshifted conditional counterparts. (See also Appendix A.)
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Let P0(t; !) be the collection of such induced measures P t;�. De�ne
deg(t; !; P t;�) = ��=2 > 0, where �� is the supremum of all � such that

�s(~!) 2 ri��t;!s (~!) for all s and e!.
Note that at time t = 0, P0(0; !) does not depend on ! and it coincides with P0.
For each (t; !) 2 [0; T ]�
, let P(t; !) be the collection of all induced measures

P t;� such that

�s(~!) = (�s(~!); �s(~!)) 2 �t;!s (~!) for all (s; ~!) 2 [t; T ]� 
t.

Note that P(0; !) = P.

Now we investigate the relationship between P(t; !) and P!t . (Recall that for
any P = P � in P, the measure P !t is de�ned via (2.9) and P!t is the set of all such
measures as in (2.10).)
For any � = (�; �) 2 �, (t; !) 2 [0; T ]� 
, de�ne the shifted process �� by

��s(~!) = (��s(~!); ��s(~!)) , (�t;!s (~!); �t;!s (~!)) for (s; ~!) 2 [t; T ]� 
t. (B.3)

Then ��s(~!) 2 �t;!s (~!). Consider the equation�
d �Xs = ��s( �X:)ds+ ��s( �X:)dB

t
s, s 2 [t; T ];

�Xt = 0:
(B.4)

Under P t0, the solution X induces a probability measure P t;�� on 
t. By the
de�nition of P(t; !), P t;�� 2 P(t; !).

Lemma B.1. f(P 0)t;! : P 0 2 P!t g = P(t; !).

Proof. �: For any � = (�; �) 2 �, P = P � and (t; !) 2 [0; T ] � 
, we claim
that

(P !t )
t;! = P t;

��

where P t;�� is de�ned through (B.4). Because B has independent increments under
P0, the shifted solution (X t;!

s )t�s�T of (2.9) has the same distribution as does
( �Xs)t�s�T . This proves the claim.
�: Prove that for any P t;�� 2 P(t; !), there exists � 2 � such that (where

P = P �)
P !t 2 P!t and (P !t )t;! = P t;

��:
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Each P t;�� in P(t; !) is induced by the solution X of (B.4), where � (e!), de�ned in
(B.3), lies in �t;!s (~!) for every ~! 2 
t. For any � 2 � such that

�t;!s (~!) = (�
t;!
s (~!); �

t;!
s (~!)) = (��s(~!); ��s(~!)), s 2 [t; T ];

consider the equation (2.9). Under P0, the solution X induces a probability P !t on

. Because B has independent increments under P0, we know that (P !t )

t;! = P t;
��.

This completes the proof. �

Lemma B.2. For any � 2 � and P = P �, fP !t : (t; !) 2 [0; T ]� 
g is a version
of the regular conditional probability of P .

Proof. Firstly, for any 0 < t1 < � � � < tn � T and bounded, continuous
functions ' and  , we prove that

EP ['(Bt1^t; : : : ; Btn^t) (Bt1 ; : : : ; Btn)] = EP ['(Bt1^t; : : : ; Btn^t) t] (B.5)

where t 2 [tk; tk+1) and, for any !̂ 2 
;

 t(!̂) , EP
t;��

[ (!̂(t1); : : : ; !̂(tk); !̂(t) +Bt
tk+1

; : : : ; !̂(t) +Bt
tn)]:

Note that P t;�� on 
t is induced by �X (see (B.3)) under P t0, and P = P � on 

is induced by X = X� (see (2.3)) under P0. Then,

 t(X(!)) = (B.6)

EP
t
0 [ (Xt1(!); : : : ; Xtk(!); Xt(!) + �Xtk+1(~!); : : : ; Xt(!) + �Xtn(~!))]:

Because B has independent increments under P0, the shifted regular conditional
probability

P t;!0 = P t0; P0-a:e:

Thus (B.6) holds under probability P t;!0 .
Because P t;!0 is the shifted probability of (P0)!t , we have

 t(X(!))
= E(P0)

!
t [ (Xt1(!); : : : ; Xtk(!); Xtk+1(!); : : : ; Xtn(!))]

= EP0 [ (Xt1(!); : : : ; Xtk(!); Xtk+1(!); : : : ; Xtn(!)) j Ft](!); P0-a:e:
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Further, because P is induced by X and P0,

EP ['(Bt1^t; : : : ; Btn^t) t]
= EP0 ['(Xt1^t; : : : ; Xtn^t) t(X)]
= EP0 ['(Xt1^t; : : : ; Xtn^t)E

P0 [ (Xt1 ; : : : ; Xtn) j Ft]]
= EP0 ['(Xt1^t; : : : ; Xtn^t) (Xt1 ; : : : ; Xtn)]
= EP ['(Bt1^t; : : : ; Btn^t) (Bt1 ; : : : ; Btn)]:

Secondly, note that (B.5) is true and ' and (t1; : : : ; tn) are arbitrary. Then
by the de�nition of the regular conditional probability, for P -a:e: !̂ 2 
 and
t 2 [tk; tk+1),

 t(!̂) = E
~P t;!̂ [ (!̂(t1); : : : ; !̂(tk); !̂(t) +Bt

tk+1
; : : : ; !̂(t) +Bt

tn)], (B.7)

where ~P t;!̂ is the shift of the regular conditional probability of P given (t; !̂) 2
[0; T ]� 
:
By standard approximating arguments, there exists a setM such that P (M) =

0 and for any ! =2 M , (B.7) holds for all continuous bounded function  and
(t1; : : : ; tn). This means that for ! =2 M and for all bounded F t

T -measurable
random variables �

E
~P t;!� = EP

t;��

�:

Then ~P t;! = P t;
�� P -a:e: By Lemma B.1, ~P t;! = P t;

�� = (P !t )
t;!, P -a:e: Thus P !t

is a version of the regular conditional probability for P . �

In the following, we always use P !t de�ned by (2.9) as the �xed version of
regular conditional probability for P 2 P. Thus

EP
!
t � = EP [� j Ft](!), P -a:e:

Because we will want to consider also dynamics beginning at arbitrary s, let
0 � s � T , �! 2 
, and P 2 P(s; �!). Then given (t; !) 2 [s; T ]� 
s, we can �x a
version of the regular conditional probability, also denoted P !t (here a measure on

s), which is constructed in a similar fashion via a counterpart of (2.9). De�ne

P!t (s; �!) = fP !t : P 2 P(s; �!)g and

P0;!t (s; �!) = fP !t : P 2 P0(s; �!)g:
In each case, the obvious counterpart of the result in Lemma B.1 is valid.
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The remaining arguments are divided into three steps. First we prove that
if � 2 UCb(
) and if the set P is replaced by P0 de�ned in (A.1), then the
counterparts of (B.2) and (2.12) are valid. Then we show that P0 (resp. P0(t; !))
is dense in P (resp. P(t; !)). In Step 3 the preceding is extended to apply to all
� in the completion of UCb(
).

Step 1
Given � 2 UCb(
), de�ne

v0t (!) , sup
P2P0(t;!)

EP �t;!, (t; !) 2 [0; T ]� 
: (B.8)

(The notation �t;! is de�ned in Appendix A.)

Lemma B.3. Let 0 � s � t � T and �! 2 
. Given � > 0; there exist a sequence
(!̂i)i�1 in 
s, an F s

t -measurable countable partition (H
i)i�1 of 
s, and a sequence

(P i)i�1 of probability measures on 
t such that

(i) k ! � !̂i k[s;t]� sups���t j !� � !̂i� j� � for all ! 2 H i;
(ii) P i 2 P0(t; �! 
s !) for all ! 2 H i and inf

!2Hi
deg(t; �! 
s !; P i) > 0;

(iii) v0t (�! 
s !̂i) � EP
i
[�t;�!
s!̂

i
] + �.

Proof.Given � > 0 and !̂ 2 
s, by (B.8) there exists P (!̂) 2 P0(t; �! 
s !̂)
such that

v0t (�! 
s !̂) � EP (!̂)[�t;�!
s!̂] + �:

Because (�t) is uniformly continuous, there exists �(!̂) > 0 such that

P (!̂) 2 P0(t; �!
s!0) for all !0 2 B(�(!̂); !̂) and inf
!02B(�(!̂);!̂)

deg(t; �!
s!0; P (!̂)) > 0

where B(�; !̂) , f!0 2 
s jk !0 � !̂ k[s;t]< �g is the open k � k[s;t] ball. Then
fB(�(!̂); !̂) j !̂ 2 
sg forms an open cover of 
s. There exists a countable
subcover because 
s is separable. We denote the subcover by

Bi , B(�(!̂i); !̂i); i = 1; 2; : : :

and de�ne a partition of 
s by

H1 , B1; H i+1 , Bi+1n(H1 [ � � � [H i); i � 1:
Set P i , P (!̂i). Then (i)-(iii) are satis�ed. �

For any A 2 F s
T , de�ne

At;! = f~! 2 
t j ! 
t ~! 2 Ag.
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Lemma B.4. Let 0 � s � t � T , �! 2 
 and P 2 P0(s; �!): Let (H i)0�i�N
be a �nite F s

t -measurable partition of 

s. For 1 � i � N , assume that P i 2

P0(t; �! 
s !) for all ! 2 H i and that inf
!2Hi

deg(t; �! 
s !; P i) > 0. De�ne P by

�P (A) , P (A \H0) +
NX
i=1

EP [P i(At;!)1Hi(!)]; A 2 F s
T .

Then: (i) �P 2 P0(s; �!).
(ii) �P = P on F s

t .
(iii) �P t;! = P t;! P -a:e:[!] on H0.
(iv) �P t;! = P i P -a:e:[!] on H i, 1 � i � N .

Proof. (i) Let � (resp. �i) be the F s (resp. F t) -measurable process such that
P = P � (resp. P i = P �

i
): De�ne �� by

��� (!) , �� (!)1[s;t)(�) + [�� (!)1H0(!) +
NX
i=1

�i� (!
t)1Hi(!)]1[t;T ](�) (B.9)

for (�; !) 2 [s; T ]� 
s. Then P �� 2 P0(s; �!) and �P = P
�� on F s

T .
(ii) Let A 2 F s

t . We prove �P (A) = P (A). Note that for ! 2 
s, if ! 2 A,
then At;! = 
t; otherwise, At;! = ;. Thus, P i(At;!) = 1A(!) for 1 � i � N , and

�P (A) = P (A \H0) +
NX
i=1

EP [1A(!)1Ei(!)] =
NX
i=0

P (A \H i) = P (A).

(iii)-(iv) Recall the de�nition of P !t by (2.9). Note that �P = P
�� where �� is

de�ned by (B.9). Then it is easy to show that the shifted regular conditional
probability �P t;! satis�es (iii)-(iv). �

The technique used in proving Nutz [25, Theorem 4.5] can be adapted to prove
the following dynamic programming principle.

Proposition B.5. Let 0 � s � t � T , � 2 UCb(
) and de�ne v0t by (B.8). Then

v0s(�!) = sup
P 02P0(s;�!)

EP
0
[(v0t )

s;�!] for all �! 2 
, (B.10)

v0s = ess sup
P 02P0(s;P )

EP
0
[v0t j Fs] P -a:e: for all P 2 P0, (B.11)

and
v0s = ess sup

P 02P0(s;P )
EP

0
[� j Fs] P -a:e: for all P 2 P0: (B.12)
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Proof. Proof of (B.10): First prove �. Let �! 2 
 and ! 2 
s, by Lemma
B.1,

f(P 0)t;! j P 0 2 P0;!t (s; �!)g = P0(t; �! 
s !):
For P 2 P0(s; �!),

EP
t;!
[(�s;�!)t;!] = EP

t;!
[�t;�!
s!]

� sup
P 02P0(t;�!
s!)

EP
0
[�t;�!
s!]

= v0t (�! 
s !):
(B.13)

Note that v0t (�!
s !) = (v0t )s;�!(!). Taking the expectation under P on both sides
of (B.13) yields

EP �s;�! � EP [(v0t )
s;�!]:

The desired result holds by taking the supremum over P 2 P0(s; �!).
Prove �. Let � > 0. Because t
 (de�ned in section 2.1) is a Polish space and

(v0t )
s;�! is F s

t -measurable, by Lusin�s Theorem there exists a compact set G 2 F s
t

with P (G) > 1� � and such that (v0t )
s;�! is uniformly continuous on G.

Let � > 0. By Lemma B.3, there exist a sequence (!̂i)i�1 in G, an F s
t -

measurable partition (H i)i�1 of G, and a sequence (P i)i�1 of probability measures
such that
(a) k ! � !̂i k[s;t]� � for all ! 2 H i;
(b) P i 2 P0(t; �! 
s !) for all ! 2 H i and inf

!2Hi
deg(t; �! 
s !; P i) > 0;

(c) v0t (�! 
s !̂i) � EP
i
[�t;�!
s!̂

i
] + �.

Let
AN , H1 [ � � � [HN ; N � 1:

For P 2 P0(s; �!), de�ne
P0(s; �!; t; P ) , fP 0 2 P0(s; �!) : P 0 = P on F s

t g.
Apply Lemma B.4 to the �nite partition fH1; : : : ; HN ; AcNg of 
s to obtain a
measure PN 2 P0(s; �!) such that PN 2 P0(s; �!; t; P ) and

P t;!N =

�
P t;! for ! 2 AcN ;
P i for ! 2 H i; 1 � i � N

(B.14)

Because (v0t )
s;�! and � are uniformly continuous on G, there exist moduli of

continuity �((v
0
t )
s;�! jG) (�) and �(�) (�) such that
j (v0t )s;�!(!)� (v0t )s;�!(!0) j� �((v

0
t )
s;�! jG)(k ! � !0 k[s;t]);

j �t;�!
s! � �t;�!
s!
0 j� �(�)(k ! � !0 k[s;t]):
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Let ! 2 H i for some 1 � i � N . Then

(v0t )
s;�!(!)

� (v0t )
s;�!(!̂i) + �((v

0
t )
s;�! jG)(�)

� EP
i
[�t;�!
s!̂

i
] + �+ �((v

0
t )
s;�! jG)(�)

� EP
i
[�t;�!
s!] + �(�)(�) + �+ �((v

0
t )
s;�! jG)(�)

= EP
t;!
N [�t;�!
s!] + �(�)(�) + �+ �((v

0
t )
s;�! jG)(�)

= EPN [�s;�! j F s
t ](!) + �(�)(�) + �+ �((v

0
t )
s;�! jG)(�) for P -a:e: ! 2 H i:

(B.15)

These inequalities are due respectively to uniform continuity of v0t , Lemma B.3(iii),
uniform continuity of �, equation (B.14), and the fact that PN 2 P(t; P ). Because
P = PN on F s

t , taking the P -expectation on both sides yields

EP [(v0t )
s;�!1AN ] � EPN [�s;�!1AN ] + �(�)(�) + �+ �((v

0
t )
s;�! jG)(�):

Note that � 2 UCb(
) and PN(GnAN) = P (GnAN) ! 0 as N ! 1. Let
N !1 and �! 0 to obtain that

EP [(v0t )
s;�!1G] � sup

P 02P0(s;�!;t;P )
EP

0
[�s;�!1G]:

Because � > 0 is arbitrary, similar arguments show that

EP [(v0t )
s;�!] � sup

P 02P0(s;�!;t;P )
EP

0
�s;�! � sup

P 02P0(s;�!)
EP

0
�s;�! = v0s(�!):

But P 2 P0(s; �!) is arbitrary. This completes the proof of (B.10).

Proof of (B.11): Fix P 2 P0. First we prove that

v0t � ess sup
P 02P0(t;P )

EP
0
[� j Ft] P -a:e: (B.16)

Argue as in the second part of the preceding proof, specialized to s = 0. Conclude
that there exists PN 2 P0(t; P ) such that, as a counterpart of (B.15),

v0t (!) � EPN [� j Ft](!) + �(�)(�) + �+ �(v
0
t jG)(�) for P -a:e: ! 2 AN :

Because P = PN on Ft, as N !1 and � ! 0, one obtains (B.16).
Now prove the inequality � in (B.11). For any P 0 2 P0(s; P ), we know that

(P 0)t;! 2 P0(t; !). From (B.10),

v0t (!) � E(P
0)t;! [�t;!] = EP

0
[� j Ft](!) P 0-a:e:
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Taking the conditional expectation on both sides yields EP
0
[� j Fs] � EP

0
[v0t j

Fs] P 0-a:e:, hence also P -a:e: Thus

v0s � ess sup
P 02P0(s;P )

EP
0
[� j Fs] � ess sup

P 02P0(s;P )
EP

0
[v0t j Fs] P -a:e:

Thirdly, we prove the converse direction holds in (B.11). For any P 0 2
P0(s; P ); by (B.10) we have

v0s(!) � E(P
0)s;! [(v0t )

s;!] = EP
0
[v0t j Fs](!)

P 0-a:e: on Fs and hence P -a:e:
Equation (B.12) is implied by (B.11) because v0T = �. �

STEP 2
Refer to the topology induced on �(
) by bounded continuous functions as

the weak-convergence topology.

Lemma B.6. (a) P0 is dense in P in the weak convergence topology.
(b) For each t and !, P0(t; !) is dense in P(t; !) in the weak convergence

topology.

Proof. (a) Let P �0 2 P0 and P � 2 P, and de�ne

�� = ��0 + (1� �)� ;

where 0 < � < 1. By Uniform Interiority for (�t), there exists � > 0 such that
��t(!) 2 ri��t(!) for all t and !. Thus P �

� 2 P0.
By the standard approximation of a stochastic di¤erential equation (see Gih-

man and Skorohod [12, Thm 3.15]), as � ! 0 there exists a subsequence of X�� ,
which we still denote by X�� , such that

sup
0�t�T

j X��

t �X�
t j! 0 P0-a:e:

The Dominated Convergence Theorem implies that P �
� ! P �.

(b) The proof is similar. �

For any � = (�; �) 2 �, (t; !) 2 [0; T ] � 
, de�ne the shifted process ��, the
process X and the probability measure P t;� exactly as in (B.3) and (B.4). As
noted earlier, P t;�� 2 P(t; !).
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Recall that for any P in P, the measure P !t is de�ned via (2.9); P!t is the set
of all such measures (2.10). By construction,

P !t (f�! 2 
 : �!s = !s s 2 [0; t]g) = 1.

We show shortly that P !t is a version of the regular conditional probability for P .
Given � 2 UCb(
), de�ne

vt(!) , sup
P2P(t;!)

EP �t;!, (t; !) 2 [0; T ]� 
: (B.17)

Lemma B.7. For any (t; !) 2 [0; T ]� 
 and � 2 UCb(
), we have

vt(!) = v0t (!); (B.18)

vt(!) = sup
P2P!t

EP �, (B.19)

and
vt = ess sup

P 02P(t;P )
EP

0
[� j Ft] P -a:e: for all P 2 P : (B.20)

Furthermore, for any 0 � s � t � T ,

vs(!) = sup
P 02P(s;!)

EP
0
[(vt)

s;!] for all ! 2 
, (B.21)

and
vs = ess sup

P 02P(s;P )
EP

0
[vt j Fs] P -a:e: for all P 2 P. (B.22)

Proof. Proof of (B.18): It is implied by the fact that P0(t; !) is dense in
P(t; !).
Proof of (B.19): By the de�nition of vt(!), we know that

vt(!) = sup
P2P(t;!)

EP �t;!:

By Lemma B.1,
f(P 0)t;! j P 0 2 P!t g = P(t; !):

Thus
vt(!) = sup

P̂2P!t

EP̂
t;!

�t;! = sup
P̂2P!t

EP̂ �:
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Proof of (B.20): Fix P 2 P. For any P 0 2 P(t; P ), by Lemmas B.1 and B.2,
(P 0)t;! 2 P(t; !). By the de�nition of vt(!),

vt(!) � E(P
0)t;!�t;! = EP

0
[� j Ft](!)

P 0-a:e: on Ft and hence P -a:e: Thus

vt � ess sup
P 02P(t;P )

EP
0
[� j Ft] P -a:e:

Now we prove the reverse inequality. By (B.18), vt(!) = v0t (!). Then, using
the same technique as in the proof of Proposition B.5 for the special case s = 0,
there exists PN 2 P(t; P ) such that, as a counterpart of (B.15),

vt(!) � EPN [� j Ft](!) + �(�)(�) + �+ �(vtjG)(�)
� sup

N
EPN [� j Ft](!) + �(�)(�) + �+ �(vtjG)(�)

for P -a:e: ! 2 AN . Let N !1 to obtain that, for P -a:e: ! 2 G,

vt(!) � ess sup
P 02P(t;P )

EP
0
[� j Ft](!) + �(�)(�) + �+ �(vtjG)(�).

Let �! 0 to derive

vt � ess sup
P 02P(t;P )

EP
0
[� j Ft], P -a:e: on G.

Note that G depends on �, but not on �. Let � ! 0 and conclude that

vt � ess sup
P 02P(t;P )

EP
0
[� j Ft]; P -a:e:

Proof of (B.21) and (B.22): The former is due to (B.10) and the fact that P 0(t; !)
is dense in P (t; !). The proof of (B.22) is similar to the proof of (B.12) in Propo-
sition B.5. �

Now for any � 2 UCb(
), we de�ne conditional expectation by

Ê[� j Ft](!) , vt(!).
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STEP 3
Thus far we have de�ned Ê[� j Ft](!), for all t and !, for any � 2 UCb(
).

Now extend the operator Ê[� j Ft] to the completion of UCb(
).

Lemma B.8 (Extension). The mapping Ê[� j Ft] on UCb(
) can be extended
uniquely to a 1-Lipschitz continuous mapping Ê[� j Ft] : cL2(
)! cL2(t
).
Proof. De�ne fL2(t
) to be the space of Ft-measurable random variables X

satisfying
k X k, (Ê[j X j2]) 12 = (sup

P2P
EP [j X j2]) 12 <1:

Obviously, cL2(t
) � fL2(t
).
(i) We prove that Ê[� j Ft] can be uniquely extended to a 1-Lipschitz continuous

mapping
Ê[� j Ft] : cL2(
)! fL2(t
):

For any � and � in UCb(
),

j Ê[�0 j Ft]� Ê[� j Ft] j2�
�
Ê[(j �0 � � j) j Ft]

�2
� Ê[j �0 � � j2j Ft];

where the �rst inequality follows primarily from the subadditivity of Ê[� j Ft], and
the second is implied by Jensen�s inequality applied to each P in P. Thus

k Ê[�0 j Ft]� Ê[� j Ft] k

=
� bE hj Ê[�0 j Ft]� Ê[� j Ft] j2

i�1=2
�
� bE hÊ[j �0 � � j2j Ft]

i�1=2
=
� bE �j �0 � � j2

��1=2
=k �0 � � k ,

where the second equality is due to the �law of iterated expectations�for integrands
in UCb(
) proven in Lemma B.7.
As a consequence, Ê[� j Ft] 2 fL2(t
) for � and � in UCb(
), and Ê[� j Ft]

extends uniquely to a 1-Lipschitz continuous mapping from cL2(
) into fL2(t
).
(ii) Now prove that Ê[� j Ft] maps cL2(
) into cL2(t
).
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First we show that if � 2 UCb(
), then Ê[� j Ft] is lower semicontinuous: Fix
! 2 
. Since � 2 UCb(
), there exists a modulus of continuity �(�) such that for
all !0 2 
 and ~! 2 
t

j �(!)� �(!0) j� �(�)(k ! � !0 k[0;T ]), and
j �t;!(~!)� �t;!

0
(~!) j� �(�)(k ! � !0 k[0;t]).

Consider a sequence (!n) such that k ! � !n k[0;t]! 0. For any P 2 P(t; !), by
the Uniform Continuity assumption for (�t), we know that P 2 P(t; !n) when n
is large enough. Thus

lim inf
n!1

vt(!n)

= lim inf
n!1

sup
P 02P(t;!n)

EP
0
�t;!n

� lim inf
n!1

  
sup

P 02P(t;!n)
EP

0
�t;!

!
� �(�)(k ! � !n k[0;t]

!
= sup

P 02P(t;!n)
EP

0
�t;! � EP �t;! :

Because P 2 P(t; !) is arbitrary, this proves that lim infn�!1 vt(!n) � vt(!),
which is the asserted lower semicontinuity.
Next prove that any bounded lower semicontinuous function f on t
 is incL2(t
): Because t
 is Polish, there exists a uniformly bounded sequence fn 2

Cb(
t
) such that fn " f for all ! 2 
. By Gihman and Skorohod [12, Theorem

3.10], P is relatively compact in the weak convergence topology. Therefore, by
Tietze�s Extension Theorem (Mandelkern [24]), Cb(t
) � cL2(t
), and by Denis et
al. [4, Theorem 12], supP2P E

P (j f � fn j2)! 0. Thus f 2 cL2(t
).
Combine these two results to deduce that Ê[� j Ft] 2 cL2(t
) if � 2 UCb(
).

From (i), fÊ[� j Ft] : � 2 cL2(
)g is contained in the k � k-closure of fÊ[� j Ft] :
� 2 UCb(
)g. But fÊ[� j Ft] : � 2 UCb(
)g is contained in cL2(t
), which is
complete under k � k. This completes the proof. �

Proof of (B.2): Fix P 2 P and X 2 cL2(
). Given � > 0, there exists X 2 UCb(
)
such that

k Ê[X j Ft]� Ê[X j Ft] k�k X �X k� �:
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For any P 0 2 P(t; P ),

EP
0
[X j Ft]� Ê[X j Ft]

= EP
0
[X �X j Ft] + (EP

0
[X j Ft]� Ê[X j Ft]) + (Ê[X j Ft]� Ê[X j Ft]):

(B.23)
From Karatzas and Shreve [20, Theorem A.3], derive that there exists a se-

quence Pn 2 P(t; P ) such that

ess sup
P 02P(t;P )

EP
0
[X j Ft] = lim

n!1
EPn [X j Ft] P -a:e: (B.24)

where P -a:e: the sequence on the right is increasing in n. Then by Lemma B.7,

Ê[X j Ft] = ess sup
P 02P(t;P )

EP
0
[X j Ft] = lim

n!1
EPn [X j Ft] P -a:e: (B.25)

Denote L2(
;FT ; P ) by L2(P ). Compute L2(P )-norms on both sides of (B.23)
to obtain, for every n,

k EPn [X j Ft]� Ê[X j Ft] kL2(P )
� k X �X kL2(Pn) + k EPn [X j Ft]� Ê[X j Ft] kL2(P ) + k Ê[X j Ft]� Ê[X j Ft] kL2(P )
� k EPn [X j Ft]� Ê[X j Ft] kL2(P ) +2�

By (B.25),
lim sup
n!1

k EPn [X j Ft]� Ê[X j Ft] k� 2�:

Note that � is arbitrary. Therefore, there exists a sequence P̂n 2 P(t; P ) such that
EP̂n [X j Ft]! Ê[X j Ft]; P -a:e:, which implies that

Ê[X j Ft] � ess sup
P 02P(t;P )

EP
0
[X j Ft]: (B.26)

As in (B.24), there exists a sequence P 0n 2 P(t; P ) such that

ess sup
P 02P(t;P )

EP
0
[X j Ft] = lim

n!1
EP

0
n [X j Ft] P -a:e:

with the sequence on the right being increasing in n (P -a:e:). Set
An , fEP

0
n [X j Ft] � Ê[X j Ft]g. By (B.26), P -a:e:

0 � (EP 0n [X j Ft]� Ê[X j Ft])1An
n

% ess sup
P 02P(t;P )

EP
0
[X j Ft]� Ê[X j Ft].
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By (B.23) and (B.25), P -a:e:

EP
0
n [X j Ft]� Ê[X j Ft] � EP

0
n [X �X j Ft] + (Ê[X j Ft]� Ê[X j Ft])

Take L2(P )-norms to derive

k ess sup
P 02P(t;P )

EP
0
[X j Ft]� Ê[X j Ft] kL2(P )

= lim
n!1

k (EP 0n [X j Ft]� Ê[X j Ft])1An kL2(P )
� lim sup

n!1
k X �X kL2(P 0n) + k Ê[X j Ft]� Ê[X j Ft] kL2(P )

� 2�:

This proves (B.2).

Proof of (2.12): It is su¢ cient to prove that, for 0 � s � t � T , P -a:e:

ess sup
P 02P(s;P )

EP
0
[X j Fs]

= ess sup
P 02P(s;P )

EP
0
[ ess sup
P 002P(t;P 0)

EP
00
[X j Ft] j Fs]

(B.27)

The classical law of iterated expectations implies the inequality � in (B.27). Next
prove the reverse inequality.
As in (B.24), there exists a sequence P 00n 2 P(t; P 0) such that P 0-a:e:

lim
n!1

EP
00
n [X j Ft] " ess sup

P 002P(t;P 0)
EP

00
[X j Ft]

Then
EP

0
[ ess sup
P 002P(t;P 0)

EP
00
[X j Ft] j Fs]

= lim
n!1

EP
00
n [X j Fs]

� ess sup
~P2P(s;P )

E
~P [X j Fs] P -a:e:

This proves (2.12).
Proof properties (i)-(iv) is standard and is omitted. This completes the proof

of Theorem 2.6. �
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C. Appendix: Proofs for Utility

Proof of Theorem 2.7: Part (a). Consider the following backward stochastic
di¤erential equation under Ê:

Vt = Ê[� +

Z T

t

f(cs; Vs)ds j Ft], t 2 [0; T ],

where � 2 cL2(
T ) is terminal utility and c 2 D. (Equation (2.13) is the special
case where � = 0.) Given V 2M2(0; T ), let

�t(V ) � Ê[� +

Z T

t

f(cs; Vs)ds j Ft]; t 2 [0; T ].

We need the following regularity property of �:

Lemma C.1. � is a mapping from M2(0; T ) to M2(0; T ).

Proof. By assumption (ii) there exists a positive constant K such that

j f(cs; Vs)� f(cs; 0) j� K j Vs j; s 2 [0; T ]:

Because both V and (f(cs; 0))0�s�T are in M2(0; T ), we have (f(cs; Vs))0�s�T 2
M2(0; T ). Thus

Ê[j � +
R T
t
f(cs; Vs)ds j2]

� 2Ê[j � j2 +(T � t)
R T
t
j f(cs; Vs) j2 ds]

� 2Ê[j � j2] + 2(T � t)Ê[
R T
t
j f(cs; Vs) j2 ds] <1,

which means that (� +
R T
t
f(cs; Vs)ds) 2 cL2(
). Argue further that

Ê[j �t(V ) j2] = Ê[(Ê[� +
R T
t
f(cs; Vs)ds j Ft])2]

� Ê[Ê[j � +
R T
t
f(cs; Vs)ds j2j Ft]]

= Ê[j � +
R T
t
f(cs; Vs)ds j2j] <1.

Finally, (Ê
Z T

0

j �t j2 dt)
1
2 � (

Z T

0

Ê[j �t j2]dt)
1
2 <1 and � 2M2(0; T ). �
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For any V and V 0 2 M2(0; T ), by Theorem 2.6 the following approximation
holds:

j �t(V )� �t(V 0) j2
= (Ê[

R T
t
(f(cs; Vs)� f(cs; V

0
s ))ds j Ft])2

� Ê[(
R T
t
j f(cs; Vs)� f(cs; V

0
s ) j ds)2 j Ft]

� (T � t)K2Ê[

Z T

t

j Vs � V 0
s j2 ds j Ft]

� LÊ[

Z T

t

j Vs � V 0
s j2 ds j Ft],

(C.1)

where K is the Lipschitz constant for the aggregator and L = TK2. (The �rst
inequality is due to the classical Jensen�s inequality and (B.2).) Then for each
r 2 [0; T ],

Ê[

Z T

r

j �t(V )� �t(V 0) j2 dt]

� LÊ[

Z T

r

Ê[

Z T

t

j Vs � V 0
s j2 ds j Ft]dt]

� L

Z T

r

Ê[

Z T

t

j Vs � V 0
s j2 ds]dt

� L(T � r)Ê[

Z T

r

j Vs � V 0
s j2 ds]:

Set � = 1
2L
and r1 = maxfT � �; 0g. Then,

Ê[

Z T

r1

j �t(V )� �t(V 0) j2 dt] � 1

2
Ê[

Z T

r1

j Vt � V 0
t j2 dt];

which implies that � is a contraction mapping from M2(r1; T ) to M2(r1; T ) and
there exists a unique solution (Vt) 2 M2(r1; T ) to the above BSDE. Because � is
independent of t, we can work backwards in time and apply a similar argument
at each step to prove that there exists a unique solution (Vt) 2M2(0; T ).

Part (b). Uniqueness of the solution is due to the contraction mapping property
established in the proof of (a).
By Theorem 2.6,

� bE �� R �
t
f(cs; Vs) ds � V� j Ft

�
= � bE h� R �

t
f(cs; Vs) ds+ bE h� R T

�
f(cs; Vs) ds j F�

i
j Ft
i

= � bE[ bE h� R T
t
f(cs; Vs) ds j F�

i
j Ft]

= � bE[� R T
t
f(cs; Vs) ds j Ft] = Vt. �
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