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1. Introduction

1.1. Outline

Let a family of experiments be indexed by the set N = {1, 2, . . .}. Each experiment yields an 
outcome in the set S (technical details are suppressed in this section). Thus � = S∞ is the set of 
all possible sample paths. A probability measure P on � is exchangeable if

P (A1 × A2 × . . .) = P(Aπ−1(1) × Aπ−1(2) × . . .),

for all finite permutations π of N. De Finetti [16] shows that exchangeability is equivalent to 
the following representation: There exists a (necessarily unique) probability measure μ on � (S)

such that

P (·) =
∫

�(S)

�∞ (·) dμ(�) , (1.1)

where, for any probability measure � on S (written � ∈ � (S)), �∞ denotes the correspond-
ing i.i.d. product measure on �. Thus beliefs are i.i.d. conditional on the unknown parameter �; 
learning is then modeled by Bayesian updating of beliefs about the parameter. Kreps [26, Ch. 11]
refers to de Finetti’s celebrated result as “the fundamental theorem of (most) statistics” because 
of the justification it provides for the analyst to view samples as being independent and identically 
distributed with unknown distribution function; and he argues for the importance of exchange-
ability and de Finetti’s Theorem as normative decision tools.

Though the de Finetti Theorem can be viewed as a result in probability theory alone, it is typ-
ically understood in economics as a prescription for imposing structure on the predictive prior 
P in the subjective expected utility model of choice. That is also how we view it and accord-
ingly we provide a decision-theoretic generalization of de Finetti’s result that we view as largely 
normative. Specifically, we consider preference on a domain of (Anscombe–Aumann) acts that 
conforms to Schmeidler’s [35]. Choquet expected utility where the capacity is a belief function–
we call this model belief function utility.1 Using the latter as the basic framework, we then impose 
two simple axioms–Exchangeability (the preference counterpart of de Finetti’s assumption) and 
Weak Orthogonal Independence (relaxing the Independence axiom). These axioms are shown 
(Theorem 3.1) to characterize the following representation for the belief function κ on � (see 
the noted theorem for the corresponding representation of utility):

κ (·) =
∫

Bel(S)

ν∞ (·) dμ(ν) , (1.2)

where Bel (S) denotes the set of all belief functions on S, μ is a (necessarily unique) probability 
measure on Bel (S), and ν∞ denotes a suitable “i.i.d. product” of the belief function ν. The de 
Finetti–Savage model is the special case where (the Independence axiom is satisfied and hence) 
each ν in the support of μ is additive.

1 Belief functions are special cases of capacities (or “non-additive probabilities”), sometimes referred to as totally, 
completely, or infinitely monotone capacities. They originated in Dempster [8]; definitions for more general settings can 
be found, for example, in Philippe, Debs and Jaffray [34], and Molchanov [33]. See Appendix A for details on belief 
functions and the corresponding utility functions.
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The model has several attractive features. First, it accommodates ambiguity aversion, and 
thus Ellsberg-style behavior, through the generalization from expected utility to belief function 
utility. The second point is specific to a setting with repeated experiments: the representation (1.1)
suggests uncertainty about the probability law describing each experiment but also certainty that 
experimental outcomes are identically and independently distributed, thus ruling out any role 
for imprecise information about how the experiments may differ and/or be related (a critique 
that is made behavioral below). In contrast, (1.2) relaxes the noted certainty because each ν∞
is associated with its core, a nonsingleton set of measures on S∞, and the core contains many 
measures that are either not identical products or not product measures at all, thus permitting 
ambiguity about heterogeneity and correlation to matter.

The de Finetti representation is important in part because it provides formal justification for 
the reference to ‘parameters,’ features that are believed to be common across all experiments and 
that can (to some degree) be learned. Our representation theorem characterizing (1.2) provides 
foundations for generalizing the notion of parameter to a belief function ν over each experiment. 
In the Bayesian framework, knowledge of the parameter determines a unique probability law 
over the sequence of experiments, and thus equips the individual with all she needs to predict 
outcomes and to choose between acts. In contrast, in our model knowledge of the parameter ν
determines only a nonsingleton set (the core of ν∞) of probability laws over sequences of exper-
iments. Because of the individual’s inability or unwillingness to make a probabilistic prediction 
even given knowledge of her parameter, we refer to her as having an incomplete theory of her 
environment. Finally, in the Bayesian model and under common assumptions, the individual is 
certain that she will learn the true parameter asymptotically given enough data. Accordingly, 
the model leaves no room for doubt about what is well-understood or for more modest ambi-
tions about what is learnable. Our generalization accommodates less extreme self-confidence (or 
naivete); learning in our model is taken to be the modified form of Bayesian updating described 
in Epstein and Seo [15] and outlined below.

While we generalize de Finetti in the ways just noted, we share with his model the restriction 
imposed by exchangeability, namely that experiments are indistinguishable in the sense that, for 
example, betting on a subset of outcomes in experiment i is indifferent to the corresponding bet 
on experiment j . In the probability framework, this symmetry has been relaxed to “partial sym-
metry” or “partial exchangeability” (de Finetti [17], Link [27], Diaconis and Freedman [10]), 
where the set of experiments can be partitioned into a finite number of classes such that ex-
changeability holds within each class but not globally. We leave to future work a corresponding 
generalization of our model.

There is another ‘epistemic’ perspective on the role of parameters and the source of theory 
incompleteness in our model. We borrow the well-known Dempster [8] and Shafer [36] intuition 
for belief functions applied to beliefs about �. They postulate imperfect understanding of �
modeled via an auxiliary epistemic state space �̂ and a correspondence � : �̂ � �. Assuming 
that beliefs on �̂ can be represented by a probability measure, denoted M , and given a conserva-
tive attitude, the triple 

(
�̂,M,�

)
determines (and represents) a belief function κ via

κ (A) = M
({ω̂ ∈ �̂ : � (ω̂) ⊂ A}) , A ⊂ �. (1.3)

To interpret κ , think of the case where �̂ is a finite partition of � (each auxiliary state ω̂ is a cell 
of that partition), and � (ω̂) = ω̂. Then, on the payoff relevant space �, the individual is able to 
assign the sharp probability M (ω̂) to each subset � (ω̂). However, she is completely ignorant of 
likelihoods within each � (ω̂). This “explains” why, when forming beliefs about a subset A ⊂ �, 
she does not assign any weight to auxiliary states ω̂ for which � (ω̂)\A is nonempty–even if this 
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set is “small” in some sense, ignorance within � (ω̂) and a conservative attitude prevent her from 
taking a stand and evaluating � (ω̂)\A as being highly unlikely. More generally, the belief func-
tion κ models an individual who is extremely confident about likelihoods for some aspects of 
her environment (and thus beliefs are probabilistic for these) and is completely ignorant of like-
lihoods for other aspects (where any conditional probability law might apply and no weighting 
of alternative laws is possible). In other words and roughly speaking, belief functions generalize 
probability measures by permitting some ignorance.2

Consider next belief functions in our setting with repeated experiments. Note that though the 
preceding refers to the state space � of all infinite sequences of outcomes for all experiments, 
the Cartesian product structure for � is not reflected–� could be any abstract state space (for 
example, the identical constructs apply equally when � is replaced by S and thus the reference 
is to beliefs about a single experiment). In particular, κ does not in general admit the repre-
sentation (1.2), and the triple 

(
�̂,M,�

)
does not identify parameters–factors common to all 

experiments.
We consider instead the following tuple 

(
Ŝ ∞,m∞,G∞,
,μ

)
, which we call a theory, 

where: Ŝi = Ŝ is an auxiliary state space used when forming beliefs about Si and Ŝ ∞ =
Ŝ1 × Ŝ2 × . . . is the infinite Cartesian product; 
 is a set of parameters; for each θ in 
, G (· | θ)

is a correspondence from Ŝ into S, and G∞ (· | θ) : Ŝ ∞ � � is the correspondence given by

G∞ ((̂s1, . . . , ŝi , . . .) | θ) = �∞
i=1G(̂si | θ) ; (1.4)

m∞ denotes the collection {m∞
θ : θ ∈ 
} of measures on ̂S ∞, where, for each θ , m∞

θ is the i.i.d. 
product of mθ ∈ � 

(
Ŝ
)
; and μ is the prior over 
 describing beliefs about the true parameter 

value. Thus the preceding specializes part of the Dempster–Shafer triple (�̂ = Ŝ ∞, and other 
product structures are assumed), and also extends their triple primarily by adding the set 
 of 
parameters and the prior μ. The interpretation is that the outcomes of experiment i are assumed 
by the individual to depend on the realization of ̂si in Ŝ and on the unknown parameter θ ; ̂si is 
unobserved but is thought to be distributed according to the probability law mθ . However, the 
theory is incomplete in that θ and ŝi determine only the set of outcomes G (̂si | θ), and the 
theory is silent on how the realized outcome si is selected from G (̂si | θ). With regard to the 
perception of the entire sequence of experiments, θ and G (· | θ) are assumed to be common to all 
experiments, and the ̂sis are taken to be i.i.d. according to mθ . The final component is G∞ (· | θ)

in (1.4). The Cartesian product structure implies that if for each i, si is a conceivable outcome 
in the ith experiment (in isolation) given ̂si (and θ ), then (s1, s2, . . .) is a conceivable sequence 
given (̂s1, ŝ2, . . .), which expresses complete ignorance about the relationship between selection 
mechanisms across experiments. This is a consequence of ignorance of the selection mechanism, 
which implies that there is no basis for understanding how selection, and thus realized outcomes, 
may differ or be related across experiments.

A theory induces belief functions as in (1.3). For each θ , define ν∞
θ by

ν∞
θ (A) = m∞

θ

({(̂s1, . . . , ŝi , . . .) ∈ Ŝ ∞ : �∞
i=1G(̂si | θ) ⊂ A}) , A ⊂ �. (1.5)

The theory is incomplete when ν∞
θ (·) is nonadditive for a nonnegligible set of parameters θ , 

which is the case when G (· | θ) is multi-valued sufficiently often. A theory represents the Cho-
quet expected utility preference having belief function κ given by

2 See Wakker [41].
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κ (·) =
∫



ν∞
θ (·) dμ(θ) . (1.6)

Our axioms also characterize the set of preferences that can be represented in this way by some 
theory. In addition, we show in Section 3.2 that while the representation (1.2) is a special case 
(having 
 = Bel (S), for example), it is also canonical in that any capacity κ defined as in (1.6)
admits representation also as in (1.2).

The paper proceeds as follows. The introduction concludes with two (related) running exam-
ples; the first concerns Ellsberg-style urns, and the second concerns entry games with multiple 
Nash equilibria such as have been studied in the applied IO literature. Axioms and the implied 
representation of utility are described in Sections 2 and 3 respectively. Though these concern ex 
ante preference only, we outline how by applying Epstein and Seo [15] the model can be extended 
to include sampling and updating. To buttress the normative case for our model, Section 3.4 de-
scribes a connection between prior beliefs about parameters and about empirical frequencies that 
may aid in calibrating the former; this result exploits a law of large numbers (LLN) for belief 
functions due to Maccheroni and Marinacci [28]. Two applications are presented in Section 4. 
The first considers the classical problem of the optimal prediction of empirical frequencies; and 
the second shows that ambiguity can limit participation in equity markets even given the pos-
sibility of diversification, thus extending Dow and Werlang [11]. Section 5 concludes with a 
discussion of related literature and an explanation of the value-added herein. Proofs and techni-
cal details are collected in Appendices A–E.

1.2. Running examples: urns and entry games

Consider a decision-maker facing an infinite sequence of Ellsberg urns. One ball will be drawn 
from each urn with all draws being simultaneous. The decision-maker must choose between bets 
on the outcomes of the sequence of draws. She is told only that each contains 100 balls that are 
either red (R) or blue (B). Thus she is not given any reason to be certain that the compositions are 
identical, nor to be confident that the urn compositions are unrelated or related in any particular 
way; hence she may wish to choose bets that are robust to this uncertainty. As shown in the 
sequel, our model can accommodate such robustness.

Each experiment is a draw from an urn with possible outcomes R and B; thus S = {R, B}. 
Belief functions on S, and for any binary state space, are particularly simple–they are in one-
to-one correspondence with probability intervals for drawing red. That is, any belief function ν
on S induces the probability interval [ν (R) ,1 − ν (B)]. Conversely, given θ = (θ1, θ2) and the 
corresponding interval [θ1, θ2] ⊂ [0,1], then [θ1, θ2] = [νθ (R) ,1 − νθ (B)] for νθ represented 
by the Dempster–Shafer triple 

(
Ŝ,mθ ,G(· | θ)

)
, where

Ŝ = {{R}, {B}, {R,B}}, (1.7)

mθ ({R}) = θ1, mθ ({B}) = 1 − θ2, mθ ({R,B}) = θ2 − θ1, (1.8)

and

G({R} | θ) = R, G({B} | θ) = B, G({R,B} | θ) = S. (1.9)

Probability intervals can arise in the mind of the decision-maker if, for example, she adopts 
the following view of how the urns are constructed. She hypothesizes that the fraction λ of the 
100 balls is selected once and for all by a single administrator and then placed in each urn, while 
the other (1 − λ)100 vary across urns in a way that is not understood and about which she is 
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completely agnostic. If ρ denotes the proportion of red in the common group of balls, then the 
probability of drawing red from any urn lies between λρ and λρ + (1 − λ). Thus the unknown 
parameter that is common across urns can be thought of as the probability interval for red given 
by J = [λρ, λρ + (1 − λ)], or equivalently as the minimum and maximum probabilities λρ and 
λρ + (1 − λ) respectively.

Other components of our model of this choice situation will be illustrated as we go through a 
more detailed description of the model.

1.3. An entry game

We take the urns setting as a canonical example of choice where uncertainty is derived from 
many ‘exchangeable’ random events. Here we describe a more concrete choice situation that has 
played a role in the applied IO literature and that is essentially isomorphic to the urns setting.

Consider a policy maker (PM) who must choose a policy that pertains to a number of markets, 
in each of which there are two (potential) firms. The consequences of the policy depend on firm 
entry decisions which are uncertain (hence policies are acts). In the ith market, firms j = 1, 2
play the entry game described by the payoff matrix shown:

out in
out 0,0 0, −̂si2

in −̂si1,0 η1/2 − ŝi1, η
1/2 − ŝi2

The parameter η lies in [0, 1] and the ŝij ’s are observed by players but not by the PM. She 
views η as fixed and common across markets and the ̂sij ’s as uniformly distributed on [0,1]2 for 
each i and i.i.d. across markets. The PM’s theory is that the outcome in each market is a pure 
strategy Nash equilibrium. However, her theory is incomplete because she does not understand 
equilibrium selection at all and this is important because there may be multiple equilibria: the set 
of Nash equilibria in market i is given by

{T ,N} if 0 ≤ ŝi1, ŝi2 ≤ η1/2

{N} otherwise,
(1.10)

where T denotes the outcome where two firms enter and N the outcome where none enter. Thus, 
even given knowledge of η, without taking a stand on selection PM can be sure only that the 
probability of T lies in the interval [0, η].

This entry game, taken from Jovanovic [23], serves as a canonical example in a literature 
on the empirical analysis of complete information entry games with multiple equilibria; see, for 
example, Tamer [40,39], Ciliberto and Tamer [7] and the references therein. For our purposes, 
many of the special features of the above game are made purely for simplicity, including: two 
firms in each market, the particular functional forms for payoffs, and the uniform distribution for 
the unobserved heterogeneity represented by the ̂s ’s. In fact, our model accommodates any set-
ting where the decision-maker’s theory of her environment can be represented as described above 
surrounding (1.5). As explained shortly, the restriction to pure strategy equilibria is important for 
our approach to modeling policy choice.

To elaborate on agnosticism about selection, imagine the PM having the following perspec-
tive. She believes that a complete theory of equilibrium selection exists in principle, and that 
selection could be explained and predicted given a suitable set of explanatory variables, but she 
(and most economists) cannot identify these “omitted variables.” As a result, not only can she not 
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assign a probability to T being selected in any given market, neither does she understand how 
selection may differ or be correlated across markets. Thus she seeks to make decisions that are 
robust to heterogeneity and correlation of an unknown form.

A “reduced form” of this choice situation is almost identical to the urns setting with the change 
in ‘colors’ from R and B to T and N . In particular, in both cases, there is the perception that 
two factors underlie experimental outcomes: one that is fixed across all experiments, (the fixed 
portion of each urn above and the parameter η here), and the second that is idiosyncratic and not 
understood, (the remaining portion of each urn above and selection here). In both cases, probabil-
ity intervals arise as descriptions of the factor common to all experiments; here the interval [0, η]
for the outcome T is in one-to-one correspondence with the parameter η. A small difference is 
that the two ‘colors’ T and N do not appear symmetrically because N can be realized also as a 
unique equilibrium–thus one would expect a strict preference to bet on N over T in any market.

A Dempster–Shafer triple 
(
Ŝ,mη,G(· | η)

)
arises naturally in the entry game context: take 

mη to be the uniform distribution on Ŝ = [0,1]2, and let G (· | η) be the Nash equilibrium corre-
spondence:

G(̂si1, ŝi2 | η) =
{

{T ,N} if 0 ≤ ŝi1, ŝi2 ≤ η1/2

{N} otherwise.
(1.11)

The triple induces a belief function νη on S which is in one-to-one correspondence with the 
parameter η. The restriction to pure strategy equilibria is evident here–with mixed strategies, the 
equilibrium correspondence G (· | η) would map into subsets of � 

({in,out}2
)
, and νη would be 

a belief function over the latter simplex but not over S.

2. Foundations

Consider a sequence of experiments, each of which yields an outcome in the compact metric 
space S; we refer back often to the urns example where S = {R, B}. The payoff to any chosen 
physical action depends on the realized state in the state space � given by

� = S1 × S2 × . . . = S∞, where Si = S for all i.

Objects of choice are (Borel measurable and simple, that is, finite-ranged) acts f : � → [0, 1]. 
The set of all acts is F . Binary acts are called bets. The bet 1A that the event A ⊂ � will occur is 
denoted simply A. For example, R1B2 is the bet that pays 1 if red is drawn from the first urn and 
blue from the second, and the bet that the first two urns yield the same color is {R1R2, B1B2}.

Payoffs to acts should be interpreted as measured in utils, which are derived from an expected 
utility ranking of objective lotteries. Denominating payoffs in utils can be justified via a more 
primitive Anscombe and Aumann [3] formulation of choice under uncertainty. Because these 
details are standard, we simplify and adopt the reduced form above. Note that with payoffs de-
nominated in utils, and given a vNM ranking of objective lotteries, one can view the individual 
as though she were risk neutral.

We study ex ante preference � over acts; in the next section we outline how the model can 
be extended to include also the updating of preference after observing the outcomes of finitely 
many experiments.

To state the first axiom, we must define “belief function utility”. Henceforth refer to 
(
�̂,M,�

)
as a Dempster–Shafer triple (for �) if it is defined as in the introduction and if also: �̂ is compact 
metric, M is a Borel probability measure, and the correspondence � is weakly measurable and 
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nonempty-compact-valued.3 Any function on the Borel σ -algebra of �, (which can be taken to be 
S∞ as above, or any other compact metric space), that can be constructed via a Dempster–Shafer 
triple 

(
�̂,M,�

)
as in (1.3) is called a belief function on �.4 A function U : F → R is called a 

belief function utility (for the state space �) if there exists a belief function κ on � such that

U (f ) =
∫
�

f dκ, for all f in F . (2.1)

Here integration is in the sense of Choquet and thus every belief function utility is a special case 
of Choquet expected utility (Schmeidler [35]). Say that 

(
�̂,M,�

)
represents the belief function 

κ and also the utility function U and the corresponding preference �. Note that U (f ) is the 
certainty equivalent of f –that payoff which if received in every state would be indifferent to f .

We adopt three axioms for the preference �.

Axiom 1 (Belief Function Utility). � admits representation by a belief function utility.

This axiom is not completely satisfactory because it is not stated in terms of behavior which 
is presumably the only observable. However, Epstein, Marinacci and Seo [12] and Gul and Pe-
sendorfer [20] describe behavioral foundations for (2.1), albeit in somewhat different formal 
frameworks. Because modeling ambiguity aversion in the abstract is not our focus, we move on 
to study the special features arising from the presence of repeated experiments. There is a parallel 
with de Finetti, who took subjective expected utility (or at least a predictive prior) as given and 
explored the implications of exchangeability for a setting with repeated experiments. We take 
belief function utility as given and focus on additional structure that is of interest given repeated 
experiments. The next two axioms describe the individual’s perception of experiments and how 
they are related.

Given subjective expected utility preferences, de Finetti’s assumption that the prior is ex-
changeable is equivalent to the following restriction on preference. Let � be the set of (finite) 
permutations on N. For π ∈ � and ω = (s1, s2, . . .) ∈ �, let πω = (

sπ(1), sπ(2), . . .
)
. Given an 

act f , define the permuted act πf by (πf ) (s1, . . . , sn, . . .) = f
(
sπ(1), . . . , sπ(n), . . .

)
. For exam-

ple, if f = R1B2 and π switches 1 and 2, then πf = B1R2. An act is said to be finitely-based if 
it depends on the outcomes of only finitely many experiments. Thus the bet A is finitely-based if 
as an event, A restricts the outcomes of only finitely many experiments.

Axiom 2 (Exchangeability). For all finitely-based bets A and permutations π ,

A ∼ πA.

Exchangeability is intuitive when information about the experiments is symmetric, and thus 
you are not given any reason to distinguish between them. Note, however, that symmetry of 

3 Throughout every compact metric space is endowed with the induced Borel σ -algebra and probability measures are 
understood to be Borel measures.

A correspondence � : �̂ � �, where � is metric, is weakly measurable if {ω̂ : � (ω̂) ⊂ A} is a (Borel) measurable 
subset of ̂� for every closed A ⊂ �. If � is compact-valued, as here, then weak measurability is equivalent to the property 
that {ω̂ : � (ω̂) ⊂ A} is measurable for every open A ⊂ � (Aliprantis and Border [1], Lemma 18.2).

4 Equivalent definitions of belief functions are described in Appendix A. If � is singleton-valued and hence a random 
variable, then κ is a probability measure and (1.3) is the familiar formula for computing induced distributions.
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information does not imply that information is substantial; in fact, as in the urns example, there 
could be very little information available at all about any of the experiments and about how they 
are related. Thus Exchangeability is entirely consistent with ambiguity about both correlation and 
heterogeneity. The next axiom leaves room for such ambiguity. It does so by suitably relaxing 
the Independence axiom to permit randomization to have positive value in some circumstances.

Refer to bets A′ and A as mutually orthogonal if they depend on disjoint sets of experiments; 
write A′ ⊥ A. (Note that a bet on �, which is constant act, is orthogonal to every bet A.) Our 
main axiom is5:

Axiom 3 (Weak Orthogonal Independence (WOI)). For all finitely based bets A′, A and B such 
that A′ ⊥ B and A ⊥ B ,

A′ � A ⇐⇒ 1
2A′ + 1

2B � 1
2A + 1

2B.

The Independence axiom requires the similar invariance of rankings for all (not necessarily 
orthogonal or binary) acts. We argue that Independence is too strong given a concern with un-
known correlation and heterogeneity. In fact, one can illustrate behaviorally three separate kinds 
of ambiguity that seem relevant to the urns example and that are excluded by Independence but 
permitted by WOI. The first is simply ambiguity about the outcome in any single experiment, 
which is illustrated by the following Ellsberg-style behavior contradicting Independence:

1
2R1 + 1

2B1 � R1 ∼ B1. (2.2)

Gilboa and Schmeidler [19] describe the value of such randomization as due to its smoothing 
out ambiguity (indeed, the mixed bet yields the payoff 1

2 with certainty) or, adapting finance 
terminology, because the bets being mixed “hedge” one another.

The other two kinds of ambiguity have to do with how the compositions of different urns are 
related. Consider the ranking

1
2R1 + 1

2B1 � 1
2R1 + 1

2B2. (2.3)

The act on the left perfectly hedges uncertainty about the first urn and yields 1
2 with certainty. 

But the act on the right also involves uncertainty about possible differences between urns. For 
example, if the first urn is biased towards red and the second is biased towards blue, that is a 
good scenario for 1

2R1 + 1
2B2. However, under the reverse scenario, the latter act is unattractive. 

Thus if both scenarios are considered possible, and there is aversion to uncertainty about which 
is true, then the indicated ranking follows. In this way, aversion to ambiguous heterogeneity 
suggests (2.3).

The following behavior, which is consistent with WOI but not with Independence, reveals a 
concern with correlation which we take to mean roughly a concern that the urns’ compositions 
may follow some unknown “patterns.” Consider betting that the colors drawn from the first two 
urns are identical versus betting that they are identical in the first and third urns. Exchangeability 
implies indifference. However, there is intuition, once again based on smoothing out uncertainty, 
for the following rankings:

5 Talagrand [38] studies belief functions ν that satisfy ν(A) = ν(πA), for all A and π , and shows that this symmetry 
property alone implies very little structure. This supports our view that the next axiom is our main assumption.
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1
2 {R1R2,B1B2} + 1

2 {R1R3,B1B3}
� {R1R2,B1B2} ∼ {R1R3,B1B3}. (2.4)

Finally, we turn to behavior that is excluded by WOI. The following violation of WOI reveals 
something about the nature of the robustness that it permits. Suppose the individual is certain 
that either all urns contain only red balls or that they all contain only blue balls, though she is 
unsure which is true. Then, if she is averse to ambiguity about which of these two possibilities is 
valid, one would expect that

1
2R1 + 1

2B2 � R1 ∼ B2. (2.5)

Such a value for randomization contradicts WOI, at least given also Belief Function Utility (see 
Lemma B.2). Since this scenario is one of “perfect correlation,” one may wonder whether or 
in what sense our model indeed accommodates aversion to ambiguity about correlation. To be 
perfectly clear, the axiom and model admit perfect correlation as a possibility in the mind of 
the individual. It is the simultaneous exclusion of all other correlation patterns on her part, or 
certainty that the urns are perfectly correlated, that is contradicted by the axiom, given also 
aversion to ambiguity about correlation.6 For instance, the strict preference indicated in (2.5) is 
not intuitive if the individual admits also the possibility that the first urn being biased towards red 
(blue) makes it highly likely that the second is biased towards blue (red). The bottom line is that, 
as will be apparent from the representation, we model an individual who is seeking robustness 
against dependence of unknown form between urn compositions because she has no basis for 
excluding any particular patterns a priori.

To understand better what else the axiom excludes, recall that the Gilboa–Schmeidler intuition 
is that hedging two bets can be valuable when there is a common ambiguous factor underlying 
them. For greater clarity, consider the entry game. Then the parameter η is common to all mar-
kets. Therefore, if there is ambiguity about η, then randomization between indifferent bets on 
different markets can be valuable, which as above contradicts WOI and Belief Function Utility. 
In other words, ambiguity about parameters is excluded, which explains why in (1.2) and (1.6)
there is a single prior μ representing uncertainty about parameters. The other factor influencing 
outcomes in each market is the selection mechanism, which we take to be poorly understood or 
ambiguous. Therefore, we interpret the absence of hedging gains as expressed in WOI to mean 
that the selection mechanism is not common, or more accurately, that because selection is so 
poorly understood, there is no basis for believing that the mechanisms in two different markets 
are connected or related in any particular way. Again, this feature is reflected in the implied rep-
resentation of preference, most explicitly in the Cartesian product structure of any representing 
theory (as in the discussion of (1.4)).

3. Representation

3.1. The main result

To state our main result, we need some preliminaries on belief functions. Let the Dempster–
Shafer triple 

(
Ŝ,m,G

)
represent the belief function ν on S in the sense introduced above; recall 

6 If she is indifferent in (2.5), then the ranking is consistent with WOI; indeed, it is consistent not only with our model 
but also with the exchangeable Bayesian model (1.1); for instance, let the prior μ assign positive probability only to the 
measures � that are degenerate at R or at B .
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that every belief function on S can be represented in this way. Denote by Bel (S) the set of all 
belief functions on S.7 Each ν in Bel (S) can be thought of as describing beliefs about a single 
experiment.

Given any belief function ν on S and a representing triple 
(
Ŝ,m,G

)
, denote by ν∞ the belief 

function on � that is represented by the triple 
(
Ŝ ∞,m∞,G∞), where m∞ is the ordinary i.i.d. 

product of the probability measure m, and G∞ is the correspondence G∞ : (Ŝ)∞ � � = S∞
given by

G∞ (ŝ1, ŝ2, . . .) = G(ŝ1) × G(ŝ2) × . . . (3.1)

We refer to ν∞ as the “i.i.d. product” of ν.8 When G is singleton-valued, then ν is a probability 
measure and ν∞ is the usual i.i.d. product for measures.

We can now state our main result.

Theorem 3.1. Let � be a preference order on the set of acts F . Then the statements (a) and (b) 
are equivalent:

(a) � satisfies Belief Function Utility, Exchangeability and Weak Orthogonal Independence.
(b) There exists a (necessarily unique) Borel probability measure μ on Bel (S) such that �

has a utility function U of the form

U (f ) =
∫
�

f dκ, for every f in F, (3.2)

where κ is the belief function given by

κ (A) =
∫

Bel(S)

ν∞ (A)dμ(ν) , for every Borel A ⊂ �. (3.3)

With regard to sufficiency of the axioms, the Choquet expected utility representation in (3.2)
is simply a restatement of the assumption Belief Function Utility. The main content of the the-
orem is in the “conditionally i.i.d.” form derived for κ , paralleling and generalizing de Finetti’s 
classic form in (1.1); the latter is obtained if, for example, WOI is strengthened to the usual In-
dependence axiom. In common with the classic model, the prior μ is unique and it completely 
determines the preference order.

The representation suggests that ambiguity about heterogeneity and correlation are accommo-
dated. To see why, note first that U (·) is an average (using μ) of utility functions of the form

Vν (f ) ≡
∫

f dν∞; (3.4)

thus it suffices to consider Vν , which is based on the i.i.d. product belief function ν∞. As out-
lined in Appendix A, every belief function utility conforms with the maxmin model (Gilboa and 
Schmeidler [19]) with set of predictive priors equal to the core of the belief function. For Vν we 
have

7 Endow Bel (S) with the topology for which νn → ν if and only if 
∫

f dνn → ∫
f dν for every continuous function f

on S, where the integral is in the sense of Choquet. Then Bel (S) is compact metric.
8 Appendix A shows that ν∞ is well-defined: if (Ŝ, m, G) and (Ŝ ′, m′, G′) both represent ν, then they both lead to the 

same belief function on S∞ .
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Vν (f ) = inf
P∈core(ν∞)

∫
�

f dP,

where9

core
(
ν∞)≡ {

P ∈ �(�) : P (·) ≥ ν∞ (·)}
=
∫

Ŝ ∞

�(G(ŝ1) × G(ŝ2) × . . .) dm∞ (ŝ1, ŝ2, . . .) .

The point to note is that the indicated simplex includes all joint distributions over �∞
i=1G (ŝi ); 

thus the core contains both nonidentical product measures and nonproduct measures.
At the more meaningful behavioral level, the model accommodates the rankings (2.3)–(2.4)

for bets on the urns that we have interpreted in terms of aversion to ambiguity about heterogeneity 
and correlation respectively.10 In fact, these rankings are accommodated even in the special case 
where μ assigns probability 1 to a particular belief function ν, where

ν (R) , ν (B) > 0, ν (R) + ν (B) < 1.

Then, for the first ranking,

Vν

(
1
2R1 + 1

2B2

)
= 1

2Vν (R1) + 1
2Vν (B2)

= 1
2ν (R) + 1

2ν (B) < 1
2 = Vν

(
1
2R1 + 1

2B1

)
,

where the first equality follows from Lemma B.2. For (2.4), abbreviate the bet {R1R2, B1B2} by 
f and let π be the permutation that switches the second and third markets. Then, (see supporting 
details at the end of Appendix A),

Vν (f ) = (ν (R))2 + (ν (B))2

< (ν (R))2 + (ν (B))2 + ν (R)ν (B) (1 − ν (R) − ν (B))

= Vν

(
1
2f + 1

2πf
)

. (3.5)

Remark 1. While referring to ambiguity about correlation, we have also referred to ν∞ as an 
“i.i.d. product” of ν and to (3.3) as a “conditionally i.i.d.” representation. The latter terminology 
is used partly because ν∞ is the usual i.i.d. product when ν is a measure. It is suggested also by 
the construction of ν∞, and by the fact that ν∞ satisfies a product property for rectangles; for 
example, ν∞ (A1 × A2 × S∞) = ν∞ (A1 × S × S∞) · ν∞ (S × A2 × S∞) for all A1 ⊂ S1 and 
A2 ⊂ S2, and similarly for all other rectangles. Though we would like to be more precise about 
the meaning of “stochastic independence,” it is well-known that the latter is multifaceted if there 
is ambiguity and that it is not well-understood behaviorally (Ghirardato [18]). One contribution 
made herein to the surrounding literature can be noted. It is known that, because ν is not addi-
tive, there is more than one way to extend ν to a belief function on S∞ that satisfies the noted 
property on rectangles, but the differing implications for behavior are not understood. In the case 
of finitely many experiments, the rule used here for forming the i.i.d. product ν∞ is proposed by 

9 The integral that follows is an Aumann integral and the characterization of the core given is based on Philippe et al.
[34, Thm. 3].
10 Of course, it also accommodates the standard Ellsberg-style behavior in (2.2).
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Dempster [8,9] and studied by Hendon et al. [21] and Ghirardato [18]. The latter shows that it is 
the only product rule for belief functions such that the product (i) is also a belief function, and 
(ii) satisfies a mathematical property called the Fubini property. A contribution of our model is 
that the product rule ν �−→ ν∞ emerges as an implication of assumptions about preference.

3.2. Theory incompleteness and parameters

Besides ambiguity about heterogeneity and correlation, another motivation for the model is to 
provide foundations for a more general notion of “parameter.” De Finetti’s conditionally i.i.d. 
representation (1.1) for subjective predictive priors is commonly interpreted in terms of un-
certainty about the parameter �, the probability law that describes every experiment; and the 
Savage/Anscombe–Aumann axioms plus Exchangeability provide behavioral foundations. View-
ing the model as a normative model, we take the preceding as a description of how the individual 
perceives and theorizes about her environment; one can also view it in an “as if” vein. In the 
same way, our representation (3.3) suggests the interpretation whereby the individual character-
izes every experiment by the same (though uncertain) belief function ν; and our weaker axioms 
provide corresponding foundations for taking Bel (S) rather than � (S) as the parameter space. In 
the de Finetti model, given the inherently stochastic nature of each experiment, knowledge of the 
parameter provides the individual with all she needs to know to predict outcomes of experiments 
and hence to choose between acts. In contrast, certainty that the belief function parameter is ν
determines only the set of probability laws core (ν∞). Because knowledge of the parameter does 
not permit a unique probabilistic prediction, we refer to the individual’s theory as incomplete.

The preceding takes a more concrete form in the urns example. Then, (and similarly for any 
binary S), each belief function ν can be identified with the probability interval [ν (R) ,1 − ν (B)]
for a red draw. Thus instead of each urn being characterized by a common single number in the 
unit interval, as in the Bayesian model, here each urn is characterized by a common interval. The 
interval is nondegenerate in general in order to model the individual’s concern with idiosyncratic 
and poorly understood differences between urns, and thus a lack of confidence that the urns 
have identical compositions. The idea is that though the interval is common, and thus urns are 
indistinguishable–for example, there is indifference between betting on red from urn i and the 
corresponding bet on urn j–it is understood that any probability in the interval can apply to 
urn i and that any other probability in the interval may apply to urn j . Accordingly, even given 
knowledge of ν, or equivalently, knowledge of the probability interval for red, there remains 
ambiguity about urn compositions and about how they are related. (In the entry game variant of 
the urns example as described in Section 1.2, knowledge of ν = νη amounts to knowledge of η, 
but there remains ambiguity about selection.)

Next we formalize and generalize some of the preceding by means of tuples 
(
Ŝ ∞, m∞, G∞,


, μ
)

of the form described in the introduction. Each tuple satisfying the conditions below is re-
ferred to as a theory. In particular, 
 is a (compact metric) parameter space, uncertainty about the 
identity of the true parameter is represented by μ, a probability measure on 
, m∞ denotes the 
collection {m∞

θ : θ ∈ 
} of measures on Ŝ ∞, and G∞ (· | θ) is a correspondence from Ŝ ∞ to �
having the Cartesian product structure in (1.4). Require that: (i) for each θ , 

(
Ŝ ∞,m∞

θ ,G∞ (· | θ)
)

is a Dempster–Shafer triple for �; (ii) G is weakly measurable on Ŝ × 
; and (iii) θ �→ mθ

is measurable. The theory is incomplete when ν∞
θ (·) defined as in (1.5) is nonadditive for a 

μ-nonnegligible set of parameters θ , which is the case when G (· | θ) is multi-valued sufficiently 
often. Each theory induces a belief function κ defined as in (1.5)–(1.6). (Lemma C.1 provides 
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the technical measurability details needed to show that κ is well-defined.) The theory represents
the preference � if the latter has a Choquet expected utility function with belief function κ .

A specific theory for the entry game in Section 1.2 should be apparent from the description 
given there; in particular, the parameter space is 
 = [0, 1], where η, the unknown parameter 
appearing in the payoff matrix, is also the unknown parameter in the theory, and the correspon-
dence G is defined by (1.11). The theory is incomplete because it leaves the selection mechanism 
unspecified.

The theory representing a given preference is not unique. However, there is a canonical theory 
that is uniquely determined by preference. Refer to a theory as canonical if: ̂S =K (S), the set of 
compact subsets of S (endowed with the Hausdorff metric), 
 = Bel (S), and if G (· | θ) is given 
by

G(K | θ) = K for every K ∈K (S) and θ ∈ 
.

Thus canonical theories differ only in the specifications of m = (mθ : θ ∈ 
) and μ. But two 
canonical theories represent the same preference if and only if they share the identical m and μ.11

Our axioms characterize the set of preferences that can be represented by some theory, or 
equivalently, by a canonical theory.

Corollary 3.2. The following statements are equivalent:

(a) � satisfies Belief Function Utility, Exchangeability and WOI.
(b) � can be represented by a canonical theory.
(c) � can be represented by a theory.

3.3. Updating

Because a parameter is common to all experiments, it is an element that the individual can 
hope to learn about by observing the outcomes of some experiments. In the exchangeable 
Bayesian model, inference or learning are modeled by Bayesian updating of the prior μ over 
the parameter space � (S); and its appealing justification, which consists of the requirements of 
consequentialism (conditional preference does not depend on contingencies that were possible 
ex ante but that were not realized) and dynamic consistency, adds to the normative appeal of the 
model. Our model also admits an extension to include updating of the prior μ on the relevant 
parameter space 
, the one appearing in the theory representing the individual’s preference. The 
appropriate model of updating is the one described in Epstein and Seo [15], whose main fea-
tures are outlined briefly here for the convenience of the reader. We restrict attention to canonical 
theories, where the parameter space is Bel (S), though it applies to all other theories as well.

First we explain the connection between the present model and that in our earlier paper. The 
(ex ante) utility function in the latter has the form

U (f ) =
∫
V

V (f )dμ′ (V ) , (3.6)

11 Let (m,μ) and 
(
m′,μ′) represent the same preference �. Then, � satisfies the axioms in Theorem 3.1(a) and hence 

μ = μ′ . Further, with μ-probability 1, mθ and m′
θ determine the same belief function via (A.1), and thus mθ = m′

θμ-a.s. 
by Theorem A.1 (the Choquet Theorem).
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where V , a subset of all maxmin utility functions on acts over �, is the class of so-called “IID 
utility functions.” For the present model, it follows from Theorem 3.1, that utility has the form

U (f ) =
∫

Bel(S)

Vν (f ) dμ(ν) , (3.7)

where Vν , defined in (3.4), is both in the Gilboa–Schmeidler class and (as can be verified) is an 
IID utility function. Thus (3.7) is the special case of (3.6) where μ′ has support in the (strict) 
subset of all IID utility functions that also conform to belief function utility. Because our model 
is a special case, the updating rule derived in (2010) can be applied also here.

Assume that choices are made not only ex ante, but also after observing the outcomes of the 
first n experiments. Assume also that conditional preference after observing the finite sample 
sn = (s1, . . . , sn) of outcomes also satisfies the axioms in Theorem 3.1; thus it also has a utility 
function as described in the theorem though with a suitable posterior μ (· | sn). Think of the 
entry game for concreteness, where priors and posteriors are over the value of η. Straightforward 
application of Bayes’ Rule is not possible because the likelihood of observing T (two firms enter) 
conditional on η could be any number in the interval 

[
0, η

]
; or put another way, the individual’s 

theory of the entry game setting does not imply a unique likelihood function. However, in (2010) 
we show that under two assumptions, the individual should apply Bayes’ Rule to her prior using 
some likelihood function that is subjective just as is her prior. An example is the likelihood 
function obtained by averaging over the interval 

[
0, η

]
so that

L
(
sn | η)=

η∫
q=0

q#{i:si=T } (1 − q)#{i:si �=T } dq.

Further, the above prescription for updating follows from two simple axioms: consequentialism, 
as in the classical model, and a weakened form of dynamic consistency. The latter axiom weakens 
dynamic consistency because it imposes consistency of ex ante and conditional preferences only 
in situations where the PM observes outcomes in some markets and then ‘bets’ on outcomes 
in others. In other words, the outcomes in markets 1 to n are ‘pure’ signals and are not payoff 
relevant, while outcomes in markets n + 1 and beyond influence payoffs but are not a source of 
information for further updating (which is done only once). We emphasize also that the identical 
axioms characterize such an updating rule also in the present case where belief function utility, 
rather than maxmin, defines the framework–the identical proof applies.

Finally, we note some intuitive implications of the updating rule that reflect the role of pa-
rameters when the surrounding theory is incomplete. First, the individual learns only about 
parameters (for example, η in the entry game) and does not even attempt to learn about the 
idiosyncratic factors (for example, selection) affecting experiments. She does not understand the 
latter well enough to even theorize about them and thus does not try or expect to learn about 
them. Accordingly, in contrast with the Bayesian decision-maker, she does not expect to learn 
enough to permit probabilistic predictions about remaining experiments. Second, as illustrated 
in our earlier paper, in general she may not learn the true parameter (say η) even asymptotically 
in large samples. This is because the empirical distinction between parameters η �= η′ is clouded 
by the vagaries of selection, and hence parameters are only “partially identified.”12

12 See Tamer [39] for a survey of econometric literature on partial identification.
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3.4. Frequencies

The normative value of de Finetti’s specialization of subjective expected utility is well-known: 
in the urns context, for example, a Bayesian agent who judges the urns to be exchangeable need 
only formulate a prior over [0,1], that is, over the proportion of red in the fixed part of each urn, in 
order to generate a predictive prior over the sequence of draws. In the absence of exchangeability 
and de Finetti’s representation, she would face the more daunting challenge of directly forming a 
predictive prior over {R, B}∞. In the same way, our theorem can simplify the task of an individ-
ual who is less confident in her view, or theory, of the urns and who wishes to maximize belief 
function utility for some belief function on {R, B}∞. If she accepts the axioms Exchangeability 
and Weak Orthogonal Independence, then she need not attempt to arrive directly at such a belief 
function–it suffices that she can form a prior over pairs (θ1, θ2), 0 ≤ θ1 ≤ θ2 ≤ 1, interpreted as 
the minimum and maximum proportions of red in all urns, and then apply the representation in 
Theorem 3.1.

Furthermore, though the theorem does not explicitly describe how to arrive at the prior μ, there 
is a way for the individual to calibrate her prior beliefs if she can manage the arguably weaker 
task of assessing how much she would be willing to pay for bets on empirical frequencies in large 
samples. Kreps [26, Ch. 11] describes the corresponding procedure for calibrating prior beliefs 
in the exchangeable Bayesian model and argues for its usefulness in a normative context. We see 
no reason to view as less useful the extended calibration method that follows.

We illustrate calibration here for the entry game example (Section 1.2) and give a general 
result in Appendix D. Denote by �n (ω) the empirical frequency of the outcome T (two firms 
enter) in the first n experiments given the sample ω.

Begin with PM facing (1.10) who is certain that the selection probability of both firms entering 
the market is q in each market and i.i.d. across markets. She maximizes subjective expected 
utility with an exchangeable predictive prior. Therefore, the classical Law of Large Numbers 
(LLN) for exchangeable measures implies certainty that the empirical frequency of T converges 
to qη, and further that prior beliefs about η and the (certainty equivalent) utility for bets about 
empirical frequencies are related by13

μ({η : 0 ≤ η ≤ b}) = U ({ω : lim�n (ω) ≤ qb}) . (3.8)

Therefore, PM can calibrate her prior μ over the parameter η if she can arrive at certainty equiv-
alents for the indicated bets on limiting empirical frequencies.

Now suppose that PM takes seriously her ignorance about equilibrium selection in that, 
given η, she views any number in 

[
0, η

]
as a possible probability for T being selected when 

there are multiple equilibria. Then, because she is uncertain about how selection may differ and 
be correlated across markets, she is not certain that empirical frequencies converge. Nevertheless, 
there exists the following connection between prior beliefs about η and her certainty equivalents 
for suitable bets on empirical frequencies14:

μ({η : 0 ≤ η ≤ b}) = U ({ω : lim sup�n (ω) ≤ b}) . (3.9)

13 {ω : lim�n (ω) ≤ qη} denotes both the event and the bet on the event with winning and losing prizes 1 and 0. Simi-
larly below.
14 The proof (see Appendix D) is based on a LLN for i.i.d. products of belief functions due to Maccheroni and Marinacci 
[28].
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In other words, the probability assigned to values of η no greater than b equals the certainty 
equivalent of the bet (with prizes 1 and 0) that, for all δ > 0, the empirical frequency of T is less 
than b + δ in all sufficiently large samples.

Only the lim sup of empirical frequencies appears above because we assumed that η is associ-
ated with the probability interval 

[
0, η

]
for the outcome T , having zero as its left endpoint. More 

generally, if she is not certain that the minimum probability of T is 0, then she entertains inter-

vals of the form 
[
η,η

]
as the unknown parameter, and forms a prior over the parameter space 

{(η, η) : 0 ≤ η ≤ η ≤ 1}. Then (3.9) generalizes to:

μ({(η, η) : a ≤ η ≤ η ≤ b} = U ({ω : [lim inf�n (ω) , lim sup�n (ω)] ⊂ [a, b]}) .

See Appendix D for a more general result and proof.

4. Two applications

We illustrate our model and its tractability by applying it to two classical problems–prediction 
and portfolio choice.

4.1. Prediction

Consider an optimal point prediction problem, that of predicting optimally the empirical fre-
quency of each outcome when the experiment has two possible outcomes, denoted R and B as 
in the urns example. We model optimal prediction by the following decision problem:

max
α∈[0,1]

∫
Bel(S)

∫
�

G(�n (ω) − α)dν∞dμ(ν) , (4.1)

where −G is a bounded strictly convex loss function that penalizes large differences between the 
predicted and realized frequencies α and �n (ω) respectively for the outcome R.

Given a belief function ν on S, define ν∗ (R) = 1 − ν (B), the maximum probability of R. 
Thus ν can be identified with the probability interval 

[
ν (R) , ν∗ (R)

]
for R.

Theorem 4.1. There is a unique maximizer αn in (4.1) and α∞ ≡ limn→∞ αn exists. Moreover,

{α∞} = arg max
α∈[0,1]

∫
min

{
G(ν (R) − α) ,G

(
ν∗ (R) − α

)}
dμ(ν) . (4.2)

The limiting prediction α∞ serves as an approximately optimal prediction for a sufficiently 
large number of experiments. Intuition for its characterization via (4.2) is derived from the LLN 
for i.i.d. belief functions (see (D.1) and (D.2)). Fix ν and α and consider∫

�

G(�n (ω) − α)dν∞ = min
P∈core(ν∞)

∫
�

G(�n (ω) − α)dP. (4.3)

The LLN implies that limit points of empirical frequencies are certain to lie in the interval [
ν (R) , ν∗ (R)

]
, and that for some possible probability law they are certain to be found arbi-

trarily near an endpoint; that is, for any ν (R) < a < b < ν∗ (R),

P ({[lim inf�n (ω) , lim sup�n (ω)] ⊂ [a, b]}) = 0
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for some P in core (ν∞). This suggests that, when n is large, for the worst-case scenario in (4.3)
it suffices to consider only samples that have empirical frequency equal to one of ν (R) and 
ν∗ (R), as in (4.2).

To gain further insight into the nature of optimal predictions, we specialize the model by 
adding three assumptions. First, let the penalty function G be quadratic,

G(t) = −t2.

Second, suppose as in the entry game that the only relevant belief functions are of the form νη

satisfying

νη (R) = 0 and ν∗
η (R) = η.

Finally, assume certainty that the true parameter value η is known. Then (4.2) yields the closed-
form solution

α∞ = η/2.

At the other extreme of predictions for a small number of markets, elementary calculations 
yield:

α1 =
{

η if η ≤ 1
2

1
2 if 1

2 ≤ η
(4.4)

and

α2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η if η ≤ 1
4

1
4 if 1

4 ≤ η ≤ 1
2

η2 if 1
2 ≤ η ≤ 1√

2
1
2 if 1√

2
≤ η

(4.5)

One observation is that α1 �= α2 �= α∞. Thus the optimal prediction depends on the number 
of experiments being considered, in contrast to a Bayesian with exchangeable predictive prior 
whose prediction for any number of experiments would be the probability of R. It follows that 
the pair of predictions for both one and two experiments cannot be replicated by the exchangeable 
Bayesian model.

The prediction for two experiments (urns or markets) reveals the influence of ambiguous 
correlation in a more explicit way. By the appropriate form of (A.5), the optimal prediction 
problem (when μ (ν) = 1) can be rewritten in the form

max
α∈[0,1]

min
P∈core(ν∞)

∫
�

G(�n (ω) − α)dP.

Then it follows from the minimax theorem that αn is optimal if and only if it solves

max
α∈[0,1]

∫
�

G(�n (ω) − α)dP ∗,

where P ∗ is a worst-case scenario for αn, that is, it solves

min
P∈core(ν∞)

∫
G(�n (ω) − αn)dP.
�
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In brief, one can view αn as the best response to the scenario P ∗, and thus by identifying P ∗
we can understand the reasons for the choice of αn. Apply the preceding to α2 in (4.5). The 
corresponding worst-case measure P ∗ satisfies15:

mrg{1,2}P ∗ =
(

η2 0
0 1 − η2

)
if η > 1

2 ,

mrg{1,2}P ∗ =
(

η2 η (1 − η)

η (1 − η) (1 − η)2

)
if η < 1

2 . (4.6)

Therefore, for η larger than 1
2 , the optimal prediction responds to the worst-case concern that 

selection is positively correlated across markets (if R is realized in one urn, then it is certain to 
be realized also in the other, and similarly for B). Correlation does not play a role when predicting 
given η < 1

2 , where P ∗ is an i.i.d. product on S1 × S2. As noted above, the predictions of our 
model are distinct from those of the exchangeable Bayesian model when considering both one 
and two experiments. In addition, even if we consider only the predictions for two experiments, 
though a Bayesian using P ∗ would also predict as in (4.5), when η > 1

2 , it might seem unnatural 
for an analyst to have complete confidence that P ∗ (R1B2) = P ∗ (B1R2) = 0.

4.2. Portfolio diversification

Given a safe asset and n stocks with uncertain returns, when is it optimal to diversify and hold 
stocks? It is well-known that under subjective expected utility maximization, nondiversification is 
a knife-edge property. In the case of one uncertain asset, Dow and Werlang [11] show that when 
there is ambiguity about stock returns, then nondiversification is optimal for a range of stock 
prices or “expected” excess returns. A common response to this result, based on the intuition 
suggested by the classical LLN, is to conjecture that with a large number of stocks, diversification 
would diminish the effect of ambiguity, the noted range would be reduced, and the expected 
utility result would be restored asymptotically for large n. We show that this conjecture is false 
given our model of preference and a suitable specification of the set of securities. Under these 
conditions, the decision whether or not to hold a nonzero amount of a given stock does not 
depend on how many other stocks are available.

Let the safe asset have the constant return r and let the ith stock have excess return Xi , where, 
for i = 1, 2, . . . , n,

Xi = ai + σiεi,

with ai and σi > 0 being known constants. Each residual εi is random and takes on values in 
a compact interval S of the real line. Beliefs about each εi are represented by a common belief 
function ν on S. Further, beliefs about residuals jointly are represented by the belief function νn

defined as the following marginal of ν∞:16

νn (A) ≡ ν∞ (
A × S∞) , for every A ⊂ Sn.

15 mrg{1,2}P ∗ denotes the marginal of P ∗ on S1 × S2. In each matrix, the first row gives the probabilities of R1R2 and 
R1B2 in that order, and the probabilities of B1R2 and B1B2 constitute the second row. The proof uses the characterization 
(A.8) of core

(
ν∞).

16 νn−1, used below, is defined similarly.
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A special case is where the residuals are determined by draws from a sequence of urns as in 
Section 1.2, though finite, and where εi = high if red is drawn from the ith urn and = low
otherwise. Note that the residuals are exchangeable, but that stock returns are not because of 
possibly differing location and scale parameters ai and σi .

Denote by wi the number of shares of stock i in the portfolio, w = (w1, . . . ,wn) ∈ R
n. Nor-

malize total investor wealth to equal 1. Then a portfolio is chosen to maximize U (w), where

U (w) =
∫
Sn

u (�iwiXi + r) dνn.

The utility index u is assumed to be increasing, concave and differentiable.
The Dow–Werlang result implies that when n = 1, the investor will not participate in the stock 

market if and only if∫
X1dν ≤ 0 ≤ −

∫
−X1dν. (4.7)

The interpretation is that the minimum expected excess return (taken over measures in the core 
of ν) being nonpositive dictates against going long, while the maximum expected excess return 
being nonnegative dictates against going short. Here we show that under the above assumptions, 
the identical condition is necessary and sufficient for w∗

1 = 0 also when there are n stocks. Thus 
the possibility of diversification does not promote participation. For example, when stock returns 
are related to draws from urns as above, then stocks do not hedge one another because there 
is no basis for believing that the idiosyncratic components of urns are related in any particular 
way. There is evidently a close connection to Weak Orthogonal Independence, though the axiom 
applies to Anscombe–Aumann acts (or assuming risk neutrality) and thus does not directly imply 
the nonparticipation result. For very large n, there is also an intuitive connection to the LLN for 
belief functions cited in the previous subsection, whereby empirical frequencies do not converge 
to a point.

The proof is straightforward. Assume (4.7). Let w∗ be an optimal portfolio, w∗−1 =(
w∗

2, . . . ,w∗
n

)
, ε−1 = (ε2, . . . , εn) and X−1 = (X2, . . . ,Xn). Then, for any w1 ≥ 0, we have

U
(
w1,w

∗−1

)=
∫ ∫

u
(
w1X1 + �i>1w

∗
i Xi+r

)
dν (ε1) dνn−1 (ε−1)

≤
∫

u

(
w1

(∫
X1dν

)
+ �i>1w

∗
i Xi+r

)
dνn−1 (ε−1)

≤
∫

u
(
0 + �i>1w

∗
i Xi+r

)
dνn−1 (ε−1) = U

(
0,w∗−1

)
.

The first equality is by the Fubini property for belief functions (Ghirardato [18]), the first in-
equality is by a version of Jensen’s inequality (Dow and Werlang [11], for example), and the 
next inequality is by (4.7) and w1 ≥ 0. Thus, w1 = 0 is optimal under the condition w1 ≥ 0. 
A similar argument shows that w1 = 0 is optimal under the condition w1 ≤ 0. Thus w∗

1 = 0. 
Proof of the converse relies on Dow and Werlang’s Lemma 4.1 and is omitted.

5. Concluding remarks and related literature

The celebrated de Finetti result is important because: (a) the representation admits an intuitive 
interpretation; (b) the characterizing axiom is simple and transparent; (c) the model admits a 
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theory of updating; and (d) it provides a behavioral foundation for modeling a decision-maker 
(DM) as being uncertain about an unknown “parameter” that describes common features of every 
experiment and trying to learn about them. Our critique is that de Finetti models a decision-maker 
whose theory of her environment is complete in the sense that once she learns the parameter 
value, then she knows the probability law describing the sequence of experiments which is all she 
needs to make predictions and decisions regarding future experiments. Moreover, under suitable 
assumptions, she is certain that she will indeed learn the true parameter asymptotically given 
enough data. Accordingly, the theory leaves no room for doubt about what is well-understood or 
for more modest ambitions about what is learnable. Our primary contribution is to generalize de 
Finetti so as to accommodate less extreme self-confidence (or naivete) while retaining much of 
(a)–(d).

Our earlier paper (2010) is closely related.17 It introduces the issue of ambiguity about hetero-
geneity and correlation across experiments and adopts the framework of maxmin utility (Gilboa 
and Schmeidler [19]) to model it. In addition, the functional form for utility characterized here 
is a special case of a model studied there (see (3.6) and (3.7)). Therefore, we want to make per-
fectly clear the value-added here. It does not lie in the modeling of updating or learning, where 
we simply cite the earlier work (Section 3.3). However, in other respects, the model in (2010) is 
limited at the levels of both functional form and axiomatics.18

Here is an outline of the value-added over (2010) in each of the dimensions (a), (b) and (d). 
(a) The representation in (2010), given in (3.6) above, is not standard in that it describes pref-
erences satisfying some axioms as a mixture of “IID utility functions,” but little is known about 
the class V of IID utility functions beyond their definition and two examples (one of which 
is the model studied here). Therefore, it is not clear what the representation tells us about the 
given preference order. Here the representation is as concrete and explicit as de Finetti’s. (b) The 
primary axioms in (2010) are Orthogonal Independence and Super-Convexity, neither of which 
is “transparent”; see the latter in particular and compare both with our main axiom here WOI. 
(d) The improvements herein noted in (a) and (b) have implications with regard to the behavioral 
foundations provided for parameters. The earlier paper interprets various representations in terms 
of uncertainty about unknown parameters. In the context of a special case of the general model, 
(see (5.5), p. 332), the unknown parameter takes the concrete and natural form of a set of likeli-
hoods, probability measures on S, much as in this paper. However, the axiomatic foundations for 
that special model are unknown. The general axiomatically-based representation in (2010), given 
above in (3.6), is also described there in terms of uncertainty about a parameter, the unknown 
IID utility function V . However, as noted above, the axioms are much less transparent and little 
is known about these functions V , which limits their appeal and usefulness as parameters. (For 
instance, in the urns example, it is not clear what it would mean to think of IID utility functions as 
parameters.) Only the present paper provides both behavioral foundations and a concrete natural 
notion of parameter. Our individual perceives common elements–captured by belief functions 
on the outcome set of a single experiment, or by probability intervals when each experiment 
is binary–but who recognizes that the parameters alone do not capture all that is going on, for 
example, there is also poorly understood equilibrium selection in the entry game. Policy choice 
in the context of an entry game with multiple equilibria is one example where a belief function 

17 There are two models in (2010). We refer to the more relevant one summarized in Thm. 5.2.
18 The following comparison with the 2010 paper is included in order to respond to an editor’s questions about the 
value-added herein.
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is a natural choice for modeling a decision-maker with such an incomplete theory, but there are 
many others. We view this as a main contribution of the paper.19

Shafer [37] is the first, to our knowledge, to discuss the use of belief functions within the 
framework of parametric models analogous to de Finetti’s. In particular, he sketches (Section 3.3) 
a de Finetti-style treatment of randomness based on belief functions. His model is not axiomatic 
or choice-based, but ignoring these differences, one can translate his suggested model into our 
framework in the following way. Consider the de Finetti representation (1.1), where the proba-
bility measure μ models beliefs about �, the unknown ‘parameter’. An obvious generalization is 
to replace μ by a belief function on �(S), or more generally by a set of probability measures on 
� (S), thus generalizing prior beliefs. Such a model is axiomatized within the maxmin frame-
work in our (2010) paper, (where it is the first of the two models studied), and other models in 
this spirit are studied by Al-Najjar and de Castro [2], Cerreia-Vioglio et al. [6] and Klibanoff, 
Mukerji and Seo [25]. In all cases, the functional form for utility can be interpreted in terms of an 
unknown parameter–the ambiguous probability law for each experiment. A difference from our 
model is that the decision-maker knows everything she needs once she knows the parameter–her 
theory is complete–just as in de Finetti’s model.20 At a behavioral level, these models are distin-
guished from ours because they cannot accommodate either of the rankings (2.3) and (2.4), which 
we take as canonical illustrations of aversion to ambiguity about heterogeneity and correlation 
respectively.

Epstein and Schneider [13,14] study similar issues to those that concern us here in a setting 
where experiments are ordered in time. One difference is that their analysis is not axiomatic–
they suggest functional forms and provide informal justification primarily through applications. 
Another difference is that their models are recursive and because of that they violate Exchange-
ability (thus excluding the functional form studied here), which violation is at least plausible in 
a temporal setting where experiments are distinguished by the time at which they are run, but in 
our view, makes them inappropriate for a cross-sectional setting which is our focus here.

Finally, consider connections to the applied literature on entry games and the broader litera-
ture on partial identification. Most of the latter literature studies inference and estimation. Our 
presumption, however, is that, as stated by Tamer [39, p. 174]: “One main motivation for empir-
ical work in economics is to evaluate policies, with an important purpose of decision making.” 
The only papers of which we are aware that explicitly address policy choice in the context of par-
tially identified models are Manski [29–31] and Kasy [24]. Their approaches are not axiomatic 
and their models are much different than ours, in particular, they do not follow in the footsteps 
of de Finetti.

Appendix A. Belief functions

The following notation is used throughout the appendices. For any compact metric space �, 
K (�) is the space of compact subsets endowed with the Hausdorff metric; � (�) is the space 
of Borel countably additive probability measures on � endowed with the weak convergence 

19 Another “first,” though one that is more narrowly of interest within decision theory, is that we are the first to provide 
behavioral foundations for a particular i.i.d. product rule for belief functions (see Remark 1).
20 Marinacci [32] shows that, within the multiple-priors framework and under suitable assumptions about updating, the 
decision-maker is certain ex ante that she will learn the true law asymptotically if she draws one ball from each of many 
urns. The intuition is that given her perception or theory of the urns, it is as though she were sampling with replacement 
from a single urn.
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topology; and Bel (�) is the space of belief functions endowed with the topology for which 
κn → κ if and only if 

∫
f dκn → ∫

f dκ for every continuous function f on �, where the integral 
is in the sense of Choquet. All three spaces are compact metric. They are endowed with the 
corresponding Borel σ -algebras. For any metric space X, its σ -algebra is denoted �X.

This appendix collects some facts about belief functions that support assertions in the text and 
in the proofs below. We deal with belief functions on �, which until further notice can be any 
compact metric space.

A belief function is most commonly defined as a set function κ : �� → [0,1] satisfying:

Bel. 1 κ (∅) = 0 and κ (�) = 1
Bel. 2 κ (A) ≤ κ (B) for all Borel sets A ⊂ B

Bel. 3 κ (Bn) ↓ κ (B) for all sequences of Borel sets Bn ↓ B

Bel. 4 κ (G) = sup{κ (K) : K ⊂ G, K compact}, for all open G
Bel. 5 κ is totally monotone (or ∞-monotone): for all Borel sets B1, . . . , Bn,

κ
(
∪n

j=1Bj

)
≥

∑
∅ �=J⊂{1,...,n}

(−1)|J |+1 κ
(∩j∈J Bj

)
.

These conditions are adapted from Philippe et al. [34]. Conditions Bel. 1–Bel. 4 form a com-
mon definition of capacity (Schmeidler [35]). When restricted to probability measures, Bel. 4 is 
the well-known property of regularity. If the inequalities in Bel. 5 are restricted to n = 2, one 
obtains that κ is convex (supermodular, or 2-alternating).

An important result regarding belief functions is the Choquet Theorem. Our statement of the 
theorem relies on Philippe et al. [34, Thms. 2 and 3], Molchanov [33, Thm. 5.1] and Castaldo 
et al. [5, Thm. 3.2]. Note that, by Philippe et al. [34, Lemma 1], {K ∈K (�) : K ⊂ A} is univer-
sally measurable for every A ∈ ��. Further, any Borel probability measure (such as m on Borel 
subsets of K (�)) admits a unique extension (also denoted m) to the collection of all universally 
measurable sets.21

Theorem A.1 (Choquet). The set function κ : �� → [0,1] satisfies Bel. 1–Bel. 5 if and only if 
there exists a (necessarily unique) Borel probability measure M on K (�) such that

κ (A) = M ({K ∈K (�) : K ⊂ A}) , for every A ∈ ��. (A.1)

Moreover, in that case, for every measurable f : � → [0,1], the Choquet integral 
∫
�

f dκ satis-
fies: ∫

�

f dκ =
∫

K(�)

(
inf

P∈�(K)
P · f

)
dM (K)

=
∫

K(�)

(
inf
x∈K

f (x)

)
dM (K) . (A.2)

21 Throughout, given any Borel probability measure, we identify it with its unique extension to the σ -algebra of univer-
sally measurable sets. Below P · f is short-hand for 

∫
f dP .
X
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We use frequently below the implication that every belief function (as defined by Bel. 1–
Bel. 5) on a space � can be identified with a unique probability measure on the space of its 
closed subsets; in fact, Bel (�) is homeomorphic to � (K (�)). Another implication is that the 
definition via Bel. 1–Bel. 5 is equivalent to that given in the text via (1.3) and due to Dempster [8]
and Shafer [36]. For one direction, the theorem proves that Bel. 1–Bel. 5 imply the representation 
(A.1), which is the special case of (1.3) where �̂ = K (�) and � maps any K (a point in K (�)) 
into K (a subset of �). Conversely, let κ be defined via the triple 

(
�̂,M,�

)
and (1.3). View �

as a function from �̂ into K (�). Then � is measurable (Aliprantis and Border [1, Thm. 18.10]) 
and induces the measure M ′ = M ◦ �−1 on K (�). Then the Choquet Theorem implies that 
κ (·) = M ◦ �−1 ({K : K ⊂ ·}) satisfies Bel. 1–Bel. 5 and M ′ = M .

Associated with any belief function κ is its core defined by

core (κ) = {P ∈ �(�) : P (·) ≥ κ (·)} .

Then22

core (κ) =

⎧⎪⎨⎪⎩P ∈ �(�) : P =
∫
�̂

pω̂dM (ω̂) , pω̂ ∈ �(� (ω̂)) M-a.e.

⎫⎪⎬⎪⎭ . (A.3)

Turn to the corresponding utility function. The objects of choice are (Borel measurable) acts 
f : � → [0, 1], which are restricted to have finite range. The utility U (f ) of any act f is defined 
by (2.1). By Molchanov [33, Thm. 5.1], it can be expressed alternatively in the form

U (f ) =
∫
�̂

(
inf

ω∈�(ω̂)
f (ω)

)
dM (ω̂) . (A.4)

This expression for utility reflects the individual’s perception that given the auxiliary state ω̂, the 
true payoff relevant state lies in � (ω̂) but there is ignorance within � (ω̂). Put another way, the 
marginal distribution of the subsets {� (ω̂)} is given by M , but conditional distributions within 
each � (ω̂) are unrestricted.

Belief function utility is a special case of the maxmin model (Gilboa and Schmeidler [19]) 
with set of priors equal to core (κ):

U (f ) = min
P∈core(κ)

∫
�

f dP. (A.5)

Accordingly, it inherits the following properties that play a central role in the multiple-priors 
model: For all acts f and g, and for all constants x,

U (αx + (1 − α)g) = αx + (1 − α)U (g) , (A.6)

and

U (αf + (1 − α)g) ≥ αU (f ) + (1 − α)U (g) . (A.7)

Gilboa and Schmeidler [19] refer to these properties as certainty additivity and ambiguity aver-
sion respectively. We use them repeatedly.

22 When the support of M is not finite, a measurability assumption for ̂ω �−→ pω̂ must be added to give meaning to this 
expression.
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As noted, the preceding applies to any state space. Now we consider further structure that is 
relevant in a setting with repeated experiments. Thus consider a sequence of experiments indexed 
by the set N of positive integers. Each experiment yields an outcome in S (a compact metric 
space). Uncertainty concerns the outcomes of all experiments, and thus let � be defined by

� = S1 × S2 × . . . = S∞, where Si = S for all i.

Let ν ∈ Bel (S) be generated by (Ŝ, m, G). We defined ν∞ to be the belief function on �
represented by (

(
Ŝ
)∞

, m∞, G∞), where m∞ is the ordinary i.i.d. product of the probability 
measure m, and G∞ is the correspondence G∞ : (Ŝ)∞ � � = S∞ given by (3.1). The Choquet 
Theorem gives an alternative characterization of the product that we use frequently. In particular, 
it implies that the product ν∞ does not depend on the particular representation (Ŝ, m, G) for ν.

Lemma A.2. Let ν ∈ Bel (S) correspond to m ∈ � (K (S)) as in the Choquet Theorem. Then 
ν∞ ∈ Bel (�) is the unique belief function corresponding to M = m∞ ∈ � (K (�)) as in the 
Choquet Theorem (where m∞ is the i.i.d. product of the measure m).

The proof of the lemma is omitted. Note that m∞ is a measure on [K (S)]∞ which is a subset 
of K (�). Therefore, it can be identified with a measure on K (�).

The core of ν∞ has the following characterization: By Philippe et al. [34, Thm. 3],

core
(
ν∞)=

∫
�(G (̂s1) × G(̂s2) × . . .) dm∞ (̂s1, . . .) (A.8)

where the integral is an Aumann integral. As noted following Theorem 3.1, the presence of 
the entire simplices � (G (̂s1) × G(̂s2) × . . .) implies that the core contains both nonidentical 
products and nonproduct measures.

Some of the preceding is illustrated by the following verification of (3.5). Specifically, we 
show that

Vν

(
1
2f + 1

2πf
)

≡
∫ (

1
2f + 1

2πf
)

dν∞

= (ν (R))2 + (ν (B))2 + ν (R)ν (B) (1 − ν (R) − ν (B)) ,

where f denotes the bet {R1R2, B1B2} and π permutes the second and third markets. Let ν on 
S = {R, B} be given by

ν(R) = θ1, ν (B) = 1 − θ2, θ1 < θ2.

Adopt the Dempster–Shafer representation as in (1.7)–(1.9) except that, for greater notational 
clarity, let Ŝ = {r, b, u}, m (r) = θ1, m (b) = 1 − θ2, and define G in the obvious way. By the 
definition of Choquet integration,∫ (

1
2f + 1

2πf
)

dν∞ = ν∞ (E1) + 1
2

[
ν∞ (E1 ∪ E2) − ν∞ (E1)

]
,

where

1
2f + 1

2πf =
⎧⎨⎩

1 on E1 = {R1R2R3,B1B2B3}
1
2 on E2 = {R1R2B3,R1B2R3,B1B2R3,B1R2B3}
0 on E3 = {R1B2B3,B1R2R3} .

By definition of ν∞:



904 L.G. Epstein, K. Seo / Journal of Economic Theory 157 (2015) 879–917
ν∞ (E1) = m∞ ({r1r2r3, b1b2b3}) = (θ1)
3 + (1 − θ2)

3 ,

and

ν∞ (E1 ∪ E2) = m∞ ({r1r2u3, r1u2r3, b1b2u3, b1u2b3, u1r2b3, u1b2r3})
= 2 (θ1)

2 − (θ1)
3 + 2 (1 − θ2)

2 − (1 − θ2)
3 + 2θ1 (1 − θ2) (θ2 − θ1) .

Thus ∫ (
1
2f + 1

2πf
)

dν∞

= (θ1)
3 + (1 − θ2)

3

+ 1
2

[
2 (θ1)

2 − (θ1)
3 + 2 (1 − θ2)

2 − (1 − θ2)
3 + 2θ1 (1 − θ2) (θ2 − θ1)

]
= (θ1)

2 + (1 − θ2)
2 + θ1 (1 − θ2) (θ2 − θ1) .

Appendix B. Proof of Theorem 3.1

For any subset I of {1,2, . . .}, let �I denote the product σ -algebra on 
∏

i∈I Si , identified with 
a σ -algebra on � = S1 × S2 × . . .. Denote by FI the set of all �I -measurable acts.

Throughout the appendix, if ν ∈ Bel (S) and κ ∈ Bel (�), then mν ∈ � (K (S)) and Mκ ∈
� (K (�)), respectively, are the corresponding measures provided by the Choquet Theorem.

We use (A.2) repeatedly without reference.
First we prove the measurability required to show that the integrals in (3.3) and (3.2) are 

well-defined. (Recall that any Borel probability measure μ has a unique extension to the class of 
all universally measurable subsets.)

Lemma B.1. The mapping ν �−→ ν∞ (A) is universally measurable for any A ∈ ��.

Proof. Since Bel (S) and � (K (S)) are homeomorphic, and in light of (A.1), it is enough to 
prove analytical (and hence universal) measurability of the mapping from � (K (S)) to R given 
by

m �−→
∫

[
K(S)

]∞ m
({

K ∈ [K (S)]∞ : K ⊂ A
})

dm∞ (K) .

Step 1. � (K (S)) and {m∞ : m ∈ �(K (S))} are homeomorphic when the latter set is endowed 
with the relative topology inherited from � 

(
[K (S)]∞

)
.

Step 2. P �−→ P (C) from � 
(
[K (S)]∞

)
to R is analytically measurable for any measurable 

subset C of [K (S)]∞, by Bertsekas and Shreve [4, p. 169].
Step 3. 

{
K ∈ [K (S)]∞ : K ⊂ A

}
is coanalytic by Philippe et al. [34, p. 772], and hence ana-

lytically measurable.
Steps 1, 2 and 3 complete the proof. �

Necessity of the axioms: Belief Function Utility is obvious. Note that U (f ) can be written as ∫
Vν (f )dμ (ν) where Vν , defined in (3.4). We verify that Vν satisfies Exchangeability and WOI, 

which implies the same for U . By Lemma A.2, Mν∞ = (mν)
∞ is an i.i.d. measure on [K (S)]∞, 

hence exchangeable. Therefore,
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Vν (πf ) =
∫

K(�)

inf
ω∈K

πf (ω)dm∞
ν (K) =

∫
K(�)

inf
ω∈K

f (πω)dm∞
ν (K)

=
∫

K(�)

inf
πω∈πK

f (πω)dm∞
ν (K) =

∫
K(�)

inf
ω∈K

f (ω)d
(
πm∞

ν

)
(K)

=
∫

K(�)

inf
ω∈K

f (ω)dm∞
ν (K) = Vν (f ) .

The functional form satisfies a strengthening of WOI that is not restricted to binary acts or to 
1
2/ 1

2 mixtures. For simplicity, let f ∈F1, g ∈ F2 and 0 < α ≤ 1. Then

Vν (αf + (1 − α)g)

=
∫

K(�)

inf
ω∈K

[
αf (ω) + (1 − α)g (ω)

]
dm∞

ν (K)

=
∫

[
K(S)

]∞ inf
s1∈K1,s2∈K2

[
αf (s1) + (1 − α)g (s2)

]
dm∞

ν (K1,K2, . . .)

=
∫

[
K(S)

]∞ α

[
inf

s1∈K1
f (s1)

]
+ (1 − α)

[
inf

s2∈K2
(1 − α)g (s2)

]
dm∞

ν (K1,K2, . . .)

= α

∫
[
K(S)

]∞
[

inf
s1∈K1

f (s1)

]
dm∞

ν (K1,K2, . . .)

+ (1 − α)

∫
[
K(S)

]∞
[

inf
s2∈K2

g (s2)

]
dm∞

ν (K1,K2, . . .)

= αVν (f ) + (1 − α)Vν (g) .

The second equality follows because K ∈ [K (S)]∞, a.s.-m∞
ν .

It follows from a similar argument that the preference satisfies the following related condi-
tions. Say that the finitely-based acts f and g are orthogonal, written f ⊥ g, if there exist disjoint 
subsets I, J ⊂ N such that f ∈FI and g ∈FJ .

WOI*: For all 0 < α ≤ 1, and all finitely-based acts f ′, f and g such that f ′ ⊥ g and f ⊥ g,

f ′ � f ⇐⇒ αf ′ + (1 − α)g � αf + (1 − α)g, (B.1)

and its utility function U satisfies

U (αf + (1 − α)g) = αU (f ) + (1 − α)U (g) . (B.2)

We use this characterization of WOI frequently in the sequel.

The next lemma is used in the proof of sufficiency. It shows that the axioms Exchangeability 
and WOI extend to apply also to nonbinary acts.
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Lemma B.2. Suppose κ is a capacity on � and that the preference � on F is represented by the 
Choquet expected utility function U , U (f ) = ∫

f dκ . Then:
(a) � satisfies Exchangeability if and only if f ∼ πf for all finitely-based acts f and permu-

tations π .
(b) The following statements are equivalent:

(i) � satisfies WOI*.
(ii) U satisfies (B.2).

(iii) � satisfies WOI.
(iv) ν (A ∪ B) + ν (A ∩ B) = ν (A) + ν (B) for all finitely-based orthogonal events A and B .

Proof. (a) Only one direction requires proof. Assume Exchangeability, so that κ (A) = κ (πA)

for any finitely-based event A. Take a finitely-based act f . Then,

U (πf ) =
∫

πf dκ =
1∫

0

κ ({ω : πf (ω) ≥ t}) dt

=
1∫

0

κ ({ω : f (πω) ≥ t}) dt

=
1∫

0

κ
({

π−1 (πω) : f (πω) ≥ t
})

dt

=
1∫

0

κ
(
π−1 {ω′ : f (ω′)≥ t

})
dt

=
1∫

0

κ
({

ω′ : f (ω′)≥ t
})

dt = U (f ) ,

where the second last equality holds because 
{
ω′ : f (ω′)≥ t

}
is finitely-based.

(b) That (ii) �⇒ (i) �⇒ (iii) is clear.
(i) implies (ii): Let f ′ be constant at level U(f ), so that f ′ ∼ f . Because constant acts are 

orthogonal to every act, deduce that αU (f ) + (1 − α)g ∼ αf + (1 − α)g. Therefore, αU(f ) +
(1 − α)U (g) = U(αU (f ) + (1 − α)g) = U(αf + (1 − α)g); the first equality is due to (A.6).

(iii) implies (iv): Adapt the preceding argument to show that (iii) implies

U
(

1
2f + 1

2g
)

= 1
2U (f ) + 1

2U (g)

for all orthogonal indicator acts f = 1A and g = 1B . Then, because 1A∪B and 1A∩B are comono-
tonic,

κ (A ∪ B) + κ (A ∩ B) =
∫

1A∪Bdκ +
∫

1A∩Bdκ =
∫

(1A∪B + 1A∩B)dκ

=
∫

(1A + 1B)dκ = 2U
(

1
2f + 1

2g
)

= U (f ) + U (g)

= κ (A) + κ (B) .
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(iv) implies (ii): Without loss of generality, let a > b > 0, and write

a1A + b1B = b (1A∪B + 1A∩B) + (a − b)1A.

Because 1A∪B + 1A∩B and 1A are comonotonic,

U (a1A + b1B) =
∫

b (1A∪B + 1A∩B)dκ +
∫

(a − b)1Adκ

= b (κ (A ∪ B) + κ (A ∩ B)) + (a − b)κ (A)

= b (κ (A) + κ (B)) + (a − b)κ (A)

= aκ (A) + bκ (B) = aU (1A) + bU (1B) . (B.3)

This shows that U (αf + (1 − α)g) = αU (f ) + (1 − α)U (g) for orthogonal indicator acts f
and g. To extend to any (finitely-based) orthogonal f and g, note that

f = a11A1 + a21A2 + . . . + an1An

for some A1 ⊂ . . . ⊂ An and a1 < . . . < an. Because the acts 
(
αai1Ai

+ 1−α
n

g
)

, i = 1, . . . , n, 
are comonotonic,

U (αf + (1 − α)g) = U

(
n∑

i=1

(
αai1Ai

+ 1 − α

n
g

))
=

n∑
i=1

U

(
αai1Ai

+ 1 − α

n
g

)
.

Similarly,

g = b11B1 + b21B2 + . . . + bm1Bm

for some B1 ⊂ . . . ⊂ Bm and b1 < . . . < bm. Argue as above to derive

U (αf + (1 − α)g) =
n∑
i

m∑
j

U

(
α

m
ai1Ai

+ 1 − α

n
bj 1Bj

)
.

By a slight extension of (B.3),

U

(
α

m
ai1Ai

+ 1 − α

n
bj 1Bj

)
= α

m
U
(
ai1Ai

)+ 1 − α

n
U(bj 1Bj

).

Therefore,

U (αf + (1 − α)g) =
n∑
i

m∑
j

[
α

m
U
(
ai1Ai

)+ 1 − α

n
U
(
bj 1Bj

)]

= αU

(
n∑
i

ai1Ai

)
+ (1 − α)U

⎛⎝ m∑
j

bj 1Bj

⎞⎠
= αU (f ) + (1 − α)U (g) . �

Sufficiency of the axioms. We apply Lemma B.2 repeatedly below without explicit reference. 
For example, when we invoke Exchangeability or WOI, we apply their extensions to nonbinary 
acts.

For C ⊂ K (�), let πC = {πK ∈K (�) : K ∈ C}, and for M ∈ � (K (�)), define πM ∈
� (K (�)) by πM (C) = M (πC) for each Borel measurable C ⊂K (�).
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Lemma B.3. For any M ∈ � (K (�)), M = πM for all π if and only if M = Mκ for some 
exchangeable belief function κ on �.

Proof. If M = Mκ , then κ (K) = M
({

K ′ ∈K (�) : K ′ ⊂ K
})

, and

κ (πK) = M
({

K ′ ∈ K (�) : K ′ ⊂ πK
})= M

({
πK ′ ∈ K (�) : πK ′ ⊂ πK

})
= M

({
πK ′ ∈K (�) : K ′ ⊂ K

})= πM
({

K ′ ∈ K (�) : K ′ ⊂ K
})

.

The asserted equivalence follows because the class 
{
K ′ ∈K (�) : K ′ ⊂ K

}
K∈K(�)

generates the 
Borel σ -algebra on K (�). �
Lemma B.4. Let κ ∈ Bel (�) and let U be the corresponding Choquet expected utility function. 
If U satisfies WOI, then Mκ

[
(K (S))∞

]= 1.

Proof. For any ω ∈ � and disjoint sets I, J ⊂ N, ωI denotes the projection of ω onto SI , and 
we write ω = (ωI ,ωJ ,ω−I−J ). When I = {i}, we write ωi , rather than ω{i}, to denote the ith
component of ω.

Let A be the collection of compact subsets K of � satisfying: For any n > 0, and ω1, ω2 ∈ K , 
and for every partition {1, . . . , n} = I ∪ J ,

∃ω∗ ∈ K, such that ω∗
I = ω1

I and ω∗
J = ω2

J . (B.4)

In other words, for every n, the projection of K onto Sn is a Cartesian product.

Step 1. For any continuous acts f ∈FI and g ∈FJ with finite disjoint I and J ,

min
ω∈K

[
1
2f (ω) + 1

2g (ω)
]

= 1
2 min

ω∈K
f (ω) + 1

2 min
ω∈K

g (ω) , (B.5)

a.s.-Mκ : This is where WOI enters – by Lemma B.2(ii), it implies that

U
(

1
2f + 1

2g
)

= 1
2U (f ) + 1

2U (g) .

Since U (f ) = ∫
K(�)

infω∈K f (ω)dMκ (K), then 
∫
K(�)

minω∈K

[
1
2f (ω) + 1

2g (ω)
]
dMκ (K) =

1
2

∫
K(�)

minω∈K f (ω)dMκ (K) + 1
2

∫
K(�)

minω∈K g (ω)dMκ (K). The assertion follows from

min
ω∈K

[
1
2f (ω) + 1

2g (ω)
]

≥ 1
2 min

ω∈K
f (ω) + 1

2 min
ω∈K

g (ω) .

Let G be the set of all pairs (f, g) such that f and g are continuous and f ∈ FI , g ∈ FJ for 
some finite disjoint I and J . Let Bf,g be the collection of K ∈ K (�) satisfying (B.5), given f
and g. Step 1 implies m 

(
Bf,g

)= 1 for each (f, g) ∈ G.

Step 2. Mκ

( ⋂
(f,g)∈G

Bf,g

)
= 1: Since the set of continuous finitely-based acts is separable under 

the sup-norm topology (Aliprantis and Border [1, Lemma 3.99]), it is easy to see that G is also 
separable. Let {(fn, gn)} be a countable dense subset of G. By Step 1,
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Mκ

(
K (�)\

( ∞⋂
i=1

Bfi ,gi

))
= Mκ

( ∞⋃
i=1

(
K (�)\Bfi ,gi

))≤
∑

Mκ

(
K (�)\Bfi ,gi

)= 0.

Thus it is enough to show that 
∞⋂
i=1

Bfi ,gi
= ⋂

(f,g)∈G
Bf,g .

Only ⊂ requires proof. Let K ∈
∞⋂
i=1

Bfi ,gi
, (f, g) ∈ G and assume without loss of generality 

that (fi, gi) → (f, g). Then, by the Maximum Theorem (Aliprantis and Border [1, Thm. 17.31]),

min
ω∈K

[
1
2f (ω) + 1

2g (ω)
]

= lim
i

min
ω∈K

[
1
2fi (ω) + 1

2gi (ω)
]

= lim
i

[
1
2 min

ω∈K
fi (ω) + 1

2 min
ω∈K

gi (ω)

]
= 1

2 min
ω∈K

f (ω) + 1
2 min

ω∈K
g (ω) .

Thus K ∈ ⋂
(f,g)∈G

Bf,g .

Step 3. If K ∈ ⋂
(f,g)∈G

Bf,g , then K ∈ A: Let n ≥ 0, ω1, ω2 ∈ K and {1, . . . , n} = I ∪ J , with I

and J disjoint. For each i, take closed sets

Ai =
{

ω :
∑
t∈I

2−t d
(
ωt ,ω

1
t

)
≥ 1

i

}
and

Bi =
{

ω :
∑
t∈J

2−t d
(
ωt ,ω

2
t

)
≥ 1

i

}
,

where d (·, ·) is the metric on S. By Urysohn’s Lemma, there are continuous functions fi and gi

such that, for each i,

fi (ω) = 1 if ω ∈ Ai and 0 if ωI = ω1
I , and

gi (ω) = 1 if ω ∈ Bi and 0 if ωJ = ω2
J .

Since Ai ∈ �I and Bi ∈ �J , we can take fi ∈ FI , and gi ∈ FJ . Then, minω∈K fi (ω) =
minω∈K gi (ω) = 0 and, since K ∈ Bfi ,gi

,

min
ω∈K

[
fi (ω) + gi (ω)

]= 0.

Hence, there exists ω̂i ∈ K such that fi

(
ω̂i
)= gi

(
ω̂i
)= 0. By the construction of fi and gi , we 

have ω̂i /∈ Ai, Bi , which implies∑
t∈I

2−t d
(
ω̂i

t ,ω
1
t

)
+
∑
t∈J

2−t d
(
ω̂i

t ,ω
2
t

)
<

2

i
.

Since {ω̂i} ⊂ K and K is compact, there is a limit point ω∗ ∈ K satisfying (B.4).

Step 4. Mκ (A) = 1: By Steps 2–3, 1 ≥ Mκ (A) ≥ Mκ

( ⋂
Bf,g

)
= 1.
(f,g)∈G
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Step 5. A = (K (S))∞: Clearly A ⊃ (K (S))∞. For the other direction, take K ∈ A and assume 
ω1, ω2, . . . ∈ K . It suffices to show that

ω∗ =
(
ω1

1,ω
2
2, . . . ,ω

n
n, . . .

)
∈ K. (B.6)

Since K ∈ A and ω1, ω2 ∈ K , there exists ω̂2 ∈ K such that 
(
ω̂2

1, ω̂
2
2

)= (
ω1

1,ω
2
2

)
. Similarly, 

since ω̂2, ω3 ∈ K , there exists ω̂3 ∈ K such that 
(
ω̂3

1, ω̂
3
2, ω̂

3
3

) = (
ω̂2

1, ω̂
2
2,ω

3
3

) = (
ω1

1,ω
2
2,ω

3
3

)
, 

and so on, giving a sequence {ω̂n} in K . Any limit point ω∗ satisfies (B.6). �
Let κ ∈ Bel (�) and suppose that the corresponding U satisfies Symmetry and WOI. By 

Lemma B.4, Mκ can be viewed as a measure on [K (S)]∞, and by Lemma B.3, it is exchange-
able. Thus we can apply de Finetti’s Theorem (Hewitt and Savage [22]) to Mκ , viewing K (S) as 
the one-period state space, to obtain: There exists a unique μ̂ ∈ � (�(K (S))) such that

Mκ (C) =
∫

�(K(S))

�∞ (C)dμ̂ (�) for all C ∈ �[
K(S)

]∞ .

Here each � lies in � (K (S)) and �∞ is the i.i.d. product measure on [K (S)]∞. Extend each 
measure �∞ to �K(�) and write

Mκ (C) =
∫

�(K(S))

�∞ (C)dμ̂ (�) for all C ∈ �K(�).

We claim that the equation extends also to C ∈ �′, where �′ is the σ -algebra generated by the 
class

{K ∈K (�) : K ⊂ A}A∈� .

First, note that � �−→ �∞ (C) is universally measurable by Lemma B.1, and hence the integral 
is well-defined. By a standard argument using the Lebesgue Dominated Convergence Theorem, 
C �−→ ∫

�(K(S))
�∞ (C)dμ̂ (�) is countably additive on �′. This completes the argument because 

Mκ has a unique extension to the σ -algebra of universally measurable sets, and the latter con-
tains �′.

Let μ ∈ � (Bel (S)) be the measure induced by μ̂ through the homeomorphism defined in the 
Choquet Theorem. Apply the Change of Variables Theorem to derive, for any A ∈ �,

κ (A) = Mκ ({K ∈K (�) : K ⊂ A})
=

∫
�(K(S))

�∞ ({K ∈K (�) : K ⊂ A}) dμ̂ (�)

=
∫

Bel(S)

m∞
ν ({K ∈K (�) : K ⊂ A}) dμ(ν) =

∫
Bel(S)

ν∞ (A)dμ(ν) .

Uniqueness of μ follows from the uniqueness of μ̂ provided by de Finetti’s Theorem. �
Appendix C. Proofs for Section 3.2

Lemma C.1. Given a theory, κ (·) is well-defined by (1.5)–(1.6).
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Proof. We prove that θ �→ ν∞
θ (A) is universally measurable for each event A ⊂ �. Then κ =∫



ν∞
θ dμ (θ) is a well-defined capacity.

First, show that G is universally measurable on ̂S × 
.23 Let A be a Borel measurable subset 
of S. Then, C ≡ {K ∈ K (S) : K ⊂ A} is coanalytic by Philippe et al. [34, p. 772]. Observe that

{(̂s, θ) : G(̂s | θ) ⊂ A} = {(̂s, θ) : G(̂s | θ) ∈ C} = G−1 (C)

where G is viewed as a function from Ŝ × 
 to K (S). Since G is a weakly measurable corre-
spondence, it is a measurable function by Aliprantis and Border [1, Thm. 18.10]. Then, Bertsekas 
and Shreve [4, Proposition 7.40] imply that G−1 (C) = (

Ŝ × 

)\G−1 (K (S)\C) is coanalytic, 

and hence universally measurable.
Fix a Borel measurable A ⊂ �. Let ϕ be the indicator function on Ŝ ∞ × 
 such that 

ϕ (̂s ∞, θ) = 1 if G∞ (̂s ∞ | θ) ⊂ A, and 0 otherwise. Then, ϕ is universally measurable.24

Moreover, θ �→ m∞
θ is measurable. Therefore, by Bertsekas and Shreve [4, Proposition 7.46], 

θ �→ ν∞
θ (A) = ∫

ϕ (̂s ∞, θ) dmθ (̂s ∞) is universally measurable. �
Proof of Corollary 3.2. By Theorem 3.1, (c) implies (a). By Theorems 3.1 and A.1, (a) im-
plies (b). Clearly (b) implies (c). �
Appendix D. Proofs for Section 3.4

Denote by �n (·) (ω) the empirical frequency measure given the sample ω; �n (A) (ω) is the 
empirical frequency of the event A ⊂ S in the first n experiments.

Proof of (3.9). In the entry game, let ν be the belief function on S defined by the probability 
interval 

[
0, η

]
. The LLN in Maccheroni and Marinacci [28] implies that

ν∞
η

({
ω ∈ � : [lim inf�n (T ) (ω) , lim sup�n (T ) (ω)] ⊂ [

0, η
]})= 1. (D.1)

Further, these bounds on empirical frequencies are tight in the sense that

[a > νη (B) = 0 or b < 1 − νη (N) = η] �⇒
0 = (νη)

∞ ({[lim inf�n (T ) (ω) , lim sup�n (T ) (ω)] ⊂ [a, b]}) . (D.2)

Therefore, the representation (3.3) implies that, for every 0 ≤ b ≤ 1,

μ({η : 0 ≤ η ≤ b})
= U ({ω : [lim inf�n (T ) (ω) , lim sup�n (T ) (ω)] ⊂ [0, b]})
= U ({ω : lim sup�n (T ) (ω) ≤ b}) . � (D.3)

23 A correspondence � : �̂ → � is universally measurable if {ω̂ : � (ω̂) ⊂ A} is universally measurable for every Borel 
measurable A ⊂ �.
24 The proof is standard but we show here that ϕ is universally measurable. First, assume that B = B1 × B2 × . . . for 
event Bi ⊂ S. Then,

{(̂
s ∞, θ

) : G∞ (̂
s ∞ | θ)⊂ B

}=
∞⋂
i=1

{((ŝ1, ŝ2, . . .) , θ) : G(ŝi | θ) ⊂ Bi }

which is universally measurable. As the sets of the form B1 × B2 × . . . for Bi ⊂ S generate the Borel σ -algebra on �, {(̂
s ∞, θ

) : G∞ (̂
s ∞ | θ)⊂ B

}
is universally measurable for every event B ⊂ �.
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The following connection between prior beliefs and the certainty equivalents of bets on em-
pirical frequencies, is a corollary of Theorem 3.1.

Corollary D.1. Adopt the assumptions in Theorem 3.1 and let U and μ be as provided there. 
Then:

(a) For every finite collection {A1, . . . ,AJ } of subsets of S, and for all aj ≤ bj , j = 1, . . . , J ,

μ

⎛⎝ J⋂
j=1

{
ν : [ν (Aj

)
,1 − ν

(
S\Aj

)] ⊂ [aj , bj ]
}⎞⎠

= U

⎛⎝ J⋂
j=1

{
ω : [lim inf�n

(
Aj

)
(ω) , lim sup�n

(
Aj

)
(ω)] ⊂ [aj , bj ]

}⎞⎠ . (D.4)

(b) Let μ′ be any probability measure on Bel (S) that agrees with μ on all sets of the form

{ν ∈ Bel (S) : ν (A1) ≥ a1, . . . , ν (AJ ) ≥ aJ } ,

where Aj , aj and J vary over the nonempty subsets of S, [0,1] and the positive integers respec-
tively. Then μ′ = μ.

Eq. (D.4) relates the prior μ over parameters, here belief functions, to the evaluation of bets 
on empirical frequencies for the events A1, . . . , AJ . More precisely, the μ-measures of the sets 
shown are so related. Part (b) shows that μ is completely determined by its values on these sets.

The proof requires two lemmas. Recall that �n (A) (ω) = 1
n

∑n
i=1 I (si ∈ A) where si is the 

ith component of ω ∈ S∞. Similarly define �̂n (A) (K) = 1
n

∑n
i=1 I (Ki ⊂ A) for K ∈ [K (S)]∞, 

where Ki is the ith component of K .

Lemma D.2. Let K ∈ [K (S)]∞, K = K1 × K2 × . . . , and α ∈ R. Then the following are equiv-
alent:

(i) lim infn �n (A) (ω) > α for every si ∈ Ki , i = 1, 2, . . .
(ii) lim infn �̂n (A) (K) > α.

Proof. (i) ⇒ (ii): If Ki ⊂ A, let si be any element in Ki , and otherwise, let si be any element in 
Ki\A. Then, I (Ki ⊂ A) = I (si ∈ A) and thus (ii) is implied.

(ii) ⇒ (i): If si ∈ Ki , I (Ki ⊂ A) ≤ I (si ∈ A). Thus, if si ∈ Ki for i = 1, 2, . . . , then,

lim inf
n

�n (A) (ω) ≥ lim inf
n

�̂n (A) (K) > α. �
Lemma D.3. For any ν ∈ Bel (S):

(i) ν∞ ({ω : ν (A) < lim infn �n (A) (ω)}) = 0 for each A ⊂ S.
(ii) ν∞ ({

ω : lim supn �n (A) (ω) < 1 − ν (S\A)
})= 0 for each A ⊂ S.
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Proof. Let mν ∈ � (K (S)) correspond to ν as in the Choquet Theorem. Fix A ⊂ S. Then,

ν∞ ({
ω : ν (A) < lim inf

n
�n (A) (ω)

})
= m∞

ν

({
K ∈ [K (S)]∞ : K ⊂

{
ω : ν (A) < lim inf

n
�n (A) (ω)

}})
= m∞

ν

({
K ∈ [K (S)]∞ : lim inf

n
�̂n (A) (K) > ν (A)

})
(by Lemma D.2).

By the classical LLN, �̂n (A) (K) converges to mν ({K1 ∈ K (S) : K1 ⊂ A}) = ν (A)m∞
ν -almost 

surely, which implies (i). The proof of (ii) is similar. �
Proof of Corollary D.1. (a) Because ν∞ (A) = ν (A) for A ⊂ S, ν �−→ ν (A) is universally 
measurable by Lemma B.1. Hence, every set of the form

{ν ∈ Bel (S) : [ν (A) ,1 − ν (S\A)] ⊂ [a, b]}
is universally measurable and the statement of the corollary is well-defined.

By the LLN in Maccheroni and Marinacci [28], Lemma D.3 and the monotonicity of belief 
functions,

ν∞ ({ω : [lim inf�n (A) (ω) , lim sup�n (A) (ω)] ⊂ [a, b]}) = 1

⇔ [
ν (A) ,1 − ν (S\A)

]⊂ [a, b]
and

ν∞ ({ω : [lim inf�n (A) (ω) , lim sup�n (A) (ω)] ⊂ [a, b]}) = 0

⇔ [
ν (A) ,1 − ν (S\A)

]
is not a subset of [a, b].

Moreover, for any belief function γ on �, if γ (A) = γ (B) = 1, then γ (A ∩ B) = 1 by the 
Choquet Theorem (Theorem A.1). Therefore, for the belief function κ in (3.3),

κ

⎛⎝ J⋂
j=1

{
ω : [lim inf�n

(
Aj

)
(ω) , lim sup�n

(
Aj

)
(ω)] ⊂ [aj , bj ]

}⎞⎠
=

∫
Bel(S)

ν∞
⎛⎝ J⋂

j=1

{
ω : [lim inf�n

(
Aj

)
(ω) , lim sup�n

(
Aj

)
(ω)] ⊂ [aj , bj ]

}⎞⎠dμ(ν)

= μ

⎛⎝ J⋂
j=1

{
ν : [ν (Aj

)
,1 − ν

(
S\Aj

)] ⊂ [aj , bj ]
}⎞⎠ .

(b) We can identify μ′ and μ with measures on � (K (S)). Modulo this identification, we are 
given that μ′ and μ agree on the collection of all subsets of � (K (S)) of the form

J⋂
j=1

{
� ∈ �(K (S)) : � ({K ∈ K (S) : K ⊂ Aj

})≥ aj

}
,

for all J > 0, Aj ⊂ S and aj ∈ [0,1]. They necessarily agree also on the generated σ -algebra, 
denoted �∗. Therefore, it suffices to show that

��(K(S)) ⊂ �∗.
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Step 1. � �−→ � (C) is �∗-measurable for measurable C ∈ �K(S): Let C be the col-
lection of measurable subsets C of K (S) such that � �−→ � (C) is �∗-measurable. Ev-
ery set of the form 

{
K ′ ∈K (S) : K ′ ⊂ K

}
for K ∈ K (S) lies in C. Since the collection {

K ′ ∈K (S) : K ′ ⊂ K
}
K∈K(S)

generates �K(S), it is enough to show that C is a σ -algebra: 

(i) C ∈ C implies K (S)\C ∈ C; (ii) if each Cj ∈ C, then � �−→ � 
(
∪∞

j=1Cj

)
is �∗-measurable 

because it equals the pointwise limit of � �−→ � 
(
∪n

j=1Cj

)
– hence ∪∞

j=1Cj ∈ C.

Step 2. � �−→ ∫
f̂ d� is �∗-measurable for all Borel-measurable f̂ on K (S): Identical to 

Step 2 in Lemma B.1.

Step 3. ��(K(S)) ⊂ �∗: By Step 2, 
{
� : ∫ f̂ d� ≥ a

}
∈ �∗ for all Borel-measurable f̂ on 

K (S). But ��(K(S)) is the smallest σ -algebra containing the sets 
{
� : ∫ f̂ dν ≥ a

}
for all contin-

uous f̂ and a ∈R. �
Appendix E. Proof of Theorem 4.1

Each belief function ν on S = {R, B} corresponds to the probability interval for outcome R
given by 

[
ν (R) , ν∗ (R)

]
.

Step 1: Show that

lim
n→∞

∫ ∫
G(α − �n (ω))dν∞dμ(ν)

=
∫

min
{
G(α − ν (R)) ,G

(
α − ν∗ (R)

)}
dμ(ν) .

Without loss of generality, suppose that infa G (a) = 0. Define G = supa G (a). Since G is quasi-
concave, there are two (inverse) functions G−1

L and G−1
R such that

{a : G(a) ≥ t} =
[
G−1

L (t) ,G−1
R (t)

]
for all t ∈ [0,G

]
.

(The inverses may not be defined at t = 0, but this is of no consequence below.) The Dominated 
Convergence Theorem implies, for any ν ∈ Bel (S),

lim
n→∞

∫
G(α − �n (ω))dν∞

= lim
n→∞

G∫
0

ν∞ (G(α − �n (ω)) ≥ t) dt

= lim
n→∞

G∫
0

ν∞ (
G−1

L (t) ≤ α − �n (ω) ≤ G−1
R (t)

)
dt

=
G∫

lim
n→∞ν∞ (

−G−1
R (t) + α ≤ �n (ω) ≤ −G−1

L (t) + α
)

dt
0
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=
G∫

0

I
[
−G−1

R (t) + α ≤ ν (R) ≤ ν∗ (R) ≤ −G−1
L (t) + α

]
dt

=
G∫

0

I

[
G−1

L (t) ≤ α − ν∗ (R) ≤ G−1
R (t) ,

G−1
L (t) ≤ α − ν (R) ≤ G−1

R (t)

]
dt

=
G∫

0

I
[
G(α − ν (R)) ≥ t,G

(
α − ν∗ (R)

)≥ t
]
dt

=
G∫

0

I
[
min

{
G(α − ν (R)) ,G

(
α − ν∗ (R)

)}≥ t
]
dt

= min
{
G(α − ν (R)) ,G

(
α − ν∗ (R)

)}
.

Here, I [·] is the indicator function and the fourth equality follows by the LLN in Maccheroni 
and Marinacci [28]. By the Dominated Convergence Theorem,

lim
n→∞

∫ ∫
G(α − �n (ω))dν∞dμ(ν)

=
∫

lim
n→∞

∫
G(α − �n (ω))dν∞dμ(ν)

=
∫

min
{
G(α − ν (R)) ,G

(
α − ν∗ (R)

)}
dμ(ν) .

Step 2: Show that

lim
n→∞ argmax

α∈[0,1]

∫ ∫
G(α − �n (ω))dν∞dμ(ν)

= argmax
α∈[0,1]

lim
n→∞

∫ ∫
G(α − �n (ω))dν∞dμ(ν) .

There is a unique solution αn for maxα∈[0,1]
∫ ∫

G (α − �n (ω))dν∞dμ (ν): Obviously the max-
imum exists. Uniqueness follows from the strict concavity of α �−→ ∫

G (α − �n (ω))dν∞ for 
each ν. Application of the Maximum Theorem completes the proof of this step once we establish 
the needed continuity, which we do next.

The set {1, 2, . . . , ∞} is compact when endowed with the topology generated by singletons 
{n} and sets of the form {n, . . . , ∞}. Define F : [0, 1] × {1, 2, . . . , ∞} → R by

F (α,n) =
{ ∫

G(α − �n (ω))dν∞ (ω)dμ(ν) n < ∞
limk→∞

∫ ∫
G(α − �k (ω))dν∞ (ω)dμ(ν) n = ∞

F is well-defined by Step 1. It is also jointly continuous: We need to check only the case αn → α

and n → ∞. Note that G is uniformly continuous on [−1,1] and thus that F (·, n) is continuous 
uniformly in n. Then the desired joint continuity follows from the triangle inequality, that is, 
from
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|F (αn,n) − F (α,∞) |
≤ |F (αn,n) − F (α,n) | + |F (α,n) − F (α,∞) |.

Step 3: Complete the proof. From Steps 1 and 2,

α∞ ≡ lim
n→∞ argmax

α

∫ ∫
G(α − �n (ω)) dν∞dμ(ν)

= argmax
α

lim
n→∞

∫ ∫
G(α − �n (ω)) dν∞dμ(ν)

= argmax
α

∫
min

{
G(α − ν (R)) ,G

(
α − ν∗ (R)

)}
dμ(ν) . �

References

[1] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, 3rd edition, Springer, 2006.
[2] N. Al-Najjar, L. de Castro, Parametric representation of preferences, J. Econ. Theory 150 (2014) 642–667.
[3] F.J. Anscombe, R.J. Aumann, A definition of subjective probability, Ann. Math. Stats. 34 (1963) 199–205.
[4] D.P. Bertsekas, S.E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 

1978.
[5] A. Castaldo, F. Maccheroni, M. Marinacci, Random correspondences as bundles of random variables, Sankhya 

(Series A) 80 (2004) 409–427.
[6] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, L. Montrucchio, Ambiguity and robust statistics, J. Econ. Theory 

148 (2013) 974–1049.
[7] F. Ciliberto, E. Tamer, Market structure and multiple equilibria in airline markets, Econometrica 77 (2009) 

1791–1828.
[8] A.P. Dempster, Upper and lower probabilities induced by a multi-valued mapping, Ann. Math. Statist. 38 (1967) 

325–339.
[9] A.P. Dempster, A generalization of Bayesian inference, J. Royal Stat. Soc. Series B 30 (1968) 205–232.

[10] P. Diaconis, D. Freedman, Partial exchangeability and sufficiency, in: Proceedings of the Indian Statistical Institute 
Jubilee Conference on Statistics: Applications and New Directions, Calcutta, 1981, pp. 205–236.

[11] J. Dow, S.R. Werlang, Uncertainty aversion, risk aversion, and the optimal choice of portfolio, Econometrica 60 
(1992) 197–204.

[12] L.G. Epstein, M. Marinacci, K. Seo, Coarse contingencies and ambiguity, Theor. Econ. 2 (2007) 355–394.
[13] L.G. Epstein, M. Schneider, Learning under ambiguity, Rev. Ec. Studies 74 (2007) 1275–1303.
[14] L.G. Epstein, M. Schneider, Ambiguity, information quality and asset pricing, J. Finance 63 (2008) 197–228.
[15] L.G. Epstein, K. Seo, Symmetry of evidence without evidence of symmetry, Theor. Econ. 5 (2010) 313–368.
[16] B. de Finetti, La prevision: ses lois logiques, ses sources subjectives, Ann. Inst. H. Poincare 7 (1937) 1–68. English 

translation in: H.E. Kyburg, H.E. Smokler (Eds.), Studies in Subjective Probability, 2nd edition, Krieger Publishing, 
Huntington, NY, 1980, pp. 53–118.

[17] B. de Finetti, On the condition of partial exchangeability, in: Studies in Inductive Logic and Probability, vol. 2, 
University of California Press, Berkeley, 1980, pp. 193–205.

[18] P. Ghirardato, On independence for non-additive measure, with a Fubini theorem, J. Econ. Theory 73 (1997) 
261–291.

[19] I. Gilboa, D. Schmeidler, Maxmin expected utility with non-unique priors, J. Math. Econ. 18 (1989) 141–153.
[20] F. Gul, W. Pesendorfer, Expected uncertain utility theory, Econometrica 82 (2014) 1–39.
[21] E. Hendon, H.J. Jacobson, B. Sloth, T. Tranaes, The product of capacities and belief functions, Math. Soc. Sc. 32 

(1996) 95–108.
[22] E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955) 470–501.
[23] B. Jovanovic, Observable implications of models with multiple equilibria, Econometrica 57 (1989) 1431–1437.
[24] M. Kasy, Partial Identification, Distributional Preferences, and the Welfare Ranking of Policies, Harvard, 2014.
[25] P. Klibanoff, S. Mukerji, K. Seo, Perceived ambiguity and relevant measures, Econometrica 82 (2014) 1945–1978.
[26] D.M. Kreps, Notes on the Theory of Choice, Westview, 1988.

http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6162s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6E6162696Cs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib4141s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6273s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6273s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib63616D616D61s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib63616D616D61s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib4974616C69616E73s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib4974616C69616E73s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib74616D657232303039s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib74616D657232303039s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib64656D7073746572s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib64656D7073746572s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib64656D707374657262s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6466s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6466s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib4457726566s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib4457726566s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib656D73s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib65736C6561726E696E67s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib65734A46s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6573656Fs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib646546s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib646546s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib646546s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6465462D7061727469616Cs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6465462D7061727469616Cs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6768697261726461746Fs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6768697261726461746Fs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6773s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6770s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib68656E646F6Es1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib68656E646F6Es1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6873s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6A6F7661s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6B617379s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6B6D73s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6B72657073s1


L.G. Epstein, K. Seo / Journal of Economic Theory 157 (2015) 879–917 917
[27] G. Link, Representation theorems of the de Finetti type for (partially) symmetric probability measures, in: Studies 
in Inductive Logic and Probability, vol. 2, University of California Press, Berkeley, 1980, pp. 207–231.

[28] F. Maccheroni, M. Marinacci, A strong law of large numbers for capacities, Ann. Prob. 33 (2005) 1171–1178.
[29] C.F. Manski, Choosing treatment policies under ambiguity, Annual Rev. Econ. 3 (2011) 25–49.
[30] C.F. Manski, Status quo deference and policy choice under ambiguity, J. Institutional and Theor. Econom. 169 

(2013) 116–128.
[31] C.F. Manski, Diagnostic testing and treatment under ambiguity: using decision analysis to inform clinical practice, 

Proceedings of the National Academy of Sciences 110 (2013) 2064–2069.
[32] M. Marinacci, Learning from ambiguous urns, Statistical Papers 43 (2002) 145–151.
[33] I. Molchanov, Theory of Random Sets, Springer, 2005.
[34] F. Philippe, G. Debs, J.Y. Jaffray, Decision making with monotone lower probabilities of infinite order, Math. Oper. 

Res. 24 (1999) 767–784.
[35] D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica 57 (1989) 571–587.
[36] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.
[37] G. Shafer, Belief functions and parametric models (with commentary), J. Royal Stat. Soc. Series B 44 (1982) 

322–352.
[38] M. Talagrand, Capacités invariantes extrémales, Ann. Inst. Fourier (Grenoble) 28 (1978) 79–146.
[39] E. Tamer, Partial identification in econometrics, Annual Rev. Econ. 2 (2010) 167–195.
[40] E. Tamer, Incomplete simultaneous discrete response model with multiple equilibria, Rev. Econ. Stud. 70 (2003) 

147–165.
[41] P.P. Wakker, Dempster belief functions are based on the principle of complete ignorance, Intern. J. Uncert. Fuzziness 

and Knowledge-Based Systems 8 (2000) 271–284.

http://refhub.elsevier.com/S0022-0531(15)00043-5/bib4C696E6Bs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib4C696E6Bs1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D6D4C4C4Es1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D616E736B6932303131s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D616E736B6932303132s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D616E736B6932303132s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D616E736B6932303133s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D616E736B6932303133s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D6172696E61636369s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6D6F6C6368s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6A616666726179s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib6A616666726179s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib7363686D6569646C6572s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib736861666572s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib73686166657231393832s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib73686166657231393832s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib74616C616772616E64s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib74616D6572s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib74616D657232303033s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib74616D657232303033s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib77616B6B6572s1
http://refhub.elsevier.com/S0022-0531(15)00043-5/bib77616B6B6572s1

	Exchangeable capacities, parameters and incomplete theories
	1 Introduction
	1.1 Outline
	1.2 Running examples: urns and entry games
	1.3 An entry game

	2 Foundations
	3 Representation
	3.1 The main result
	3.2 Theory incompleteness and parameters
	3.3 Updating
	3.4 Frequencies

	4 Two applications
	4.1 Prediction
	4.2 Portfolio diversiﬁcation

	5 Concluding remarks and related literature
	Appendix A Belief functions
	Appendix B Proof of Theorem 3.1
	Appendix C Proofs for Section 3.2
	Appendix D Proofs for Section 3.4
	Appendix E Proof of Theorem 4.1
	References


