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Abstract
This paper formulates a model of utility for a continuous time frame-

work that captures the decision-maker�s concern with ambiguity about both
volatility and drift. Corresponding extensions of some basic results in asset
pricing theory are presented. First, we derive arbitrage-free pricing rules
based on hedging arguments. Ambiguous volatility implies market incom-
pleteness that rules out perfect hedging. Consequently, hedging arguments
determine prices only up to intervals. However, sharper predictions can be
obtained by assuming preference maximization and equilibrium. Thus we
apply the model of utility to a representative agent endowment economy to
study equilibrium asset returns. A version of the C-CAPM is derived and
the e¤ects of ambiguous volatility are described.
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1. Introduction

1.1. Objectives

This paper formulates a model of utility for a continuous time framework that
captures the decision-maker�s concern with ambiguity or model uncertainty. Its
novelty lies in the range of model uncertainty that is accommodated, speci�cally
in the modeling of ambiguity about both drift and volatility, and in corresponding
extensions of some basic results in asset pricing theory. First, we derive arbitrage-
free pricing rules based on hedging arguments. Ambiguous volatility implies mar-
ket incompleteness and thus, in general, rules out perfect hedging. Consequently,
hedging arguments determine prices only up to intervals. However, sharper pre-
dictions can be obtained by assuming preference maximization and equilibrium.
Thus we apply the model of utility to a representative agent endowment economy
to study equilibrium asset returns in a sequential Radner style market setup. A
version of the C-CAPM is derived and the e¤ects of ambiguous volatility are de-
scribed. A pivotal role for �state prices�is demonstrated in both the hedging and
equilibrium analyses thus extending to the case of comprehensive ambiguity this
cornerstone element of asset pricing theory.
The model of utility is a continuous time version of multiple priors (or maxmin)

utility formulated by Gilboa and Schmeidler [30] for a static setting. Related
continuous time models are provided by Chen and Epstein [12] and also Hansen,
Sargent and coauthors (see Anderson et al. [1], for example).1 In all existing
literature on continuous time utility, ambiguity is modeled so as to retain the
property that all priors are equivalent, that is, they agree which events are null.
This universal restriction is driven not by an economic rationale but rather by the
technical demands of continuous time modeling, speci�cally by the need to work
within a probability space framework. Notably, in order to describe ambiguity
authors invariably rely on Girsanov�s theorem for changing measures. It provides
a tractable characterization of alternative hypotheses about the true probability
law, but it also limits alternative hypotheses to correspond to measures that are
both mutually equivalent and that di¤er from one another only in what they imply
about drift. This paper de�nes a more general framework within which one can
model the utility of an individual who is not completely con�dent in any single
probability law for either drift or volatility. This is done while maintaining a
separation between risk aversion and intertemporal substitution as in Du¢ e and

1The discrete time counterpart of the former is axiomatized in Epstein and Schneider [24].
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Epstein [20].
At a technical level, the analysis requires a signi�cant departure from existing

continuous time modeling because ambiguous volatility cannot be modeled within
a probability space framework, where there exists a probability measure that de-
�nes the set of null (or impossible) events. In our companion paper Epstein and
Ji [23], we exploit and extend recent advances in stochastic calculus that do not
require a probability space framework. The reader is referred to that paper for a
rigorous treatment of the technical details involved in de�ning a utility function
that accommodates aversion to ambiguity about volatility, including for proofs
regarding utility, and also for extensive references to the noted mathematics liter-
ature. Our treatment below is less formal but is otherwise largely self-contained.
Proofs are provided here for all the asset pricing results.

1.2. Why ambiguous volatility?

A large literature has argued that stochastic time varying volatility is important
for understanding empirical features of asset markets; for recent examples, see
Eraker and Shaliastovich [27], Drechsler [18], Bollerslev et al. [9], Bansal et al.
[3], Beeler and Campbell [6], Bansal et al. [4], and Campbell et al. [10], where the
�rst three employ continuous time models.2 In macroeconomic contexts, Bloom
[8] and Fernandez-Villaverde and Guerron-Quintana [28] are recent studies that
�nd evidence of stochastic time varying volatility and its e¤ects on real variables.
In all of these papers, evidence suggests that relevant volatilities follow compli-
cated dynamics. The common modeling response is to postulate correspondingly
complicated parametric laws of motion, including speci�cation of the dynamics of
the volatility of volatility. However, one might question whether agents in these
models can learn these laws of motion precisely, and more generally, whether it
is plausible to assume that agents become completely con�dent in any particular
law of motion. In their review of the literature on volatility derivatives, Carr
and Lee [11, pp. 324-5] raise this criticism of assuming a particular parametric
process for the volatility of the underlying asset. The drawback they note is �the
dependence of model value on the particular process used to model the short-term
volatility.�They write that �the problem is particularly acute for volatility mod-
els because the quantity being modeled is not directly observable. Although an

2Bollerslev et al. argue extensively for the modeling advantages of the continuous time frame-
work. For example, they write that a continuous time formulation �has the distinct advantage
of allowing for the calculation of internally consistent model implications across all sampling
frequencies and return horizons.�
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estimate for the initially unobserved state variable can be inferred from market
prices of derivative securities, noise in the data generates noise in the estimate,
raising doubts that a modeler can correctly select any parametric stochastic process
from the menu of consistent alternatives.�
Thus we are led to develop a model of preference that accommodates ambi-

guity about volatility. In the model the individual takes a stand only on bounds
rather than on any particular parametric model of volatility dynamics. Thus max-
imization of preference leads to decisions that are robust to misspeci�cations of
the dynamics of volatility (as well as drift). Accordingly, we think of this aspect
of our model as providing a way to robustify stochastic volatility modeling.
To illustrate the latter perspective, consider a stochastic environment with a

one-dimensional driving process. By a stochastic volatility model we mean the
hypothesis that the driving process has zero drift and that its volatility is sto-
chastic and is described by a single process (�t). The speci�cation of a single
process for volatility indicates the investor�s complete con�dence in the implied
dynamics. Suppose, however, that (�1t ) and (�

2
t ) describe two alternative stochas-

tic volatility models that are put forth by expert econometricians; for instance,
they might conform to the Hull and White [33] and Heston [31] parametric forms
respectively. The models have comparable empirical credentials and are not eas-
ily distinguished empirically, but their implications for optimal choice (or for the
pricing of derivative securities, which is the context for the earlier quote from Carr
and Lee) di¤er signi�cantly. Faced with these two models, the investor might place
probability 1

2
on each being the true model. But why should she be certain that

either one is true? Both (�1t ) and (�
2
t ) may �t data well to some approximation,

but other approximating models may do as well. An intermediate model such as�
1
2
�1t +

1
2
�2t
�
is one alternative, but there are many others that �lie between�(�1t )

and (�2t ) and that plausibly should be taken into account. Accordingly, we are
led to hypothesize that the investor views as possible all volatility processes with
values lying in the interval [�t (!) ; �t (!)] for every t and !, where

�t (!) = minf�1t (!) ; �2t (!)g and �t (!) = maxf�1t (!) ; �2t (!)g. (1.1)

Given also the conservative nature of multiple priors utility, the individual will
be led thereby to take decisions that are robust to (many) misspeci�cations of
the dynamics of volatility. This special case of our model is described further in
Section 2.2.
A possible objection to modeling ambiguity about volatility might take the

form: �One can approximate the realized quadratic variation of a stock price (for
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example) arbitrarily well from frequent observations over any short time interval,
and thus estimate the law of motion for its volatility extremely well. Consequently,
ambiguity about volatility is implausible for a sophisticated agent.� However,
even if one accepts the hypothesis that, contrary to the view of Carr and Lee,
accurate estimation is possible, such an objection relies also on the assumption of
a tight connection between the past and future that we relax. We are interested in
situations where realized past volatility may not be a reliable predictor of volatility
in the future. The rationale is that the stochastic environment is often too complex
for a sophisticated individual to believe that her theory, whether of volatility or
of other variables, captures all aspects. Being sophisticated, she is aware of the
incompleteness of her theory. Accordingly, when planning ahead she believes
there may be time-varying factors excluded by her theory that she understands
poorly and that are di¢ cult to identify statistically. Thus she perceives ambiguity
when looking into the future. The amount of ambiguity may depend on past
observations, and may be small for some histories, but it cannot be excluded a
priori.
A similar rationale for ambiguity is emphasized by Epstein and Schneider

[25, 26]. Nonstationarity is emphasized by Ilut and Schneider [35] in their model
of business cycles driven by ambiguity. In �nance, Lo and Mueller [40] argue that
the (perceived) failures of the dominant paradigm, for example, in the context of
the recent crisis, are due to inadequate attention paid to the kind of uncertainty
faced by agents and modelers. Accordingly, they suggest a new taxonomy of uncer-
tainty that extends the dichotomy between risk and ambiguity (or �Knightian un-
certainty�). In particular, they refer to partially reducible uncertainty to describe
�situations in which there is a limit to what we can deduce about the underly-
ing phenomena generating the data. Examples include data-generating processes
that exhibit: (1) stochastic or time-varying parameters that vary too frequently
to be estimated accurately; (2) nonlinearities too complex to be captured by ex-
isting models, techniques and datasets; (3) nonstationarities and non-ergodicities
that render useless the Law of Large Numbers, Central Limit Theorem, and other
methods of statistical inference and approximation; and (4) the dependence on
relevant but unknown and unknowable conditioning information.�Lo and Mueller
do not o¤er a model. One can view this paper as an attempt to introduce some
of their concerns into continuous time modeling and particularly into formal asset
pricing theory.
The natural question is whether and in what form the cornerstones of received

asset pricing theory extend to a framework with ambiguous volatility. Some ini-
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tial steps in answering this question are provided in Section 3.3 A notable �nd-
ing is that both equilibrium and �no-arbitrage�asset prices can be characterized
by means of �state prices�even though the analysis cannot be undertaken in a
probability space framework (which precludes talking about state price densities
or about equivalent martingale, or risk neutral, measures). First, however, the
remainder of the introduction provides an informal outline of our approach to
modeling ambiguous volatility. Then Section 2 describes the new model of utility.
Following the asset pricing results, concluding remarks are o¤ered in Section 4.
Proofs are collected in appendices.

1.3. An informal outline

Time varies over f0; h; 2h; :::; (n� 1)h; nhg, where 0 < h < 1 scales the period
length and n is a positive integer with nh = T . Uncertainty is driven by the
colors of balls drawn from a sequence of urns. It is known that each urn contains
100 balls that are either red (R), green (G), or yellow (Y ), and that the urns
are constructed independently (informally speaking). A ball is drawn from each
urn and the colors drawn determine the evolution of the state variable B = (Bt)
according to: B0 = 0 and, for t = h; :::; nh,

dBt � Bt �Bt�h =

8<:
h1=2 if Rt

�h1=2 if Gt

0 if Yt

We describe three alternative assumptions regarding the additional information
available about the urns. They provide intuition for continuous time models
where (respectively) the driving process is (i) a standard Brownian motion, (ii)
a Brownian motion modi�ed by ambiguous drift, and (iii) a Brownian motion
modi�ed by ambiguous volatility. The �rst two are included in order to provide
perspective on the third.

Scenario 1: You are told further that Y = 0 and that R = G for each urn (thus all
urns are known to have the identical composition). The state process (Bt) can be
described equivalently in terms of the measure p0 =

�
1
2
; 1
2
; 0
�
and its i.i.d. product

that induces a measure P0 on trajectories of B. Thus we have a random walk
that, by Donsker�s Theorem, converges weakly to a standard Brownian motion in

3Early work on the pricing of derivative securities when volatility is ambiguous includes Lyons
[41] and Avellaneda et al. [2]. See Section 3 for the relation to our analysis and for additional
references.
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the continuous time limit as h ! 0 (see Billingsley [7, Thm. 14.1 and Example
12.3], for example).

Scenario 2: You are told again that Y = 0 for every urn. However, you are given
less information than previously about the other colors. Speci�cally, you are told
that for each urn the proportion of R lies in the interval

�
1
2
� 1

2
�h1=2; 1

2
+ 1

2
�h1=2

�
,

for some �xed � > 0. Thus the composition of the urn at any time t could be
given by a measure of the form p�t =

�
1
2
+ 1

2
�th

1=2; 1
2
� 1

2
�th

1=2; 0
�
, for some �t

satisfying j �t j� �. The increment dBt has mean and variance under p�t given
by4

E (dBt) = �th and var (dBt) = h� (�th)2 = h+ o (h) .

Accordingly, the weaker information about the composition of urns implies am-
biguity about drift per unit time, but up to the o (h) approximation, it does not
a¤ect the corresponding one-step-ahead variance.
The preceding is the building block of the Chen and Epstein (2002) con-

tinuous time model of ambiguity about drift.5 The transition from discrete to
continuous time amounts to a minor variation of the convergence result noted
for Scenario 1 (see Skiadas [50] for some details). The sets fp�t :j �t j� �g,
t = 0; h; 2h; :::; (n� 1)h; nh, of one-step-ahead measures can be combined to con-
struct a set P of priors over the set 
 of possible trajectories for B. It is not
di¢ cult to see that the priors are mutually equivalent, that is, they all agree on
which events are null (have zero probability). Further, as described in Section
2.1, equivalence holds in the continuous time limit. Consequently, the model with
ambiguous drift can be formulated within a probability space framework with
ambient probability measure P0 according to which B is a standard Brownian
motion. Alternative hypotheses about the true probability law can be expressed
via densities with respect to P0.

Scenario 3: Turn now to a model having ambiguity only about volatility. You are
told that R = G, thus eliminating uncertainty about the relative composition of
R versus G. However, the information about Y is weakened and you are told only
that Y � 20.6
Any probability measure over trajectories consistent with these facts makes B

a martingale. In that sense, there is certainty that B is a martingale. However,
the one-step-ahead variance �2th depends on the number of yellow balls and thus

4o (h) represents a function such that o (h) =h! 0 as h! 0.
5It corresponds to the special case of their model called �-ignorance.
6This scenario is adapted from Levy et al. [38].
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is ambiguous - it equals pth, where we know only that 0 � 1� pt � 0:2, or

:8 = �2 � �2t � �2 = 1. (1.2)

Because urns are perceived to be independent, they may di¤er in actual compo-
sition. Therefore, any value for �t in the interval [�; �] could apply at any time.
Independence implies also that past draws do not reveal anything about the future
and ambiguity is left undiminished. This is an extreme case that is a feature of
this example and is a counterpart of the assumption of i.i.d. increments in the
binomial tree.
By a generalization of Donsker�s Theorem (Yuan [58]), the above trinomial

model converges weakly (or �in distribution�) to a continuous time model on the
interval [0; T ] as the time period length h goes to 0.7

The limiting continuous time model inherits from the discrete time trinomial
the interpretation that it models certainty that the driving process B = (Bt) is a
martingale, whereas volatility is known only up to the interval [�; �]. To be more
precise about the meaning of volatility, let the quadratic variation process of B
be de�ned by

hBit(!) = lim
4tk!0

�
tk�t

j Btk+1(!)�Btk(!) j2 (1.3)

where 0 = t1 < : : : < tn = t and 4tk = tk+1 � tk.8 Then the volatility (�t) of B
is de�ned by

dhBit = �2tdt.

Therefore, the interval constraint on volatility can be written also in the form

�2t � hBit � �2t. (1.4)

7To clarify the meaning of weak convergence, consider the set 
 of continuous trajectories
on [0; T ] that begin at the origin. For each period length h, identify any discrete time trajectory
with a continuous path on [0; T ] obtained by linear interpolation. Then each hypothesis about
the compositions of all urns implies a probability measure on 
. By varying over all hypotheses
consistent with the above description of the urns, one obtains a set Ph of probability laws on

. Suppose that P is a given set of measures on 
. Then say that Ph converges weakly to P
if supP2Ph EP f converges to supP2P E

P f for every function f : 
 ! R that is bounded and
suitably continuous. The cited result by Yuan implies this convergence for the set P constructed
below corresponding to the special case of our model for which volatility is constrained by (1.2).
See also Dolinsky et al. [17] for a related result.

8By Follmer [29] and Karandikar [36], the above limit exists almost surely for every measure
that makes B a martingale. Because there is certainty that B is a martingale, this limited
universality is all we need.
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The preceding de�nes the stochastic environment. Consumption and other
processes are de�ned accordingly (for example, they are required to be adapted
to the natural �ltration generated by B). We emphasize that our model is much
more general than suggested by this outline. Importantly, the interval [�; �] can be
time and state varying, and the dependence on history of the interval at time t is
unrestricted, thus permitting any model of how ambiguity varies with observation
(that is, learning) to be accommodated. In addition, we admit multidimensional
driving processes and also ambiguity about both drift and volatility.
As noted earlier, ambiguity about volatility leads to a set of nonequivalent

priors, that is, to disagreement between priors as to what events are possible (or to
ambiguity about what is possible). To see this, let B be a Brownian motion under
P0 and denote by P � and P � the probability distributions over continuous paths
induced by the two processes (�Bt) and (�Bt). Given the ambiguity described
by (1.4), P � and P � are two alternative hypotheses about the probability law
driving uncertainty. It is apparent that they are mutually singular, and hence not
equivalent, because9

P�(fhBiT = �2Tg) = 1 = P�(fhBiT = �2Tg). (1.5)

We caution against a possible conceptual misinterpretation of (1.5). If P �

and P � were the only two hypotheses being considered, then ambiguity could be
eliminated quickly because one can approximate volatility locally as in (1.3) and
thus use observations on a short time interval to di¤erentiate between the two
hypotheses. This is possible because of the tight connection between past and
future volatility imposed in each of P � and P �. As discussed earlier, this is not
the kind of ambiguity we have in mind. The point of (1.5) is only to illustrate
nonequivalence as simply as possible. Importantly, such nonequivalence of priors
is a feature also of the more complex and interesting cases at which the model is
directed.
An objection to modeling ambiguity about possibility might take the form: �If

distinct priors (or models) are not equivalent, then one can discriminate between
them readily. Therefore, when studying nontransient ambiguity there is no loss
in restricting priors to be equivalent.�The connection between past and future is
again the core issue (as in the preceding subsection). Consider the individual at
time t and her beliefs about the future. The source of ambiguity is her concern

9Two measures P and P 0 on 
 are singular if there exists A � 
 such that P (A) = 1 and
P 0 (A) = 0. They are equivalent, if for every A, P (A) = 0 if and only if P 0 (A) = 0. Thus P
and P 0 singular implies that they are not equivalent, but the converse is false.
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with locally time varying and poorly understood factors. This limits her con�-
dence in predictions about the immediate future, or �next step�, to a degree that
depends on history but that is not eliminated by the retrospective empirical dis-
crimination between models. At a formal level, Epstein and Schneider [24] show
that when backward induction reasoning is added to multiple priors utility, then
the individual behaves as if the set of conditionals entertained at any time t and
state does not vary with marginal prior beliefs on time t measurable uncertainty.
(They call this property rectangularity.) Thus looking back on past observations
at t, even though the individual might be able to dismiss some priors or models
as being inconsistent with the past, this is unimportant for prediction because the
set of conditional beliefs about the future is una¤ected.

2. Utility

Many components of the formal setup are typical in continuous time asset pric-
ing. Time t varies over the �nite horizon [0; T ]. Paths or trajectories of the
driving process are assumed to be continuous and thus are modeled by elements
of Cd([0; T ]), the set of all Rd-valued continuous functions on [0; T ], endowed with
the sup norm. The generic path is ! = (!t)t2[0;T ], where we write !t instead of
! (t). All relevant paths begin at 0 and thus we de�ne the canonical state space
to be


 =
�
! = (!t) 2 Cd([0; T ]) : !0 = 0

	
.

The coordinate process (Bt), where Bt(!) = !t, is denoted by B. Information
is modeled by the �ltration F = fFtg generated by B. Let P0 be the Wiener
measure on 
 so that B is a Brownian motion under P0.
Consumption processes c take values in C, a convex subset of R`. The objective

is to formulate a suitable utility function on a domainD of consumption processes.

2.1. Recursive Utility under Equivalence

For perspective, we begin by outlining the Chen-Epstein model where there is
ambiguity only about drift. This is the continuous time counterpart of Scenario
2 in Section 1.3.
If P0 describes the individual�s beliefs, then following Du¢ e and Epstein [20]

utility may be de�ned by:10

10Below we often suppress c and write Vt instead of Vt (c). The dependence on the state ! is
also frequently suppressed.
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V P0
t (c) = EP0 [

Z T

t

f(cs; V
P0
s )ds j Ft]; 0 � t � T: (2.1)

Here V P0
t gives the utility of the continuation (cs)s�t and V

P0
0 is the utility of

the entire process c. The function f is a primitive of the speci�cation, called an
aggregator. The most commonly used aggregator has the form

f (ct; v) = u (ct)� �v, � � 0, (2.2)

which delivers the expected utility speci�cation

Vt (c) = EP0

�Z T

t

e��(s�t) u(cs) ds j Ft
�
. (2.3)

The use of more general aggregators permits a partial separation of risk aversion
from intertemporal substitution.
To admit a concern with model uncertainty, Chen and Epstein replace the

single measure P0 by a set P� of measures equivalent to P0. This is done by
specifying a suitable set of densities. For each well-behaved Rd-valued process
� = (�t), called a density generator, let

z�t � exp

�
�1
2

Z t

0

j �s j2 ds �
Z t

0

�>s dBs

�
, 0 � t � T ,

and let P � be the probability measure on (
;F) with density z�T , that is,

dP �

dP0
= z�T ; more generally,

dP �

dP

����
Ft
= z�t for each t. (2.4)

Given a set � of density generators, the corresponding set of priors is

P� = fP � : � 2 � and P � is de�ned by (2.4) g. (2.5)

By construction, all measures in P� are equivalent to P0. Because the role of P0
is only to de�ne null events, any other member of P� could equally well serve as
the reference measure.
Continuation utilities are de�ned by:

Vt = inf
P2P�

EP [

Z T

t

f(cs; Vs)ds j Ft]. (2.6)
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An important property of the utility process is dynamic consistency, which follows
from the following recursivity: For every c in D,

Vt = min
P2P�

EP

�Z �

t

f(cs; Vs) ds + V� j Ft
�
, 0 � t < � � T . (2.7)

Regarding interpretation, by the Girsanov theorem Bt +
R t
0
�sds is a Brownian

motion under P �. Thus as � varies over � and P � varies over P�, alternative
hypotheses about the drift of the driving process are de�ned. Accordingly, the
in�mum suggests that the utility functions Vt exhibit an aversion to ambiguity
about the drift. Because Bt has variance-covariance matrix equal to the identity
according to all measures in P�, there is no ambiguity about volatility. Neither
is there any uncertainty about what is possible because P0 de�nes which events
are null.

There is a limited sense in which the preceding framework is adequate for
modeling also ambiguity about volatility. For example, suppose that the driving
process is (Xt), where dXt = �tdBt, (where B is a Brownian motion under P0
and) where the volatility is thought to evolve according to

d�t = �tdt+ vtdBt.

Here the drift (�t) is ambiguous in the above sense, and the volatility of volatility
(vt) is a �xed stochastic process, for example, it might be constant as in many
stochastic volatility models. Thus the di¢ culty of �nding a speci�cation for (�t)
in which one can have complete con�dence is moved one level from volatility to
its volatility. This constitutes progress if there is greater evidence about vol of vol
and if model implications are less sensitive to misspeci�cations of the latter. We
suspect that in many modeling situations neither is true. Moreover, this approach
cannot intermediate between, or robustify, the stochastic volatility models that
have been used in the empirical literature (Section 1.2).

2.2. The set of priors

The objective is to specify beliefs, in the form of a set of priors generalizing (2.5),
that captures ambiguity about both drift and volatility. Another key ingredient is
conditioning. The nonequivalence of priors (illustrated by (1.5)) poses a particular
di¢ culty for updating because of the need to update beliefs conditional on events
having zero probability according to some, but not all, priors. Once these steps
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are completed, continuation utilities can be de�ned (apart from technical details)
as in (2.6); see the next section.
The construction of the set of priors can be understood by referring back

to the binomial and trinomial examples in the introduction. In Scenario 2, the
composition of all urns is speci�ed by �xing � = (�t) with j �t j� �. De�ne
X� = (X�

t ) by
dX�

t = �th+ dBt, X
�
0 = 0.

Then X� and P0 induce a distribution P � over trajectories; and as one varies
over all choices of �, one obtains the set of priors P described earlier. Thus
beliefs are described indirectly through the set f� = (�t) :j �t j� �g of alternative
hypotheses about the drift of the driving process. Similarly in Scenario 3, where
the composition of all urns is speci�ed by by �xing � = (�t) with � � �t � �. If
X� = (X�

t ) is de�ned by

dX�
t = �tdBt, X�

0 = 0,

then X� and P0 induce a distribution P � over trajectories; and as one varies over
all choices of �, one obtains the set of priors P described earlier. Thus beliefs are
described indirectly through a set of alternative hypotheses about the volatility
of the driving process.
The preceding construction is readily generalized to permit a vector-valued

driving process (d � 1), ambiguity about both drift and volatility, and to allow
ambiguity at any time t to depend on history. We describe the corresponding
construction in continuous time.11

The individual is not certain that the driving process has zero drift and/or
unit variance (where d = 1). Accordingly, she entertains a range of alternative
hypotheses X� = (X�

t ) parametrized by �. Here �t = (�t; �t) is an F-progressively
measurable process with values in Rd�Rd�d that describes a conceivable process
for drift � = (�t) and for volatility � = (�t).

12 Available information leads to the
constraint on drift and volatility pairs given by

�t (!) 2 �t (!) , for all (t; !) , (2.8)

where �t (!) is a subset of Rd �Rd�d. The �t�s are primitives of the model.13 In
the trinomial model expanded in the obvious way to include also ambiguity about
11The reader is referred to Epstein and Ji [23] for a general and mathematically rigorous

development.
12Write � = (�; �).
13See our companion paper for the technical regularity conditions assumed for (�t).
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drift,
�t (!) = [��; �]� [�; �], for all (t; !) .

In general, the dependence of �t (!) on the history corresponding to state
! permits the model to accommodate learning. Moreover, because the form of
history dependence is unrestricted (apart from technical regularity conditions),
so is the nature of learning. Just as in the Chen-Epstein model, we provide a
framework within which additional structure modeling learning can be added.
Two other examples might be helpful. The robust stochastic volatility model

described in the introduction corresponds to taking

�t (!) = f0g � [�t (!) ; �t (!)],

where �t (!) and �t (!) are given by (1.1). When d > 1, one way to robustify is
through the restriction

�t (!) =
�
� 2 Rd�d : �1t (!)

�
�1t (!)

�| � ��| � �2t (!)
�
�2t (!)

�|	
,

though other natural speci�cations exist in the multidimensional case.
The model is �exible in the way it relates ambiguity about drift and ambiguity

about volatility. Thus, as a �nal example, suppose that drift and volatility are
thought to move together. Then joint ambiguity is captured by specifying

�t(!) = f(�; �) 2 R2 : � = �min + z; �2 = �2min + 2z=; 0 � z � zt (!)g, (2.9)

where �min, �
2
min and  > 0 are �xed and known parameters.

14

Given a hypothesis � about drift and volatility, the implication for the driving
process is that it is given by the unique solution X� =

�
X�
t

�
to the following

stochastic di¤erential equation (SDE) under P0:

dX�
t = �t(X

�
� )dt+ �t(X

�
� )dBt, X�

0 = 0, t 2 [0; T ]. (2.10)

We restrict the process � further so that a unique strong solution X� to the SDE
exists. Denote by � the set of all processes � satisfying the latter and also (2.8).
As in the discrete time examples, X� and P0 induce a probability measure P �

on (
;FT ):
P �(A) = P0(f! : X�(!) 2 Ag), A 2 FT . (2.11)

14This speci�cation is adapted from Epstein and Schneider [26].
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Therefore, we arrive at the set P� of priors on the set of continuous trajectories
given by

P�= fP � : � 2 �g: (2.12)

Fix � and denote the set of priors simply by P. This set of priors is used, as in the
Gilboa-Schmeidler model, to de�ne utility and guide choice between consumption
processes.

Remark 1. Here is a recap. The set P consists of priors over 
, the space of
continuous trajectories for the driving process. B denotes the coordinate process,
Bt (!) = !t. It is a Brownian motion under P0, which may or may not lie in P, but
B is typically not a Brownian motion relative to (other) priors in P. Indeed, dif-
ferent priors P typically imply di¤erent conditional expectations EP

t (Bt+4t �Bt)
and EP

t (hBit+4t � hBit). This is the justi�cation for interpreting P as modeling
ambiguity about the drift and volatility of the driving process. The preceding
should be viewed as one way to construct P, but not necessarily as a description
of the individual�s thought processes. The model�s objective is to describe behav-
ior that can be thought of �as if�being derived from a maxmin objective function
using the above set of priors.

The construction of utility requires that �rst we show how beliefs, through
the set P, lead to natural de�nitions of �expectation�and �conditional expecta-
tion.�The former is straightforward. For any random variable � on (
;FT ), if
supP2P EP � <1, de�ne its (nonlinear) expectation by

Ê� = sup
P2P

EP �: (2.13)

Because we will assume that the individual is concerned with worst-case scenarios,
below we use the fact that

inf
P2P

EP � = �Ê[��].

Conditional beliefs and expectation are not as clear cut because of the need,
mentioned above, to update beliefs conditional on events having zero probability
according to some priors. A naive approach to de�ning conditional expectation
would be to use the standard conditional expectation EP [� j Ft] for each P in P
and then to take the (essential) supremum over P. Such an approach immedi-
ately encounters a roadblock due to the nonequivalence of priors. The conditional
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expectation EP [� j Ft] is well de�ned only P -almost surely, while speaking infor-
mally, conditional beliefs and expectation must be de�ned at every node deemed
possible by some prior in P. The economic rationale is simple. Suppose that
P and P 0 are two nonequivalent priors held (for example) at time 0, and con-
sider updating at t > 0. Let A be an event, measurable at time t, such that
P (A) = 0 < P 0 (A). Then A is conceivable according to the individual�s ex ante
perception. Consequently, beliefs at time t conditional on A are relevant both for
ex post choice and also for ex ante choice, for example, if the individual reasons by
backward induction. Therefore, the ex ante perception represented by P should
also be updated there, even though A was deemed impossible ex ante according
to P .
This di¢ culty can be overcome because for every admissible hypothesis �,

�t (!) is de�ned for every (t; !), that is, the primitives specify a hypothesized
instantaneous drift-volatility pair everywhere in the tree. This feature of the
model resembles the approach adopted in the theory of extensive form games,
namely the use of conditional probability systems, whereby conditional beliefs at
every node are speci�ed as primitives, obviating the need to update.15 We show
that a solution to the updating problem is also available here (though it requires
nontrivial mathematical arguments - see Epstein and Ji [23] for details, rigorous
statements and supporting proofs).
To outline it, let � = (�s) be a conceivable scenario ex ante and �x a node

(t; !). By de�nition of �, the continuation of � is seen by the individual ex ante as
a conceivable continuation from time t along the history !. We assume that then
it is also seen as a conceivable scenario ex post conditionally on (t; !), thus ruling
out surprises or unanticipated changes in outlook. Then, paralleling (2.10), each
such conditional scenario has an implication for the driving process conditionally
on (t; !). The implied process and P0 induce a probability measure P

�;!
t on 
,

denoted simply by P !
t with � suppressed when it is understood that P = P �. The

crucial facts are that, for each P in P, (i) P !
t is de�ned for every t and !, and

(ii) P !
t is a version of the regular Ft-conditional probability of P .16 The set of all

15It resembles also the approach in the discrete time model in Epstein and Schneider [24],
where roughly, conditional beliefs about the next instant for every time and history are adopted
as primitives and are pasted together by backward induction to deliver the ex ante set of priors.
16For any probability measure P on the canonical space 
, a corresponding regular Ft-

conditional probability P!t is de�ned to be any mapping P!t : 
 � FT ! [0; 1] satisfying the
following conditions: (i) for any !, P!t is a probability measure on (
;FT ). (ii) for any A 2 FT ,
! ! P!t (A) is Ft-measurable. (iii) for any A 2 FT , EP [1A j Ft](!) = P!t (A); P -a:s:
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such conditionals obtained as � varies over � is denoted P!
t , that is,

P!
t = fP !

t : P 2 Pg . (2.14)

We take P!
t to be the individual�s set of priors conditional on (t; !). Then, the

conditional expectation of suitable random variables � is de�ned by

Ê[� j Ft] (!) = sup
P2P!t

EP �, for every (t; !).

This completes the prerequisites regarding beliefs for de�ning utility.

2.3. The de�nition of utility

Let D be a domain of consumption processes and defer elaboration until the next
section. For each c in D, de�ne its continuation utility Vt (c), or simply Vt, by

Vt = �Ê[�
R T
t
f(cs; Vs)ds j Ft] . (2.15)

This de�nition parallels the Chen and Epstein de�nition (2.6). In particular, f
is an aggregator that is assumed to satisfy suitable measurability, Lipschitz and
integrability conditions. Under these conditions and for a suitable domain D,
there is a unique utility process (Vt (c)) solving (2.15) for each c in D, that is,
utility is well-de�ned.
For the standard aggregator (2.2), utility admits the closed-form expression

Vt (c) = �Ê[�
Z T

t

u(cs)e
��sds j Ft]: (2.16)

More generally, closed-from expressions are rare.
The following example illustrates the e¤ect of volatility ambiguity.

Example 2.1 (Closed form). Suppose that there is no ambiguity about the
drift, and that ambiguity about volatility is captured by the �xed interval [�; �] �
R++. Consider consumption processes that are certain and constant, at level 0
for example, on the time interval [0; 1), and that yield constant consumption on
[1; T ] at a level that depends on the state !1 at time 1. Speci�cally, let

ct(!) =  (!1), for 1 � t � T ,
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where  : R1 ! R1+. For simplicity, suppose further that u is linear. Then time 0
utility evaluated using (2.16), is, ignoring irrelevant constants,

V0 = �Ê[� (!1)]:

If  is a convex function, then17

V0 (c) =
1p
2�

Z 1

�1
 (�2y) exp(�y2

2
)dy,

and if  is concave, then

V0 (c) =
1p
2�

Z 1

�1
 (��2y) exp(�y2

2
)dy: (2.17)

There is an intuitive interpretation for these formulae. Given risk neutrality, the
individual cares only about the expected value of consumption at time 1. The
issue is expectation according to which probability law? For simplicity, consider
the following concrete speci�cations:

 1 (x) =j x� � j , and  2 (x) = � j x� � j .

Then  1 is convex and  2 is concave. If we think of the the driving process as
the price of a stock, then  1(�) can be interpreted as a straddle - the sum of a
European put and a European call option on the stock at the common strike price
� and expiration date 1. (We are ignoring nonnegativity constraints.) A straddle
pays o¤ if the stock price moves, whether up or down, and thus constitutes a bet
on volatility. Accordingly, the worst case scenario is that the price process has the
lowest possible volatility �. In that case, !1 isN (0; �2) and the indicated expected
value of consumption follows. Similarly,  2 (�) describes the corresponding short
position and amounts to a bet against volatility. Therefore, the relevant volatility
for its worst case evaluation is the largest possible value �, consistent with the
expression for utility given above.
When the function  is neither concave nor convex globally, closed-form ex-

pressions for utility are available only in extremely special and unrevealing cases.
However, a generalization to d-dimensional processes, d � 1, is available and will
be used below. Let there be certainty that the driving process is a martingale and
let the volatility matrix �t in (2.10) be restricted to lie in the compact and convex

17See Levy et al. [38] and Peng [47].
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set � � Rd�d such that, for all � in �, ��> � â for some positive de�nite matrixba. Consumption is as above except that, for some a 2 Rd,
ct(!) =  (a>!1), for 1 � t � T .

Let � be any solution to min�2� tr
�
��>aa>

�
and let � be any solution to

max�2� tr
�
��>aa>

�
. If  is convex (concave), then the worst-case scenario is that

�t =� (�) for all t. Closed-form expressions for utility follow immediately.

The domain D of consumption processes, and the ambient space containing
utility processes, are de�ned precisely in our companion paper (see also the next
section). Here we mention brie�y a feature of these de�nitions that reveals a great
deal about the nature of formal analysis when priors are not equivalent. When
the ambient framework is a probability space (
; P0), and thus P0 is used to de�ne
null events, then random variables and stochastic processes are de�ned only up to
the P0-almost sure quali�cation. Thus P0 is an essential part of the de�nition of
all formal domains. However, ambiguity about volatility leads to a set P of priors
that do not agree about which events have zero probability. Therefore, we follow
Denis and Martini [15] and de�ne appropriate domains of stochastic processes by
using the entire set of probability measures P. Accordingly, two consumption
processes c0 and c are identi�ed, and we write c0 = c, if for every t, c0t (!) = ct (!)
for every ! in Gt � 
, where P (Gt) = 1 for all P in P.18 We abbreviate the
preceding in the form: for every t,

c0t = ct P-a:s:

Loosely put, the latter means that the two processes are certain to yield identical
consumption levels regardless of which prior in P is the true law describing the
driving process. Put another way, a consumption process as de�ned formally
herein is portrayed in greater detail than if it were seen from the perspective of

18The following perspective may be helpful for nonspecialists in continuous time analysis.
In the classical case of a probability space (
;F ; P ) with �ltration fFtg, if two processes
X and Y satisfy �for each t, Xt = Yt P -a:s:�, then Y is called a modi�cation of X. If
P (f! : Xt = Yt 8t 2 [0; T ]g) = 1, then X and Y are said to be indistinguishable. These notions
are equivalent when restricted to X and Y having a.s. right continuous sample paths, but the
second is stronger in general. We point out, however, that the sense in which one constructs a
Brownian motion exhibiting continuous sample paths is that a suitable modi�cation exists (see
the Kolmogorov-Centsov Theorem). A reference for the preceding is Karatzas and Shreve [37,
pp. 2, 53].
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any single prior in P. For example, if the two priors P1 and P2 are singular, then
each provides a description of consumption on a subset 
i, i = 1; 2, of the set of
possible trajectories of the driving process, where 
1 and 
2 are disjoint, while
using the entire set P yields a description of consumption on 
1 [ 
2 and more.

Remark 2. If every two priors are singular, then the statement c0t = ct P-
a:s: amounts to standard probability 1 statements on disjoint parts of the state
space, and thus is not far removed from a standard equation in random variables.
However, singularity is not representative - it can be shown that the set P typically
contains priors that, though not equivalent, are also not mutually singular. Thus
the reader is urged not to be overly in�uenced by the example of singular priors
which we use often only because it starkly illustrates nonequivalence.

Equations involving processes other than consumption processes are given sim-
ilar meanings. For example, the equality (2.15) should be understood to hold
P-almost surely for each t. Similar meaning is given also to inequalities.
Utility has a range of natural properties. Most noteworthy is that the process

(Vt) satis�es the recursive relation

Vt = � bE ��Z �

t

f(cs; Vs) ds � V� j Ft
�
, 0 � t < � � T: (2.18)

Such recursivity is typically thought to imply dynamic consistency. However, the
nonequivalence of priors complicates matters as we describe next.
The noted recursivity does imply the following weak form of dynamic consis-

tency: For any 0 < � < T , and any two consumption processes c0 and c that
coincide on [0; � ],

[V� (c
0) � V� (c) P-a:s:] =) V0 (c

0) � V0 (c) .

Typically, (see Du¢ e and Epstein [20, p. 373] for example), dynamic consistency
is de�ned so as to deal also with strict rankings, that is, if also V� (c0) > V� (c) on a
�non-negligible�set of states, then V0 (c0) > V0 (c). This added requirement rules
out the possibility that c0 is chosen ex ante though it is indi¤erent to c, and yet
it is not implemented fully because the individual switches to the conditionally
strictly preferable c for some states at time � . The issue is how to specify �non-
negligible�. When all priors are equivalent, then positive probability according to
any single prior is the natural speci�cation. However, in the absence of equivalence
a similarly natural speci�cation is unclear. A simple illustration of the consequence
is given in the next example.
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Example 2.2 (Weak Dynamic Consistency). Take d = 1. Let the endow-
ment process e satisfy (under P0)

d log et = �tdBt,

or equivalently,
det=et =

1
2
�2tdt+ �tdBt P0-a:s:

Here volatility is restricted only by 0 < � � �t � �. Utility is de�ned, for any
consumption process c, by

V0 (c) = inf
P2P

EP

�Z T

0

e��tu (ct) dt

�
= inf

P2P

�Z T

0

e��tEPu (ct) dt

�
,

where
u (ct) = (ct)

�=�, � < 0.

Denote by P � the prior in P corresponding to �t = � for all t; that is, P � is the
measure on 
 induced by X�,

X�
t = �Bt, for all t and !.

Then

V0 (e) = EP �
�Z T

0

e��su (et) dt

�
.

(This is because u (et) = ��1 exp (� log et) and because � < 0 makes x 7�! e�x=�
concave, so that the argument in Example 2.1 can be adapted.)
De�ne the nonnegative continuous function ' on R by

'(x) =

8><>:
1 x � �2

2x
�2��2 �

�2+�2

�2��2 �2 < x < �2+�2

2

0 �2+�2

2
� x

Fix � > 0. De�ne the event N� by N� = f! : hBi� = �2�g, and the consumption
process c by

ct =

�
et 0 � t � �

et + '(hBi�=�) � � t � T

Then V� (c) � V� (e) P-almost surely and a strict preference prevails onN� because
'(�2) = 1 and P �(N� ) = 1. However, c is indi¤erent to e at time 0 because
'(hBi�=�) = '(�2) = 0 under P �.
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In the asset pricing application below we focus on dynamic behavior (and
equilibria) where ex ante optimal plans are implemented for all time P-almost
surely. This requires that we examine behavior from conditional perspectives and
not only ex ante. Accordingly, if the feasible set in the above example is fe; cg,
the predicted choice would be c.

3. Asset Returns

This section describes some implications of ambiguous volatility for asset pric-
ing theory. First, we describe what can be said about prices based on hedging
arguments, without assuming preference maximization or equilibrium. It is well
known that ambiguous volatility leads to market incompleteness (see Avellaneda
et al. [2], for example) and hence that perfect hedging is generally impossible. Ac-
cordingly, hedging arguments lead only to interval predictions of security prices
which adds to the motivation for considering preferences and equilibrium. We
explore such an equilibrium approach by employing the utility functions de�ned
above and a representative agent setup. The main result is a version of the C-
CAPM that applies when volatility is ambiguous. As an illustration of the added
explanatory power of the model, it can rationalize the well documented feature
of option prices whereby the Black-Scholes implied volatility exceeds the realized
volatility of the underlying security.
In received theory, there exist positive �state-prices�that characterize arbitrage-

free and equilibrium prices in the familiar way.19 In the standard setup where null
events are de�ned by a reference (physical or subjective) measure, state prices are
often used as densities to de�ne a risk neutral or martingale measure. Densities do
not apply when priors disagree about what is possible. But, surprisingly perhaps,
suitable state prices can still be derived.
There is a literature on the pricing of derivative securities when volatility is

ambiguous. The problem was �rst studied by Lyons [41] and Avellaneda et al. [2];
recent explorations include Denis and Martini [15], Cont [13] and Vorbrink [55].20

They employ hedging arguments to derive upper and lower bounds on security
prices. However, our Theorem 3.1 is the �rst to characterize these price bounds in

19We do not treat arbitrage formally. However, at an informal level we identify no-arbitrage
prices with those produced by Black-Scholes-style hedging arguments because of their intuitive
connection and because of the formal connection that is familiar in the standard ambiguity-free
model (Du¢ e [19]).
20These papers often refer to uncertain volatility rather than to ambiguous volatility.
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terms of state prices. In addition, we study a Lucas-style endowment economy and
thus take the endowment as the basic primitive, while the cited papers take the
prices of primitive securities as given. We are not aware of any previous studies
of equilibrium in continuous time with ambiguous volatility.
Our asset market analysis is conducted under the assumption that there is

ambiguity only about volatility and that the volatility matrix �t is restricted by:

�t (!) 2 �, for each t and !, (3.1)

where � � Rd�d is compact and convex and, for all � in �, ��> � â for some
positive de�nite matrix ba. (In the one-dimensional case, � = [�; �] with � > 0;
Examples 2.1 and 2.2 both use this speci�cation.). The trinomial example in
Section 1.3 is the discrete time one-dimensional counterpart. The formal model is
due to Peng [45], who calls itG-Brownian motion, which is, loosely put, �Brownian
motion with ambiGuous volatility.�We adopt this terminology and thus refer to
the coordinate process B as being a G-Brownian motion under P. Importantly,
much of the machinery of stochastic calculus, including generalizations of Itô�s
Lemma and Itô integration, has been extended to the framework of G-Brownian
motion (see Appendix A for brief descriptions). This machinery is used in the
proofs. However, the proof �ideas�are standard, for example, they exploit Itô�s
Lemma and a martingale representation theorem. The di¢ culty is only to know
when and in precisely what form such tools apply. The statements of results do
not rely on this formal material and are easy to understand if one accepts that
they di¤er from standard theory primarily through the use of a new (nonadditive)
notion of conditional expectation and the substitution of �P-almost surely� for
the usual almost surely quali�cation.
In order to state the asset pricing results precisely, we need to be more precise

about the formal domains for random variables and stochastic processes. They
di¤er from the usual domains (only) because of the nonequivalence of priors.
Random payo¤s occurring at a single instant are taken to be bounded continuous
functions of the state or suitable limits of such functions. Formally, de�ne the
space cL2(
) to be the completion, under the norm k � k� (Ê[j � j2]) 12 , of the set
of all bounded continuous functions on 
. Then cL2(
) is a subset of the set of
measurable random variables � for which supP2P E

P (j � j2) <1.21 For processes,
21It contains many discontinuous random variables. For example, cL2(
) contains every

bounded and lower semicontinuous function on 
 (see our companion paper).
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de�ne M2;0 to be the class of processes � of the form

�t(!) =
N�1X
i=0

�i(!)1[ti;ti+1)(t);

where �i 2 cL2(
), 0 � i � N � 1, and 0 = t0 < � � � < tN = T . Roughly, each
such � is a step function in random variables from cL2(
). For the usual technical
reasons, we consider also suitable limits of such processes. Thus the ambient space
for processes, denoted M2, is taken to be the completion of M2;0 under the norm

k � kM2� (Ê[
Z T

0

j �t j2 dt])
1
2 :

If, for every t, Zt = 0 P-a:s:, then Z = 0 in M2 (because Ê[
Z T

0

j Zt j2 dt] �Z T

0

Ê[j Zt j2]dt = 0), but the converse is not valid in general. The consumption
processes (ct) and utility processes (Vt (c)) discussed above, as well as all processes
below related to asset markets, are taken to lie in M2.
The domain M2 depends on the set of priors P, and hence also on set � from

(3.1) that describes volatility ambiguity. If ambiguity about volatility increases
in the sense that � is replaced by ��, � � ��, then it is easy to see that the
corresponding domain of processes shrinks, that is,

� � �� =)M2
� �M2. (3.2)

The reason is that when ambiguity increases, processes are required to be well
behaved (square integrable, for example) with respect to more probability laws.

3.1. Hedging and state prices

Consider the following market environment. There is a single consumption good,
a riskless asset with return rt and d risky securities available in zero net supply.
Returns Rt to the risky securities are given by

dRt = btdt+ stdBt, (3.3)

where st is a d � d invertible volatility matrix. Both (bt) and (st) are known by
the investor.22 De�ne �t = s�1t (bt � rt1), the market price of uncertainty (a more
22bt and st are functions on 
, the set of possible trajectories for the driving process. It is

these functions that are known. The trajectory is, of course, uncertain and known only at T .
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appropriate term here than market price of risk). It is assumed henceforth that
(rt) is a bounded process in M2; a restriction on the market price of risk will be
given below.
It is important to understand the signi�cance of the assumption that the re-

turns equation holds P-almost surely, that is, P -a:s: for every prior in P. Because
we are excluding ambiguity about drift, each prior P corresponds to an admissible
hypothesis (�t) for volatility via (2.10) and (2.11). Thus write P = P (�t). Then,
taking d = 1 for simplicity,

hRit =
Z t

0

s2�dhBi� =
Z t

0

s2��
2
�d� P (�t)-a:s:

In general, the prior implied by an alternative hypothesis (�0t) is not equivalent
to P (�t), which means that P (�

0
t) and P (�t) yield di¤erent views of the quadratic

variation of returns. Consequently, the volatility of returns is ambiguous: it is
certain only that hRit lies in the interval

h
�2
R t
0
s2�d� ; �

2
R t
0
s2�d�

i
.

Similarly, unless explicitly stated otherwise, the P-almost sure quali�cation
should be understood to apply to all other equations (and inequalities) below
even where not stated; and its signi�cance can be understood along the same
lines.
Fix the dividend stream denoted (�; �T ), where �t is the dividend for 0 � t < T

and �T is the lumpy dividend paid at the terminal time; formally, (�; �T ) 2M2 �cL2(
) . For a given time � , consider the following law of motion for wealth on
[� ; T ]:

dYt = (rtYt + �>t �t � �t)dt+ �>t dBt, (3.4)

Y� = y,

where y is initial wealth, �t = Yts
>
t  t, and ( t) is the trading strategy, that is,

 ti is the proportion of wealth invested in risky security i. (By nonsingularity of
st, choice of a trading strategy can be expressed equivalently in terms of choice
of (�t), which reformulation is simplifying.) Denote the unique solution by Y

y;�;� .
De�ne the superhedging set

U� = fy � 0 j 9� 2M2 s.t. Y y;�;�
T � �Tg,

and the superhedging price S� = inffy j y 2 U�g. Similarly de�ne the subhedging
set

L� = fy � 0 j 9� 2M2 s.t. Y �y;�;�
T � ��Tg
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and the subhedging price S� = supfy j y 2 L�g.
The relevance of ambiguity about volatility is apparent once one realizes that

the law of motion (3.4), and also the inequalities at T that de�ne U� and L� , should
be understood to hold P-almost surely. Thus, for example, a superhedging trading
strategy must deliver �t on [0; T ) and also at least �T at T for all realizations that
are conceiveable according to some prior. Speaking loosely, the need to satisfy
many nonequivalent priors in this way makes superhedging di¢ cult (U� small) and
the superhedging price large. Similarly, ambiguity reduces the subhedging price.
Hence the price interval is made larger by ambiguous volatility. More precisely,
by the preceding argument, (3.2) and using the obvious notation,

� � �� =)
�
S0; S0

�
�
�
S�0; S�0

�
.

Thus an increase in volatility weakens the implications for price of a hedging
argument and naturally bolsters the case for pursuing an equilibrium analysis,
which we do after characterizing super and subhedging prices.
We show that both of the above prices can be characterized using appropriately

de�ned state prices. Let

vt = lim
"#0

1

"
(hBit � hBit�"), (3.5)

where lim is taken componentwise.23 Under P0, B is a Brownian motion and
vt equals the d � d identity matrix P0-a:s: Importantly, we can also describe vt
as seen through the lense of any other prior in P: if P = P (�t) is a prior in P
corresponding via the SDE (2.10) to (�t), then24

vt = �t�
>
t dt� P (�t)-a:s: (3.6)

It is assumed henceforth that (v�1t �t) is a bounded process in M
2.25

23In this we are following Soner et. al. [53]. The quadratic variation process hBi is de�ned in
(1.3); vt(!) takes values in S>0d , the space of all d� d positive-de�nite matrices.
24Here is the proof: By Soner et al. [53, p. 4], hBi equals the quadratic variation of B P (�t)-

a:s:; and by Oksendal [44, p. 56], the quadratic variation of
tR
0

�sdBs equals
tR
0

�s�
>
s ds P (�t)-a:s:

Thus we have the P (�t)-a:s: equality in processes hBi =
�
tR
0

�s�
>
s ds

�
. Because hBi is absolutely

continuous, its time derivative exists a:s: on [0; T ]; indeed, the derivative at t is vt. Evidently,

d
dt

tR
0

�s�
>
s ds = �t�

>
t for almost every t. Equation (3.6) follows.

25This restriction will be con�rmed below whenever � is taken to be endogenous.
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By the state price process we mean the unique solution � = (�t) to

d�t=�t = �rtdt� �>t v
�1
t dBt, �0 = 1, (3.7)

which admits a closed form expression paralleling the classical case:26

�t = expf�
Z t

0

rsds�
Z t

0

�>s v
�1
s dBs � 1

2

Z t

0

�>s v
�1
s �sdsg, 0 � t � T . (3.8)

We emphasize the important fact that � is �universal�in the sense of being de�ned
almost surely for every prior in P. More explicitly, � satis�es: for every t,

�t = expf�
Z t

0

rsds�
Z t

0

�>s
�
�s�

>
s

��1
dBs � 1

2

Z t

0

�>s
�
�s�

>
s

��1
�sdsg, P (�t)-a:s:

Roughly speaking, this de�nes �t (!) for every trajectory ! of the driving process
that is possible according to at least one prior in P.27
Our characterization of superhedging and subhedging prices requires an addi-

tional arguably minor restriction on the security market. To express it, for any
" > 0, de�ne dL2+"(
) = n� 2 cL2(
) : Ê[j � j2+"] <1o .
The restriction is that � and � satisfy

(�T �T +

Z T

0

�t�tdt) 2 dL2+"(
). (3.9)

Theorem 3.1 (Hedging prices). Fix a dividend stream (�; �T ) 2M2 �cL2(
).
Suppose that r and (v�1t �t) are bounded processes inM

2 and that (3.9) is satis�ed.
Then the superhedging and subhedging prices at any time � are given by (P-a:s:)

S� = Ê[

Z T

�

�t
��
�tdt+

�T
��
�T j F� ]

and

S� = �Ê[�
Z T

�

�t
��
�tdt�

�T
��
�T j F� ].

26Apply Peng [47, Ch. 5, Remark 1.3].
27Roughly speaking, �t is de�ned on the union of the supports of all priors in P. Because

these supports need not be pairwise disjoint, it is not obvious that such a �universal�de�nition
exists. But (3.5) and (3.6) ensure that �t is well de�ned even where supports overlap.
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In the special case where the security � can be perfectly hedged, that is, there
exist y and � such that Y y;�;0

T = �T , then

S0 = S0 = Ê[�T �T +

Z T

0

�t�tdt] = �Ê[��T �T �
Z T

0

�t�tdt].

Because this asserts equality of the supremum and in�mum of expected values of

�T �T +

Z T

0

�t�tdt as the measures P vary over P, it follows that

EP [�T �T +

Z T

0

�t�tdt] is constant for all such measures P , that is, the hedging

price is unambiguous. In the further specialization where there is no ambiguity
and P0 is the single prior, one obtains pricing by an equivalent martingale measure
whose density (on Ft) with respect to P0 is �t.

Remark 3. Vorbrink [55] obtains an analogous characterization of hedging prices
under the assumption of G-Brownian motion. However, in place of our assumption
(3.9), he adopts the strong assumption that bt = rt, so that the market price of
uncertainty �t vanishes and �t = expf�

R t
0
rsdsg.

Example 3.2 (Closed form hedging prices). We derive the super and sub-
hedging prices of a European call option in a special case and compare the results
with the standard Black-Scholes formula.
Let there be one risky security (d = 1) with price (St) satisfying

dSt=St = dRt = btdt+ stdBt:

Suppose further that rt � r, st � 1 and bt � r = bvt, where b > 0 and r are
constants. Thus the market price of uncertainty is given by �t = bvt, that is,
using (3.6),

�t = b�2t dt� P (�t)-a:s:

It follows that state prices are given, P-almost surely, by

�t = expf�rt� bBt � 1
2
b2hBitg, 0 � t � T .

Consider a European call option on the risky security that matures at date T
and has exercise price K. The super and subhedging prices at t can be written in
the form c(St; t) and c(St; t) respectively. At the maturity date,

c(ST ; T ) = c(ST ; T ) = max[0; ST �K] � �(ST ):
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By Theorem 3.1,
c(St; t) = Ê[

�T
�t
�(ST ) j Ft]

and
c(St; t) = �Ê[�

�T
�t
�(ST ) j Ft].

By the nonlinear Feynman-Kac formula in Peng [47], we obtain the following
Black-Scholes-Barenblatt equation:28

@tc+ sup
�����

f1
2
�2S2@SScg+ rS@Sc� rc = 0; c(S; T ) = �(S)

and
@tc� sup

�����
f�1

2
�2S2@SScg+ rS@Sc� rc = 0; c(S; T ) = �(S):

Because �(�) is convex, so is c(�; t).29 It follows that the respective suprema in the
above equations are achieved at � and �, and we obtain

@tc+
1
2
�2S2@SSc+ rS@Sc� rc = 0; c(S; T ) = �(S)

and
@tc+

1
2
�2S2@SSc+ rS@Sc� rc = 0; c(S; T ) = �(S):

Therefore,
c(S; t) = EP� [

�T
�t
�(ST )) j Ft]

and
c(S; t) = EP� [

�T
�t
�(ST ) j Ft].

In other words, the super and subhedging prices are the Black-Scholes prices with
volatilities � and � respectively.

It is noteworthy that in contrast to this e¤ect of volatility ambiguity, the
arbitrage-free price of a European call option is una¤ected by ambiguity about
drift. This might be expected because the Black-Scholes price does not depend on
the drift of the underlying. Nevertheless some supporting detail may be useful.
Let the security price be given as above by

dSt=St = dRt = (b+ r)dt+ dBt, P0-a:s:

28They reduce to the standard Black-Scholes equation if �= �.
29The argument is analogous to that in the classical Black-Scholes analysis.
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Model drift ambiguity by a set of priors as described in Section 2.1. Each alterna-
tive hypothesis � = ((�t); 1) about the drift generates a prior P

� constructed as in
(2.10) and (2.11). By the Girsanov Theorem, X�

t =
R �
0
(�tdt+ dBt) is a standard

Brownian motion under probability P �. Therefore,

dSt=St = (b+ r)dt+ dX�
t , P

�-a:s:

and the security price follows the identical geometric Brownian motion under P �.
Similarly, the counterpart of the wealth accumulation equation (3.4) gives

dYt = (rYt + ��t)dt+ �tdX
�
t , P

�-a:s:

where � = b � r. Together, the latter two equations imply that the identical
Black-Scholes price would prevail for the option regardless if P0 or P � were the
true probability law. Because � is an arbitrary hypothesis about drift, it can be
shown that the option price is una¤ected by ambiguity about drift.
In fact, the irrelevance of ambiguity about drift is valid much more generally.

Let there be d risky securities whose prices St 2 Rd solve a stochastic di¤erential
equation of the form

dSt = bbt (St) dt+ bst (St) dBt,

where bbt and bst are given Rd-valued suitably well-behaved functions (for example,
each bst (�) is everywhere invertible). Let the instantaneous return to the riskless
security be rt (St). Finally, let the continuous function  : Rd ! R determine the
payo¤  (ST ) at time T of a derivative security. Under P0, when B is standard
Brownian motion, the arbitrage-free price of the derivative is de�ned by the Black-
Scholes PDE (see Du¢ e [19, Ch. 5], for example). The fact that the drift bbt does
not enter into the PDE suggests that ambiguity about drift does not a¤ect the
price of the derivative. Further intuition follows as above from the Girsanov
Theorem.30 This argument covers all the usual European options.31 In contrast,

30For any alternative hypothesis � = ((�t); 1) and corresponding prior P
�, the security price

process satis�es
dSt = bbt (St) dt+ bst (St) dX�

t , P
�-a:s:,

where X�
t =

R �
0
(�tdt+dBt) is a standard Brownian motion under P

�. Therefore, all conceivable
truths P � imply the identical price for the derivative, and ambiguity about drift has no e¤ect.
Further, the corresponding hedging strategy is also una¤ected. A rigorous proof is readily
constructed. We do not provide it because ambiguity about drift alone is not our focus.
31It is not di¢ cult to show by a similar argument that the arbitrage-free price of Asian options

is also una¤ected by ambiguity about drift.
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as illustrated by the example of a European call option, ambiguity about volatility
does matter (the price interval in Theorem 3.1 is typically nondegenerate). This
is not surprising given the known importance of volatility in option pricing. More
formally, the di¤erence from the case of drift arises because for an alternative
hypothesis � = (0; (�t)) for volatility,

�
X�
t

�
satisfying dX�

t = �tdBt is not a
standard Brownian motion under P �.

3.2. Equilibrium

Here we use state prices to study equilibrium in a representative agent economy
with sequential security markets.
In the sequel, we limit ourselves to scalar consumption at every instant so that

C � R+. At the same time we generalize utility to permit lumpy consumption at
the terminal time. Thus we use the utility functions Vt given by

Vt (c; �) = �Ê[�
Z T

t

f(cs; Vs (c; �))ds� u (�) j Ft], 0 � t � T ,

where (c; �) varies over a subset D of M2 �cL2(
). Here c denotes the absolutely
continuous component of the consumption process and � is the lump of consump-
tion at T . Our analysis of utility extends to this larger domain in a straightforward
way.
When considering (c; �), it is without loss of generality to restrict attention

to versions of c for which cT = �. With this normalization, we can abbreviate
(c; �) = (c; cT ) by c and identify c with an element of M2 �cL2(
). Accordingly
write Vt (c; �) more simply as Vt (c), where32

Vt (c) = �Ê[�
Z T

t

f(cs; Vs (c))ds� u (cT ) j Ft], 0 � t � T . (3.10)

The agent�s endowment is given by the process e. De�ne �e = (�et), called a

32We assume the following conditions for f and u. (1) f and u are continuously di¤er-
entiable and concave. (2) There exists � > 0 such thatj uc(c) j< � (1 + c) for all c 2 C,
and sup fj fc(c; V ) j; j f(c; 0) jg < � (1 + c) for all (c; V ) 2 C � R. A consequence is that if
c 2M2 �cL2(
), then u (cT ) ; uc (cT ) 2 cL2(
) and f (ct; 0) ; fc (ct; Vt (c)) 2M2.
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supergradient at e, by

�et = exp

�Z t

0

fv (es; Vs (e)) ds

�
fc (et; Vt (e)) , 0 � t < T , (3.11)

�eT = exp

�Z T

0

fv (es; Vs (e)) ds

�
uc (eT ) .

Securities, given by (3.3) and available in zero net supply, are traded in order
to �nance deviations from the endowment process e. Denote the trading strategy
by ( t), where  ti is the proportion of wealth invested in risky security i. Then
wealth Yt evolves according to the equation

dYt = (rtYt + �>t �t � (ct � et))dt+ �>t dBt, (3.12)

Y0 = 0, cT = eT + YT � 0,

where �t = s�1t (bt� rt1) and �t = Yts
>
t  t. We remind the reader that, by nonsin-

gularity of st, choice of a trading strategy can be expressed equivalently in terms
of choice of (�t).
Refer to c as being feasible if c 2 D and there exists � in M2 such that (3.12)

is satis�ed. More generally, for any 0 � � � T , consider an individual with initial
wealth Y� who trades securities and consumes during the period [� ; T ]. Say that c
is feasible on [� ; T ] given initial wealth Y� if (3.12) is satis�ed on [� ; T ] and wealth
at � is Y� . Because (3.12) should be understood as being satis�ed P -almost surely
for every prior in P, greater ambiguity about volatility tightens the feasibility
restriction (paralleling the discussion in the previous section).
State prices can be used to characterize feasible consumption plans as described

next.

Theorem 3.3 (State prices). De�ne � 2 M2 by (3.8) and let 0 � � < T .
(i) If c is feasible on [� ; T ] given initial wealth Y� , then, P-a:s:,

Y� = Ê[

Z T

�

�t
��
(ct � et)dt+

�T
��
(cT � eT ) j F� ] (3.13)

= �Ê[�
Z T

�

�t
��
(ct � et)dt�

�T
��
(cT � eT ) j F� ].

(ii) Conversely, suppose that (3.13) is satis�ed and that cT � 0. Then c is
feasible on [� ; T ] given initial wealth Y� .
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When relevant processes are ambiguity-free di¤usions, Cox and Huang [14]
show that state prices can be used to transform a dynamic process of budget
constraints into a single static budget constraint. The theorem provides a coun-
terpart for our setting: for any given � and initial wealth Y� , feasibility on [� ; T ]
may be described by the �expected�expenditure constraint (3.13). Because both
(3.12) and (3.13) must be understood to hold P-almost surely, speaking loosely,
the equivalence between the dynamic and static budget constraints is satis�ed
simultaneously for all hypotheses (�t) satisfying (3.1).
Perhaps surprisingly, (3.13) contains two (generalized) expectations. Their

conjunction can be interpreted as in the discussion following Theorem 3.1: in
expected value terms any feasible consumption plan unambiguously (that is, for
every prior) exhausts initial wealth when consumption is priced using �. Such
an interpretation is evident when � = 0; a similar interpretation can be justi�ed
when � > 0.
Turn to equilibrium. Say that (e; (rt; �t)) is a sequential equilibrium if for every

c: For each � , P-almost surely,

c 2 �� (0) =) V� (c) � V� (e) .

Thus equilibrium requires not only that the endowment e be optimal at time 0,
but also that it remain optimal at any later time given that e has been followed
to that point.
The main result of this section follows.

Theorem 3.4 (Sequential Equilibrium I). De�ne �; �e 2 M2 by (3.8) and
(3.11) respectively, and assume that P-almost surely,

�et=�
e
0 = �t. (3.14)

Then (e; (rt; �t)) is a sequential equilibrium.

Condition (3.14) is in the spirit of the Du¢ e and Skiadas [22] approach to
equilibrium analysis (see also Skiadas [49] for a comprehensive overview of this
approach). Speaking informally, the process �e=�e0 describes marginal rates of sub-
stitution at e, while � describes trade-o¤s o¤ered by the market. Their equality
relates the riskless rate and the market price of risk to consumption and continu-
ation utility through the equation

d�et=�
e
t = �rtdt� �>t v

�1
t dBt.
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To be more explicit, suppose that e satis�es

det=et = �etdt+ (s
e
t )
>dBt.

Consider also two speci�c aggregators. For the standard aggregator (2.2),

�et = exp (��t)uc (et) , 0 � t � T . (3.15)

Then Ito�s Lemma for G-Brownian motion (Appendix A) and (3.6) imply that

bt � rt1 = st�t = �
�
etucc(et)
uc(et)

�
st�t�

>
t s

e
t , P

(�t)-a:s: (3.16)

which is a version of the C-CAPM for our setting.33 From the perspective of the
measure P0 according to which the coordinate process B is a Brownian motion,
�t�

>
t is the identity matrix and one obtains the usual C-CAPM. However, speaking

informally, the equation (3.16) relates excess returns to consumption also along
trajectories that are consistent with alternative hypotheses (�t) about the nature
of the driving process.
The other case is the so-called Kreps-Porteus aggregator (Du¢ e and Epstein

[20]). Let

f(c; v) =
c� � �(�v)�=�

�(�v)(���)=�
, (3.17)

where � � 0 and 0 6= �; � � 1; (1� �) is the measure of relative risk aversion
and (1� �)�1 is the elasticity of intertemporal substitution. To evaluate terminal
lumpy consumption as in (3.10), we take

u (ct) = (ct)
�=�, 0 6= � < 1.

The implied version of the C-CAPM is

bt � rt1 = ��1[�(1� �)st�t�
>
t s

e
t + (�� �)st�t�

>
t s

M ]; P (�t)-a:s: (3.18)

where sM is the volatility of wealth in the sense that

dYt=Yt = bMdt+ (sM)>dBt, P-a:s:
In the absence of ambiguity where P0 alone represents beliefs, then (3.18) reduces
to the two-factor model of excess returns derived by Du¢ e and Epstein [21].
Equation (3.18) is derived in Appendix B.4, which also presents a result for

general aggregators.
33Equality here (and in similar equations below) means that the two processes (bt � rt1) and

(�
�
etucc(et)
uc(et)

�
st�t�

>
t s

e
t ) are equal as processes inM

2. Notice also that v�1t �t = �
�
etucc(et)
uc(et)

�
set ,

yielding a process in M2 and thus con�rming our prior assumption on security markets.
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3.3. Minimizing priors

Equation (3.14) is a su¢ cient condition for sequential equilibrium. Here we de-
scribe an alternative route to equilibrium that is applicable under an added as-
sumption and that yields an alternative form of C-CAPM.
The intuition for what follows is based on a well known consequence of the

minimax theorem for multiple priors utility in abstract environments. For suitable
optimization problems, if a prospect, say e, is feasible and if the set of priors
contains a worst-case scenario P � for e, then e is optimal if and only if it is
optimal also for a Bayesian agent who uses the single prior P �. Moreover, by a
form of envelope theorem, P � su¢ ces to describe marginal rates of substitution
at e and hence also supporting shadow prices. This suggests that there exist
su¢ cient conditions for e to be part of an equilibrium in our setup that refer to
P � and less extensively to all other priors in P. We proceed now to explore this
direction.
As a �rst step, de�ne P � 2 P to be a minimizing measure for e if

V0 (e) = EP � [

Z T

0

f(es; Vs (e))ds+ u (eT )]. (3.19)

As discussed when de�ning equilibrium, the fact that only weak dynamic consis-
tency is satis�ed requires that one take into account also conditional perspectives.
Speaking informally, a minimizing measure P � as above need not be minimizing
conditionally at a later time because of the nonequivalence of priors and the un-
certainty about what is possible. (Example 2.2 is readily adapted to illustrate
this.) Thus to be relevant to equilibrium, a stronger notion of �minimizing� is
required.
Recall that for any prior P in P, P !

� is the version of the regular conditional of
P ; importantly, it is well-de�ned for every (� ; !). Say that P � 2 P is a dynamically
minimizing measure for e if, for all � , P-a:s:,

V� (e) = E(P
�)!� [

Z T

�

f(es; Vs (e))ds+ u (eT )]. (3.20)

Next relax the equality (3.14) and assume instead: For every � and P-almost
surely in !,

�et=fc (e0; V0 (e)) = �t on [� ; T ] (P �)!� -a:s: (3.21)

Note that equality is assumed not only ex ante P �-a:s: but also conditionally, even
conditioning on events that are P �-null but that are possible according to other
priors in P.
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Theorem 3.5 (Sequential equilibrium II). Let P � be a dynamic minimizer
for e and assume (3.21). Then (e; (rt; �t)) is a sequential equilibrium.

The counterparts of the C-CAPM relations (3.16) and (3.18) are:34 For every
� , P-a:s:,

bt � rt1 = �
�
etucc(et)
uc(et)

�
st(�

�
t�
�>
t )s

e
t on [� ; T ] (P

�)!� -a:s: (3.22)

and

bt � rt1 = ��1[�(1� �)st(�
�
t�
�>
t )s

e
t + (�� �)st(�

�
t�
�>
t )s

M on [� ; T ] (P �)!� -a:s:
(3.23)

Here P � = P (�
�
t ) is induced by the process (��t ) as in (2.10).

There are several �nonstandard�features of these relations that we interpret in
the following example where the equations take on a more concrete form. How-
ever, it may be useful to consider the general forms brie�y. For simplicity, con-
sider (3.22) corresponding to the standard aggregator. One e¤ect of ambiguous
volatility is that the relevant instantaneous covariance between asset returns and
consumption is modi�ed from sts

e
t to st(�

�
t�
�>
t )s

e
t , where (�

�
t ) is the worst-case

hypothesis for volatility. This adjustment re�ects a conservative attitude and
con�dence only that volatility (�t) lies everywhere in � rather than in any single
hypothesis, such as �t � 1, satisfying this constraint.
Compare (3.22) also with the C-CAPM relation derived assuming ambiguity

about drift only. In that case, Chen and Epstein [12] show that, instead of (3.22),
mean excess returns satisfy

bt � rt1 = �
�
etucc(et)
uc(et)

�
sts

e
t + st�

�
t P0-a:s: (3.24)

where (��t ) is the worst-case hypothesis for drift.
35 It is di¢ cult to compare these

two alternative adjustments for ambiguity in general qualitative terms. Presum-
ably, each kind of ambiguity matters in some contexts, (though recall that drift
ambiguity has no e¤ect in European options markets). Because both kinds of am-
biguity may matter simultaneously, one obviously would like to establish a version
of C-CAPM that accommodates both. However, that would require extensions

34Assume that there exists a dynamic minimizer P � for e. Then one can show that (3.16)
implies (3.22) and (3.18) implies (3.23).
35More precisely, in the notation of Section 2.2, P ((�

�
t );1) is a minimizer in the utility calculation

V0 (e) = infP2P E
P [
R T
0
u(es)e

��sds].
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of the machinery described in Appendix A that to our knowledge is currently
available only for environments described by G-Brownian motion.
Further interpretation and comparisons are discussed in the context of a �nal

example.

3.4. A �nal example

Theorem 3.4 begs the question whether or when dynamic minimizers exist. We
have no general answers at this point. But they exist in the following example.
Its simplicity also helps to illustrate the e¤ects of ambiguous volatility on asset
returns.
We build on previous examples. Let d � 1. The endowment process e satis�es

(under P0)
d log et = (s

e)>�tdBt, e0 > 0 given, (3.25)

where se is constant and B is a G-Brownian motion (thus the volatility matrix �t
is restricted only to lie in �). We assume that P0 lies in P, that is, � admits the
constant d� d identity matrix. Utility is de�ned, for any consumption process c,
by the following special case of (3.10):

Vt (c) = �Ê[�
Z T

t

u(cs)e
��(s�t)ds� e��(T�t)u (cT ) j Ft],

where the felicity function u is

u (ct) = (ct)
�=�, 0 6= � < 1.

There exists a dynamic minimizer for e that depends on the sign of �. Compute
that

u (et) = ��1e�t = ��1e�0 exp

�
�

Z t

0

(se)>�sdBs

�
Let � and � solve respectively

min
�2�

tr
�
��>se(se)>

�
and max

�2�
tr
�
��>se(se)>

�
: (3.26)

If d = 1, then � is a compact interval and � and � are its left and right endpoints.
Let P � be the measure on 
 induced by P0 and X�, where

X�
t = �>Bt, for all t and !;
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de�ne P �� similarly using � andX��. Then, by a slight extension of the observation
in Example 2.1, P � is a dynamic minimizer for e if � < 0 and P �� is a dynamic
minimizer for e if � > 0.

Remark 4. That the minimizing measure corresponds to constant volatility is a
feature of this example. More generally, the minimizing measure in P de�nes a
speci�c stochastic volatility model. It is interesting to note that when volatility
is modeled by robustifying the Hull-White and Heston parametric forms, for ex-
ample, the minimizing measure does not lie in either parametric class. Rather it
corresponds to pasting the two alternatives together endogenously, that is, in a
way that depends on the endowment process and on �.

We describe further implications assuming � < 0; the corresponding state-
ments for � > 0 will be obvious to the reader. Interpretation of the sign of � is
confounded by the dual role of � in the additive expected utility model. However,
the example can be generalized to the Kreps-Porteus aggregator (3.17) and then
the same characterization of the worst-case volatility is valid with 1 � � inter-
pretable as the measure of relative risk aversion. Therefore, the intuition is clear
for the pricing results that follow: only the largest (in the sense of (3.26)) volatility
� is relevant assuming � < 0 because it represents the worst-case scenario given
a large (greater than 1) measure of relative risk aversion.
Corresponding regular conditionals have a simple form. For example, (P �)!� is

the measure on 
 induced by the stochastic di¤erential equation (under P0)�
dXt = �dBt; � � t � T
Xt = !t; 0 � t � �

Thus under (P �)!� , the increment Bt �B� is N
�
0; ��> (t� �)

�
for � � t � T .

The C-CAPM (3.22) takes the form (assuming � < 0): For every � , P-almost
surely in !,

bt � rt1 = (1� �) st(��
>)se on [� ; T ] (P �)!� -a:s:

For comparison purposes, it is convenient to express this equation partially in
terms of P0. The measures P0 and P � di¤er only via the change of variables
de�ned via the SDE (2.10). Therefore, we arrive at the following equilibrium
condition: For every � , P-almost surely in !,

bbt � brt1 = (1� �) bst(��>)se on [� ; T ] (P0)!� -a:s: (3.27)
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where bbt = bt (X
�
� ), brt = rt (X

�
� ) and bst = st (X

�
� ), corresponding to the noted

change of variables under which Bt 7�! X�
t = �>Bt. Note that the di¤erence

between random variables with and without hats is ultimately not important
because they follow identical distributions under (P0)!� and (P

�)!� respectively.
The impact of ambiguous volatility is most easily seen by comparing with the

standard C-CAPM obtained assuming complete con�dence in the single probabil-
ity law P0 which renders B a standard Brownian motion. Then the prediction for
asset returns is

bt � rt1 = (1� �) sts
e on [0; T ] P0-a:s:

or equivalently: For every � and P0-almost surely in !,

bt � rt1 = (1� �) sts
e on [� ; T ] (P0)!� -a:s: (3.28)

There are two di¤erences between the latter and the equilibrium condition
(3.27) for our model. First the �instantaneous covariance�between asset returns
and consumption is modi�ed from sts

e to bst(��>)se re�ecting the fact that � is the
worst-case volatility scenario for the representative agent. Such an e¤ect, whereby
ambiguity leads to standard equilibrium conditions except that the reference mea-
sure is replaced by the worst-case measure, is familiar from the literature. The
second di¤erence is new. Condition (3.28) refers to the single measure P0 only and
events that are null under P0 are irrelevant.36 In contrast, the condition (3.27)
is required to hold P-almost surely in ! because, as described in Example 2.2,
dynamic consistency requires that possibility be judged according to all priors in
P.
Turn to a brief consideration of corresponding equilibrium prices. Fix a div-

idend stream (�; �T ) 2 M2 � cL2(
) where the security is available in zero net
supply. Then its equilibrium price S� =

�
S��
�
is given by: For all � , P-a:s: in !,

S�� = E(P
�)!� [

Z T

�

�et
�e�
�tdt+

�eT
�e�
�T ], (3.29)

which lies between the hedging bounds in Theorem 3.1 by (3.21).37 It is interest-
ing to compare this equilibrium pricing rule with the price bounds derived from
hedging arguments (Theorem 3.1). Suppose the security in question is an option

36Similarly for the C-CAPM (3.24) when only drift is ambiguous, because then all priors are
equivalent to P0.
37The proof is analogous to that of Lemma B.4, particularly surrounding (B.8).
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on an underlying. Under the conditions of Example 3.2, the volatilities used to
de�ne the upper and lower price bounds depend on whether the terminal payo¤
is (globally) convex or concave as a function of the price of the underlying. In
contrast, the volatility used for equilibrium pricing is the same for all options
(and other securities) and depends only on the endowment and the preference
parameter �. This di¤erence is further illustrated below.
If � = e, then elementary calculations yield the time � price of the endowment

stream in the form

Se� = A�e� = A�e0 exp
�
(se)>B� )

�
;

where A� > 0 is deterministic and AT = 1. Thus log (Se�=A� ) = log e� and the
logarithm of (de�ated) price is also a G-Brownian motion. We can also price an
option on the endowment. Thus let �t = 0 for 0 � t < T and �T =  (SeT ).
Denote its price process by S . From (3.29), any such derivative is priced in
equilibrium as though �t were constant at � (or at � if � > 0). In particular,
for a European call option where �T = (SeT � �)+, its equilibrium price at � is
BS�

�
(se)>�; T; �

�
, where the latter term denotes the Black-Scholes price at � for

a call option with strike price � and expiry time T when the underlying security
price process is geometric Brownian motion with volatility (se)>�. Thus the
Black-Scholes implied variance is tr

�
��>se(se)>

�
which exceeds every conceivable

realized variance tr
�
��>se(se)>

�
, � 2 �, consistent with a documented empirical

feature of option prices.

4. Concluding Remarks

We have described a model of utility over continuous time consumption streams
that can accommodate ambiguity about volatility. Such ambiguity necessitates
dropping the assumption that a single measure de�nes null events, which is a
source of considerable technical di¢ culty. The economic motivation provided
for confronting the technical challenge is the importance of stochastic volatility
modeling in both �nancial economics and macroeconomics, the evidence that the
dynamics of volatility are complicated and di¢ cult to pin down empirically, and
the presumption that complete con�dence in any single parametric speci�cation is
unwarranted and implausible. (Recall, for example, the quote in the introduction
from Carr and Lee [11].) These considerations suggest the potential usefulness of
�robust stochastic volatility�models (Section 1.2). We have shown that important
elements of representative agent asset pricing theory extend to an environment
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with ambiguous volatility. We also provided one example of the added explanatory
power of ambiguous volatility - it gives a way to understand the documented
feature of option prices whereby the Black-Scholes implied volatility exceeds the
realized volatility of the underlying security. However, a question that remains
to be answered more broadly and thoroughly is �does ambiguity about volatility
and possibility matter empirically?� In particular, it remains to determine the
empirical content of the derived C-CAPM relations. The contribution of this
paper has been to provide a theoretical framework within which one could address
such questions.
There are also several extensions at the theoretical level that seem worth pur-

suing. The utility formulation should be generalized to environments with jumps,
particularly in light of the importance attributed to jumps for understanding
options markets. The asset market analysis should be extended to permit am-
biguity speci�cations more general than G-Brownian motion. Extension to het-
erogeneous agent economies is important and intriguing. The nonequivalence of
measures raises questions about existence of equilibrium and about the nature of
no-arbitrage pricing (for reasons discussed in Willard and Dybvig [56]).
Two further questions that merit attention are more in the nature of re�ne-

ments, albeit nontrivial ones and beyond the scope of this paper. The fact that
utility is recursive but not strictly so suggests that though not every time 0 optimal
plan may be pursued subsequently at all relevant nodes, one might expect that
(under suitable regularity conditions) there exists at least one time 0 optimal plan
that will be implemented. (This is the case in Example 2.2 and also in the asset
market example in Section 3.4.) Su¢ cient conditions for such existence should be
explored. Secondly, Sections 3.3 and 3.4 demonstrated the signi�cance of worst-
case scenarios in the form of dynamic minimizing measures. Their existence and
characterization pose important questions.
In terms of applications, we note that the model (slightly modi�ed) can be in-

terpreted in terms of investor sentiments. Replace all in�ma by suprema and vice
versa. Then, the consumer may be described as an ambiguity lover, or alterna-
tively in terms of optimism and overcon�dence. For example, in a recent study of
how the pricing kernel is a¤ected by sentiment, Barone-Adesi et al. [5] subdivide
the latter and de�ne optimism as occurring when the investor overestimates mean
returns and overcon�dence as occurring when return volatility is underestimated.
This �ts well with the distinction we have emphasized at a formal modeling level
between ambiguity about drift and ambiguity about volatility. In a continuous
time setting, ambiguity about drift, or optimism, can be modeled in a probability
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space framework, but not so ambiguity about volatility, or overcon�dence.38

Wemention one more potential application. Working in a discrete-time setting,
Epstein and Schneider [25] point to ambiguous volatility as a way to model signals
with ambiguous precision. This leads to a new way to measure information quality
that has interesting implications for �nancial models (see also Illeditsch [34]).
The utility framework that we provide should permit future explorations of this
dimension of information quality in continuous time settings.

A. Appendix: G-Brownian Motion

Peng [45] introduced G-Brownian motion using PDE�s (speci�cally, a nonlinear
heat equation). Further contributions are due to Denis et al. [16] and Soner et
al. [51]. For the convenience of the reader, in this appendix we outline some
key elements of the theory of G-Brownian motion in terms of the speci�cs of our
model.

Itô Integral and Quadratic Variation Process: For each � 2 M2, we can consider
the usual Itô integral

R T
0
�|t dBt, which lies in cL2(
). Each P 2 P provides a

di¤erent perspective on the integral; a comprehensive view requires that one con-
sider all priors. The quadratic variation process hBi also agrees with the usual
quadratic variation process P-a:s: In Section 3.1 we de�ned a universal process v
(via (3.5)) and proved that

hBi =
�

tR
0

vsds : 0 � t � T

�
.

The following properties are satis�ed for any �; � 2 M2, X 2 cL2(
T ) and
constant �:

Ê[Bt] = 0, Ê[
R T
0
�>t dBt] = 0,

Ê[(
R T
0
�>t dBt)

2] = Ê[
R T
0
�>t vt�tdt],R T

0
(��>t + �>t )dBt = �

R T
0
�>t dBt +

R T
0
�>t dBt q:s:

Ê[X +
R T
s
�>t dBt j Fs] = Ê[X j Fs] + Ê[

R T
s
�>t dBt j Fs] = Ê[X j Fs]

38The applied �nance literature has not used sets of priors in modeling sentiment. The use
of sets gives a best scenario, or subjective prior, that depends on the portfolio being evaluated.
Thus optimism can be exhibited for every portfolio as one might expect of an investor who has
an optimistic nature. In contrast when the subjective prior is �xed, then a high estimated return
for a security implies pessimism when the agent considers going short.
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For the one dimensional case (� = [�; ��], � > 0), we have

�2t � Ê[(Bt)
2] � ��2t,

�2Ê[
R T
0
�2tdt] � Ê[(

R T
0
�tdBt)

2] � ��2Ê[
R T
0
�2tdt].

Itô�s Formula: Consider

Xt = X0 +

Z t

0

�sds+

Z t

0

sdBs

where � and  are in M2(Rd) and M2(Rd�d) respectively. (De�ne M2(R`�k)
similarly to M2 for R`�k-valued processes.) We adapt Itô�s formula from Li and
Peng [39, Theorem 5.4] or Soner et al. [52, Propn. 6.7] and rewrite it in our
context. Let 0 � � � t � T ; de�ne v = (vij) by (3.5). Then, for any function
f : Rd ! R with continuous second order derivatives, we have

f(Xt)�f(X� ) =

Z t

�

(fx(Xs))
>sdBs+

Z t

�

(fx(Xs))
>�sds+

1
2

Z t

�

tr[>s fxx(Xs)vss]ds:

Consider the special case f(x1; x2) = x1x2 and

X i
t = X i

0 +

Z t

0

�isds+

Z t

0

isdBs, i = 1; 2,

where �i 2M2 and i 2M2(Rd), i = 1; 2. Then

X1
tX

2
t �X1

�X
2
� =

Z t

�

X1
sdX

2
s +

Z t

�

X2
sdX

1
s +

Z t

�

1svs(
2
s)
>ds:

Formal rules: As in the classical Itô formula, if dXt = �tdt+ tdBt, then we can
compute (dXt)

2 = (dXt) � (dXt) by the following formal rules:

dt � dt = dt � dBt = dBt � dt = 0, dBt � dBt = vtdt:

Martingale Representation Theorem: AnF-progressively measurablecL2(
)-valued
process X is called a G-martingale if and only if for any 0 � � < t, X� = Ê[Xt j
F� ]. We adapt the martingale representation theorem from Song [54] and Soner
et al. [51]. For any � 2 dL2+"(
) and " > 0, if Xt = Ê[� j Ft]; t 2 [0; T ], then we
have the following unique decomposition:

Xt = X0 +

Z t

0

ZsdBs �Kt,

where Z 2M2,K is a continuous nondecreasing process withK0 = 0; KT 2 cL2(
)
and where �K is a G-martingale.
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B. Appendix: Proofs for Asset Returns

B.1. Proof of Theorem 3.1

Lemma B.1. Consider the following backward stochastic di¤erential equation
(BSDE) driven by G-Brownian motion:

d ~Yt = (rt ~Yt + �>t
~�t � �t)dt� dKt + ~�

>
t dBt,

~YT = �T .

Denote by I(0; T ) the space of all continuous nondecreasing processes (Kt)0�t�T
with K0 = 0 and KT 2 cL2(
). Then there exists a unique triple

( ~Yt; ~�t; Kt) 2M2 �M2 � I(0; T ),

satisfying the BSDE such that K0 = 0 and where �Kt is a G-martingale.

Proof. Apply Ito�s formula to �t ~Yt to derive

d(�t ~Yt)

= �td ~Yt + ~Ytd�t � h�t~�
>
t ; �

>
t v

�1
t dhBiti

= (�t~�t � �t ~Yt�
>
t v

�1
t )dBt � �t�tdt� �tdKt + [�t~�

>
t �tdt� h�t~�

>
t ; �

>
t v

�1
t dhBiti]

= (�t~�t � �t ~Yt�
>
t v

�1
t )dBt � �t�tdt� �tdKt.

Integrate on both sides to obtain

�T �T +

Z T

�

�t�tdt = �� ~Y� �
Z T

�

�tdKt +

Z T

�

(�t~�
>
t � �t ~Yt�

>
t v

�1
t )dBt: (B.1)

Let

X� = Ê[�T �T +

Z T

0

�t�tdt j F� ]:

Then (X� ) is a G-martingale. By the martingale representation theorem (Appen-
dix A), there exists a unique pair (Zt; Kt) 2M2 � I(0; T ) such that

X� = Ê[�T �T +

Z T

0

�t�tdt] +

Z �

0

ZtdBt �Kt,
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and such that �Kt is a G-martingale. This can be rewritten as

X� = XT �
Z T

�

ZtdBt +KT �Kt

= �T �T +

Z T

0

�t�tdt�
Z T

�

ZtdBt +KT �K� :

Thus ( ~Yt; ~�t; Kt) is the desired solution where

~Y� =
X�
��
�
Z �

0

�t
��
�tdt,

~�
>
� =

Z�
��
+ ~Y��

>
� v

�1
t , and K� =

Z �

0

1
�t
dKt: �

Turn to proof of the theorem. We prove only the claim re superhedging. Proof
of the other claim is similar.

Step 1: Prove that for any y 2 U� ,

y � Ê[

Z T

�

�t
��
�tdt+

�T
��
�T j F� ]

If y 2 U� , there exists � such that Y y;�;�
T � �T . Apply (the G-Brownian version

of) Itô�s formula to �tY
y;�;�
t to derive

d(�tY
y;�;�
t )

= �tdY
y;�;�
t + Y y;�;�

t d�t � h�t�>t ; �>t v�1t dhBiti
= (�t�t � �tY

y;�;�
t �>t v

�1
t )dBt � �t�tdt+ [�t�

>
t �tdt� h�t�>t ; �>t v�1t dhBiti].

Integration on both sides yields

�TY
y;�;�
T +

Z T

�

�t�tdt = ��y +

Z T

�

(�t�
>
t � �tY

y;�;�
t �>t v

�1
t )dBt,

and taking conditional expectations yields

y = Ê[
�T
��
Y y;�;�
T +

Z T

�

�t
��
�tdt j F� ]

� Ê[
�T
��
�T +

Z T

�

�t
��
�tdt j F� ].
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Step 2: There exists ŷ 2 U� and �̂ such that Y ŷ;�̂;�
T � �T and

ŷ = Ê[

Z T

�

�t
��
�tdt+

�T
��
�T j F� ].

Apply the preceding lemma. Rewrite equation (B.1) as

�T �T +

Z T

�

�t�tdt = �� ~Y� +

Z T

�

(�t~�
>
t � �t ~Yt�

>
t v

�1
t )dBt �

Z T

�

�tdKt: (B.2)

Because �t is positive and �Kt is a G-martingale, Ê[�
Z T

�

�tdKt j F� ] = 0. Thus,

Ê[�T �T +

Z T

�

�t�tdt j F� ] = �� ~Y�

Finally, de�ne ŷ = ~Y� and �̂ = ~�. Then ŷ 2 U� and

ŷ = Ê[

Z T

�

�t
��
�tdt+

�T
��
�T j F� ].

This completes the proof of Theorem 3.1.

B.2. Proof of Theorem 3.3

(i) Apply Itô�s formula for G-Brownian motion to derive39

d(�tYt)

= �tdYt + Ytd�t � h�t�>t ; �>t v�1t dhBiti
= (�t�t � �tYt�

>
t v

�1
t )dBt � �t(ct � et)dt+ [�t�

>
t �tdt� h�t�>t ; �>t v�1t dhBiti]:

(B.3)
Note that for any a = (at) 2M2,Z T

�

atv
�1
t dhBit =

Z T

�

atdt;

and therefore, Z T

�

h�t�t; �>t v�1t dhBiti =
Z T

�

�t�
>
t �tdt.

39For any d-dimensional (column) vectors x and y, we use hx>; y>i occasionally as alternative
notation for the inner product x>y.
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Accordingly, integration on both sides of (B.3) yields,

�TYT +

Z T

�

�t(ct � et)dt = ��Y� +

Z T

�

(�t�
>
t � �tYt�

>
t v

�1
t )dBt:

Take conditional expectations to obtain

Ê[�TYT +

Z T

�

�t(ct � et)dt j F� ] = ��Y� + Ê[

Z T

�

(�t�
>
t � �tYt�

>
t v

�1
t )dBt j F� ].

Because B being G-Brownian motion implies that B is a martingale under every
prior in P, we have

0 = Ê[

Z T

�

(�t�
>
t � �tYt�

>
t v

�1
t )dBt j F� ] = Ê[�

Z T

�

(�t�
>
t � �tYt�

>
t v

�1
t )dBt j F� ],

which gives the desired result.

(ii) We need to �nd a process � such that, for the given c, the solution (Yt) to

dYt = (rtYt + �>t �t � (ct � et))dt+ �>t dBt, t 2 [� ; T ]
YT = cT � eT

has time � wealth equal to the given value Y� .
For � � s � T , de�ne

Xs � Ê[

Z T

�

�t
��
(ct � et)dt+

�T
��
(cT � eT ) j Fs]:

Then Xs = �Ê[�
Z T

�

�t
��
(ct � et)dt � �T

��
(cT � eT ) j Fs] and (Xs)��s�T is a sym-

metric G-martingale. By Soner et. al. [51] and Song [54], it admits the unique
representation

Xs = X� +

Z s

�

Z>t dBt,

where Z 2 M2. Note that

X� = Ê[

Z T

�

�t
��
(ct � et)dt+

�T
��
(cT � eT ) j F� ] = Y� :
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Set
�Ys � Xs �

Z s

�

�t
��
(ct � et)dt; s 2 [� ; T ]:

Then ( �Ys) satis�es

d �Ys = �
�s
��
(cs � es)ds+ Z>s dBs, �Y� = Y� :

De�ne

Ys � �Ys(
�s
��
)�1:

Note that (�s) satis�es

d�s=�s = �rsds� �>s v
�1
s dBs, s 2 [� ; T ]:

Apply Ito�s formula for G-Brownian motion to derive

dYs = [rsYs + �>s (Ys(v
�1
s )

>�s +
��
�s
Zs)� (cs � es)]ds+ (Ys�

>
s v

�1
s +

��
�s
Z>s )dBs.

Finally, set
�>s � Ys�

>
s v

�1
s +

��
�s
Z>s :

Then
dYs = (rsYs + �>s �t � (cs � es))ds+ �>s dBs, s 2 [� ; T ]:

This completes the proof. �

B.3. Proof of Theorem 3.4

The proof follows from Theorem 3.3 and the following lemma.

Lemma B.2. For every c, we have: For each � , P-almost surely,

bE �Z T

�

�et (ct � et) dt+ �eT (cT � eT ) j F�
�
� 0 =) (B.4)

V� (c) � V� (e) .
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Proof. De�ne �t implicitly by

f(ct; Vt(c)) = fc(et; Vt (e))(ct� et) + fv(et; Vt (e))(Vt(c)� Vt(e))� �t+ f(et; Vt (e)),

for 0 � t < T , and

u(cT ) = uc(eT )(cT � eT )� �T + u(eT ).

Because f and u are concave, we have �t � 0 on [0; T ].
De�ne, for 0 � t < T ,

�t = fv(et; Vt (e))
t = fc(et; Vt (e))(ct � et) + f(et; Vt (e))� �tVt(e)� �t
T = �uc(eT )eT + u(eT )� �T
�t = f(et; Vt (e))� �tVt(e).

Then

Vt(c) = �Ê[�(uc(eT )cT + T )�
Z T

t

(�sVs(c) + s)ds j Ft]:

Because this is a linear backward stochastic di¤erential equation, its solution has
the form (by Hu and Ji [32])

Vt(c) = �Ê[�(uc(eT )cT + T ) expf
Z T

t

�sdsg �
Z T

t

s expf
Z s

t

�s0ds
0gds j Ft].

Similarly for e, we have

Vt(e) = �Ê[�u(eT )�
Z T

t

(�sVs(e) + �s)ds j Ft],

and (by Hu and Ji [32]),

Vt(e) = �Ê[�u(eT ) expf
Z T

t

�sdsg �
Z T

t

�s expf
Z s

t

�s0ds
0gds j Ft]:

Apply the subadditivity of Ê [� j F� ] and the nonnegativity of �t to obtain

expf
R �
0
�sdsg (V� (c)� V� (e)) =

�Ê[�(uc(eT )cT + T ) expf
R T
0
�sdsg �

Z T

�

t expf
R t
0
�sdsgdt j F� ]

�f�Ê[�u(eT ) expf
R T
0
�sdsg �

Z T

�

�t expf
R t
0
�sdsgdt j F� ]g =
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Ê[�u(eT ) expf
R T
0
�sdsg �

Z T

�

�t expf
R t
0
�sdsgdt j F� ]

�Ê[�(uc(eT )cT + T ) expf
R T
0
�sdsg �

Z T

�

t expf
R t
0
�sdsgdt j F� ] �

Ê[�u(eT ) expf
R T
0
�sdsg �

Z T

�

�t expf
R t
0
�sdsgdt

�(�(uc(eT )cT + T ) expf
R T
0
�sdsg �

Z T

�

t expf
R t
0
�sdsgdt j F� ] =

Ê[(uc(eT )cT + T ) expf
R T
0
�sdsg+

Z T

�

t expf
R t
0
�sdsgdt

�u(eT ) expf
R T
0
�sdsg �

Z T

�

�t expf
R t
0
�sdsgdt j F� ] =

Ê[expf
R T
0
�sdsguc(eT )(cT � eT ) +

Z T

�

expf
R t
0
�sdsgfc(et; Vt (e))(ct � et)dt

� expf
R T
0
�sdsg�T �

Z T

�

expf
R t
0
�sdsg�tdt j F� ] �

Ê[expf
R T
0
�sdsguc(eT )(cT � eT ) +

Z T

�

expf
R t
0
�sdsgfc(et; Vt (e))(ct � et)dt j F� ]

= bE h�eT (cT � eT ) +
R T
�
�et (ct � et) dt j F�

i
.

This completes the proof. �

B.4. C-CAPM for General Aggregators

We derive (3.18) and the corresponding form of the C-CAPM for general aggre-
gators, thus justifying claims made following Theorem 3.4. Utility is de�ned by
(3.10).

Lemma B.3. For given c 2 D, there is a unique solution Vt to

Vt (c) = �Ê[�
Z T

t

f(cs; Vs (c))ds� u (cT ) j Ft]; 0 � t � T:

Further, there exist unique Z 2 M2 and K (a continuous nondecreasing process
with K0 = 0) such that

Vt = u (cT ) +

Z T

t

f(cs; Vs (c))ds+

Z T

t

ZsdBs �KT +Kt:
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Proof. De�ne

Ut = �Ê[�
Z T

0

f(cs; Vs (c))ds� u (cT ) j Ft], 0 � t � T .

Note that

U0 = �Ê[�
Z T

0

f(cs; Vs (c))ds� u (cT )],

UT =

Z T

0

f(cs; Vs (c))ds� u (cT ) .

Because �Ut is a G-martingale, it has the following unique representation:

�Ut = �U0 +
Z t

0

ZsdBs �Kt.

Then

Vt = �Ê[�
Z T

t

f(cs; Vs (c))ds� u (cT ) j Ft]

= Ut �
Z t

0

f(cs; Vs (c))ds

= U0 �
Z t

0

ZsdBs +Kt �
Z t

0

f(cs; Vs (c))ds:

Note that

VT = u (cT )

= U0 �
Z T

0

ZsdBs +KT �
Z T

0

f(cs; Vs (c))ds =)

Vt � VT = Vt � u (cT )

=

Z T

t

f(cs; Vs (c))ds+

Z T

t

ZsdBs �KT +Kt =)

Vt = u (cT ) +

Z T

t

f(cs; Vs (c))ds+

Z T

t

ZsdBs �KT +Kt.

Uniqueness of (Vt) follows by standard contraction mapping arguments (see our
companion paper). �
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The preceding representation of utility, combined with Ito�s Lemma for G-
Brownian motion, yields

bt � rt1 = �
fcc (et; Vt) et
fc (et; Vt)

stvts
e
t +

fcV (et; Vt)

fc (et; Vt)
stvtZ

>
t . (B.5)

For the Kreps-Porteus aggregator (3.17), this becomes

bt � rt1 = (1� �)stvts
e
t +

�� �

�
stvt

Z>t
Vt
. (B.6)

Then (3.18) follows from the following relation (which can be proven as in Chen
and Epstein [12] by exploiting the homogeneity of degree � of utility):

Zt=(�Vt) = ��1[sM + (�� 1)set ].

B.5. Proof of Theorem 3.5

The strategy is to argue that for any c 2 �� (0),

V� (c)� V� (e) = V� (c)� E(P
�)!� [

Z T

�

f(es; Vs (e))ds+ u (eT )]

y � E(P
�)!� [

Z T

�

f(cs; Vs (c))ds+ u (cT )]

�E(P �)!� [
Z T

�

f(es; Vs (e))ds+ u (eT )]

� E(P
�)!� [

Z T

�

�et(ct � et)dt+ �eT (cT � eT )]

by (3.21) = fc (e0; V0 (e))E
(P �)!� [

Z T

�

�t(ct � et)dt+ �T (cT � eT )]

yy � fc (e0; V0 (e)) bE[Z T

�

�t(ct � et)dt+ �T (cT � eT ) j F� ] � 0.

The inequalities marked y and yy are justi�ed in the next lemma.

Lemma B.4. For every � , P-almost surely,

V� (c) � E(P
�)!� [

Z T

�

f(es; Vs (e))ds+ u (eT )], (B.7)
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and

E(P
�)!� [

Z T

�

�t(ct � et)dt+ �T (cT � eT )]

� bE[Z T

�

�t(ct � et)ds+ �T (cT � eT ) j F� ].

Proof. We prove the �rst inequality. The second is proven similarly.
We claim that for any P 2 P and � , there exists P 2 P such that

P = P on F� and P
!

t = (P
�)!t for all (t; !) 2 [� ; T ]� 
. (B.8)

This follows from the construction of priors in P via the SDE (2.10). Let P � and
P be induced by �� and � respectively and de�ne � 2 � by

�t =

�
�t 0 � t � �
��t � < t � T .

Then P = P � satis�es (B.8). It follows from the detailed construction of condi-
tional expectation bE [� j F� ], that P -a:e:

V� (c) � EP [

Z T

�

f(cs; Vs (c))ds+ u (cT ) j F� ]

= EP
!
� [

Z T

�

f(cs; Vs (c))ds+ u (cT )]

= E(P
�)!� [

Z T

�

f(cs; Vs (c))ds+ u (cT )]

The �rst equality follows from P = P on F� and properties of regular conditionals
(see Yong and Zhou [57, Propns. 1.9, 1.10]). Moreover, the preceding is true for
any P 2 P. �
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