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In the context of finite normal form games, this paper addresses the formalization
and implications of the hypothesis that players are rational and that this is common
knowledge. The innovation is to admit notions of rationality other than subjective
expected utility maximization. For example, rationality can be defined by the alter-
native restrictions that preferences are probabilistically sophisticated, conform to
the multiple-priors model or are monotonic. The noted hypothesis is related to
suitably defined notions of correlated rationalizability, survival of iterated deletion
of strictly dominated strategies and a posteriori equilibrium. Journal of Economic
Literature Classification Numbers: C72, D81. � 1997 Academic Press

1. INTRODUCTION

In the decision-theoretic approach to game theory, each player's problem
of choosing a strategy is cast as a single agent decision problem under
uncertainty. Then, assuming that players are Bayesian rational, alternative
assumptions regarding their beliefs about the uncertainty that they face
deliver axiomatizations of various solution concepts. An example of such
an argument, that is the focus of this paper, is the theorem characterizing
correlated rationalizability and survival of iterated deletion of strictly
dominated strategies as the (equivalent) implications of rationality and
common knowledge of rationality [28, Theorems 5.2�5.3]. These solution
concepts are show in [10] to be equivalent in a suitable sense to a
posteriori equilibrium, a streghtening of subjective correlated equilibrium
[3]. Therefore, the assumptions of rationality and common knowledge of
rationality also provide justification for this equilibrium notion.

As noted, in the received literature ``rationality'' is typically defined as
Bayesian rationality; that is, each player forms a prior over the space of
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states of the world, identifies each strategy with an act over that state space,
and maximizes the expected value of some vNM index. The objective of this
paper is to describe a generalization of the noted results in which the defini-
tion of rationality is relaxed considerably. In particular, it will be necessary
to provide appropriate definitions of ``rationalizability'', ``dominance'' and
``a posteriori equilibrium'' that are not tied to the subjective expected utility
framework. (The term `generalization' must be qualified. In common with
[10], but unlike [28], this paper is restricted to finite normal form games.
Therefore, references to [28, Theorems 5.2�5.3] should be interpreted as
referring to the specializations of these results to finite games.)

There are three primary reasons for pursuing such a generalization. First,
one objective of the decision-theoretic approach to game theory is to relate,
at a formal level, our understanding of individual rationality on the one
hand and strategic rationality on the other. But there remains a con-
siderable gap or asymmetry in the formal modeling of rationality in the
two settings. At the individual level, though subjective expected utility
maximization is undoubtedly the dominant model in economics, many
economists would probably view axioms such as transitivity or `mono-
tonicity' as more basic tenets of rationality than the Sure-Thing-Principle
and other components of the Savage model. The implications of such more
basic axioms for single agent decision-making are well understood from
single agent abstract choice theory, but have they have not been isolated
in strategic settings. One motivation for this paper is to narrow this gap.
Second, the Ellsberg paradox and other evidence that people are averse to
``ambiguity'' or ``vagueness'' calls for a distinction between risk and uncer-
tainty that is not possible within the Savage model. Under the presumption
that uncertainty is important in strategic settings, concern with descriptive
accuracy, therefore, calls for a notion of rationality that can accommodate
such aversion to uncertainty. For example, rationality should not preclude
conformity with axiomatic theories that have been developed in order to
model uncertainty aversion, such as Choquet expected utility theory [26]
or the multiple-priors model [15]. A final motivation is that within the
more general framework provided here, the assumption that Bayesian
rationality is common knowledge can be state formally, whereas it is well
known that this assumption must be understood informally in the standard
Bayesian framework.

A major difficulty in providing a formal analysis of the implications of
rationality and common knowledge of rationality is the need to construct
a state space that is a comprehensive representation of the uncertainty
facing a given player, as is required of the space of states of the world. Such
a construction is problematic because of the importance of `beliefs about
beliefs about beliefs...' and the resulting infinite regress. In the Bayesian
framework, this difficulty has been resolved by [21] and [11], for example,
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whose constructions are employed in [28]. A corresponding foundation for
the present paper is provided in [14], as summarized in Section 6 and
Appendix A.

To conclude this introduction, it may be useful to provide perspective
on this paper's contribution by acknowledging some of its limitations and
by describing what is not attempted here. I have been emphasizing to this
point that the implications of rationality and common knowledge of
rationality depend on the formal definition of rationality. Naturally, they
depend also on the definition of `knowledge'. In this dimension, the paper
follows the bulk of the literature by specifying (with a minor variation
adopted for convenience) that an event is known if its complement is null
in the sense of Savage. Consequently, strategies that are irrational for an
opponent are given zero weight by any player contemplating her own
strategy choice. It can be argued that total disregard for irrational play
leads often to counterintuitive or empirically inaccurate predictions of
play. Therefore, some authors have proposed theories of play consistent
with a `small' weight given to some forms of irrational play; see [7],
[22] and [18], for example. These authors assume `nonexpected utility'
preferences��non-Archimedean expected utility in the former and forms of
the multiple priors model in the latter two. But (when viewed from the
present perspective) these generalized preferences are adopted primarily in
order to better model alternative notions of knowledge rather than
rationality. Another instance where the definition of knowledge is central
is in the provision of decision-theoretic foundations for iterated deletion
of weakly dominated strategies. This paper does not provide foundations
for this deletion procedure. Preferences satisfying admissibility are allowed
by the present framework and one could, in principle, restrict attention to
such preferences. However, precisely as in the Bayesian case there is a
contradiction between such `full support' preferences and the knowledge,
in the Savage sense, that some strategies are not played by the opponent.
In other words, an alternative notion of knowledge is needed in order to
justify the deletion of weakly dominated strategies. This would be the
case also if our framework were expanded to admit lexicographic
preferences; currently they are excluded, by the assumption that preferen-
ces have utility function representations, from the types space that is con-
structed in [14] and employed here. (See [4] and [27] for such use of
lexicographic expected utility.) A final remark concerns the limited
generality of the definition of rationality adopted here. Though the
analysis weakens considerably the a priori restrictions on preferences
beyond the subjective expected utility model, they are not eliminated
entirely. In particular, the assumption that preferences have utility func-
tion representations presumes that they are transitive and complete. The
latter assumption may be particularly troubling, because it might be
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argued that aversion to undertainty most naturally takes the form of
incompleteness of preferences [6].

The paper proceeds as follows: Some preliminary notation and definitions
are provided in Section 2. For the convenience of readers who may be inter-
ested in the new solution concepts and not necessarily in their `foundations',
the former are described first. Section 3 defines the generalized notion of
(correlated) rationalizability for finite normal form games. The corre-
sponding notion of `dominance' is described in the following section. Next the
equilibrium approach is studied. Section 6 employs the framework developed
in [14] to show that the preceding solution concepts and equilibrium notion
are characterized by the suitably specified assumption that players are
rational and that this is common knowledge. Rationality is defined so as to
be compatible not only with the Bayesian model. For example, it can accom-
modate any of the following alternative restrictions on preferences: ordinal
expected utility [8], probabilistically sophisticated preferences [19], the
multi-priors model [15] or monotonic preferences. These restrictions are
defined precisely in Section 4.

2. PRELIMINARIES

This section introduces some notation and the key definition of a model
of preference.

Consider a decision maker facing uncertainty represented by the state
space S, a compact Hausdorff space. Objects of choice are acts over S,
namely Borel measurable functions from S into the outcome space [0, 1].
The set of all such acts is denoted F(S ). The universal class of preferences
over F(S ) is P(S ), the class of regular preferences over F(S ) as defined
in Appendix A. For finite state spaces, preferences in P(S ) are restricted
roughly by the assumption that they admit representation by a utility func-
tion and by a weak monotonicity property. Even for general S, P(S ) is a
`nonparametric' class, that is, it does not impose functional form assump-
tions such as expected utility. Each preference ordering in P(S ) admits
representation by a unique certainty equivalent utility function, so that we
refer to elements of P(S ) interchangeably as preference orderings or utility
functions. Since a number of different state spaces arise below, it is con-
venient to view P( } ) as a correspondence on the domain S of nonempty
compact Hausdorff state spaces that assigns P(S ) to each S # S.

The `knowledge' implicit in preferences will be important. Say that
u # P(S ) knows the closed subset E/S if the complement of E is null in the
sense of Savage, that is, if any two acts that agree on S"E are ranked as
indifferent by u. If E is not necessarily closed (or even measurable), say that
u knows E if it contains a closed subset that is known by u. Use P(S | E )
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to denote the set of preferences that know E. Some readers may prefer the
term `believes E' rather than `knows E'.

Two remarks are in order regarding this definition of knowledge. First,
the use of closed subsets to define knowledge of an arbitrary set E is con-
sistent with defining knowledge in a probabilistic setting by the condition
that E contain the support of the relevant measure. (Recall that a support
is closed by definition.) The weaker definition that E has probability 1 has
a counterpart in our setting that involves simply replacing `closed subset'
by `measurable subset' in the definition of `u knows E'. We could adopt this
weaker definition of knowledge here. Theorem 6.2 would remain valid for
all models of preference that consist only of preferences that are continuous
with respect to the norm topology on the space of acts (see [14, Section
5]). With this minor restriction, the remainder of the paper is unaffected.
The two definitions of knowledge agree in the context of Sections 3�5,
where only finite state spaces are relevant.

The second and more important remark is that alternative definitions of
knowledge are possible and have appeared in the literature on the Choquet
and multiple-priors models. In these frameworks, the definition of knowl-
edge corresponds to the notion of `support' that is used for the capacity or
set of priors, and alternative notions have been proposed (see [13], [17]
and [18], for example). When specialized to the Choquet and multiple-
priors models, the above definition of `know E' in terms of nullity of S"E
implicitly adopts the least restrictive notion of support. An advantage of this
definition is that it permits sharp results that can be interpreted as reflecting
exclusively the more liberal meaning attached in this paper to rationality.
On the other hand, the definition rules out concern by players with the
possible irrationality of opponents, as explained in the introduction.

From the present perspective, the standard assumption in game theory
that players are subjective expected utility maximizers corresponds to the
restriction that players' preferences lie in a suitable subset of P(S ). Here,
we formalize alternative models of preference via alternative subsets of
P(S ), or more precisely via alternative subcorrespondences of P( } ).

We will be dealing with games involving two players i and j . Therefore,
define a model of preference by a pair P*( } )#(Pi*( } ), Pj*( } )), where
Pk*( } ) represents the admissible preferences for player k. Formally, Pk*( } )
is a correspondence on S satisfying the conditions below. They make use
of the following notation:

P*(S | S$)#P(S | S$) & P*(S ), \S$/S # S, and (2.1)

for any u # P(S_S$), mrgF (S )u denotes the restriction of u to F(S ), where
the latter is identified in the natural way with a subset of F(S_S$).1 The

5PREFERENCE AND RATIONALIZABILITY
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following conditions are understood to apply for all S and S$ in S and
k=i, j :

PREF1. <{Pk*(S )/P(S ).

PREF2. Let u # Pk*(S ), let _: S � S$ be continuous and satisfy either
(a) _ is one-to-one, or (b) S and S$ are finite. Then u$ # Pk*(S$) where
u$( f )#u( f b _).

PREF3. If C/S is closed and u # Pk*(S | C ), then u$ # Pk*(C ) where
for any f # F(C ), u$( f )=u( f� ), f� =f on C and x on S"C, x # [0, 1].

PREF4. [mrgF (S )u: u # Pk*(S_S$)]/Pk*(S ).

A preliminary comment on PREF2 is offered first. The either�or stipu-
lation may seem unnatural. However, all assertions made in this paper
regarding PREF2 are also true for the alternative assumption PREF2$,
obtained by replacing `(a) or (b)' by the following condition: (c) The
correspondence _&1 admits a continuous selection, that is, there exists a
continuous function !: _(S ) � S such that _(!(s$))#s$ on _(S ). Each of (a)
or (b) implies (c).2 Therefore, PREF2$ is a stronger assumption than
PREF2. The weaker PREF2 is adopted here. Note also that the interpreta-
tion of PREF2 that follows in this section refers to the case where _ is one-
to-one. In the case of finite state spaces, `regularity' of preferences or of
measures is trivially satisfied and interpretation is clear.

The conditions PREF1�4 are readily verified for the expected utility
model, for the other specific models of preference described in Section 4
and for the universal model Pk*( } )=P( } ). Since verification is routine, no
details will be provided. However, it might be useful to give a brief informal
indication of their content for the expected utility model. In that model,
if the vNM index is fixed, then each expected utility function can be iden-
tified with a unique regular (Borel) probability measure on the state space.
In terms of this identification, the above conditions can be translated into
the following largely familiar facts regarding regular probability measures:
(PREF1) There exist regular probability measures on any compact Hausdorff
space S ; integration with respect to such a measure defines a functional on
acts F(S ) that is regular in the sense of (U.3, 4) of Appendix A. (PREF2)
The regularity of a probability measure is preserved by a one-to-one and
continuous transformation. (PREF3) Any regular probability measure m
on S having support in C/S can be viewed as a regular probability
measure on C (PREF4). Given a regular probability measure on S_S$, the
S-marginal is regular on S. Roughly speaking, the formal notion of a
model of preference is intended to capture counterparts of these properties

6 LARRY G. EPSTEIN

2 In light of the compactness of S, _ one-to-one implies that it is open, that is, _&1 is
continuous.



File: 642J 222907 . By:CV . Date:19:03:97 . Time:10:03 LOP8M. V8.0. Page 01:01
Codes: 3403 Signs: 2780 . Length: 45 pic 0 pts, 190 mm

appropriate for preferences on acts that are not necessarily integrals
(expected values) with respect to some probability measure.

It is possible to further interpret and motivate PREF2�4. They restrict the
way in which the `admissible' class of preferences Pk*(S ) varies with S,
roughly by ensuring that this class is sufficiently large. For PREF2, it is useful
to consider four special cases. (i) If S/S$ and _ is the identity embedding,
then PREF2 requires that if u is an admissible utility function for acts over
the state space S, then the mapping f [ u( f |S) defines an admissibility utility
function for acts over the larger state space S$; f |S denotes the restriction of
f to S. (ii) In the special case of (i) where S is a singleton, we conclude that
for each s$ in S$, the evaluation map f [ f (s$) defines a utility function lying
in Pk*(S$). (iii) Let S$=S� _S and _(s)=(s� , s) for some fixed s� . PREF2
requires that if u is an admissible utility function for acts over the state space
S, then the mapping f [ u( f (s� , } )) must be an admissible utility function for
the state space S� _S. The latter utility function models knowledge that the
first component of the state in S$ is s� and that the uncertainty associated with
S is evaluated using u. (iv) If _ is onto, then it is a homeomorphism and
PREF2 imposes the natural requirement that any admissible utility function
on acts over S be transformed, by the homeomorphism, into an admissible
utility function on acts over S$. PREF3 ensures that each admissible utility
function in Pk*(S ) with `support' contained in C can be identified with an
admissible utility function for the state space C. PREF4 imposes that Pk*( } )
behave in the natural way with respect to marginalization, in particular, that
the marginal of any admissible preference for the product state space S_S$
be an admissible preference for the component space S. In light of the
implication (iii) of PREF2 just noted, if PREF2 is given, then PREF4 is
equivalent to the set equality

[mrgF (S )u: u # Pk*(S_S$)]=Pk*(S ). (2.2)

PREF2 is required for the proofs of Theorems 5.1 and 6.3. Together,
PREF2 and PREF3 imply a one-to-one correspondence between Pk*(C )
and Pk*(S | C ), a property that is invoked in Section 4. Since Pk*(C ) is
nonempty, so is Pk*(S | C ) as required in Sections 3 and 6. PREF4 renders
Sections 3�5 compatible with Section 6. In fact, weaker conditions suffice
in all cases. In particular, only finite state spaces are relevant in Sections
3�5, while the only infinite state spaces needed in Section 6 are subspaces
of the space A_T described there.

3. RATIONALIZABILITY

Consider a two-player normal form game (Ai , Aj , ri , rj ), where Ai and Aj

are the finite strategy sets for players i and j, ri , rj : Ai_Aj � X are outcome

7PREFERENCE AND RATIONALIZABILITY
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functions and the game is common knowledge. Here X denotes a compact
interval in the real line. The extension to n players is immediate if
``correlated rationalizability'' is taken as the benchmark notion of
rationalizability [10]. This paper will not consider the formulation of
`independence' needed to generalize rationalizability as defined in [5] and
[23]. It is notationally simplifying to assume that Ai=Aj=A; the sub-
scripts will be employed frequently where emphasis is desired.

The choice of strategy ai by player i yields the uncertain outcome ri (ai , } )
depending on j 's choice of strategy. Thus the uncertainty faced by i is
represented by the state space Aj and i 's decision problem can be expressed
in the following way: Each strategy ai for i determines the act ri (ai , } ) in
F(Aj ). Accordingly, i 's strategy choice is determined by maximizing her
preference ordering, an element of P(Aj ). Similarly for j.

Note that explicit randomization is excluded; players choose elements
of A, not probability distributions over A. This assumption is not inno-
cuous, as illustrated in the multiple-priors example in Section 4.2, but is
defensible on the grounds of the well-known conceptual difficulties sur-
rounding explicit randomization and the often expressed view that people
simply do not randomize when making decisions (see [24, Section 3] and
[9, p. 91], for example). One of the noted conceptual difficulties arises
from the fact that the commonly adopted expected utility framework
excludes a strict incentive to randomize. Because much more general
preferences are admitted here, reexamination is in order; that is, one might
wonder whether at least some of those preferences imply a strict preference
for randomization. The answer is that no such logical implication exists
because: (i) the preferences postulated here are over Savage style acts;
(ii) explicit randomization generates for each player a decision problem
involving two-stage, horse-race�roulette-wheel or roulette-wheel�horse-race
acts of the Anscombe�Aumann [1] variety, and (iii) there are ways of
extending preferences to two-stage acts such that randomization is a matter
of indifference, for example, if players perceive the game in such a way that
they view their choice of mixed strategy as a choice between different
roulette-wheel�horse-race acts (rather than the reverse order). Lo [17]
makes this argument regarding `perception of the game' and incentive to
randomize in the context of a game with multiple-priors utility functions;
his argument, in turn, is based on [12].

Fix a model of preference P*. For this section, the only important
properties of P* are that P*(A) be defined for the specific finite state space
A, that <{Pk*(A)/P(A), and that for all nonempty subsets E/A,

Pk*(A | E ){<. (3.1)

The properties are implied by conditions PREF1�PREF3.

8 LARRY G. EPSTEIN
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For any such model of preference P*, define a corresponding notion of
rationalizability, called P*-rationalizability. Roughly, P*-rationalizability
strategy profiles are such that player k's strategy is best response to some
preference ordering that conforms to Pk*(A) and for which the implicit
beliefs about opponent's actions are `justifiable'. More precisely, we adopt
the following definition:

Definition 3.1. The set of P*-rationalizable strategy profiles is the
largest set Ri_Rj/Ai_Aj with the property: For each ai # Ri there exists
a preference ordering u in P i*(A | Rj ) such that u(ri (ai , } ))�u(ri (a$i , } )) for
all a$i # Ai ; and similarly for j.

Under the conditions in the definition, say that ai is a best response (b.r.)
to u.

It is intuitive that the following iterative procedure delivers rationalizable
strategy profiles. Let R0

i =R0
j =A and for n�1,

Rn
i =[ai # Ai : ai is a b.r. to some u # P i*(Aj | Rn&1

j )], (3.2)

Rn
j =[aj # Aj : aj is a b.r. to some u # P j*(Ai | Rn&1

i )]. (3.3)

Theorem 3.2. The set of P*-rationalizable profiles Ri_Rj is nonempty
and is given by

Ri= ,
�

n=0

Rn
i and Rj= ,

�

n=0

Rn
j . (3.4)

Proof. Denote by R�
i and R�

j the two intersections in (3.4). Each Rn
i

and Rn
j is nonempty because of (3.1). Note also that Rn

i z R�
i and

similarly for j. Therefore, if ai is a b.r. to some preference in Pi*(Aj | R�
j )/

Pi*(Aj | Rn
j ), then ai # Rn

i \n, and so ai # R�
i . Conversely, because the game

is finite, _l such that Rl
j=Rl+1

j = } } } =R�
j . (This implies that R�

j is non-
empty.) It follows that

R�
i /[ai # Ai : ai is a b.r. to some u # Pi*(Aj | R�

j )];

and therefore set equality obtains. Similarly for j. Therefore,
R�

i _R�
j /Ri_Rj . The reverse inclusion is obvious, because Ri_Rj/

Rn
i _Rn

j for every n. K

4. `DOMINANCE' IN SPECIFIC MODELS

4.1. Iterated Deletion

In the Bayesian framework, rationalizability is equivalent to survival of
iterated deletion of strictly dominated strategies. To establish a corresponding

9PREFERENCE AND RATIONALIZABILITY
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equivalence in this more general setting, one needs a characterization of
strategies ai that are not best responses in Ai to any ui # Pi*(Aj ). Call any
such strategy dominated (given Ai and Pi*(Aj)). Theorem 3.2 suggests the
iterated deletion procedure whereby all dominated strategies are eliminated
from the initial game, the same for the resulting reduced game, and so on. It
follows from the Theorem that this procedure delivers the P*-rationalizable
strategy profiles. A complication is that beyond the first round, the relevant
property is being a b.r. for some ui in Pi*(Aj | Rn

j ) rather than in Pi*(Aj).
But as pointed out in Section 2, the former may be identified in a natural
way with Pi*(Aj | Rn

j ). Therefore, the dominance characterization, with Aj

replaced by Rn
j , applies at all stages of the deletion procedure.

The deletion procedure has the property that the surviving set of profiles
is unaffected if only some, rather than all, dominated strategies are deleted
at each round; that is, the order of deletion is of no consequence. As a
result, some light may by shed on the conceptual issue of whether sen-
sitivity to order of deletion, such as for weakly dominated strategies,
seriously undermines a solution concept.3 The pertinent question seems to
be whether a solution concept that may be justified by being founded in
common knowledge of rationality necessarily features insensitivity to order
of deletion. Within the present framework, the answer is `yes' providing a
precise formal sense in which sensitivity to order of deletion reflects
negatively on the solution concept.

That the set of P*-rationalizable strategy profiles is obtained regardless
of the order of deletion follows from the following two facts: *1. If ai is
not a b.r. in Ai to any ui # Pi*(Aj ), then ai is not a b.r. to any utility in
Pi*(A$j ), where A$j is any subset of Aj . *2. If neither ai nor a$i{ai is a b.r.
in Ai to any ui # Pi*(Aj ), then ai is not a b.r. in Ai "[a$i] to any ui # P i*(Aj ).
These facts are readily proven. For *1, let ui # P i*(A$j ). As noted in Sec-
tion 2, the defining properties of a model of preference imply that Pi*(A$j )
may be identified with Pi*(Aj | A$j )/Pi*(Aj ). Therefore, ui can be viewed
as a utility function in Pi*(Aj ) and the hypothesis of *1 implies that ai is
not optimal for ui . For *2, take any ui # Pi*(Aj ). By the finiteness of Ai ,
there exists a* # Ai such that

ui (ri (a*, } ))>ui (ri (ai , } )), a*{a$i .

Therefore, ai cannot be utility maximizing even if a$i is deleted from Ai .

4.2. Examples

In this subsection, the notion of `dominance' is characterized in explicit
form for each of a number of noteworthy special models of preference. The

10 LARRY G. EPSTEIN
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iterative procedure just outlined can then be used to deliver the appropriate
sets of rationalizable strategy profiles. These special cases clarify the way in
which P*-rationalizability generalizes the familiar expected-utility-based
notion or rationalizability.

Incomplete specifications of the various models of preference are
provided in that only P*(A) is defined in each case. Similar specifications
apply to any other finite state space. For infinite state spaces, some further
technical details are needed as described in Section 6.

The game defined in Fig. 1 will be used to illustrate the differing implica-
tions of P*-rationalizability for the various specifications of P*. The row
player is i and the column player is j. The indicated payoff to the strategy
pair (ai , aj ) is ri (ai , aj ) for i and similarly for j.

Analysis of the game is straightforward. If j is justified in assuming that
i will not play M, then she will play R. If i believes this, she will play T.
As a result, only (T, R) will be rationalizable. On the other hand, if M is
a best response for i to a utility function in the class under consideration,
then all strategy combinations will be rationalizable. Thus the set of
rationalizable profiles is either (i) [(T, R)] or (ii) all profiles. Assume for
the moment that payoffs are in utility units, as explained in the next sub-
section. Then the standard expected utility model implies that (T, R) alone
is rationalizable for all admissible parameter values (because $<1).
Intuitively it may seem problematic to exclude (M, L) as a rational play,
particularly with the size of # unrestricted. On the other hand, all
generalizations of expected utility to be described include (M, L) in the
rationalizable set at least for some (differing) parameter values, as
indicated in the accompanying Table. (The assertions can be proven using
the characterizations of dominance provided for each model of preference.
Alternatively, for this simple game, a diagrammatic technique described
below can be used. The reader may wish to refer to the Table while reading
the examples.)

Expected utility. This is the standard model. For each player k=i, j, fix
a continuous and strictly increasing vNM index vi : X � R. For each p in

Fig. 1. Illustrative game, 0�$<1, 0�#.

11PREFERENCE AND RATIONALIZABILITY
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M(A), the set of probability measures on A, define the certainty equivalent
function uk( } ; p) # P(A) by

uk( f ; p)=v&1
k \|A

vk( f ) dp+ .

Then define PEU
k (A)=[uk( } ; p): p # M(A)] and let PEU(A) be the corre-

sponding profile of preference classes. (The dependence on the vNM index
vk is suppressed in the notation as it is in similar situations below.) For this
specialization of P*, P*-rationalizability reduces to the usual notion due
to [5] and [23].

In addition, there is the well-known equivalence between rationalizability
and survival of iterated deletion of strictly dominated strategies, where
dominance is defined so as to include dominance by mixed strategies. This
equivalence is due to the equivalence between (1) ai not being strictly
dominated, and (2) ai being a best response for some beliefs over the
relevant state space A.

Ordinal expected utility. The preceding models the situation where
beliefs of players are not common knowledge but their vNM indices are
common knowledge. To reduce this asymmetry, Borgers [8] assumes that
only preferences over pure strategy outcomes of the game are common
knowledge. Here, pure strategy outcomes are real numbers that are ranked
in the usual way. Therefore, Borgers' assumption is captured by the
following specification for P*: For any (strictly increasing) vNM index v
as above, define

u( f ; p; v)=v&1 \|A
v( f ) dp+ ,

and let POEU
k (A)=[u( } ; p; v): p # M(A), v a vNM index] for each player k.

Borgers shows that a* # Ai is not a best response to any ui # POEU
i (Aj )

if and only if : \Bj/Aj _ai such that

ri (ai , } )�ri (a*, } ) on Bj and _aj # Bj s.t. ri (ai , aj ){ri (a*, aj ). (4.1)

Refer to strategies a* satisfying this condition as OEU-dominated though
dominance so defined does not correspond to a binary relation on i 's
strategy set. Iterated deletion of such dominated strategies leaves only
POEU-rationalizable strategy profiles.

Probabilistic sophistication. Drop the assumption of an expected utility
functional form but continue to assume that players' preferences are based
on probabilistic beliefs in the sense of [19]. Machina and Schmeidler refer
to such preferences as `probabilistically sophisticated.' Consideration of this

12 LARRY G. EPSTEIN
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class of preferences is motivated in part by the desire to accommodate
behavioral evidence, such as the Allais paradox, contradicting the von
Neumann�Morgenstern model of choice amongst risky prospects, that is,
objective lotteries.

To describe probabilistically sophisticated preferences, adopt the fol-
lowing notation: For any act f # F(A) and probability measure p # M(A),
denote by Fp, f the induced cumulative distribution function (cdf) on X. The
set of all cdf 's is D(X ). A function V: D(X ) � X is called a risk certainty
equivalent (r.c.e.) if it is strictly increasing in the sense of first degree
stochastic dominance and if V(Fp, f )=x for f ( } )#x. Then the class of
probabilistically sophisticated preferences is, for each player k,

Pk
ps(A)=[u # P(A): u( f )#V(Fp, f ), for some p # M(A) and r.c.e. V].

(4.2)

The relaxation from the ordinal expected utility class to probabilistically
sophisticated preference does not change the set of rationalizable strategy
profiles and in that sense has no empirical significance. To see this, note
that if ai is a b.r. to some u # Pps

i (Aj ), then it violates OEU-dominance
condition (4.1) for the set Bj defined as the support of the measure p under-
lying u in the sense of (4.2). It follows that ai is also a b.r. to some
u # POEU

i (Aj ). In other words, the property of being a best response to
some admissible preference is equivalent whether one uses the ordinal
expected utility class or the larger one consisting of all probabilistically
sophisticated preferences.

Multiple-priors utility. Next consider a generalization of the standard
expected utility model due to [15] that is motivated by the desire to model
uncertainty aversion such as is exhibited in the Ellsberg paradox. In par-
ticular, as such aversion contradicts probabilistic sophistication, this class
of preferences violates probabilistic sophistication. Note that this model is
an alternative to, rather than a generalization of, the two preceding models.

Fix vNM indices vk and for each closed and convex set of probability
measures 2 on A, define uk( } ; 2) # P(A) by

uk( f ; 2)=v&1
k \min

p # 2 |
A

vk( f ) dp+ . (4.3)

The multiple-priors class of preferences for player k is PMP
k (A)=

[uk( } ; 2) # P(A): 2 varies as above].
The problem to be addressed is the characterization of strategies a* # Ai

that are not best responses to any u # PMP
i (Aj ). Refer to a* as MP-

dominated if it is never a best response. In Appendix B we derive the

13PREFERENCE AND RATIONALIZABILITY
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following characterization of such dominance: _[:a , ;a]a # Ai*
/[0, 1],

� :a=� ;a=1, Ai*#Ai "[a*], such that

:
a # Ai*

(min
: j

[:a ga(aj )&;aga*(aj )])>0, (4.4)

where ga(aj )#vi (ri (a, aj )) describes the `act' with utility payoffs facing
player i when she chooses strategy a.

Comparison with more familiar dominance notions should help to clarify
(4.4). By pure strategy dominance of a*, we mean that

_a # Ai s.t. ri (a, aj )>ri (a*, aj ) \aj # Aj , (4.5)

or equivalently (by monotonicity of vi ), _a # Ai such that

ga(aj )#vi (ri (a, aj ))>vi (ri (a*, aj ))#ga*(aj ) \aj # Aj . (4.6)

It is easy to see that pure strategy dominance of a* implies that it is
MP-dominated (take :a=;a=1 for the strategy a satisfying (4.6)). But
the converse is not true in general; consider the illustrative game with
parameters #>$+$2.

Comparison with the usual notion of (mixed strategy) strict dominance
is also straightforward.4 The minimum operator in (4.4) can be taken out-
side the summation without affecting the inequality. This yields the strict
dominance of � :aga over ga* . The converse is false; let #�$+$2 in the
illustrative game. (Klibanoff [16] shows, in contrast, that equivalence
obtains between survival of iterated deletion of dominated (in the usual
sense) strategies and multiple-priors rationalizability if the latter is defined
to admit the use of mixed strategies. We discussed earlier a rationale for
excluding mixed strategies. There is no censensus in the related literature
regarding the use of mixed strategies; mixed strategies matter in [17], but
they play no role in [13], [22] and [18].)

Finally, iterated deletion based on (4.4) and Theorem 3.2 delivers the
PMP-rationalizable strategy profiles. Beyond the first round, the relevant
property is being a b.r. for ui in PMP

i (Aj | Rn
j ). But the latter may be iden-

tified in the natural way with PMP
i (Rn

j ); therefore, the characterization
(4.4), with Aj replaced by Rn

j , applies at all stages of the deletion procedure.

14 LARRY G. EPSTEIN

4 Other comparisons can be made. First, OEU-dominance implies strict dominance by
mixtures and therefore also MP-dominance. Second, a # Ai `dominates' a* according to the
maximim criterion in the special case of (4.4) having :a=;a=1. Therefore, MP-dominance
is more demanding and accordingly leads to the deletion of fewer strategies than does the
maximin criterion.
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=-Contamination. The multiple-priors model of preference leaves the set
of priors of each player unrestricted except by technical conditions, yielding
a model that may be too general for some settings. Here consider a family
of models that is parametrized by a single parameter = such that ==0
yields the expected utility model, ==1 yields the multiple-priors model, and
intermediate models are implied for 0<=<1. In cases where the modeler
is willing to take a stand on the size of =, a set of rationalizable strategy
profiles smaller than in the preceding example may be obtained.

For each = in [0, 1], say that the set of priors 2 on A is an =-con-
taminated set if there exists a probability measure p* # M(A) and a closed
and convex set C of probability measures on A such that5

2=[(1&=) p*+=p : p # C].

Denote by ( = the set of all =-contaminated sets of priors. One might think
of p* as `benchmark' Bayesian prior, and that there exists some uncertainty
or ambiguity that is captured by admitting the indicated contaminations of
p* with measures in C. If all conceivable contaminations are admitted,
C=M(A), one obtains the =-contamination model that has received atten-
tion in the robust statistics literature. In the general case, the set 2
increases in the sense of set inclusion as = Z with p* and C fixed, modeling
increased uncertainty aversion. For another perspective on =, note that

sup
m, m$ # 2

sup
E/A

|m(E )&m$(E)|�=. (4.7)

Therefore, a small value for = limits the differences between measures in 2
and indicates, in a natural way, a small difference from the single prior case.6

15PREFERENCE AND RATIONALIZABILITY

5 As there is a superficial similarlity between this model and Mukerji's [22], this may be
an appropriate place to clarify further the relationship between the two papers. Roughly,
Mukerji assumes the following: Suppose that, in the context of an inductive procedure, a set
A0

j /Aj of `rational' strategies for j has been determined. Then it is assumed that i, in
evaluating her strategy opetions, has multiple-priors beliefs given by 2=(1&=) p*+=M(Aj ),
where p* is a probability measure on A0

j and = is a parameter in [0, 1] giving the weight
attached by i to j being irrational and `therefore' choosing some unrestricted strategy in Aj .
Mukerji deliberately avoids imposing knowledge of rationality in the sense of this paper,
which is imposed here by replacing the contaminating set M(Aj ) by M(A0

j ) (or any subset
C/M(A0

j )). In his model, uncertainty is due entirely to uncertainty about whether or not the
opposing player is rational, whereas here rationality is assumed known but there is uncer-
tainty about which rational strategy the opponent will play. As a result, neither model is
nested in the other.

6 One might use (4.7) directly rather than the =-contamination specification to define sets
of priors. However, the linearity in the =-contamination structure is crucial for the derivation
of the `dominance' characterization that follows. On the other hand, specifications other than
the =-contamination structure can also be handled. Similar arguments can be used for any
other specialization of the multiple-priors class that takes the form of restricting the set of
priors 2 by a finite set of linear inequality restrictions on the component measures.
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Define the model P= exactly like PMP except that the sets of priors 2 are
restricted to lie in (=. The arguments for the multiple-priors case are
readily extended (see Appendix B) to prove that a* is not a b.r. to any
u # P=

i(Aj ) if and only if a* is =-dominated, where the latter means the
following (using the notation from (4.4)): _[:a , ;a]a # Ai*

in [0, 1],
� :a=� ;a=1, such that

(1&=) min
aj \ :

a # A i*

:aga(aj )&ga*(aj )+
+= :

a # Ai*

min
aj

[:aga(aj )&;a ga*(aj )]>0. (4.8)

This dominance notion is a `convex combination' of mixed strategy strict
dominance (corresponding to the first term) and MP-dominance (corre-
sponding to the second term). Condition (4.7) may provide a basis for
selecting a value for = and accordingly the stringency of the dominance
condition to be applied in any particular setting.

Monotonicity. Refer to u # P(A) as monotonic if for all acts

f $( } )>f ( } ) everywhere on A implies u( f $)>u( f ).

For each player k, define Pmon
k (A) as the set of all monotonic utilities in

P(A). This model of preference strictly generalizes the preceding models
because the latter impose not only monotonicity but also various func-
tional form restrictions on the representing utility functions. For example,
the expected utility functional form is assumed in the ordinal expected
utility class POEU

k (A) and probabilistically sophisticated preferences
evaluate acts via induced probability distributions.

A natural conjecture is that ai is a b.r. for some ui # Pmon
i (Aj ) if and only

if ai is not strictly dominated in the pure strategy sense (4.5). Clearly, if ai

is so dominated, then it cannot be a best response. On the other hand, if
it is undominated, it is a best response to u # Pmon

i (Aj ) defined by: For each
f, an act over Aj ,

u( f )# min
a j # Aj

[ f (aj )&ri (ai , aj )]+max
aj # A j

ri (ai , aj ).

In particular, u(ri (a, } ))�u(ri (ai , } ))=maxa j # Aj ri(ai , aj ) for all a # Ai .
Conclude that Pmon-rationalizability is equivalent to survival of the iterated
deletion of strictly dominated strategies, where dominance is by pure
strategies.

16 LARRY G. EPSTEIN
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TABLE I

P*-Rationalizable Strategies ({=#min[=(1+$)+$&1, =$(1+$)])

PEU POEU P ps PMP P= Pmon

(T, R) only $<1 $=0 $=0 #>$+$2 =#>{= ��
All (ai , aj ) �� $>0 $>0 #�$+$2 =#�{= All ($, #)

4.3. Summary

It may be useful to reflect briefly on the differing implications of the
alternative solution concepts as presented in Table I for the illustrative
game. First, a diagrammatic derivation of these implications is described.7

It is convenient in this derivation to assume that payoffs are denominated
in the units of vNM utility indices. This may be accomplished for the
models PEU, PMP and P= by assuming that vk(x)#x in each case. For the
remaining models, the units in which payoffs are denominated is of no
consequence.

Focus on whether M is a best response for i for some preference in the
model defined by P*. Because there are only two feasible strategies for j,
the choice for i between T, M and B can be portrayed as the choice between
the three `acts' portrayed in the plane in Fig. 2. The question then is whether
one can draw an indifference curve through M that is consistent with the
model P* and that passes (weakly) above both T and B. The answer
depends on the particular model P*, because different models restrict indif-
ference curves in different ways.

The ordinal expected utility model can be fit into this framework by
viewing it as attaching ordinal (rather than cardinal or absolute)
significance to utility payoffs. In other words, any ordinal transformation of
these payoffs is permitted, leaving indifference curves downward sloping
but not necessarily linear. More precisely, the dominance condition (4.1)
can be translated into the class of admissible indifference curves that are
either (i) strictly downward sloping everywhere, or (ii) perfectly horizontal,
or (iii) perfectly vertical. (The latter two cases correspond to beliefs by i
that attach 0 probability to one of j 's strategies.) It is therefore apparent
that M can be a best response for any $>0. Intuitively, M is preferable to
T if j plays L and it is preferable to B if she plays R. In both cases the gain
in utility units is $ and $ can be `large' after rescaling utilities. In other
words, after a suitable rescaling of utilities, we are back in the standard
model with $=1, where M is a best response. A similar discussion applies
to the model of probabilistically sophisticated preferences.

17PREFERENCE AND RATIONALIZABILITY

7 I am grateful to Kin Chung Lo for suggesting this technique.
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Figure 2

For the multiple-priors model, in this case where the state space consists
of two elements, indifference curves are linear on either side of the certainty
line but can be kinked there (subject to quasiconcavity). Therefore, M can
be a best response only if the straight line through M and B intersects the
certainty line to the right of the vertical line at (1+#&$); and this is true
if and only if #�$+$2. Note that there is a sound economic argument at
a descriptive level, (and arguably even at a normative level), for relaxing
the assumption of probabilistic beliefs and thus admitting `kinked' indif-
ference curves. It is at least plausible that i be `vague' or uncertain about
j 's choice of L or R, in which case her beliefs cannot be represented by a
single probability measure. A noteworthy feature of the result concerning
when M can be a best response is that the answer depends on #. This is due
to the quasiconcavity of utility that imposes roughly that the larger is #, the
less valuable are the incremental utility benefits of size $, mentioned above,
in playing M; and therefore the less likely is it that M can be a best response.

Finally, the =-contamination model is a specialization of the multiple-
priors model obtained by restricting the size of the kink that indifference
curves can have along the certaintly line. From (4.7), it follows that the
ratio of the slope in the upper cone to that in the lower cone can be no
greater than 1+[=(1&=)�[(1&=)2 p*(L) p*(R)]]. The conditions under
which M can be a best response are therefore readily derived.

18 LARRY G. EPSTEIN
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5. EQUILIBRIUM

In the standard expected utility framework, Bandenburger and Dekel
[10] have shown that (correlated) rationalizability is intimately related to
an equilibrium concept, called a posteriori equilibrium, refining subjective
correlated equilibrium. This section provides a parallel equilibrium
recasting of P*-rationalizability in terms of what is called P*-a posteriori
equilibrium, abbreviated P*-equilibrium. This is easily done by adapting
the formulations and arguments in [10]. Nevertheless, given the decision-
theoretic foundations provided in this paper for P*-equilibrium, I take the
space to define it precisely and to describe its relation to P*-
rationalizability.

Recall the normal form game (Ai , Aj , ri , rj ) of Section 3, and the
assumptions specified there. For what follows, it suffies that the model of
preference P* satsify conditions PREF1�PREF3 on the domain of all finite
state spaces. Fix such a model of preference.

Define a P*-a posteriori equilibrium as a tuple (0, (Hk , Uk , _k)k=i, j )
where

v 0 is a finite state space

v Hk is an information partition for each player k

v Uk : 0 � Pk*(0) is k's conditional utility function, satisfying:
Uk(|, } ) knows Hk(|), the component of Hk containing |

v _k : (0, Hk) � Ak is player k's measurable strategy function

and where for all | # 0,

Ui (|; ri (_i (|), _j ( } )))�Ui (|; ri (ai , _j ( } ))) \ai # Ai , (5.1)

and similarly for j. (Note that ri (_i (|), _j ( } )) defines an act over 0 and
therefore lies in the domain of each Ui (|; } ). Similarly for the expression
on the right.)

When P* is the expected utility model of preference (for fixed vNM
indices), this equilibrium is equivalent to that defined in [10]. That the
equilibrium concept defined here is an attractive extension of the expected
utility-based notion is confirmed by the equivalence with P*-rational-
izability and by the foundations to follow in the next section.

The central result in this section is the following extension of [10,
Proposition 2.1]:8

19PREFERENCE AND RATIONALIZABILITY

8 As in [10, Proposition 2.1], this theorem could be stated in terms of the equivalence of
utility payoffs.
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Theorem 5.1. The profile (ai*, aj*) is P*-rationalizable if and only if
there exists a P*-equilibrium (0, (Hk , Uk , _k)k=i, j ) and |* # 0 such that
(ai*, aj*)=(_i (|*), _j (|*)).

Proof. Only if: Define 0#Ri_Rj , _i (ai , aj )#ai , _j (ai , aj )#aj and let
Hk be the partition associated with knowledge of the k th coordinate of any
|=(ai , aj ). It remains to define Ui (Uj may be defined similarly). Each
ai # Ri is a b.r. to some ui # Pi*(Aj | Rj ). Use ui to define Ui as follows: For
each |=(ai , aj ) and f # F(Ri_Rj ), define

Ui (ai , aj ; f )#ui ( f� (ai , } )),

where f� (ai , } ) is the act over Aj satisfying f� (ai , } )=f (ai , } ) on Rj and =ri (ai , } )
on Aj"Rj . It follows from PREF2�3 that Ui (ai , aj ; } ) lies in Pi*(0). In addi-
tion, Ui (ai , aj ; } ) knows Hi (ai , aj )=[ai]_Rj because ui knows Rj . The
equilibrium condition (5.1) is satisfied because Ui (ai , aj ; ai , _j ( } ))=
ui (ri (ai , } ))�ui (ri (a$i , } ))=Ui (ai , aj ; a$i , _j ( } )) \a$i in Ai . Finally, _i (ai*, aj*)
= ai* and similar assertions apply to j.

If : Let (ai*, aj*) be generated by a P*-equilibrium as described. Define
Ak*#[_k(|): | # 0] and show that Ai*_Aj*/Ri_Rj . For this it suffices
to prove that

each a$i # Ai* is a b.r. to some ui # Pi*(Aj | Aj*), (5.2)

and similarly for j. Let a$i # Ai* and _i (|$)=a$i . Define ui by

ui ( f )#Ui (|$ ; f b _j ( } )), f # F(Aj ).

PREF2 implies that ui # Pi*(Aj ). Moreover, ui knows Aj* because f=g
on Aj* O f b _j ( } )=g b _j ( } ) O ui ( f )=ui (g). Further, ui (ri (a$i , } ))#Ui (|$;
ri (a$i , _j ( } )))�Ui (|$; ri (ai , _j ( } )))#ui (ri (ai , } )) for all ai # Ai , proving
(5.2). K

6. FOUNDATIONS

The decision-theoretic foundation for P*-rationalizability is provided
here. It takes the form of specifying the form of individual rationality
and the knowledge of such rationality that characterize the selection
of P*-rationalizable strategy profiles. In the special case of the expected
utility model of preference P*=PEU, the familiar characterization [28,
Theorems 5.2�5.3] of expected-utility-based rationalizability is obtained.
More generally, for any model of preference P*, it is shown that

20 LARRY G. EPSTEIN
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P*-rationalizability is characterized by `rationality' and `common knowl-
edge of rationality', where each of these terms is defined appropriately in
terms of the model of preference P*. Consequently, justification is provided
for the procedure of iterated deletion of dominated strategies correspond-
ing to any one of the dominance notions described in the previous section.

To achieve the desired characterization requires consideration of an
extended state space for each agent, representing not only uncertainty
about the opponent's choice of strategy but also about her `type' that
includes a description of her knowledge, beliefs or preferences. Use P( } ) to
describe the exhaustive uncertainty facing each player.

To begin with, each player is uncertain about the strategy chosen by
her opponent. Above we assumed that this strategic uncertainty was
exhaustive. But in fact it is not, because i is uncertain also about j 's
preferences over A and these are relevant because knowledge of them
would allow i to infer j 's choice of strategy. Thus i 's `second-order state
space' is S1=A_P(A). Were this to represent all the uncertainty facing i,
then we could identify each ai with an act in F(A_P(A)) and derive
her strategy choice from her `second-order preferences', an element in
P(A_P(A)). Similarly for j. But since i 's second-order preferences are
unknown to j and since they are useful for predicting what i will do, j faces
the uncertainty represented by the state space A_P(A)_P(A_P(A)).
Proceeding, one is led to the sequence of state spaces

S0=A, Sn=Sn&1_P(Sn&1), n�0. (6.1)

Each state space Sn is an incomplete description of the uncertainty facing
i (or j ) since given that Sn describes some of the uncertainty facing j, then
i, in predicting j 's behavior, faces uncertainty also about j 's preferences
over F(Sn).

For the above hierarchy to be well defined, it is necessary that each P(S )
admit a topology such that P( } ) be compact-Hausdorff-valued. A further
desideratum is that the infinite hierarchy represent, in a natural way, the
exhaustive uncertainty facing each player. The key contribution of [14] is
to show that both desiderata are achieved by P( } ) defined in Appendix A.
In particular, the following construction of types spaces, extending [21]
and [11], is valid.

Theorem 6.1. Define the correspondence P( } ) as in Appendix A. For
any compact Hausdorff space A, there exists T/>�

0 P(Sn), such that when
endowed with the induced product topology, T is compact Hausdorff and

Tthmeo P(A_T ). (6.2)

21PREFERENCE AND RATIONALIZABILITY
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Denote by � the homeomorphism in (6.2). As above, each preference
ordering can be identified with a unique utility function and so interpret
�(ti ) as a utility function for each ti # T.

To facilitate interpretation of the theorem, write Ti=Tj=T and refer to
these as spaces of `types' for each player. Write the homeomorphism in the
form

TitP(Aj_Tj ) and TjtP(Ai_Ti ). (6.3)

From the perspective of i, the state space Aj_Tj represents uncertainty
about j 's strategy and type. As above, i need also be concerned with j 's
preference ordering over F(Ai_Ti ), but, by the second homeomorphism
in (6.3), this uncertainty is already represented by Tj . It follows that Aj_Tj

is a complete or exhaustive state space for i and that a player may be
described by and identified with her type.

It is now possible to provide a formal definition of rationality in the
game context. Say that (ai , ti ) # Ai_Ti is rational if for all a$i in Ai ,

�(ti )(ri (ai , } ))��(ti )(ri (a$i , } )). (6.4)

Each ri (a$i , } ) is an act over Aj . Therefore, it can be identified with an act
over Aj_Tj and thus with an element in the domain of the preference
ordering �(ti ). Consequently, the utility maximizing nature of ai is
meaningfully expressed and provides natural meaning for rationality. Occa-
sionally, the abbreviation ``j is rational'' will be used in lieu of ``(aj , tj ) is
rational.'' Denote by Qi the set of rational pairs in Ai_Ti , and similarly
for j.

This notion of rationality is weak in that P imposes weak restrictions on
preferences. Consider a stronger definition of rationality that is tied to a
model of preference P*. Say that i is P*-rational if (ai , ti ) is rational (that
is, lies in Qi ) and if i conforms to the model P i*, which is naturally for-
malized by �(ti ) # Pi*(A_T ).

Consider now the hypothesis that both players are P*-rational and that
this is common knowledge. Because types provide complete descriptions of
players, this assumption must take formal expression through specification
of subspaces Ti*, Tj*/T. These may be constructed as follows: Consider
the sequence of sets K 0

i =K 0
j =T, and for n�1,

Kn
i =[ti # Ti : �(ti ) # Pi*(Aj_Tj | Qj & [Aj_K n&1

j ])]; (6.5)

and similarly for K n
j . A pair (ti , tj ) # K n

i _K n
j indicates that i conforms to

the model of preference Pi*, i knows that j is rational and that j conforms
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to the model Pj*, and so on to the nth order. Therefore, the natural
candidates for Ti* and Tj* are

Ti*= ,
�

n=0

K n
i , Tj*= ,

�

n=0

K n
j . (6.6)

In terms of these subspaces, the restrictions

(ai , ti ) # Qi & [Ai_Ti*] and (aj , tj ) # Qj & [Aj_Tj*] (6.7)

formalize the assumptions that both players are rational, they conform to
the model of preference P*, and that these facts are common knowledge.
Moreover, `knowledge' and preference (as represented by P*) are defined
in a consistent fashion.

An outstanding question is whether Ti* and Tj* are nonempty. The
following theorem, adapted from [14], confirms that they are nonempty
and that they satisfy another appealing condition:

Theorem 6.2. Let P* be a model of preference and adopt the definitions
(6.5)�(6.6). Then K n

i zn Ti* and K n
j zn Tj*, where these subspaces of types

are nonempty and satisfy

Ti*t� P i*(A_T | Qj & [A_Tj*]), Tj*t� Pj*(A_T | Qi & [A_Ti*]).

This pair of homeomorphisms shows that the types subspaces Ti* and
Tj* are `closed' in the sense (suitably generalized) of `beliefs closed' sub-
spaces as defined in the Bayesian analysis [21]. A consequence is that
(ti , tj ) # Ti*_Tj* formally models not only that P*-rationality is common
knowledge, but also that this common knowledge is itself common
knowledge, and so on to all orders. This confirms that our modeling of
common knowledge is `consistent' with the information-theoretic definition
based on partitions or _-algebras [2].9

Finally, turn to the objective of this section, namely to determine the
implications of P*-rationality and common knowledge thereof. In terms of
the preceding formal structure, this amounts to characterizing the strategy
pairs (ai , aj ) that are consistent with (6.7). Theorem 6.3 below provides
this characterization, generalizing [28, Theorems 5.2�5.3] for the Bayesian
setting.

Theorem 6.3. Let P* be a model of preference. Then the strategy profile
(ai*, aj*) is P*-rationalizable if and only if both players are P*-rational and
this is common knowledge (where these assumptions are formalized in (6.7)).
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Proof. If: If i 's type ti # Ti*, then ti # K n
i \n. It suffices to show that

(recalling (6.5)),

ti # K n
i O �(ti ) knows Rn

j _K n&1
j . (6.8)

For n=1, �(ti ) # Pi*(Aj_Tj | Qj ) and Qj/R1
j _Tj . Assume for n&1 and

prove for n. The assumption for ti implies that ti # K n&1
i and that �(ti ) #

Pi*(Aj_Tj | Aj_K n&1
j ). The former implies that �(ti ) knows Qj , and so,

by the conjunctive property of knowledge, �(ti ) # Pi*(Aj_Tj | Qj &
[Aj_K n&1

j ]). By the induction hypothesis for j, Qj & [Aj_K n&1
j ]/[aj : aj

is b.r. to some uj # Pj*(Ai | Rn&1
i )]_K n&1

j =Rn
j _K n&1

j . This proves (6.8).
It follows that (ai*, ti ) # Qi & [Ai_K n

i ] O ai* is a b.r. to ui#mrgF(Aj ) �(ti )
for some �(ti ) # Pi*(Aj_Tj | Rn

j _K n&1
j ). But the latter implies, by the

definition of marginals and PREF4, that ui # Pi*(Aj | Rn&1
j ).10 Hence,

ai* # Rn
i . This completes the proof of (a), because the preceding applies to

every n.

Only if: Let (ai*, aj*) be rationalizable. It is enough to focus on
player i. By hypothesis ai* is a b.r. to some u0

i # Pi*(Aj | Rj ). We have to
construct a type ti satisfying (6.7). It is enough to show that for all n�1,

if ai* # Rn
i , then _ti # Ti s.t. (ai*, ti ) # Qi & [Ai_K n&1

i ]. (6.9)

Prove (6.9) inductively. First note that for any type ti=(un
i )�

n=0 ,

(ai , ti ) # Qi � (ai , mrgF(Aj ) �(ti )) # Q0
i #[(ai , u0

i ): ai is a b.r. to u0
i ].

(6.10)

Take n=1. By hypothesis _u0
i # Pi*(Aj ) such that ai* is a b.r. to u0

i . The
challenge is to `extend' u0

i to a type, that is, to construct a type ti such that
ti=�(u) for some u # Pi*(Aj_Tj ) satisfying mrgF(Aj ) u=u0

i . It then
follows from (6.10) that (ai*, ti ) # Qi and hence that (6.9) holds. The exist-
ence of a suitable u is implied by (2.2). Alternatively, fix tj # Tj and define
u on F(Aj_Tj ) by u( f )#u0

i ( f ( } , tj )). Then u # Pi*(Aj_Tj ) by PREF2
and its marginal over Aj equals u0

i .
Assume (6.9) for n&1 and prove for n. By hypothesis ai* is a b.r. to

u0
i # Pi*(Aj | Rn&1

j ). The induction hypothesis implies that for every
aj # Rn&1

j there exists tj[aj] satisfying: for every aj # Rn&1
j ,

(aj , tj [aj ]) # Qj & (Aj_K n&2
j ). (6.11)
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10 We are using: (i) If �(t) knows a closed subset C/A_T, then mrgF(A) �(t) # P(A)
knows projA C; and (ii) the latter projection is closed, because of the compactness of A
and T.
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Define tj [aj] # Tj arbitrarily for aj # Aj"Rn&1
j and define u on F(Aj_Tj )

by

u( f )#u0
i ( f ( } , tj [ } ]).

Then PREF2, (6.11) and the hypothesis that u0
i knows Rn&1

j imply that
u # Pi*(Aj_Tj | Qj & (Aj_K n&2

j )). It follows that ti=�&1(u) satisfies
(6.9). K

This theorem applies to each of the specific models of preference
described in Section 4. It is necessary only to indicate how the description
of each of those models of preference is to be completed so as to include
infinite state spaces like A_T. Roughly, this is done simply by replacing A
by A_T throughout the preceding definitions, taking care to add the
suitable technical details. For example, the expected utility, ordinal
expected utility and probabilistically sophisticated models make use of
probability measures that are now taken to be Borel regular probability
measures on A_T ; the set of such measures is denoted M(A_T ) and
replaces M(A) in the definitions. In the multiple-priors model, in conformity
with [15], the set of priors 2 is taken to be a weak*-closed and convex set
of finitely additive Borel probability measures on A_T. Similarly for the
set of priors C appearing in the =-contamination model.

7. CONCLUDING REMARKS

This paper has extended theorems in [28] and [10] regarding the
implications for finite normal form games of the hypothesis of rationality
and common knowledge or rationality. The extension took the form of
generalizing the definition of rationality beyond subjective expected utility
maximization. Some concrete examples of `admissible' forms of rationality
were provided, including probabilistic sophistication, conformity with the
multiple-priors model and monotonic preferences. Other examples may
occur to the reader. Another prominent `nonexpected utility' model of
preference that has been proposed in order to model uncertainty aversion
is Choquet expected utility [26]. As formulated in [14], Choquet expected
utility is a model of preference in the formal sense of this paper, namely it
satisfies conditions PREF1�4. Therefore, it lies within the scope of the
theorems of this paper.

The extension provided here is useful for providing perspective for and
deeper understanding of the expected utility-based theorems. It is hoped
that it will help also to lay the groundwork for future uses of `nonexpected
utility' preferences in applied game theoretic modeling, for example, in
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order to explore the intuitively plausible hypothesis that aversion to uncer-
tainty or ambiguity may be important in strategic situations. Alternative
foundations for future applications may be found in [13, 16, 17 and 22],
who provide equilibrium concepts for normal form games in which players'
preferences are in the multiple-priors or Choquet expected utility classes.

Extensions of this paper may also serve as areas for future research.
While results concerning P*-rationalizability and P*-a posteriori equi-
librium apply for general models of preference P*, our derivation of the
corresponding `dominance' notion was more limited. For example, our
arguments based on Theorems of the Alternative do not seem to apply to
the Choquet expected utility model. The extension to `independent'
rationalizability for n players also remains to be done. Finally, investiga-
tion of foundations for alternative equilibrium concepts seems worthwhile.
Lo [17] provides epistemic conditions characterizing his equilibrium
notion.

APPENDIX A

For any compact Hausdorff S, F(S ) denotes the set of acts over S, that
is, the set of all Borel measurable functions on S that have values in the
compact interval X. We describe P(S ), the class of regular preferences over
F(S ). See [14] for more detailed description and interpretation.

First designate various subsets of F(S ). Call an act simple if its range is
finite. Call an act f upper semicontinuous (usc) if all sets of the form
[s: f (s)�} are closed. Similarly, f is lower semicontinuous (lsc) if all sets
of the form [s : f (s)>}] are open. Denote by Fu(S ) and F l(S ) the sets
of simple usc and simple lsc acts respectively. The outcome x # X also
denotes the corresponding constant act.

Define P(S ) as the set of all utility functions u: F(S ) � X satisfying:

U.1. Certainty Equivalence: u(x)#x.

U.2. Weak monotonicity: f $�f O u( f $)�u( f ).

U.3. Inner Regularity: u( f )=sup [u(g): g�f, g # F u(S )], \ f # F(S ).

U.4. Outer Regularity: u(g)=inf[u(h): h�g, h # F l (S )], \g # Fu(S ).

It is shown in [14] that there is a one-to-one correspondence between this
class of utility functions and a suitably specified class of preference
orderings. This justifies our referring to elements of P(S ) interchangeably
as utility functions or preference orderings. The regularity conditions (U.3)
and (U.4) `mimic' the property of regularity for probability measures; think
of u as a measure and replace g, h and f by closed, open and measurable

26 LARRY G. EPSTEIN
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subsets of S, respectively, noting that the characteristic (or indicator) func-
tion for a closed set is usc, and so on. If S is finite as in Sections 3�5, then
all acts are both usc and lsc and so conditions (U.3) and (U.4) are trivially
satisfied.

The topology { on P(S ) is that generated by the subbasis consisting of
sets of the form

[u: u(g)<}] [u: u(h)>}], (A.1)

where } varies over the reals and g and h vary over Fu(S ) and F l(S ),
respectively. That is, { is the coarsest topology on P(S ) that makes the
mapping u [ u( f ) usc for every f # F u(S ) and lsc for every f # F l (S ).
Using the above identification between usc or lsc acts and closed or open
sets, there is a formal similarity to the weak convergence topology on the
set of Borel measures. More importantly, the topology { makes P(S ) com-
pact Hausdorff if S is compact Hausdorff.

APPENDIX B

Here prove that the negation of (4.4) is necessary and sufficient for
a* # Ai to be player i 's b.r. for some set of priors 2 over Aj . For con-
venience, denote Ai "[a*] by Ai* or simply A*. In terms of the notation in
the text, the best response property requires that 2 satisfy

min
m # 2 | ga* dm�min

m # 2 | ga dm \a # A*. (B.1)

Denote by ma a measure where the minimum on the right is attained. Then
we must have

| ga* dma$�| ga dma \a, a$ # A*. (B.2)

In fact, the existence of [ma]a # A* is also sufficient for (B.1), because we
could define 2 to be the convex hull of [ma]a # A* . Therefore, we proceed
to characterize the tuples of acts ( ga* , [ ga]a # A*) for which there exist
probability measures [ma]a # A* solving (B.2). For vector inequalities x�y
indicates weak inequality for all components, while x>y indicates that in
addition x{y.

Supplement the above inequalities with the non-negativity condition for
probabilities ma>0. Then the normalizations �a j ma(aj )=1 for all a # A*
can be replaced by the equalities �aj ma(aj )=�a j ma$(aj ) \a, a$ # A*. The
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advantage of such a reformulation is that now the supplemented system of
inequalities is a homogeneous system of linear inequalities in [ma]a # A* , a
vector in some Euclidean space. More precisely, the complete set of restric-
tions on [ma]a # A* can be expressed in the form

x>0, Bx�0 and Dx=0, (B.3)

for suitable matrices B and D, where x is the vector of dimension
|A*|_|Aj | obtained by stacking the measures [ma]a # A* . Tucker's
Theorem of the Alternative [20, p. 29] characterizes the conditions under
which such systems admit solutions. After some tedious but elementary
algebraic manipulations, we conclude: There does not exist a solution to
our system if and only if _[:a , ;a]a # A*/[0, 1], � :a=� ;a=1,
[#a]a # A* , � #a=0 and a mapping ha : Aj � (0, �), for each a # A*, such
that

:a ga(aj )&;aga*(aj )=ha(aj )+#a , aj # Aj , a # A*.

We can eliminate [ha , #a] by expressing the preceding condition in the
equivalent forms

min
aj

[:aga(aj )&;aga*(aj )]>#a , or

:
a # A*

min
aj

[:aga(aj )&;aga*(aj )]>0.

This proves the assertion regarding (4.4).
Turn to the proof of the assertion regarding the =-dominance condition

(4.8). To take account of the restricted nature of sets of priors 2 # (=, one
need only replace each ma above by (1&=) p*+=pa and search for p* and
[ pa]a # A* that satisfy (B.2) and appropriate non-negativity and summation
conditions. This complete set of restrictions can again be expressed in the
form (B.3), with redefined matrices B and D and with the vector x com-
posed of p* and [ pa]a # A* . Tucker's Theorem delivers the desired result. K

REFERENCES

1. F. J. Anscombe and R. Aumann, A definition of subjective probability, Ann. Math. Stat.
34 (1963), 199�205.

2. R. Aumann, Agreeing to disagree, Ann. Stat. 4 (1976), 1236�1239.
3. R. Aumann, Correlated equilibrium as an expression of Bayesian rationality,

Econometrica 55 (1987), 1�18.
4. P. Battigalli, Strategic rationality orderings and the best rationalization principle, mimeo,

1994.

28 LARRY G. EPSTEIN



File: 642J 222929 . By:CV . Date:19:03:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 7046 Signs: 2577 . Length: 45 pic 0 pts, 190 mm

5. D. Bernheim, Rationalizable strategic behavior, Econometrica 52 (1984), 1007�1028.
6. T. Bewley, ``Knightian Decision Theory: Part I,'' Cowles Foundation *807, 1986.
7. L. Blume, A. Brandenburger, and E. Dekel, Lexicographic equilibrium and equilibrium

refinements, Econometrica 59 (1991), 81�98.
8. T. Borgers, Pure strategy dominance, Econometrica 61 (1993), 423�430.
9. A. Brandenburger, Knowledge and equilibrium in games, J. Econ. Perspectives 6 (1992),

83�101.
10. A. Brandenburger and E. Dekel, Rationalizability and correlated equilibria, Econometrica

55 (1987), 1391�1402.
11. A. Brandenburger and E. Dekel, Hierarchies of beliefs and common knowledge, J. Econ.

Theory 59 (1993), 189�198.
12. E. Dekel, Z. Safra, and U. Segal, Existence and dynamic consistency of Nash equilibrium

with non-expected utility preferences, J. Econ. Theory 55 (1991), 229�246.
13. J. Dow and S. R. C. Werlang, Nash equilibrium under uncertainty: Breaking down back-

ward induction, J. Econ. Theory 64 (1994), 305�324.
14. L. G. Epstein and T. Wang, `Beliefs about beliefs' without probabilities, Econometrica 64

(1996), 1343�1373.
15. I. Gilboa and D. Schmeidler, Maxmin expected utility with nonunique prior, J. Math.

Econ. 18 (1989), 141�153.
16. P. Klibanoff, Uncertainty, decision and normal form games, mimeo, 1994.
17. K. C. Lo, Equilibrium in beliefs under uncertainty, J. Econ. Theory, forthcoming.
18. K. C. Lo, ``Nash Equilibrium without Mutual Knowledge of Rationality,'' mimeo, 1995.
19. M. Machina and D. Schmeidler, A more robust definition of subjective probability,

Econometrica 60 (1992), 745�780.
20. O. Mangasarian, ``Nonlinear Programming,'' McGraw�Hill, New York, 1969.
21. J. F. Mertens and S. Zamir, Formulation of Bayesian analysis for games with incomplete

information, Int. J. Game Theory 14 (1985), 1�29.
22. S. Mukerji, A theory of play for games in strategic form when rationality is not common

knowledge, mimeo, 1995.
23. D. Pearce, Rationalizable strategic behavior and the problem of perfection, Econometrica

52 (1984), 1029�1050.
24. A. Rubinstein, Comments on the interpretation of game theory, Econometrica 59 (1991),

909�924.
25. L. Savage, ``The Foundations of Statistics,'' Wiley, New York, 1954.
26. D. Schmeidler, Subjective probability and expected utility without additivity, Econo-

metrica 57 (1989), 571�587.
27. D. Stahl, Lexicographic rationality, common knowledge and iterated admissibility,

mimeo, 1991.
28. T. C. C. Tan and S. R. Werlang, The Bayesian foundations of solution concepts of games,

J. Econ. Theory 45 (1988), 370�391.

29PREFERENCE AND RATIONALIZABILITY


