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Econometrica, Vol. 59, No. 1 (January, 1991), 139-163 

MIXTURE SYMMETRY AND QUADRATIC UTILITY' 

BY S. H. CHEW, L. G. EPSTEIN, AND U. SEGAL 

The independence axiom of expected utility theory has recently been weakened to the 
betweenness axiom. In this paper an even weaker axiom, called mixture symmetry, is 
presented. The corresponding functional structure is such that utility is a betweenness 
functional on part of its domain and quadratic in probabilities elsewhere. The experimen- 
tal evidence against betweenness provides one motivation for the more general theory 
presented here. Another advantage of the mixture symmetric class of utility functions is 
that it is sufficiently flexible to permit the disentangling of attitudes towards risk and 
towards randomization. 

KEYWORDS: Uncertainty, betweenness, quadratic utility, mixture symmetry. 

1. INTRODUCTION 

EXPERIMENTAL STUDIES have revealed widespread and systematic violations of 
expected utility theory and more particularly of its cornerstone, the indepen- 
dence axiom (Machina (1982)). Consequently, several recent studies have pro- 
posed weaker axioms which define theories of choice under uncertainty that are 
compatible with the experimental evidence. One such axiom, called between- 
ness, is the basis for the theories described in Chew (1983, 1989), Fishburn 
(1983), Nakamura (1983), and Dekel (1986). The betweenness axiom-if two 
probability distributions are indifferent, then any probability mixture of them is 
equally as good-implies that indifference curves in the probability simplex are 
straight lines in the three-outcome probability simplex (and more generally, are 
hyperplanes in higher dimensional simplices). But there also exists evidence 
which contradicts betweenness. Thus in this paper we present a weaker axiom, 
called mixture symmetry, which is both simple and tractable. Mixture symmetry 
permits indifference curves in the simplex to be nonlinear; moreover, the 
deviations from linearity which it admits accord well with the available empirical 
evidence. In addition, the corresponding utility functions have a convenient 
functional structure. 

Consider two indifferent lotteries represented by their cumulative distribution 
functions F and G. Mixture symmetry requires that any probability mixture 
aF + (1 - a)G, with 0 < a < 2 be indifferent to a mixture fF + (1 - f)G for 
some f8 E (, 1) (though not necessarily indifferent to F and G). In the remain- 
der of this introduction we explain the structure of the implied utility functions 
and elaborate on the motivation for the paper. 

Since mixture symmetry is weaker than betweenness, the betweenness-con- 
forming utility functionals described in the papers cited in the opening para- 

1We are grateful to J. Aczel for discussion of the functional equation aspects of the problem 
solved in the paper and to Mark Machina, the editor, and two referees for helpful suggestions. A 
referee pointed out an error in an earlier version. Chew and Epstein received financial support from 
the National Science Foundation and Segal wishes to acknowledge the financial support of the 
Social Sciences and Humanities Research Council of Canada. 
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140 S. H. CHEW, L. G. EPSTEIN, AND U. SEGAL 

graph satisfy mixture symmetry. The latter is also satisfied by all utility function- 
als that are "quadratic in probabilities." In fact, these two examples exhaust the 
utility functionals satisfying mixture symmetry (and some auxiliary hypotheses) 
in the sense that every such functional is betweenness-conforming on part of its 
domain and quadratic elsewhere. This representation, described in Theorems 4 
and 6, is the major result of the paper. Note that the use of quadratic utility 
functionals as (part of) a generalization of expected utility is intuitive (apart 
from the appeal of the mixture symmetry axiom) when viewed from the 
perspective of standard calculus, since expected utility is linear in probabilities. 

While the betweenness based theories can explain much of the experimental 
evidence against expected utility theory such as the Allais paradox, there exists 
some evidence, surveyed in Machina (1985, p. 579), contradicting betweenness. 
Given betweenness, utility is both quasiconcave and quasiconvex in the space of 
cumulative distribution functions. Assuming the axiom of reduction of com- 
pound lotteries, quasiconcavity (quasiconvexity) implies an affinity for (aversion 
to) randomization between indifferent lotteries. Thus evidence of randomized 
choice, which has been found by some studies, implies quasiconcavity and, 
except for knife-edge cases, rules out linearity. By an alternative approach, 
Becker et al. (1963) are able to reject linearity, even though their experimental 
design is only capable of detecting violations in the direction of quasiconcavity. 
Coombs and Huang (1976) find a significant proportion (45%) of violations of 
betweenness, with 59% of the violations being in the direction of strict quasi- 
concavity and 41% consistent with strict quasiconvexity. Chew and Waller (1986) 
embed a test of betweenness along with the standard Allais paradox and the 
common ratio effect within a single design. They also find some evidence against 
betweenness (see Section 5 below). Overall, the evidence shows significant 
violations of betweenness but does not provide justification for ruling out either 
quasiconcavity or quasiconvexity.2 In Section 5 we describe some evidence, 
taken from the Chew and Waller study, which suggests a systematic nature to 
violations of betweenness. 

Our objective is to develop an axiomatic theory of preference which can 
account for the prevalent empirical evidence against the independence axiom as 
well as the more limited evidence against betweenness. In addition, the ax- 
iomatic theory described below is sufficiently flexible so that either quasiconcav- 
ity or quasiconvexity can be accommodated, in conjunction with the usual 
hypothesis of risk aversion. Such flexibility is also appealing on theoretical 
grounds since attitudes towards risk and attitudes towards randomization be- 
tween indifferent probability distributions represent two conceptually distinct 
aspects of preference. The ability to separate attitudes towards risk from 
attitudes towards randomization is particularly important in game theory where 
attitudes towards randomization are critical. Thus, for example, the quasicon- 
cavity of utility is needed for the proof of existence of a Nash equilibrium, since 

2 For theoretical arguments in support of quasiconvexity, see Machina (1984) and Green (1987). 
We consider the latter in Section 5. 

This content downloaded from 168.122.65.132 on Sun, 20 Dec 2015 16:20:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MIXTURE SYMMETRY 141 

if preferences are strictly quasiconvex the agent will be averse to the random- 
ization of strategies which an equilibrium may require. (Recently, however, 
Crawford (1990) has proposed an alternative notion of equilibrium which exists 
even if utility is strictly quasiconvex.) 

Of course, one can also achieve a separation between risk aversion and 
attitudes towards randomization by positing a general preference functional that 
is Frechet differentiable (Machina (1982)). We adopt the view, implicit in the 
literature on axiomatic generalizations of expected utility, that good theory 
development involves guarded departures from expected utility. Moreover, the 
existence of an axiomatic basis contributes to such a development, both in 
judging the extent of the deviation of the model from expected utility and in 
elucidating the empirical implications of the adopted utility specification, thereby 
facilitating the efficient explanation of empirical evidence. 

There exists an alternative axiomatic generalization of expected utility theory, 
called rank-dependent or anticipated utility theory, which has been proposed in 
order to explain Allais-type behavior (see Quiggin (1982), Yaari (1987), Segal 
(1989), and Chew (1985)). However, in the latter paper it is shown that 
rank-dependent utility exhibits risk aversion if and only if it is quasiconvex. Thus 
strict quasiconcavity and risk aversion cannot be jointly accommodated within 
this theory. Generalizations of rank-dependent theory which retain a central 
role for the rank ordering of outcomes are described in Segal (1989), Green and 
Jullien (1988), and Chew and Epstein (1990). It is straightforward to show that 
these generalizations suffer from similar inflexibility. 

The next section presents our axioms. Functional forms are described in 
Section 3 and representation theorems are presented in Section 4. Section 5 
concludes with a comparison of the systematic violations of betweenness admit- 
ted by our framework and some empirical and theoretical evidence regarding 
the nature of such violations. Most proofs are relegated to appendices. 

2. AXIOMS 

We consider a complete and transitive preference ordering > on D(X), the 
set of cumulative distribution functions (c.d.f.'s) on the compact set XcR1. 
Endow D(X) with the topology of weak convergence. The following axioms are 
imposed on >: 

CONTINUITY: For each F E D(X), {G E D(X): G > F} and {G E D(X): F > 
G} are closed. 

MONOTONICITY: > is increasing in the sense of first degree stochastic domi- 
nance.3 

By Debreu (1964), there is no loss of generality in assuming that > can be 
represented by a utility functional V: D(X) -- R1. 

3 Throughout the paper, "increasing" is intended in the strict sense. 
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142 S. H. CHEW, L. G. EPSTEIN, AND U. SEGAL 

For completeness, we write the independence axiom.4 

INDEPENDENCE: For every F, G and H E D(X) and aE E [0, 1], 

F- G =*caF+ (1 -a)H-aG + (1 -a)H. 

The nature of independence can be understood by reference to the probabil- 
ity simplex in the case of lotteries having three possible outcomes. The axiom 
implies that indifference curves in the simplex are straight and parallel. The 
bulk of the empirical evidence discussed by Machina (1982) is inconsistent with 
parallelism. This evidence motivated the development of betweenness-confor- 
ming theories which have straight but nonparallel indifference curves in the 
simplex. The betweenness axiom is stated below. 

BETWEENNESS: For every F and G E D(X) and aE E [0,1], 

F -G =aF+ (1 -a)G F. 

Given continuity and monotonicity (see footnote 4), betweenness is the 
conjunction of quasiconcavity and quasiconvexity, which we state below. 

QUASICONCAVITY: For each F and G E D(X) and aE E (0, 1), 

F- G =X aF + (1 - a)G > F. 

QUASICONVEXITY: For each F and G E D(X) and aE E (0, 1), 

F -G =F>aF+ (1 -a)G. 

The strict forms of these axioms are defined in the obvious way. 
It will be useful to define a notion which is intermediate between quasicon- 

cavity and strict quasiconcavity. First, say that an indifference set I(F) = {G E 

D(X): G F) is planar if it is convex and is not equal to the singleton (F). Say 
that > satisfies proper quasiconcavity if it is quasiconcave and if it contains no 
planar indifference sets. Proper quasiconvexity is defined similarly. 

In the introduction we cited evidence contradicting betweenness. Thus we 
propose a further weakening of independence, which is compatible with either 
quasiconcavity or quasiconvexity but does not imply either. Our central axiom is 
as follows: 

MIXTURE SYMMETRY: For every F and G in D(X), F G VaE E (0, 2) 
3,E E (2, 1) such that aF + (1 - a)G /3F + (1 - /3)G. 

4Given continuity and monotonicity, this form of independence is equivalent to the more 
common formulation involving weak preference rather than indifference. Similarly, the betweenness 
axiom below is equivalent, given continuity and monotonicity, to the form of betweenness that 
appears in Chew (1983) and Dekel (1986). They assume that the "better than" and "worse than" 
sets are both convex in the mixture sense. 
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MIXTURE SYMMETRY 143 

The axiom requires that given F G, any probability mixture which places 
strictly less weight on F, be indifferent to some other mixture in which F 
receives more weight than G. Clearly, mixture symmetry is implied by between- 
ness since given the latter all probability mixtures are indifferent to F; however, 
the converse is false as demonstrated amply below. 

Our objective is to formulate a positive theory of preference which can be 
consistent with empirical evidence, but the normative case for mixture symmetry 
is still worth noting. Since the latter is weaker than the independence axiom, the 
well known normative argument for the latter applies also to mixture symmetry. 
Mixture symmetry might, however, be acceptable even if independence and 
betweenness are rejected. To see this, interpret probability mixtures in the usual 
way (e.g., Raiffa (1970, p. 82)) as two-stage lotteries. The additional uncertainty 
introduced through the first stage experiment may render the probability 
mixture aF + (1 - a)G sufficiently distinct from the component single-stage 
lotteries F and G that, contrary to the prescriptions of independence and 
betweenness, aF + (1 - a)G may not be indifferent to F. (Such a distinction 
between two-stage and single-stage lotteries is emphasized by Segal (1990).) On 
the other hand, if a and f8 are both in the open interval (0,1), then aF + 
(1 - a)G and fF + (1 - f)G both involve some uncertainty at the first stage 
and they could plausibly be indifferent for suitable choices of a and f3. For 
example, it might be the case that 8 = 1 - a satisfies the requirement of mixture 
symmetry. As a concrete illustration of this latter case, consider an experiment 
in which a ball is drawn from an urn containing red and blue balls in 
proportions a and (1 - a). The color drawn determines whether F or G is 
received in the second stage. One might be indifferent as to whether red leads 
to F or to G, while at the same time not being indifferent between F and this 
two-stage lottery. 

The above discussion draws attention to a stronger form of mixture symmetry 
in which the requisite indifference is necessarily satisfied by the choice f8 = 1 - a, 
as illustrated in Figure 1. We make the following formal definition: 

STRONG MIXTURE SYMMETRY: For every F and G E D(X) and a E [0,1], 

F- G =*aF+ (1 -a)G (1 -a)F+aG. 

In fact, given continuity and monotonicity, strong mixture symmetry is equiva- 
lent to mixture symmetry, as described in the following theorem (proven in 
Appendix 1). 

THEOREM 1: Let > satisfy continuity and monotonicity on D(X). Then > 
satisfies mixture symmetry if and only if it satisfies strong mixture symmetry. 

3. FUNCTIONAL FORMS 

Now turn to functional forms for utility functionals. First we will be interested 
in functionals W which satisfy betweenness. As shown by Chew (1989) and 
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144 S. H. CHEW, L. G. EPSTEIN, AND U. SEGAL 

(a) Strictly quasi-concave case. 

< 
F\ 

F+ 'GG 

(b) Strictly quasi-convex case. 

2F + 

FIGURE 1. 

Dekel (1986), they are defined implicitly by an equation of the form 

(1) fh(x, W(F)) dF(x) = 0 

for some function h with suitable properties. If h(x, s) is of the form h(x, s) = 

w(x)[v(x) - s], then W is a weighted utility function (Chew (1983)) which 
reduces to expected utility if w is constant. If h is continuous, if h(x, ) is 
decreasing, and if h(-, z) is increasing and concave for all z, then W satisfies 
continuity, monotonicity, and risk aversion in the sense of aversion to mean 
preserving spreads. For details, the reader is referred to the cited papers. 
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MIXTURE SYMMETRY 145 

Of primary interest here is the class of quadratic functions. A utility func- 
tional V is said to be quadratic in probabilities if it can be expressed in the form 

(2) V(F) f frb(x, y) dF(x) dF(y), FED(X), 

for some symmetric function 4: X x X -- R1. There is no loss of generality in 
restricting 4 to be symmetric, since an arbitrary +(x, y) can always be replaced 
by (+(x, y) + 0(y, x))/2. For c.d.f.'s F having finite support {x1,..., x,j and 
corresponding probabilities p1, .p.. , pnS V(F) takes the form 

n n 
(3) V(F) = EE 4(xi,xj)pip. 

i=1 j=1 

The general quadratic functional form in (2) appears in a footnote in Machina 
(1982, p. 295). In the text of his paper, Machina discusses the special case 
corresponding to 

4(x, y) = v(x) v(y) + (w(x) + w(y))/2, 

which leads to 

(4) V(F) = (f(X) dF(x) + w(x) dF(x). 

A similar example has +(x, y) = [v(x)w(y) + v(y)w(x)]/2, and 

(5) V( F) v(J(x) dF(X) )( w( x) dF( X) ), 

i.e., the product of two expected utility functionals. 
Two additional examples will clarify the scope of the structure in (2). First, if 

+(x, y) = (v(x) + v(y))/2, then 

(6) V(F) = v(x) dF(x). 

Thus, expected utility (linearity in probabilities) is a special case of (2). Finally, 
let 

(7) O(x, y) = max ( vu(x), v( y)). 

Then5 

(8) V(F) =fv(x)d[F 2(x)], 

STo establish (8), verify it first for c.d.f.'s which have finite support and in which all outcomes are 
equally likely. If the possible outcomes are x1 < x2 < ... < xw, then 

JJ jdFdF= ( 
- 

) v(x) = fv(x) dF2(x). 

The above class of c.d.f.'s is dense in D(X) and thus (8) may be extended to all of D(X). Similarly 
if +(x, y) = min(v(x), v(y)), then f fr dFdF = fv(x)d[l - (1 - F(x))2], which is the special case of 
rank dependent utility theory for which g(p) = 1 - (1 - p)2. 
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146 S. H. CHEW, L. G. EPSTEIN, AND U. SEGAL 

which is the special case of rank dependent utility theory (V(F= 
fv(x) d[g(F(x))], where g: [0, 1] -- [0, 1] is increasing and onto) in which the 
probability transformation function g is quadratic, g(p) = p2. 

In the remainder of this section we explore some properties of the quadratic 
functional form. First it is natural to wonder about the uniqueness class of 4. 
One might conjecture that Xl, i = a, b, represent the same preference ordering 
if and only if they are related by a positive linear transformation. But that is 
readily disproven since 4a(x, y) = v(x)v(y) and =b(x, y) (v(x) + v(y))/2 de- 
fine the same expected utility ordering if v > 0. The conjecture is true, however, 
if the expected utility, or linear in probabilities, case is excluded. It is conve- 
nient, therefore, to introduce the following terminology: say that a quadratic 
function V on D(X) is proper if it is not ordinally equivalent to an expected 
utility function. The uniqueness class of 4 can now be described as follows. 

THEOREM 2: Let va and Vb be quadratic functionals of the form in (2) and 
corresponding to (ha and 4b respectively. Then va and Vb are ordinally equivalent 
if and only if either of the following conditions is satisfied: 

(i) va and Vb are ordinally equivalent to expected utility functions in which 
case 3u: X-oR and constants A', Bi, and ci such that 

(9) Oi(x, y) =A'u(x)u( y) + Bif u(x) + u( y)) + Ci, i = a , b, 

where the functions Aix2 + 2B1x + Ci, i = a, b, are increasing on the range of u; 
or 

(ii) va and Vb are proper quadratic in which case 3a and ,B, i8 > 0, such that 

Oa(X y) = a +pb(X, y) V(X, y) EX 2. 

PROOF: (ii) Assume ordinal equivalence of Va and Vb. Evaluate the utility of 
the gamble with outcomes x <y < z and the corresponding probabilities 1 - p 
- q, p, and q. If 4' is used, the utility is 

Vi=4i(x,x)(1 -p q)-+q i(yy)p2+0i(z,z)q2+24i(y,z)pq 

+ 24,(x, y)p(l -p - q) + 241(x, z)q(l -p - q). 

Fix x, y, and z and view Vi as a (quadratic) function of p and q. By hypothesis, 
Va and Vb are ordinally equivalent. The desired conclusion now follows from 
Lemma A3.1 in the Appendix which shows that Va and Vb must be cardinally 
equivalent. The converse is trivial. 

(i) The sufficiency of (9) is clear, since it implies that 

V (F) = h(f u(z) dF ( z)), where h1(x) =Aix2 + 2B1x + c'. 

To prove its necessity we may assume that for each i, 

ff4i(x, y) dF(x) dF(y) = hif u(x) dF(x)) 
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MIXTURE SYMMETRY 147 

for some u and increasing hi. When F is the c.d.f. for the binary gamble 
(x, p; y, 1 - p), we obtain 

(10) p oi(X, x) + (1 _p)20i(y, y) + 2p(l -p)0i(x, y) 
= h'(pu(x) + (1 -p)u(y)) . 

Then hi must be quadratic as in the statement of the proposition. 
For the degenerate gamble which yields x with certainty, (10) implies 

i(x, x) = h'(u(x)). Substitution into (10) yields (9). Q.E.D. 

Frequently we wish V (or the underlying preference order) to satisfy proper- 
ties such as continuity, monotonicity, and risk aversion, the latter in the sense of 
aversion to mean preserving spreads. The restrictions on 4 corresponding to 
these properties for V are described below. 

THEOREM 3: Let > be represented by the function V in (2). Then > is 
continuous if and only if 4 is jointly continuous on X2. Moreover, given 
continuity, the ordering is (i) monotonic if and only if (i') p(, y) is nondecreasing 
and +(x, x) > 4(y, y) whenever y < x, (x, y) E X2; and the ordering is (ii) risk 
averse if and only if (ii') 4(Q, y) is concave Vy eX. 

These conditions on 4 are readily imposed in the context of the above 
examples, with the single exception that (7) cannot satisfy the concavity require- 
ment. Thus the rank dependent functional (8) is not always averse to mean 
preserving spreads, an observation which is consistent with Chew, Karni, and 
Safra (1987). Note that V defined in (4) is both quasiconvex (indeed convex) and 
risk averse if v > 0 and v and w are both concave. Also, the functional defined 
in (5) is both quasiconcave (since log V( ) is concave) and risk averse if both v 
and w are concave and positive. This substantiates the claim in the introduction 
regarding the flexibility of the theory developed here with respect to the 
separation of risk aversion and attitudes towards randomization.6 

The proof of Theorem 3 is facilitated by consideration of the differentiability 
properties of quadratic functionals. Since these properties are also of indepen- 
dent interest we examine them briefly. First, it can be shown as in Chew, Karni, 
and Safra (1987) that the rank dependent functional (8) is not Frechet differen- 
tiable. Thus the quadratic is generally not differentiable in that sense.7 But that 
paper also shows that much of the machinery developed by Machina (1982) 
under the assumption of Frechet differentiability can be adapted to the more 
general framework of Gateaux differentiability. In particular, one can define 
local utility functions which play a similar role to that in Machina's work. 

6A sufficient condition on 0 for the quasiconcavity or quasiconvexity of utility can be derived as 
follows: For c.d.f.'s with finite support, V(F) is a quadratic form in the probabilities with coefficient 
matrix (O(xi, x,))1 . Thus V is quasiconcave on D(X) if (/(xi, xj))ij is negative semi-definite for 
all xl,..., x,, and n. But this property is not readily verified given a specification for 0. 

7 The existence and continuity of the cross partial derivative 012(x, y) is sufficient for V to be 
Frechet differentiable. The sufficiency of more general conditions is established in Appendix 5. 
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Moreover, quadratic functionals are always Gateaux differentiable since 
d 

(11) -V((l - t)F+ tG) =fu(x;F)d(G(x) -F(x)), where 
dt t=o+ 

u(x;F) =2f+(x,y)dF(y). 

The function u(-; F) is the local utility function at F. 
By the above noted extension of Machina's analysis, risk aversion of V is 

equivalent to the concavity of uQ; F) VF. Take F to be the degenerate 
distribution concentrated at y and conclude that the concavity of 4(, y) 
Vye X is necessary for risk aversion. Since it is clearly sufficient for the 
concavity of u(-; F) and hence also for risk aversion, we have proven that 
(ii) (ii') in Theorem 3. The remainder of the proof is provided below. 

PROOF OF THEOREM 3: Assume V is continuous and let (x, Yn) -* (x, y). 
Denote by 8z the degenerate c.d.f. which assigns unit mass to z. Then 

3Xn --06X* V( Xn) *V('6X) 

= 
( Xn, Xn) 

- 

( X, X) 

Similarly, O(yn, Yn) converges to 0(y, y). Also, Vp E (0, 1), 

V( P /Xn + (1 -P)8 Yn) 

V(Pax + (1 -p)sY) 

{p2 P(Xn,xn) + 2p(l -P)4(X, Yn) + (1 -P) 2(yn, YJ)} 

{p24(x, x) + 2p(l - p)4(x, y) + (1 _p)24( y, Y)9 

which implies 4(x , Yn) -f k(x, y). Thus 4 is continuous. The converse is 
immediate since 4 is continuous and bounded on X x X. 

(i) (i'): The monotonicity of > implies that u(-; F) is nondecreasing and 
+(x, x) = V(SX) > V(GY) = 4(y, y) if x > y. (Recall that the monotonicity axiom 
is strict.) For the converse, assume (i'). It is enough to show that V(EL1 p18 ,) is 
increasing in each xj for which pj > 0, which is true since 

n 

V EPisxi = E E 4(Xi, Xk)PiPk +PJd2(Xi, Xi) + 2 E, (x, X1)Pip. 
1 i=ki k *j i 

The equivalence of (ii) and (ii') was proven above. Q.E.D. 

Finally, note that the proper quadratic functional form can "explain" the 
behavioral evidence against expected utility theory. In particular it can satisfy 
Machina's Hypothesis II (Machina (1982, pp. 310-311)) and thus can explain 
the Allais paradox, the common consequence effect, the common ratio effect, 
and other behavioral evidence. Of course, betweenness functionals can also 
resolve these behavioral paradoxes (Chew (1983)). Moreover, it is readily shown 
that proper quadratic functionals and betweenness functionals define disjoint 
classes. 
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4. REPRESENTATION THEOREMS 

In this section the preceding axioms and functional forms are related. In 
particular, the consequences of mixture symmetry are derived. 

It is readily verified that the quadratic functional form satisfies mixture 
symmetry. Indeed, it satisfies strong mixture symmetry since 

(12) V(aF+ (1 -a)G) - V((1 -a)F+aG) 

= [a-(1-a)] [V(F) - V(G)]. 
On the other hand, since betweenness-conforming functionals satisfy mixture 
symmetry but are not necessarily quadratic, it is clear that mixture symmetry 
does not characterize quadratic functionals. However, it does (in conjunction 
with some of the other axioms) imply that the utility functional is quadratic on 
part of its domain and betweenness-conforming on the complementary region. 
This characterization is described precisely in the theorems to follow. 

THEOREM 4: Let the preference ordering > on D(X) satisfy continuity, 
monotonicity, and quasiconcavity (quasiconvexity). Then > satisfies mixture 
symmetry if and only if it can be represented numerically by a utility function V 
which has the following form: there exists Fo E D(X) such that 

(13) V(F) =(W() F<(>)o W (F), VF<(?:)F0, 

where W satisfies betweenness and where Q is a proper quadratic function. 

The betweenness functional W has the structure described in (1) and Q is a 
proper quadratic specialization of (2). Thus (13) provides a complete description 
of the functional structure of V, which structure is illustrated in the 3-outcome 
probability simplex in Figure 2. In that figure, region III (I) is void if the 
ordering is quasiconvex (quasiconcave). It is evident that any V which combines 
a quadratic and betweenness functional as in (13) satisfies mixture symmetry. 
The necessity of (13) is nontrivial, however, and is proven in Appendices 2-4. 
Appendix 2 treats the case of c.d.f.'s corresponding to three outcome gambles. 
This proof is accomplished by establishing a link between mixture symmetry and 
a characteristic property of conics called the projection property. The extension 
to finite outcome gambles is considered in Appendix 3 and the proof is 
completed in Appendix 4. 

Consider the consequence for Theorem 4 of strengthening quasiconcavity or 
quasiconvexity to their proper forms (see Section 2). Clearly, the betweenness 
region is thereby eliminated and a globally quadratic utility function is implied. 
Thus we immediately obtain the following result. 

THEOREM 5: Let > satisfy continuity, monotonicity, and proper quasiconcav- 
ity (quasiconvexity). Then > satisfies mixture symmetry if and only if it can be 
represented numerically by a proper quadratic utility function of the form (2). 
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Increasing preference 

FIGURE 2. 

The consequences for functional structure if the quasiconcavity and quasicon- 
vexity axioms are deleted are unspecified above. In the 3-outcome probability 
simplex, it follows from Appendix 2 that V must be defined by three regions as 
in Figure 2: it is proper quadratic and quasiconcave (quasiconvex) in the upper 
(lower) region and betweenness-conforming in the intermediate region. But 
more complicated structures are possible on higher dimensional simplices. For 
example, consider the quadratic utility function given by 

V(F) = (fu(x) dF(x)) + (fv(x) dF(x)) (w(x) dF(x)), 

where u, v, and w are continuous, positive, increasing, and concave functions on 
X. On the hyperplane {F: Ju(x) dF(x) = K), V resembles the example in (5) 
and can be shown to be quasiconcave. On the other hand, on the hyperplane {F: 
fw(x) dF(x) = K'}, V resembles the example in (4) and can be shown to be 
quasiconvex. It follows that V is neither quasiconcave nor quasiconvex on any 
open convex subset of D(X). Indeed, even in the 4-outcome probability simplex 
there exist regions where V is neither quasiconcave nor quasiconvex. 

We can establish the general structure portrayed in Figure 2, i.e., where both 
regions I and III may be nonempty, under the following circumstances. Recall 
that an indifference set I(F) = {G e D(X): G F} is planar if it is convex and 
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is not equal to the singleton {F}. Two possibilities exist-either 3F?e D(X) 
such that the corresponding indifference set I(F?) is planar, or there does not. 
The latter case is illustrated by the example given above. In the former case, the 
desired structure may be established in the following way. 

THEOREM 6: Let > satisfy continuity and monotonicity on D(X). Suppose 
further that 3F? E D(X) such that the indifference set I(F?) is planar. Then > 
satisfies mixture symmetry if and only if it can be represented by a utility function V 
which has the following form: 

(Q2(F), F2<F, 

(14) V(F)= W(F), F1 <F<F2 

1Q1(F), F<F1, 

for some F1 and F2 E D(X), F1 < F?0 < F2, where W satisfies betweenness and 
where Q1 and Q2 are proper quadratic functionals. 

PROOF: Since I(F?) is not a singleton by assumption, F? cannot be the worst 
or best element in D(X). Let xmin = min{x:xe X}. Choose F G > F0 and 
H1 =8Ax ., H2, and H3 in D(X) such that (i) F and G lie in the interior of the 
simplex A(H1, H2, H3) consisting of all probability mixtures of H1, H2, and H3; 
and (ii) the portion Y_ of the indifference curve containing F and G which lies 
between them is connected in the interior of A(H1, H2, H3). The ranking of 
(1 -p - q)6x + pH2 + qH3 is increasing in p and q. Therefore, Appendix 2 
and the structure portrayed in Figure 1 apply to a neighborhood of $7 in 
A(H1, H2, H3). It follows, using Lemma A1.2, that > is quasiconcave on that 
part of D(X) which lies above I(F?), i.e., on {F E D(X): F > F?}. Similarly, it 
must be quasiconvex on the region below F?, {F E D(X): F < F?}. Moreover, if 
there are two distinct planar indifference sets in D(X), then all indifference sets 
between them must be planar. 

Let B = u{I(F): Fe D(X), I(F) is planar}. Let F1(F2) be a worst (best) 
element in the closure of B. Clearly, I(F1) and I(F2) are planar. Moreover, the 
ordering > satisfies proper quasiconcavity on the region strictly above F2 and 
thus Theorem 5, restricted to this subdomain of D(X), may be applied to yield 
the desired quadratic utility representation there. Similarly for the region 
strictly below F1. The desired utility representation on the betweenness region 
follows from Chew (1989) and Dekel (1986). Q.E.D. 

In Section 3 we provided examples of utility functionals satisfying our axioms. 
To conclude this section we describe an example of a continuous and monotonic 
functional which is betweenness-conforming on part of its domain and quadratic 
on the remainder. Thus the "schizophrenic" functional structure (13) or (14) 
cannot be improved upon given the axioms in Theorems 4 and 6. 
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EXAMPLE: Let X = [0, 1], 

(x, y) 4xy - 2X2y - 2Xy2+X2+y2_ and 

V(F) = /ffk(x, y) dF(x) dF(y), p4(F) >2 

V(F) = 2~~4F?4 
/-t(F), A(F) < 2 

where ,u(F) denotes the mean of F. Then b is increasing and continuous. 
Moreover, V is well-defined and continuous, since 

ff4(x, y) dF(x) dF(y) 4,L2(F)-24(F)fx2dF(x) 

- 24(F)fy2dF(y) 

+fx2dF(x) + y2dF(y) _ 

= 2 if p(F)=2. 

Finally, V clearly satisfies betweenness on the region where ,LL(F) S , but not 
elsewhere. For example, V(F) = V(G) = 9/8 V('F + AG), where F corre- 
sponds to the gamble with equiprobable payoffs 2 and 1 while G yields payoffs 0 
and 1 with probabilities 3/16 and 13/16 respectively. 

5. DISCUSSION 

In the introduction we cited some evidence against betweenness. Here we 
describe some preliminary evidence, taken from Chew and Waller (1986), 
regarding the nature of observed violations of betweenness. Then we comment 
upon our representation results in light of this evidence. We also relate our 
discussion to Green's (1987) theoretical argument against quasiconcavity. 

Chew and Waller investigated the nature of indifference curves in the 
three-outcome probability simplex. The outcome parameters used, as well as the 
resulting frequencies of nonbetweenness observations, are described in Table I. 
While the overall frequencies of betweenness violations (32% for Experiment 1 
and 22% for Experiment 2) are not significantly greater than the chance hit rate 
of 1/2, it is noteworthy that the nature of the betweenness violations displays a 
systematic dependence on the outcome parameters. Quasiconcave (quasiconvex) 
behavior is most pronounced when the outcomes are all positive (negative). 

Such behavior accords well with the result in Theorem 6, whereby quasicon- 
cavity prevails in the "upper" part of the domain and quasiconvexity in the 
lower "portion." In fact, we can apply Theorem 6 to each of the outcome sets 
X = { - 100, - 40, 0, 40, 60, 100} and X = { - 5,000, 0, 10,000, 15,000, 20,000, 
27,000, 30,000}, and deduce that preference is more likely to be quasiconcave for 
the more attractive comparisons (e.g., contexts la, 2a, 2b) and quasiconvex for 
the less attractive comparisons (e.g., contexts lc, 2c). 
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TABLE la 

Experiment 1 Experiment 2 
a b c a b c 

xI 0 -40 -100 10,000 0 -5,000 
x2 40 0 -40 27,000 10,000 0 

Outcomes X3 100 60 0 30,000 20,000 15,000 

% quasiconvexity 
patterns 0 11 21 4 3 11 

% quasiconcavity 
patterns 32 21 11 19 22 5 

% nonbetweenness 
patterns 32 32 32 23 25 16 

aTotal number of observations = 56. 

Green (1987) argues in support of quasiconvexity by demonstrating that a 
quasiconcave agent may be manipulated into making a series of choices that 
leave him stochastically dominated by his initial position. One possible "ex- 
planation" of quasiconcavity is that it reflects the "utility of gambling," or the 
"consumption" benefits of randomization. Viewed in this light, Theorem 6 is 
appealing. It suggests that a preference for randomization can be satiated in a 
losing streak. In particular the potential losses that can be traced to quasicon- 
cavity are bounded and represent a "price" paid for the enjoyment of gambling. 

Department of Economics and A. B. Freeman School of Business, Tulane 
University, New Orleans, LA 70118, and Department of Economics, University of 
California, Irvine, CA 92717, U.SA., 

Department of Economics, University of Toronto, Toronto, Canada MSS lAl 
and 

Department of Economics, University of Toronto, Toronto, Canada M5S lAl 

Manuscript received August, 1988; final revision received November, 1989. 

APPENDIX 1: PROOF OF THEOREM 1 

The proof is accomplished via a sequence of lemmas. Continuity, monotonicity, and mixture 
symmetry are assumed throughout. Also, FaG denotes aF + (1 - a)G. The set of mixtures of F1, 
F2, and F3 is denoted A(F1, F2, F3), or simply A with the Fi's suppressed. The set of mixtures of F1 
and F2 is denoted [Fl, F2]. 

LEMMA Al.l: Let F - G where F and G lie in the interior of D(X). If there exists a E (0,1) such 
that F - FaG, then for every a E (0, 1), F - Fa G. 

PROOF: There exist F' and G' in D(X) and xmin min{x:x eX} such that F and G lie in the 
interior of A(3x , F', G'). Moreover, the preference relation is monotonic on this set in the sense 
that the ranking of pF' + qG' + (1 - p - q)xM is increasing in p and q. This monotonicity, which 
is weaker than consistency with first degree stochastic dominance, is used below. 
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FnCtnG 

F2G 

G 

- ~~~~Fl 

H 

FIGURE 3a. 

If the set {a: FaG F) is dense in [0, 1], the lemma follows by continuity. Otherwise, there is a 
segment [131, 132] such that for a E (l61,,32), FaG * F, but for a E {(1, /l32), FaG - F. By hypothesis, 
it is impossible that ,31 = 0 and 132 = 1. Suppose 132 < 1. (The argument for .l1 > 0 is similar.) For 
133> 12 such that 13 -162 <1632 - 61 it follows that F163G * F, otherwise F,32G, F,31G and F163G 
imply a violation of mixture symmetry. Since FlG = F, it follows that 2,132 -f3 < 1. Now let 
-3 min (1l3 E [2132- fl1, 1]: FOG - F). By continuity, the minimum exists and F133G F. If ,3 - 

32 > 132 - Pl, then F132G, F,31G and F163G violate mixture symmetry. Thus 13 -1.32 =1.32 - 61 
By repeating the above arguments we obtain scalars 0 = yo < ..< yi < yi+1 < ... <yn+ = 1 

such that n > 1 and for i = 1. n, 

FyiG - F, yi = (yi+1 + yi-D)/2, 

and FaG * F, Va E U n( 7i + 1). Refer to {FyiG: i = 0, . .n + 1) as a uniform partition of [F, G] 
with partition length yi+1 - yi. We show that such a partition is impossible. It suffices to consider 
the case n = 1 above and to rule out the following: F- G, FG -F, and for every other a E 
(0, 1), Fa G - F. By mixture symmetry this implies 

(i) FaG ?F, VacE (0,1), or 

(ii) FaG ?F, VacE (0,1), 

with strict preference in either case when a e {0, 1/2, 1). 
Suppose (ii) applies. (The argument for (i) is similar.) Let C be the indifference curve through F 

and G. Let Fn -- F, Fn -F, and VnFn is between F and G (see Figure 3a). Since F> FaG, for 
sufficiently large n the chord joining Fn and G intersects C at least once between Fn and F2G and 
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at least once between F2G and G. Thus 3al > ac2 such that FnaoG -Fna 2G F, a' -- 1/2 and 
an 1/2. By the above discussion applied to [Fn, G] rather than [F, G], we deduce the existence of 
a uniform partition of [Fn, G] of length no greater than anr - aY2, which approaches 0 as n-- oo. By 
continuity, therefore, Fa G F, Va E (0, 1), which yields the desired contradiction. Q.E.D. 

CONCLUSION 1: If F - G, then > is either quasiconcave or quasiconvex on [F, G]. 

Say that [F1, F2] is an isopreference if all of its elements are indifferent to one another and if 
F1 0 F2. 

LEMMA A1.2: Let F and G E int(D(X)). 
(a) If [F1, G1] c [F, G] is an isopreference, then so is [F, G]. 
(b) If F G, then F2G is a best or worst element in [F, G]. Moreover, if Fa *G F2G for some 

a* 0 ', then [F, G] is an isopreference. 

PROOF: As in the proof of the previous lemma 3 A <D(X), containing F and G, where the 
ordering is monotonic. 

(a) Refer to Figure 3b, where it is assumed that the indifference curve C containing [Fl, G1] is 
not linear. There is no loss of generality in supposing that [F1, G] is a maximal isopreference in 
[F, G]. Suppose also that the quasiconcave case applies. (The other case may be treated similarly.) 
Choose H, I, H' and I' such that F1 = Ha I = Ha'aF with a > 4, H > I, and I' > H'. By continuity, 
there exists H* and I* such that F1 = H*aI*, H* -I*, and for ,l < a, F1 > H*3I*, a violation of 
mixture symmetry. 

(b) Suppose that F G > F. Let Fa*G > F G for some a* 0 2, say a* < . By mixture symmetry 
3,3*> 2 for which Fa*G- F3*G. By continuity 3a 0 (0, a*), F2G <FaoG<Fa*G. Let l0 > 
be a corresponding probability weight provided by mixture symmetry. Then Fo FaOG and 
Go F/30G violate Conclusion 1. Thus F G > FaG, Va E [0, 1]. 

If F2G - F, then [F, G] is an isopreference by Lemma Al.1. Thus it remains only to consider the 
case F*G - F'G > F for some a* 0 1. Let 

az-min {acE [0,1]: FaG - F'G} and 

-max {a cE [0, 1]: FaG - FG}. 

Then a < < a by mixture symmetry. By Lemma Al.1, [FxaG, FiiG] is an isopreference. By part (a) 
the same is true of [F, G]. Q.E.D. 

PROOF OF THEOREM 1: Let F and G lie in the interior of D(X). Suppose FaG -FJ3G and 
,8 0 1 - a. Then F 2G is a best or worst point in [Fa G, F,I3G] but yet is not a midpoint. By Lemma 
A1.2, therefore, [F, G] is an isopreference and so FaG F(1 - a)G trivially. 

If F and G are on the boundary, take Fn -F, Gn G, Fn and Gn E int(D(X)). Then 

FnaGn Fn(1 - a)Gn Vn =:FaG F(1 - a)G. Q.E.D. 

APPENDIX 2: PROOF OF THEOREM 4 IN THE 3-OUTCOME CASE 

This appendix deals exclusively with c.d.f.'s for three outcome gambles. Thus we consider 
S2 = {(p, q) E R2 : p + q S 1), where p and q are the probabilities associated with the intermediate 
and largest outcomes respectively, and we write V(p, q). The continuity and monotonicity axioms 
imply that V is continuous and increasing on S2. Note that indifference curves in S2 are connected. 
(Otherwise, there would be distinct indifferent points along the edge joining (1, 0) and (0, 1) which 
would violate first degree stochastic dominance.) Of course, mixture symmetry (or equivalently, 
strong mixture symmetry) is maintained. Neither quasiconcavity nor quasiconvexity is assumed in 
this appendix. 

LEMMA A2.1: Each indifference curve lying in the interior of S2 is either strictly convex, strictly 
concave, or a straight line. 

This content downloaded from 168.122.65.132 on Sun, 20 Dec 2015 16:20:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


156 S. H. CHEW, L. G. EPSTEIN, AND U. SEGAL 

q 

p 

FIGURE 4. 

PROOF: Follows from Lemmas A1.1 and A1.2. Q.E.D. 

We show below that S2 is divided into regions I, II, and III (some of which may be empty) such 
that indifference curves are strictly concave, linear, and strictly convex in regions I, II, and III 
respectively (see Figure 2). Region I is below and to the left of II, the latter is below and to the left 
of III, and the boundaries between I and II and between III are linear indifference curves. 

We will show that the preference ordering can be represented by a proper quadratic function on 
III. (A similar argument applies to I while the desired representation on II follows from Chew 
(1989) and Dekel (1986).) This is done by establishing the representation on each small open 
rectangle in III. Such open rectangles exist if III is nonempty, since given a strictly convex 
indifference curve as in Figure 4, all indifference curves in the shaded region above it must also be 
strictly convex. We can write region III = U 'Oi, where each Oi is an open rectangle having a 
quadratic representation Vi and where Oi nl Oi+1 o 0 Vi > 1. Vi and Vi+ are ordinally equivalent 
on Oi n i+ and thus also cardinally equivalent there by Lemma A3.1. We can redefine Vi+ 1 if 
necessary to guarantee that Vi+1 =Vi on Oi nfoi +1. By starting this argument at i = 1 we can 
construct a quadratic function V on region III which represents > on each Oi. Indifference curves 
are connected subsets of region III. Thus it is straightforward to show that V is constant along 
indifference curves and subsequently that it represents > on region III. 

The arguments to follow should be understood to apply to a rectangle which lies wholly in III. 
The (income) expansion paths (e.p.) of the indifference map play a central role. Two points a and b 
lie on the same expansion path if there is a common subgradient to the indifference curves at a 
and b. 

The proof presented below may be outlined as follows: we show that (i) all e.p.'s are linear, and 
(ii) they are perspective, i.e., they have a common point of intersection, which could be at infinity if 
they are parallel lines (Lemmas A2.3-5). By strong mixture symmetry and the quasiconcavity which 
prevails in the subdomain upon which we focus, the optimal mix between two indifferent bundles is 
the midpoint between them. Thus each e.p. bisects the chords of an indifference curve which have 
absolute slope equal to the price ratio underlying the e.p. We conclude that indifference curves in 
52 possess the following projection property: the loci of midpoints of parallel chords are perspec- 
tive. It is known (Coxeter (1974)) that conics have the projection property. We prove the converse 
(Theorem A2.1) to establish that indifference curves are conics, from which the desired representa- 
tion for V follows. 

LEMMA A2.2: All expansion paths are straight lines. Moreover, each expansion path is a locus of 
midpoints of parallel chords of an indifference curve. 
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ab 
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FIGURE 5. 

PROOF: Refer to Figure 5. Start with h and i, points on an e.p. Draw the chord through h with 
absolute slope equal to a price ratio underlying the e.p. In this way points b and c are defined. By 
drawing a parallel chord through i, the points a and d may be constructed. Next draw the lines ac 
and bd with intersection point e. 

Strong mixture symmetry and quasiconcavity =: h and i are the midpoints of bc and ad 
respectively. It follows by plane geometry that e is on the line hi. By construction it is not the 
midpoint of ac or bd. (Otherwise ad and bc would have the same length.) Let f be the point on ac 
that is symmetric to e, in the sense of being the mirror image of e in a reflection through the 
midpoint of ac. Construct g similarly on bd. By strong mixture symmetry, f - e - g. Let j be the 
midpoint of fg. Then by plane geometry j is on hi and, by strong mixture symmetry and 
quasiconcavity, it is on the given e.p. 

This proves that given any two points h and i on the e.p., there exists a third point on the e.p. 
that is also on the line segment hi. Thus the e.p. must be linear. Note that h, i, and j are midpoints 
of the respective parallel chords. Q.E.D. 

LEMMA A2.3: If two e.p.'s intersect, then there is another e.p. lying between them such that the 
three paths have a common intersection point. 

PROOF: Refer to Figure 6. Start with the indifference curve and with the two e.p.'s A and B, with 
the slopes of bd and ce for A and B respectively. The points c and e can be chosen so that cdllbe. 
By strong mixture symmetry, bh = hd and ci = ie. Construct aellbd with midpoint g and bf Ilce with 
midpoint j. Let 1 and m be the midpoints of be and cd respectively. Then these points are on the 
same straight line C, C is an e.p., and it intersects A and B at their common intersection point. 

Q.E.D. 

We assert, without proof, that the limit of a sequence of e.p.'s is itself an e.p. More precisely, the 
following is true: 

LEMMA A2.4: Let (pnf, qn) -, (p0, qo) where all points lie on a given indifference curve. Let 
q = rn p + sn be corresponding e.p.'s going through these points, n = 0,1,.... Then rn -- ro and 
Sn -S 

LEMMA A2.5: Either all e.p.'s are parallel straight lines or they have a common intersection point. 

This content downloaded from 168.122.65.132 on Sun, 20 Dec 2015 16:20:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


158 S. H. CHEW, L. G. EPSTEIN, AND U. SEGAL 
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FIGUAE 6. 

PROOF: Suppose there exist intersecting e.p.'s A and B as in Figure 6. Denote by z their 
common intersection point and by AA and AB their intersections with the indifference curve shown. 
Use the preceding two lemmas to argue that 3 a dense subset of the segment of the indifference 
curve lying between AA and AB, such that through each point in the set there is an e.p. which 
contains z. By Lemma A2.4, all e.p.'s that lie between A and B contain z. We can apply Lemma 
A2.3 repeatedly to prove that the qualifier "between A and B" may be dropped. Q.E.D. 

We have now established the projection property described at the beginning of this appendix. 
The next step is to prove that this property implies that indifference curves are conics. A conic is 
uniquely determined by five distinct arbitrary points. (Note that there are five free coefficients in 
ap2 + bq2 + cpq + dp + eq.) When the center of projection 0 is given, or (in the case of a parabola) 
when the center is at infinity, if the common slope of expansion paths is also given, then the conic is 
uniquely determined by three distinct arbitrary points. We can use any two of the three points to 
define a chord and then generate a fourth point by drawing a parallel chord from the third point 
such that the straight line from 0 (or the line parallel to expansion paths when 0 is at infinity), which 
bisects the first chord, also bisects the second chord. One additional step, with a similar construc- 
tion, leads to a fifth point. 

THEOREM A2. 1: A curve in R2 is a conic if and only if it has the projection property, i.e. if and only 
if the loci of midpoints of parallel chords are perspective. 

PROOF: For the necessity of the projection property see Coxeter (1974). We prove sufficiency in 
the case where the center of projection 0 is finite. The argument for the case where 0 is at infinity 
is similar. 

Refer to Figure 7. Given any two parallel chords aoal and ala', let Ql be the unique conic 
through ao, a' and a, with center 0. Let OM0 bisect aoal. By the projection property, it must also 
bisect ala'. Moreover, since the conic Ql satisfies the projection property, a' E Ql. We will prove 
that C coincides with Ql for points along Ql between ao and a,, and between a' and a'. 

Construct another parallel chord a2a' between aoal and alaj such that a0a2l a2al. Let Q2 be 
the unique conic through ao, a' and a2 with center 0. As before, a, E Q2. Let ON0 bisect a0al and 
consequently also a2al. It follows from the noted projection property of conics that a, and a, E Q2. 
Thus (ao, a', al} C Ql n Q2 =-Ql = Q2 a2 C Ql 
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0~~~~~~~~~~~~~~~~ 

FIGURE 7. 

Let C[aO, al] denote that portion of C lying between ao and a, and define D -= C[aO, al] n Q1. 
As above we can show that if a and b belong to D, then 3c E D lying between a and b. Since D is 
a closed subset of C[aO, aj], it follows that D is dense in C[aO, a1] and hence that D = C[aO, al]. 
Evidently, C = Q1 between ao and a, and also between a, and a,. We finally conclude that C = Q1 
since the choice of alaj is arbitrary. Q.E.D. 

The Theorem and Lemma A2.5 imply that each indifference curve is the graph of a quadratic 
function. Since e.p.'s are linear and have a common point of intersection, we can translate the 
coordinate system to a new origin such that the utility function V is homothetic in the new system. It 
follows that the same quadratic function applies to all indifference curves. Therefore, each one may 
be represented in the form 

f(p,q) =K, 
where f is a quadratic function (i.e., a second order polynomial function), and where K, but not f, 
varies across indifference curves. Thus the preference ordering may be represented by a proper 
quadratic utility function. 

This establishes the desired representation on the shaded region in Figure 4. By working with 
overlapping regions, the representation can be extended to the entire region lying above any strictly 
convex indifference curve. That is because it is impossible, given the quadratic representation, to 
have indifference curves in Figure 2 flattening out and eventually becoming linear as one moves in 
the northeast direction. 

APPENDIX 3: PROOF OF THEOREM 4 FOR CDF's WITH FINITE SUPPORT 

For 3-outcome gambles the desired representation follows from Appendix 2. Here we extend the 
representation result to the class of c.d.f.'s with finite support. For fixed outcomes x0 < ...< x,, in 
X, n > 3, utility depends on the corresponding probability vector. Thus the domain of V is taken to 
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be S' -= {(pl,..., pz) E Rz : E2pi < 1}, where V is increasing, continuous, and satisfies quasiconcav- 
ity and mixture symmetry. The case of quasiconvexity can be treated similarly. 

We will make use of the following lemma (used also in the proof of Theorem 2), which describes 
conditions under which the ordinal equivalence of two proper quadratic functions implies that they 
are cardinally equivalent. 

LEMMA A.3.1: Let f and g be proper quadratic functions defined on a convex subset of Rn such that 

(A3-1) f( (g() 

for some increasing 19. Then e9 is linear on Rngg. 

The proof follows readily by computing the Hessians of both sides of (A3.1). Details are omitted. 
Say that H C Sn is a plane of dimension k if H = H' n sn, where H' is a k-dimensional plane in 

Rn. Denote by VIH the restriction to H of V. 
To show that V has the desired representation on sn, we show by induction on k that Vk < n, 

the following obtains: 

P(k): For each k-dimensional plane H CSn, if C is an indifference set of VIH which is not a 
singleton, then either 

(i) C is a plane of dimension (k - 1) or k, or 
(ii) for each p0 E int (Sn) n C there exists an open neighborhood N of p0 in H and a proper 

quadratic function f: N -f R1 such that for every indifference set C' 

C' n N= {p eN: f(p) =K}, for some K. 

From P(n) it then follows that each indifference set of V is planar or has local quadratic 
representations. As in the case of s2 (Appendix 2), quadratic representations can be constructed so 
that they coincide on overlapping regions. Therefore, we deduce the existence of regions in Sn 
analogous to the (proper quasiconcave) quadratic and betweenness regions in Figure 2. That the 
latter must lie below the former follows from the corresponding fact for S2, e.g., consider 
restrictions of V to 2-dimensional subspaces of sn. 

Turn to the proof of P(k) and let k = 2. Appendix 2 proves P(2) restricted to 2-dimensional 
planes H such that for some i1 and i2, p E H p, = 0 V'i # i1, i2. We now show that P(2) is true, 
i.e., the desired property holds for all two-dimensional planes in sn, provided the preference 
relation is quasiconcave. 

Let H be a plane in sn, and let p0 lie in the relative interior of H. Assume first that p0 is a 
minimum point of s . Let p1, p2 E H such that p0 E (pl, p2) the open line segment between pl 
and p2 (the corresponding closed segment is denoted [ p1, p2]). By quasiconcavity at least one of 
these two points, say pl, satisfies pl p?0. If p2 _pO, then by Lemmas A1.1 and A1.2 the entire line 
in H containing [pl, p2] is an indifference set. If p2 > p0, then by quasiconcavity, the set [ pi, pO] is 
an indifference set, and so is the line containing this chord in H. This line separates H into two 
parts. By quasiconcavity, not both of them can contain points strictly preferred to po; hence by 
Lemma A1.2, H is an indifference set. 

If po is a maximum point, then by quasiconcavity and Appendix 1 either the indifference set 
containing it in H is linear, or p0 is a unique maximum point. In the latter case, it is sufficient by 
continuity to prove P(2) for all other points in the interior of H. 

We proceed assuming that po is neither a minimum nor a maximum point of , in H. Let p* be 
a maximum point of - in H. By continuity, there are neighborhoods Bo of po and B* of p* such 
that Vp2 EB0 and Vp3 EB*, p3 >p2. Let L( p2, p3) be the line containing p2 and p3. For p2 EBo 
and p3 E B* it follows by quasiconcavity that on L(p2, p3) n BO, the order s is monotonic in the 
direction from p2 to p3. 

Let p,p'e B* such that p'q%L(p ,p). Let T: HR2 be a linear transformation such that 
T(pO) = (0,0), T(p) = (1,0), and T(p') = (0, 1). For x, y E T(H), define x s TY T- 1(x) s T- 1(y). 
Around T(p?) = (0,0) the order s T is monotonic. (To see this, let x 2 y, x # y be close enough to 
(0,0). By the nature of T, the slope of L(T-1(x), T-1(y)) is between that of L(p?,p) and 
L(p0, p'). Therefore, if y is close enough to (0, 0), then B* n L(T- 1(x), T- 1(y)) # 0). By Appendix 
2, s T is quadratic around (0, 0). Hence s is quadratic around p0. 

Assume P(k - 1) and prove P(k). Let k = n; the argument for general k is similar but 
notationally more cumbersome. Suppose C, an indifference set of V, is neither a singleton nor a 
plane. Let p0 E C lie in the interior of sn. By Lemma A1.2 3p1 E C such that (p0, pl) nl C = 0. 
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Next we can find p2 E C sufficiently close to pl such that (p0, p2) n C = 0 and p2 -p0 is not a 
scalar multiple of p1 -p0. Proceeding inductively, we find p. pn such that (p?, p') n C = 0 Vi 
and Rn = span (p' -po: i = 1. n}. Let H' be the unique (n - 1)-dimensional plane through p0 
spanned by {p' - po: j = 1. n, j # i}. Then C nl Hi is not a plane since {pO, pi} c C n Hz for 
j # i but [p0, pI] does not lie in C. Therefore, condition (ii) of P(n - 1) applies to C nl H' and this 
is true for each i. Let {NM} be the open sets provided by (ii). 

Without loss of generality (choose a suitable linear transformation), suppose that pl - p? is ei, 
the unit vector in the ith coordinate direction in Rn. Then H1 = (p E Sn: p1 =p?} is the ith 
coordinate hyperplane through po. By above, V is ordinally equivalent to a proper quadratic 
function f t on the open region N1 C Hi, for i = 1, 2, . n. Redefine V so that it is proper quadratic 
on N1(V=fl). Then on N1 rlN2, V and f2 are ordinally equivalent and proper quadratic. (They 
are clearly quadratic on N 1 n N2. They are also proper quadratic functions there since {po, pn} c C 
n NN n N2, but (po, pn) n C = 0.) By Lemma A3.1, the transformation relating V and f2 is linear 
and hence V is a proper quadratic on N2. Similarly, V is a proper quadratic on 
each N1. 

By continuity, there exists an open neighborhood M of p0 in Sn, such that V is proper quadratic 
on the intersection of each coordinate hyperplane with M. (To see this, let H' be parallel to H' 
and sufficiently close to it and let N1 C Hi be the image of N1 C H' under this parallel translation. 
By continuity, we can assume that V does not satisfy betweenness on N' and so it is ordinally 
quadratic there by the induction hypothesis. Since V is proper quadratic on N' n NJ, j * i, we can 
assume that it is proper quadratic also on N1i n NJ. As before, we can conclude that V is proper 
quadratic on each N'.) 

It now follows that V is proper quadratic on an open region in sn. To see this, consider the 
hyperplanes which fix the 1st and nth coordinates of p where the quadratic nature of V implies 
that (locally) 

n-1 n-1 n-1 

V(pl Pn)= E E 'ij(Pn)(P1-Pi0)(Pj-P2) + E Y,(Pn)(Pi-P"?) 
i=i j=i 1= 

n n n 

= E x,'A1(p1)(p1 -Pl)(pi -P ) + E 8i(p1)(P -PI) 
i=2 j=i i=2 

(The normalization V(p?) = O has been adopted.) From these two equations, V must be twice 
differentiable. Also, from the first equation for V, for each i < n, VpJP is independent of pl,.. ., Pn - l 
Thus, from the second equation for V it follows that 8,( ) is linear for i < n and 41If(.) is constant 
for i, j < n. If we replace the nth coordinate hyperplane above by the kth, k = 2,.. ., n - 1, we can 
conclude that Sn(*) is linear and that 41Ij() is constant even if i or j = n. Thus V is quadratic. It is 
proper quadratic because each of its coordinate hyperplane restrictions is. 

APPENDIX 4: COMPLETION OF THE PROOF OF THEOREM 4 

The proof of Theorem 4 is completed here. Two steps remain. 

STEP 1: We showed above that when restricted to gambles with n + 1 outcomes, V is ordinally 
equivalent to a quadratic function in the probabilities P.---Pn of the largest n outcomes. We 
would like a "symmetric" representation that is quadratic in all the probabilities Po, P, n.,. That 
is, given that 

n n 

(A4.1) V(pl, ,P)= pj E a1pip+ E1 1ipl + y, 
1, j= 1 i=l 

we want to rewrite V in the form 
n n n 

(A4.2) V= E Eckmp,pj, where E P1 = 1. 
i=OJ=O i=O 

The desired symmetric coefficients 4j are readily found by equating the expressions in (A4.1) and 
(A4.2) and exploiting Eynp = 1. 
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STEP 2: We need to extend the representation (A4.2) to all c.d.f.'s in D(X). Let Y= {x0, xl,... 
be a countable dense subset of X. Denote by 0'(xi, xj), i, j = 0,..., n, the coefficients corresponding- 
to (A4.2) of the quadratic representation for Dn {c.d.f.'s having support in {x0, x, X.,} and let 
Vn be the quadratic utility function defined on Dn. Then Vn and Vn ?1 are ordinally equivalent on 
their common domain Dn. By the proof of Theorem 2(ii), therefore, 3a,,B such that 

n+l (xi, xj) = a + n(x,, xj), 0 S i, j Sn. 

Thus we can continually redefine the ows so that 

10 n+l (Xi, Xj) = On(X,, Xj), 0 S i, i S n. 

Define 4 on Y x Y as lim n 4n and extend 4 to X X X by 

+(x, x') -sup {[(Xi, Xi): (Xi, Xj) E YX Y, X, <x, Xj <X'}). 

This 4 will do for the quadratic functional in (13). 

APPENDIX 5: FR?CHET DIFFERENTIABILITY OF QUADRATIC UTILITY 

We describe sufficient conditions, expressed in terms of 4, for the quadratic functional (3) to be 
Frechet differentiable. Let 4 be continuous on X2. 

The sufficient condition is that 3K > 0 such that 

(A5. 1) 1,0(x', y') -,+(x', y) - +(x, y') + +(x, y) I S Klx' - x I lY' - y I 

Vx, y, x' and y' in X. Note that (A5.1) is satisfied if 012(-, ) exists and is continuous (and hence 
bounded) on X2. Then 

+(x', y') - +(x', y) - +(x, y') + +(x, y) = fYfx12(S, t) dsdt =(A5.1) with 
y X 

K-=maxIO12( )I- 

We show that (A5.1) implies that V is Frechet differentiable and in particular, that I R/IG - 

Fill -*0 as IIG - Fl -*0, where 

R--V(G) -V(F) - fu( ; F) d (G -F), 

* l denotes the L' norm, and u(; F) is the local utility function defined in (11). It suffices to prove 
that 

(A5.2) JR I S K (JIG - Fli)2, VF,G eD(X). 
Moreover, (A5.2) is implied if the inequality there is proven for all c.d.f.'s corresponding to gambles 
with finitely many equally likely outcomes. So let 

n n 

F=n-1 E8 and G=n-1E,. 
i=l i=l 

Then 

R = V(G)-V(F)-fu(; F) d(G-F) 

= ffo(x, y) d(G(x) - F(x)) d(G(y) - F(y)) 

= n -2 E [O(Si, Sj) +,O(ti, tj) -,O(si, tj) -,0(sj, ti)] 
ij 

= RI <n- 2KEE ISi -ti| I s - t,lI 
i j 

=K(n-1 'Is, - tiI )2 = K(JIG - Fill)2. 
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