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Abstract

Consider aggregate choice data from a population with heterogene-
ity in both preferences (or more general decision rules) and in menus,
and where the analyst has limited information about how menus are
distributed across the population. We determine what can be inferred
from aggregate data about the distribution of preferences by identify-
ing the set of all distributions that are consistent with the preceding.
Our main theorem strengthens and generalizes existing results on such
identi�cation and provides an alternative analytical approach (using
convex capacities) to study the problem.

Keywords: discrete choice, partial identi�cation, unobserved hetero-
geneity, convex capacities, core
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1 Introduction

1.1 Motivation and outline

Consider the problem of explaining the distribution of choices in a heteroge-
neous population. Denote by � the probability distribution of chosen alter-
natives, the data. A common approach is to posit heterogeneity in decision
rules (or underlying preferences) and possibly also in the menus from which
alternatives are chosen. A decision rule d speci�es the alternative d (A) cho-
sen from each menu A; the set of all decision rules is D. An individual with
decision rule d faces menu A with probability �d (A). Decision rules are dis-
tributed according to a probability measure Q that is to be inferred from
the data, while the collection of probability measures f�dgd2D is known to
the analyst (possibly up to unknown parameters).1 Accordingly, she seeks Q
satisfying, for the given f�dgd2D,

� (a) =
X
d

X
A

Q (d)�d(A) 1d(A)=a, (1.1)

for all alternatives a. Then empirical frequencies are rationalized by the
heterogeneity in decision rules described by Q. Of particular interest is the
set of all rationalizing Qs (the sharp identi�ed region).
The above model is general in that it covers the bulk of the discrete

choice literature where various special cases are adopted;2 for example, the
traditional assumption (McFadden 1974) that the menu corresponding to
each choice is observed corresponds to the special case where, for each d,
�d(Ad) = 1 for some Ad. However, data about menus that would support
knowledge of the conditional probabilities �d are often unavailable (see Man-
ski (1977) and the overviews and many references in Barseghyan et al (2021,
pp. 2016-2017, 2041-2043) and Azrieli and Rehbeck (2023)). Notably, deci-
sion models based on consideration sets (Abaluck and Adams-Prassl 2021,
Cattaneo et al 2020, Manzini and Mariotti 2014, Masatlioglu et al 2012) or
rational inattention (Caplin et al 2019) view choices as made from subjective
menus, thus arguing against their observability.3 One is led to the concern

1Filiz-Ozbay and Masatlioglu (2023) call this a random-choice model (RCM), de�ned
by a probability distribution over a collection of choice functions (potentially irrational).
They axiomatize a speci�c class of RCMs under the assumption of rich stochastic choice
data.

2We are ignoring covariates that often appear in this literature, and that could be
added below, because they are not germane to our contribution. We adopt a streamlined
formulation in order to maximize transparency of the theoretical point of this paper.

3To be clear, we use "menu" to refer to the set from which an alternative is chosen
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that conclusions about the identi�ed set of measures Q that are based on
(1.1) sometimes rely on ad hoc assumptions about menus.
An objective in this paper is to robustify the above model by incorporat-

ing the analyst�s imperfect knowledge about menus. One alternative to the
perfect information assumption is complete ignorance about menus - "any-
thing goes" for speci�cations of �ds. However, in general, one would expect
there to be partial information about the menu process which, if exploited,
would permit sharper identi�cation. Therefore, we admit a range of assump-
tions about the analyst�s information that are intermediate between complete
ignorance and perfect knowledge. In all cases, we show (Theorem 2.1) that
the implied identi�ed set of distributions consists of all measures Q satisfy-
ing a �nite set of linear inequalities and hence forms a polytope (a convex
set with �nitely many extreme points); in particular, it is computationally
tractable.
Our formulation uses convex (or supermodular) capacities and their cores.

(The appendix collects the few basic de�nitions and facts regarding capac-
ities that are used below; a very accessible and comprehensive reference is
Grabisch (2016).) Capacities are set functions that generalize probability
measures in order to permit a role in the representation of beliefs for lim-
ited information and the resulting limited con�dence in any single probability
measure - in other terms, uncertainty about probabilities. They arise in deci-
sion theory, notably in Schmeidler�s (1989) Choquet expected utility theory,
where convexity of the capacity is identi�ed with aversion to such uncertainty
and where convexity characterizes the Choquet models that conform also to
multiple-priors utility (Gilboa and Schmeidler 1989).4 For our purposes, the
key technical feature of convex capacities is that "the core of a mixture of ca-
pacities equals the mixture of their cores" (see (A.4) for a formal statement).
Given our formulation, this property leads to a short transparent (indeed
elementary) proof of our theorem that applies to and uni�es all of our spec-
i�cations. We view this simplicity and the associated epistemic perspective
as a strength and a contribution.
The scope of our results merits emphasis. Thus far we have interpreted

by maximizing preference or by applying another decision rule. Consequently, it may be
a strict subset of the objective feasible set, (for example, a consideration set), that is
determined by the individual�s cognitive deliberation process and is unobservable to the
analyst.

4Convex capacities, or equivalently their conjugates, known as 2-alternating, are im-
portant also in statistical theory (in proving an extension of the Neyman-Pearson Lemma
(Huber and Strassen 1973) and in supporting a version of Bayes�theorem for capacities
(Wasserman and Kadane 1990). They appear also in cooperative game theory as charac-
teristic functions. However, the epistemic interpretation is a better �t here.
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the paper as addressing heterogeneity in choice assuming heterogeneity in
decision rules and the unobservability of menus. However, with suitable rein-
terpretation of the symbols in the formal model, Theorem 2.1 applies also
to other contexts where one seeks the identi�cation of a heterogeneous char-
acteristic of prime interest that is robust to other unobservables. Two such
settings are (see section 3): (i) Identi�cation of the distribution of threshold
levels in a population of satis�cing decision makers given their choices but
where individuals di¤er in the order in which they consider alternatives. (ii)
Identi�cation of the distribution of e¤ort in a population of workers who share
common observable characteristics (e.g. education and experience) and who
work independently, given the empirical frequency distribution of outputs
but where other factors that may in�uence output are poorly understood.

1.2 Related literature

First we relate our contribution to some recent papers in discrete choice (and
related econometrics) that also weaken a priori assumptions about menus.
Barseghyan et al (2021) study identi�cation in a random utility model where
the distribution of menus in the population is unknown. Two relatively minor
di¤erences from our model are that: they assume preference maximization
(particularly, Sen�s � condition) rather than general decision rules, and they
assume that all menus of size at least �, (� � 2), a parameter speci�ed by
the analyst, are conceivable for any individual conditional on her preference
order, while we allow the set of conceivable menus to be arbitrary. (An exam-
ple in the Supplementary Appendix illustrates that admitting some singleton
menus can a¤ect identi�cation.) More importantly, they deal only with the
case of complete ignorance of the menu process, for which their characteri-
zation of the sharp identi�ed set corresponds (apart from their inclusion of
covariates) to our complete-ignorance result in Theorem 2.1.5 This di¤er-
ence from the present paper is re�ected in a di¤erence in proofs. Barseghyan
et al (2021) applies the theory of random sets. This approach is limiting
because, as is well known, each random set can be identi�ed with a belief
function which is a very special kind of convex capacity that precludes many
of the richer information structures (those short of complete ignorance) that
are accommodated in our theorem. Lu (2022) assumes that all conceivable
menus are bounded above and below in the sense of set inclusion, and that
the bounding menus are known. He uses the latter, and the assumption
that decision rules satisfy Sen�s �, to describe a superset of the identi�ed
region. In contrast, our conditions on Q are both necessary and su¢ cient for

5Minor di¤erences are described following the statement of our theorem in section 2.3.
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Q to rationalize the data, thus yielding the sharp identi�ed region. Azrieli
and Rehbeck (2023) also study what can be learned from aggregate choice
frequencies, but with several di¤erences from the present paper. A major
di¤erence is that they assume that the marginal empirical distributions of
both menus and choices are known (constitute the data). In their study of
random utility models, they assume that menus are homogeneous across de-
cision makers, (that is, the distribution of menus does not depend on the de-
cision rule), while we allow for correlation between menus and decision rules.
Where menus are based on consideration one would expect them to depend
on preference (or decision rule), as in the applied papers by Goeree (2008),
and Abaluck and Adams-Prassl (2021). An example in the Supplementary
Appendix shows that menu-homogeneity can strictly shrink the sharp iden-
ti�cation region. Regarding proof arguments, they also highlight their use
of "known properties of the core," though these do not not include the key
property that we exploit here, and they borrow more from cooperative game
theory than from decision theory and thus do not emphasize epistemics in
their interpretations. Further, their proofs (speci�cally for their Proposition
9) use not only core properties but also network �ow arguments (based on
a version of Hall�s marriage theorem), while we use only the single mixture
property of the core noted above.
Dardanoni et al (2020) also explore what can be inferred from aggregate

choice data, though their focus is on cognitive heterogeneity rather than on
preference (or decision rule) heterogeneity. Individuals di¤er in cognitive
"type" and, given an objective feasible set, they arrive at di¤erent consid-
eration sets (menus in our terminology); further, they do so in a way that
conforms to speci�c functional forms - the "consideration capacity model"
(which limits the cardinality of the consideration set) or the "consideration
probability model" (Manzini and Mariotti 2014). In the section most closely
related to our paper, where preferences are unobservable and heterogeneous,
they assume that choices are observed frommultiple "occasions" across which
both the feasible set and cognitive heterogeneity are stable. With this rich
dataset and functional form restrictions they prove point identi�cation of the
distribution of cognitive types in the consideration capacity model. Roughly
speaking, from the perspective of our formal framework, they severely re-
strict the distribution of decision rules and aim at identi�cation of the menu
formation process (�d), which re�ects the distribution of cognitive type. Un-
surprisingly, their proof arguments are much di¤erent than ours.
Doval and Eilat (2023) study the setting where the analyst knows the

marginal over an agent�s actions and the prior over states of the world, but
does not know the distribution of actions given realizations of the states
of the world. They ask when two such marginals (over actions and states,
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similar to the dataset in Azrieli and Rehbeck 2023) can be rationalized (in the
sense of a Bayes correlated equilibrium) as the outcome of the agent learning
something about the state before taking an action. Their characterization
result is two systems of linear inequalities that are necessary and su¢ cient
for the dataset to be consistent with a Bayes correlated equilibrium. One of
these can be established using our "mixture of cores" property. Their proof
relies partly on network �ow arguments.
Galichon and Henry (2011) are, to the best of our knowledge, the �rst to

demonstrate the usefulness of convex capacities for characterizing partially
identi�ed sets. Their context, which di¤ers from ours, is the identi�cation
of structural parameters in models with normal form games having multiple
mixed strategy equilibria and where little is understood about selection. An-
other di¤erence is that they do not use the "mixture of cores" property that
is central to this paper.

2 Robust identi�cation

2.1 Preliminaries

The (�nite) universal set of alternatives is X, and the set of probability dis-
tributions or measures on X is denoted �(X). Each individual in a �nite
population faces a menu, a subset of X, from which she chooses one alter-
native. The collection of all "relevant" menus is denoted A, with generic
element A. The collection A is a primitive, determined by the analyst. An-
other primitive is a �nite set D of decision rules, where, for each d in D,
d (A) denotes the alternative that d chooses from the menu A in A. We
do not impose any requirements on decision rules, for example, they need
not be derived from preference maximization. The data to be explained are
represented by � 2 �(X), the empirical frequency distribution of chosen
alternatives across the population.
The analyst�s view of the menu formation process determines what consti-

tutes an "explanation." We assume that she is certain that only menus in A
are relevant, but otherwise she has limited understanding of how menus are
determined; in particular, she cannot be con�dent in any single conditional
probability distribution over menus �d 2 �(A), which suggests modeling via
a set of conditional distributions. These sets are not "data", but rather are
subjective, chosen by the analyst, in a way that captures her limited con�dence
and desired robustness much as sets of priors are interpreted in the maxmin
model of decision-making (Gilboa and Schmeidler (1989)). We proceed in
this way, though with a slight twist as explained next.
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Let
Cd = fd (A) : A 2 Ag. (2.1)

Thus Cd denotes the set of all alternatives that can be chosen by d for some
menu. For a given d, the analyst can be sure that an element of Cd will be
selected, but since the choice depends on the menu, her limited knowledge
of menus a¤ects her view of which choice is associated with d. For any given
distribution over menus �d 2 �(A), induced beliefs over alternatives are
given by �d 2 �(Cd), where

�d (a) = �d (fA 2 A : d (A) = ag) , for every a 2 X. (2.2)

Using �d, (1.1) implies that

� (a) =
X
d

Q (d) �d(a), for every a 2 X, (2.3)

where menus have been eliminated and distributions over alternatives are
described by both the empirical measure � and by the "explanatory" mea-
sures f�dg. To proceed, we adopt as the benchmark notion of an explanation
of � that "(2.3) is satis�ed by f�dg," thus replacing "(1.1) is satis�ed by
f�dg." In fact, we describe later (section 2.3) why the two benchmarks lead
to identical results in the present discrete-choice context. However, in other
contexts such as in the e¤ort example in section 3 there may be no obvious
counterpart of (1.1), while the model based on (2.3) is applicable.

2.2 Rationalization

We de�ne what it means for a measure Q over decision rules to rationalize
the empirical measure �. In the extreme case where the analyst knows the
distributions over menus this is expressed by (2.3) using the known condi-
tionals f�dg. One can capture the other extreme of complete ignorance by
requiring that (2.3) is satis�ed for some conditionals f�dg, restricting them
only to re�ect certainty that d chooses an element in Cd, that is, �d 2 �(Cd)
for every d. The associated robustness may be desirable but comes with
costs (that we formalize below). First, if "anything goes," then the identi�ed
region for any given data � is large. Second, with such weak maintained
assumptions, (almost) every � can be rationalized by some Q. Consequently,
and also because there are situations in which there exists partial informa-
tion about the menu process, we propose a model that also accommodates
intermediate situations.
To model the presence of some information, we assume that, for each

d, only distributions �d that lie in the set Rd � �(Cd), determined by the
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analyst, are deemed relevant. This leads to the following de�nition: Say that
Q 2 �(D) rationalizes � given fRdg if there exists �d 2 Rd for all d, such
that

� (a) =
X
d2D

Q (d) �d(a) for all a 2 X: (2.4)

Perfect information is the special case where each Rd is a singleton. More
interesting speci�cations follow.6

Complete ignorance: Let Rd = �(Cd) for each d as indicated above.

�-contamination: For each d, let b�d 2 �(Cd) be a focal probability dis-
tribution over alternatives, perhaps the analyst�s best "point estimate," but
one in which she may not have complete con�dence. As a re�ection of her
incomplete con�dence she entertains as possible all contaminations of b�d of
the form

�d = (1� �) b�d + �e�d,
where e�d is any measure on Cd and where 0 � � � 1 is a parameter to be
speci�ed by the analyst. That is, let

Rd = f�d : �d = (1� �) b�d + �e�d; e�d 2 �(Cd)g (2.5)

= (1� �) b�d + ��(Cd) .

The extremes � = 0; 1 correspond respectively to the complete con�dence
and complete ignorance models respectively. Further, it is easy to see that
Rd grows larger in the sense of set inclusion as � increases in [0; 1]. This
suggests the interpretation of decreasing con�dence (or increasing ignorance)
as � increases.
The "�-contamination" model has been used frequently in robust statistics

(e.g. Huber (1964), Huber and Ronchetti 2009, Wasserman and Kadane
1990), and also in decision theory and its many applications where it is a
useful parametric specialization of the set of priors appearing in multiple-
priors utility (Gilboa and Schmeidler 1989).

Variation neighborhood: For any p0 and p in �(Cd), de�ne

�d (p
0; p) = sup

K�Cd
j p0 (K)� p (K) j .

6They are all well-known in both robust statistics and in decision theory. We have
borrowed them and their properties described later from Wasserman and Kadane (1990).
However, we have not seen the last four used previously in the present context.
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Fix a reference/focal measure Pd on Cd and � > 0, and let

Rd = fpd 2 �(Cd) : �d (pd; Pd) < �g. (2.6)

Interval beliefs: Let p�d and p�d be measures (not probability measures) on
Cd, satisfying

p�d (�) � p�d (�) and 0 < p�d (Cd) < 1 < p�d (Cd) ,

and de�ne

Rd = fpd 2 �(Cd) : p�d (�) � pd (�) � p�d (�) on Cdg.

In the special case
p�d = adPd and p�d = bdPd,

where ad < 1 < bd and Pd is a (�xed) probability measure on Cd, one obtains

Rd = fpd 2 �(Cd) : adPd � pd � bdPdg

2-dimensional beliefs: Let P 1d and P
2
d be two distinct probability measures

on Cd. The analyst views these measures and all averages (mixtures) as the
set of relevant probability laws. Accordingly,

Rd = f�P 1d + (1� �)P 2d : 0 � � � 1g.

In all cases, the identi�ed set is (weakly) smaller than the identi�ed set
under complete ignorance. More generally, it shrinks if con�dence increases
in the sense that each set Rd shrinks; this happens, for example, if � is re-
duced in the �-contamination speci�cation or in the variation neighborhood
speci�cation. (Similarly, if each set of alternatives Cd shrinks.) It is easy
to see also that an increase in con�dence shrinks the set of empirical mea-
sures � that can be rationalized by some Q. For example, in the absence of
any con�dence (complete ignorance), every � with support in [dCd can be
rationalized by some Q, while in the �-contamination speci�cation � can be
rationalized only if it can be expressed as a mixture (1� �) b� + �e� where b�
is rationalizable under complete con�dence (� = 0) and e� is rationalizable
under zero con�dence (� = 1), that is, if

� 2 (1� �) ch (fb�dg) + ��([dCd) ,

where ch denotes �convex hull.�
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2.3 A characterization

The main question to be addressed is "which measures Q can rationalize �
given fRdg?" We provide a comprehensive answer under the assumption that
each Rd is the core of a convex capacity, that is, for each d,7

Rd = core (�d) , for some �d convex. (2.7)

Though limiting, (2.7) is of interest in light of the role of convex capacities
in decision theory and in statistics (as mentioned in the introduction); and
we note also that it is satis�ed by all of the preceding speci�cations.

Theorem 2.1. Let fRdg be such that, for each d , Rd = core (�d) for some
convex capacity �d on Cd. Then Q 2 �(D) rationalizes � given fRdg if and
only if

� (K) �
X
d2D

Q (d) �d (K) for all K � X. (2.8)

In particular, this equivalence applies to the �ve special cases of fRdg de-
scribed above where the corresponding capacities �d are given by:

ignorance �d (K) = 1Cd�K

contamination : �d (K) = (1� �) b�d (K \ Cd) + �1Cd�K

variation nbhd �d (K) =
maxfPd (K \ Cd)� �; 0g if Cd 6� K

and = 1 if Cd � K

interval beliefs �d (K) =
maxfp�d (K \ Cd) ; p�d (K \ Cd)� �dg

�d = p�d (Cd)� 1

2-dim beliefs �d (K) = minfP 1d (K \ Cd) ; P 2d (K \ Cd)g

The main message is that the sharp identi�ed set of measures Q is the
set of solutions Q to the �nite set of linear inequalities (2.8), and constitutes
a (convex) polytope. The proof is extremely simple.

Proof: Under the assumption (2.7), rationalizability amounts to the state-
ment that

� 2
X
d

Q (d) core (�d) ;

7Since a convex capacity is uniquely determined by its core (see (A.3)), �d is necessarily
unique. Another point (see the appendix), is that a capacity �d on Cd, hence satisfying
�d(Cd) = 1, can be uniquely extended to a capacity on all of X, just as a probability
measure on Cd can be so extended.
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while condition (2.8) is the statement that

� 2 core
 X

d

Q (d) �d

!
.

However, by (A.4), the core of the mixture equals the mixture of the cores,
which proves the required equivalence.
For the assertions regarding the special cases, one need only show that

in each case the indicated capacity �d is convex and that it has core equal
to the corresponding set Rd. But these are well-known facts (Huber and
Strassen 1973, Wasserman and Kadane 1990); for 2-dimensional beliefs, see
also Topkis (1998, Lemma 2.6.4). �
Remark: Theorem 2.1, is, in fact, equivalent to Theorem 4 of Strassen
(1965) when specialized as here so that all sets are �nite. An important
di¤erence is our drastically simpler elementary proof. We view the simpler
proof as signi�cant not as a mathematical contribution, but rather because
it enhances transparency and accessibility of the theorem which, we believe,
may help to expose and promote it as a useful tool for economists. Another
value-added over Strassen is our demonstration of the theorem�s usefulness
as outlined above.8. Finally, our proof uses convexity of the �ds only to
justify applying the mixture-linearity property of their cores, that is, the
characterization provided by (2.8) is valid also if convexity is replaced by
this mixture-linearity. In this sense, therefore, since Strassen�s Theorem 4 as-
sumes convexity, our result is (strictly) more general (albeit given �niteness).
Tijs and Branzei (2002) and Bloch and de Clippel (2010) give other assump-
tions, besides convexity, that imply mixture-linearity of cores.9 Indeed, it
follows from the latter paper that (generically) there exists a partition of the
set of all capacities having nonempty cores such that the mixture-linearity
property is satis�ed if (and only if) all capacities lie in the same equivalence
class. The set of convex capacities is one such equivalence class, but there are
others and the theorem applies to each of them as well. It remains for future
work to determine if any of the other equivalence classes provide alternatives
to convexity that are interesting in our setting.

The following discussion provides additional perspective on the theorem
and its value-added. Consider �rst the special case of complete ignorance.

8Doval and Eilat (2023) apply Strassen�s Theorem 3, in addition to network �ow argu-
ments, in their proofs.

9They work in the context of cooperative games where capacities are typically not
normalized to assign a common �xed value to the universal coalition, and hence they refer
to additivity rather than mixture-linearity of the core.
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The associated capacities, written more fully, are given by

�d (K) =

�
1 Cd � K
0 Cd 6� K

The epistemic interpretation is that Cd is certain but there is complete igno-
rance within Cd. The condition (2.8) characterizing rationalizability special-
izes to the set of inequalities

� (K) � Q (fd 2 D : Cd � Kg) for all K � X. (2.9)

Similar conditions have appeared previously in Barseghyan et al (2021, The-
orem 3.1) and in Azrieli and Rehbeck (2023). As indicated in the intro-
duction, the latter addresses di¤erent questions, and the former assumes a
designated minimum size for menus. The ignorance special case admits al-
ternative proofs. For one, the associated capacities �d are belief functions
and hence the result for that case can be derived by using random set the-
ory, which is the approach taken by Barsheghyan et al (2021). Alternatively,
it follows immediately from the well-known structure of the core of a belief
function (Dempster (1967) or Wasserman (1990, Theorem 2.1)). Moreover,
these alternatives apply also to the �-contamination speci�cation since its �ds
are belief functions. However, they do not apply when the �ds are convex but
not belief functions, such as in the other three special cases or at the level of
generality in the theorem.
To illustrate further the greater richness provided by admitting capac-

ities that are convex rather than only belief functions, consider additional
speci�cations that extend those given in the theorem. As de�ned above the
�-contamination speci�cation models an analyst who is concerned that the
focal measure may be contaminated by any probability measure. In some
circumstances, however, only a subset of contaminations may be relevant
(in statistics see Berger and Berliner (1986) and Moreno and Cano (1991),
and in decision theory see Kopylov (2016)). For example, they might be re-
stricted to lie in a variation neighborhood (2.6), thus leading to the following
generalization of (2.5):

Rd = (1� �) b�d + �R0
d,

where R0
d � �(Cd) is de�ned as in (2.6), for some radius �0 6= � about �0d.

Then Rd equals the core of the convex capacity (1� �) b�d + �� 0d, where �
0
d

is the convex capacity whose core is R0
d, and thus is accommodated by the

theorem. Similarly for the further generalization whereby

Rd = (1� �) bRd + �R0
d,
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where bRd is the variation neighborhood about b�d with radius b� (with asso-
ciated convex capacity b�d). The interpretation is that there are two focal
measures b�d and �0d, but each is known (or believed to be valid) only up to
small perturbations of size b� and �0 respectively, and where the two hypothe-
ses have prior subjective probabilities (1� �) and �. Note that the theorem
applies to this speci�cation because, by the mixture linearity property (A.4),

Rd = (1� �) bRd + �R0
d

= (1� �) core (b�d) + �core (� 0d)

= core ((1� �) b�d + �� 0d) � core (�d) .

However, none of �d, b�d and � 0d is a belief function and therefore this speci-
�cation is not covered by the random set theory approach in Barseghyan et
al (2021).

Application of the theorem requires that when considering whether to
adopt a speci�cation of interest for the Rds one is able to check whether it
satis�es (2.7). For the particular speci�cations addressed in the theorem, the
literature has con�rmed (2.7). More generally, an important observation is
that, given fRdg, then, for each d, there is only one candidate for a suitable
capacity �d, namely the lower probability corresponding to Rd and de�ned
by

�d (K) = inff� (K) : � 2 Rdg, for all K � X.

In other words, (2.7) is equivalent to the assumption that the lower proba-
bility capacity is convex and has Rd as its core. (This follows directly from
(A.3).) Convexity of �d can be checked, in principle, by using its de�nition
(A.1) or any of its equivalent characterizations (Grabisch (2016, Theorem
3.15), for example). Since Rd � core (�d) follows from the de�nition of lower
probability, equality amounts to the requirement thatRd be su¢ ciently large
in the sense that, for every � 2 �(Cd),

� (K) � �d (K) for all K � Cd implies � 2 Rd.10

Related is the question what can be done if one drops the assumption
(2.7) entirely.11 In fact, it is straightforward to show that the counterpart

10Alternatively, given convexity, one can compute the cores by using the greedy al-
gorithm Ichiishi (1981), or the algorithm in Chambers and Melkonyan (2005) that uses
information about willingness to buy or sell and thus may help the analyst to calibrate
parameters like �.
11If the sets fCdg are disjoint, then, for any fRdg, there is point identi�cation - � is

rationalized by the unique measure Q given by Q (d) = � (Cd) for all d.
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of (2.8) given below is necessary for rationalizability given fRdg: If Q 2
�(D) rationalizes �, then, for the lower probability capacity �d, (using Rd �
core (�d) and (A.5)),

� 2
X
d

Q (d)Rd �
X
d

Q (d) core (�d)

� core

 X
d

Q (d) �d

!
=)

� (K) �
X
d

Q (d) �d (K \ Cd) for all K � X.

The theorem is relevant also to a rationalizability notion such as (1.1),
suitably modi�ed, where menus appear explicitly. Modify (1.1) by allowing
�d, for each d, to vary over a set �d � �(A), where �d is determined by the
analyst. (For example, �d = �(A) would model complete ignorance about
menus.) Say that Q 2 �(D) menu-rationalizes � given f�dg if there exists
�d 2 �d for all d, such that

� (a) =
X
d2D

X
A2A

Q (d)�d(A) 1d(A)=a; for all a 2 X. (2.10)

Each �d induces a distribution �d on Cd as in (2.2); let Rd be the set of
all such distributions �d as �d varies over �d. Then it is immediate that
menu-rationalization of � given f�dg implies rationalization (2.4) given fRdg.
Moreover, if �d is the core of a convex capacity on A, thenRd is the core of a
convex capacity �d on Cd (see appendix). Hence (2.8) is necessary for menu-
rationalizability by Q. To prove su¢ ciency, suppose that Q rationalizes �
given fRd = core (�d)g and de�ne f�dg � �(A) as follows: for each d and
�d 2 Rd, and for each a 2 Cd, select one menu Aa;d satisfying d (Aa;d) = a,
and de�ne

�d (A) =

�
�d (a) A = Aa;d
0 A 6= Aa;d

Then �d is a probability measure becauseX
A2A

�d (A) =
X
a2Cd

�d (a) = �d (Cd) = 1.

Let �d be the set of all such �ds as �d varies over Rd. Then Q menu-
rationalizes � given f�dg because

�d (fA 2 A : d (A) = ag) = �d (a) =)
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X
d

Q (d)
X
A2A

�d (A)1d(A)=a =
X
d

Q (d) �d (a) = � (a) .

(Note that under complete ignorance (Rd = �(Cd) or �d = �(A)), the
above proves the equivalence of the two notions of rationalizability.)

3 Concluding illustrations of scope

We conclude by describing two additional settings where our theorem can
be applied to characterize the robust identi�cation of heterogeneity. The
�rst is an instance of our choice model where decision rules are not based
on preference maximization. The second, which is not directly connected to
choice, concerns the identi�cation of (unobservable) heterogeneous e¤ort.

3.1 Satis�cing

There is a population of satis�cing decision makers whose aspiration thresh-
olds may di¤er. They each choose an alternative from the set X and they
agree that the value of alternatives is described by v : X 7! R. However,
individuals di¤er in two respects. First, aspiration thresholds di¤er; the set
of distinct thresholds is V. Second, individuals di¤er in the order in which
they consider alternatives (this may be a subjective choice or exogenously
imposed). Each sequential procedure follows a strict total order > on X: the
individual chooses the >-�rst alternative with a value at least as large as her
threshold v 2 V, and if there are no such "satisfactory" alternatives then she
chooses the >-last element in X. The empirical frequency of choices � is ob-
served, but both aspiration levels and orders > are unobserved. Theorem 2.1,
suitably reinterpreted, can be used to partially identify the distribution of
aspiration levels while respecting limited knowledge (or complete ignorance)
of the distribution of orders >.
Similar applications can be made to other problems of choice with frames

(Salant and Rubinstein 2008) where frames vary across individuals and are
unobserved by the analyst.

3.2 Identifying e¤ort

Consider a population of workers with common observable characteristics
(e.g. education and experience) who work independently. Each produces
a homogeneous output in quantity represented by an element of X.12 The
12To make clear the connection to the main choice model, we use the same symbols,

though with di¤erent interpretations.
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empirical frequency distribution of outputs is given by � 2 �(X). Hetero-
geneity in output is attributed to di¤erences in unobservable characteristics.
The �rst unobservable is e¤ort - there are �nitely many e¤ort levels d 2 D.
The other unobservable is "everything else." The analyst may not be able
to describe these other factors precisely, or even at all. However, she takes
a stand on the set of their possible output consequences. Formally, for each
e¤ort d, denote by Cd � X the set of outputs possible given the e¤ort level
and given what may ensue from "everything else." The analyst speci�es the
sets Cd, but is ignorant about likelihoods within these sets.13

With this reinterpretation, rationalizability of � is well-de�ned, and The-
orem 2.1 can be applied to yield the (computationally tractable) sharp iden-
ti�ed set of measures Q over e¤ort levels.
The rationalizability notion (2.10) could also be accommodated by intro-

ducing a parameter � 2 � to represent "everything else," and, for each d,
a production function f such that the pair (d; �) yields output f (d; �), and
Cd = ff (d; �) : � 2 �g. Ignorance about � would be captured by admitting
any distribution �d over � in the counterpart of de�nition (2.10). (Roughly,
� would play the role of the set of menus A above.) However, such a formu-
lation involving production functions f and probability distributions over �
is arguably problematic in situations where the analyst cannot even conceive
of what is included in "everything else."

A Appendix: Basic facts about capacities

For any �nite set X, � is a capacity on X if � : 2X ! [0; 1], � (?) = 0,
� (X) = 1 and �(K 0) � �(K) whenever K 0 is a superset of K. � is convex if,
for all subsets K 0 and K,

�(K 0 [K) + �(K 0 \K) � �(K 0) + �(K). (A.1)

� is a belief function if, for all n, and for all subsets K1; :::; Kn,

�
�
[nj=1Kj

�
�

P
? 6=J�f1;:::;ng

(�1)jJ j+1 � (\j2JKj) . (A.2)

If one restricts n to be 2, then one obtains the condition de�ning convexity.
Hence every belief function is convex. (Convexity is sometimes referred to as
monotonicity of order 2 while (A.2) is called in�nite or total monotonicity.)

13The assumption that Cd can be speci�ed even though "everything else" is poorly
understood brings to mind Maskin and Tirole (1999) who argue that optimal contracts
survive even with unforeseen contingencies when agents can forecast future payo¤s.
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A more transparent and equivalent de�nition of a belief function is that � is
induced by a random set.14

Let C be a subset of X and � a capacity on C (hence � (C) = 1). Then
� can be viewed also as a capacity on X by identifying � with the capacity
� 0 on X de�ned by

� 0 (K) = � (K \ C) for all K � X.

Further, � 0 is convex if and only if � is convex. We often identify � and � 0

and do not distinguish them notationally.
For any capacity � on X, its core is the set of all dominating probability

measures, that is,

core (�) = fp 2 �(X) : p (K) � � (K) for all K � Xg .

If � is convex, then its core is nonempty and � can be recovered from its core
as its lower bound or envelope:

� (K) = minfp(K) : p 2 core (�)g. (A.3)

If � = p is a probability measure, then it is convex and core (�) = fpg.
If � and � 0 are two convex capacities on X, and if 0 � � � 1, then the

mixture �� + (1� �) � 0 is also a convex capacity and its core satis�es

core (�� + (1� �) � 0) = �core (�) + (1� �) core (� 0) . (A.4)

(See Danilov and Koshevoy (2000, p. 9) or Grabisch (2016, p. 156).) This
"mixture linearity" of the core is the key property that we exploit to prove
our theorem. Elsewhere, we also make use of the following weaker, and
elementary, property that applies to any (not necessarily convex) capacities

core (�� + (1� �) � 0) � �core (�) + (1� �) core (� 0) . (A.5)

Let  be a convex capacity on A, � = core ( ) and d : A �! X. De�ne
the (convex) set R of all measures �� 2 �(X), where

�� (K) = �
�
d�1 (K)

�
, for all K � X,

and de�ne the set function � on X by

� (K) =  
�
d�1 (K)

�
, for all K � X.

14Dempster (1967) and Nguyen (1978) are two early references describing the connection
of random sets to belief functions. See also Nguyen (2006).
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Then � is a convex capacity and R = core (�). (Convexity follows from
verifying (A.1), and R � core (�) is immediate. Let fKjg be any chain of
subsets of X. Then fd�1(Kj)g is a chain in A. Since  is convex, there exists
�� 2 core ( ) = � such that �� (d�1(Kj)) =  (d�1 (Kj)), for all j (Choquet
1953). Thus ��� (Kj) = � (Kj) for all j. Apply Grabisch (2016, Theorem
3.15) to conclude that R = core (�).)
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