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Abstract

Consider aggregate choice data from a population with heterogene-
ity in both preferences (or more general decision rules) and in menus,
and where the analyst has limited information about how menus are
distributed across the population. We determine what can be inferred
from aggregate data about the distribution of preferences by identify-
ing the set of all distributions that are consistent with the preceding.
Our main theorem strengthens and generalizes existing results on such
identi�cation and provides an alternative analytical approach (using
convex capacities) to study the problem.

Keywords: discrete choice, partial identi�cation, unobserved hetero-
geneity, convex capacities, core
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1 Introduction

1.1 Motivation and outline

Consider the problem of explaining the distribution of choices in a heteroge-
neous population. Denote by � the probability distribution of chosen alter-
natives, the data. A common approach is to posit heterogeneity in decision
rules (or underlying preferences) and possibly also in the menus from which
alternatives are chosen. A decision rule d speci�es the alternative d (A) cho-
sen from each menu A; the set of all decision rules is D. An individual with
decision rule d faces menu A with probability �d (A). Decision rules are dis-
tributed according to a probability measure Q that is to be inferred from
the data, while the collection of probability measures f�dgd2D is known to
the analyst (possibly up to unknown parameters).1 Accordingly, she seeks Q
satisfying, for the given f�dgd2D,

� (a) =
X
d

X
A

Q (d)�d(A) 1d(A)=a, (1.1)

for all alternatives a. Then empirical frequencies are rationalized by the
heterogeneity in decision rules described by Q. Of particular interest is the
set of all rationalizing Qs (the sharp identi�ed region).
The above model is general in that it covers the bulk of the discrete

choice literature where various special cases are adopted;2 for example, the
traditional assumption (McFadden 1974) that the menu corresponding to
each choice is observed corresponds to the special case where, for each d,
�d(Ad) = 1 for some Ad. However, data about menus that would support
knowledge of the conditional probabilities �d are often unavailable (see Man-
ski (1977) and the overviews and many references in Barseghyan et al (2021,
pp. 2016-2017, 2041-2043) and Azrieli and Rehbeck (2025)). Notably, deci-
sion models based on consideration sets (Abaluck and Adams-Prassl 2021,
Cattaneo et al 2020, Manzini and Mariotti 2014, Masatlioglu et al 2012) or
rational inattention (Caplin et al 2019) view choices as made from subjective
menus, thus arguing against their observability.3 One is led to the concern

1Filiz-Ozbay and Masatlioglu (2023) call this a random-choice model (RCM), de�ned
by a probability distribution over a collection of choice functions (potentially irrational).
They axiomatize a speci�c class of RCMs under the assumption of rich stochastic choice
data.

2We are ignoring covariates that often appear in this literature, and that could be
added below, because they are not germane to our contribution. We adopt a streamlined
formulation in order to maximize transparency of the main point of the paper.

3To be clear, we use "menu" to refer to the set from which an alternative is chosen
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that conclusions about the identi�ed set of measures Q that are based on
(1.1) sometimes rely on ad hoc assumptions about menus.
An objective of this paper is to robustify the above model by incorporat-

ing the analyst�s imperfect knowledge about menus. One alternative to the
perfect information assumption is complete ignorance about menus - "any-
thing goes" for speci�cations of �ds. However, in general, one would expect
there to be partial information about the menu process which, if exploited,
would permit sharper identi�cation. Therefore, we admit a range of assump-
tions about the analyst�s information that are intermediate between complete
ignorance and perfect knowledge. In all cases, we show (Theorem 2.1) that
the implied identi�ed set of distributions consists of all measures Q satisfy-
ing a �nite set of linear inequalities and hence forms a polytope (a convex
set with �nitely many extreme points); in particular, it is computationally
tractable.
Our formulation uses convex (or supermodular) capacities and their cores.

(The appendix collects the few basic de�nitions and facts regarding capac-
ities that are used below; a very accessible and comprehensive reference is
Grabisch (2016).) Capacities are set functions that generalize probability
measures in order to permit a role in the representation of beliefs for lim-
ited information and the resulting limited con�dence in any single probability
measure - in other terms, uncertainty about probabilities, often termed ambi-
guity. They arise in decision theory, notably in Schmeidler�s (1989) Choquet
expected utility theory, where convexity of the capacity is identi�ed with
aversion to such uncertainty and where convexity characterizes the Choquet
models that conform also to multiple-priors utility (Gilboa and Schmeidler
1989).4 For our purposes, the key technical feature of convex capacities is
that "the core of a mixture of capacities equals the mixture of their cores"
(see (A.4) for a formal statement). Given our formulation, this property
leads to a short transparent (indeed elementary) proof of our theorem that
applies to and uni�es all of our speci�cations. We view this simplicity and
the associated epistemic perspective as a strength and a contribution.
The scope of our results merits emphasis. Thus far we have interpreted

by maximizing preference or by applying another decision rule. Consequently, it may be
a strict subset of the objective feasible set, (for example, a consideration set), that is
determined by the individual�s cognitive deliberation process and is unobservable to the
analyst.

4Convex capacities, or equivalently their conjugates, known as 2-alternating, are im-
portant also in statistical theory (in proving an extension of the Neyman-Pearson Lemma
(Huber and Strassen 1973) and in supporting a version of Bayes�theorem for capacities
(Wasserman and Kadane 1990). They appear also in cooperative game theory as charac-
teristic functions. However, the epistemic interpretation is a better �t here.
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the paper as addressing heterogeneity in choice assuming heterogeneity in
decision rules and the unobservability of menus. However, with suitable
reinterpretation of the symbols in the formal model, Theorem 2.1 applies
also to other contexts where one seeks the identi�cation of a heterogeneous
characteristic of prime interest that is robust to other unobservables. A dual
interpretation addresses identi�cation of the distribution of menus given par-
tial (or complete) ignorance about the distribution of decision rules (section
2.1). Two additional reinterpretations are: (i) Identi�cation of the distrib-
ution of threshold levels in a population of satis�cing decision makers given
their choices but where individuals di¤er in the (unobserved) order in which
they consider alternatives (section 2.4). (ii) Identi�cation of the distribution
of e¤ort in a population of workers who share common observable charac-
teristics (e.g. education and experience) and who work independently, given
the empirical frequency distribution of outputs but where other factors that
may in�uence output are poorly understood (section 2.5).

1.2 Related literature

First we relate our contribution to some recent papers in discrete choice (and
related econometrics) that also weaken a priori assumptions about menus.
Barseghyan et al (2021) study identi�cation in a random utility model where
the distribution of menus in the population is unknown. Two relatively minor
di¤erences from our model are that: they assume preference maximization
(particularly, Sen�s � condition) rather than general decision rules, and they
assume that all menus of size at least �, (� � 2), a parameter speci�ed by
the analyst, are conceivable for any individual conditional on her preference
order, while we allow the set of conceivable menus to be arbitrary. An exam-
ple in the Supplementary Appendix illustrates that admitting some singleton
menus can a¤ect identi�cation.) More importantly, they deal only with the
case of complete ignorance of the menu process, for which their characteri-
zation of the sharp identi�ed set corresponds (apart from their inclusion of
covariates) to our complete-ignorance result in Theorem 2.1.5 This di¤er-
ence from the present paper is re�ected in a di¤erence in proofs. Barseghyan
et al (2021) applies the theory of random sets. This approach is limiting
because, as is well known, each random set can be identi�ed with a belief
function which is a very special kind of convex capacity that precludes many
of the richer information structures (those short of complete ignorance) that
are accommodated in our theorem. Lu (2022) assumes that all conceivable
menus are bounded above and below in the sense of set inclusion, and that

5Minor di¤erences are described following the statement of our theorem in section 2.3.
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the bounding menus are known. He uses the latter, and the assumption
that decision rules satisfy Sen�s �, to describe a superset of the identi�ed
region. In contrast, our conditions on Q are both necessary and su¢ cient for
Q to rationalize the data, thus yielding the sharp identi�ed region. Azrieli
and Rehbeck (2025) also study what can be learned from aggregate choice
frequencies, but with several di¤erences from the present paper. A major dif-
ference is that they assume that the marginal empirical distributions of both
menus and choices are known (constitute the data). In their study of ran-
dom utility models, they assume that menus are homogeneous across decision
makers, that is, the distribution of menus does not depend on the decision
rule, while we allow for such dependence. Where menus are based on con-
sideration one would expect them to depend on preference (or decision rule),
as in the applied papers by Goeree (2008), and Abaluck and Adams-Prassl
(2021). Regarding proof arguments, Azrieli and Rehbeck also highlight their
use of "known properties of the core," though these do not include the key
property that we exploit here, and they borrow more from cooperative game
theory than from decision theory and thus do not emphasize epistemics in
their interpretations. Further, their proofs (speci�cally for their Proposition
9) use not only core properties but also network �ow arguments (based on a
version of Hall�s marriage theorem), while we use only the mixture property
of the core noted above.
Dardanoni et al (2020) also explore what can be inferred from aggregate

choice data, though their focus is on cognitive heterogeneity rather than on
preference (or decision rule) heterogeneity. Individuals di¤er in cognitive
"type" and, given an objective feasible set, they arrive at di¤erent consid-
eration sets (menus in our terminology); further, they do so in a way that
conforms to speci�c functional forms - the "consideration capacity model"
(which limits the cardinality of the consideration set) or the "consideration
probability model" (Manzini and Mariotti 2014). In the section most closely
related to our paper, where preferences are unobservable and heterogeneous,
they assume that choices are observed frommultiple "occasions" across which
both the feasible set and cognitive heterogeneity are stable. With this rich
dataset and functional form restrictions they prove point identi�cation of the
distribution of cognitive types in the consideration capacity model. Roughly
speaking, from the perspective of our formal framework, they severely re-
strict the distribution of decision rules and aim at identi�cation of the menu
formation process (�d), which re�ects the distribution of cognitive type. Un-
surprisingly, their proof arguments are much di¤erent than ours.
Doval and Eilat (2023) study the setting where the analyst knows the

marginal over an agent�s actions and the prior over states of the world, but
does not know the distribution of actions given realizations of the states
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of the world. They ask when two such marginals (over actions and states,
similar to the dataset in Azrieli and Rehbeck (2025) can be rationalized in the
sense of a Bayes correlated equilibrium as the outcome of the agent learning
something about the state before taking an action. Their characterization
result is two systems of linear inequalities that are necessary and su¢ cient
for the dataset to be consistent with a Bayes correlated equilibrium. One of
these can be established using our "mixture of cores" property. Their proof
relies partly on network �ow arguments.
Galichon and Henry (2011) are, to the best of our knowledge, the �rst to

demonstrate the usefulness of convex capacities for characterizing partially
identi�ed sets. Their context, which di¤ers from ours, is the identi�cation
of structural parameters in models with normal form games having multiple
mixed strategy equilibria and where little is understood about selection. An-
other di¤erence is that they do not use the "mixture of cores" property that
is central to this paper.

2 Robust identi�cation

2.1 Rationalizability

The (�nite) universal set of alternatives isX, and the set of probability distri-
butions or measures on X is denoted �(X). Each individual in a �nite pop-
ulation faces a menu, a subset of X, from which she chooses one alternative.
The collection of all "relevant" menus is denoted A, with generic element
A. The collection A is a primitive, determined by the analyst. (Barseghyan
et al (2021) take A to be the set of all menus with cardinality at least 2.)
Another primitive is a �nite set D of decision rules, where, for each d in
D, d (A) denotes the alternative that d chooses from the menu A in A. We
do not impose any requirements on decision rules, for example, they need
not be derived from preference maximization. The data to be explained are
represented by � 2 �(X), the empirical frequency distribution of chosen
alternatives across the population.
The analyst�s view of the menu formation process determines what con-

stitutes an "explanation." We assume that she is certain that only menus in
A are relevant, but otherwise she has limited understanding of how menus
are determined; in particular, for every d, she cannot be con�dent in any
single conditional probability distribution over menus �d 2 �(A), which
suggests modeling via a set �d � �(A) of conditional distributions. These
sets are not "data", but rather are subjective, chosen by the analyst, in a way
that captures her limited con�dence and desired robustness much as sets of
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priors are interpreted in the maxmin model of decision-making (Gilboa and
Schmeidler (1989)).
Say that Q 2 �(D) rationalizes � given f�dg if, for all d, there exists

�d 2 �d such that

� (a) =
X
d

X
A

Q (d)�d(A) 1d(A)=a, for all a 2 X. (2.1)

Then empirical frequencies are rationalized by the heterogeneity in decision
rules described by Q. Of particular interest is the set of all rationalizing Qs
(the sharp identi�ed region).
The extreme case where the analyst knows the distribution over menus,

as in the standard literature centered on (1.1), is accommodated by taking
�d to be a singleton set for every d. The other extreme of complete igno-
rance about how menus are distributed, (as in Barseghyan et al (2021), for
example), is expressed by taking �d = �(A) for each d, whereby any dis-
tribution of menus is viewed as conceivable. The associated robustness may
be desirable but comes with costs (that we formalize below). First, if "any-
thing goes," then the identi�ed region for any given data � is large. Second,
with such weak maintained assumptions, (almost) every � can be rational-
ized by some Q (as clari�ed in the next subsection). Consequently, and also
because there are situations in which there exists partial information about
the menu process and less robustness is desired, we propose a model that
also accommodates intermediate situations. The moderation of complete ig-
norance takes the form that, for each d, only distributions of menus in �d are
conceivable. More fully, and what may not be as clear from the formalism,
for any pair of decision rules d and d0, any �d 2 �d is possible in conjunction
with any �d0 2 �d0. Also implied by the notion of rationalizability in (2.1)
is that every conceivable joint distribution of menus across all decision rules
is a product measure - the analyst is certain that the menu realization for
d does not a¤ect the marginal menu distribution for any other d0. This is
a feature also of the benchmark complete ignorance model (Barseghyan et
al (2021)), which is, after all, a special case. Further, such independence is
defensible in a range of situations. For example, where menus are consid-
eration sets determined by the subjective proclivities of individuals, there
would often, or arguably even typically, be little reason to postulate that the
realized consideration menu for d is informative about that for d0.
Finally, we point out that reinterpretation of the formal primitives D and

A renders the notion of rationalizability and the analysis to follow applicable
to additional settings where one seeks to characterize the robust identi�cation
of heterogeneity (see section 2.4 for a reinterpretation dealing with satis�cing
behavior). Here we outline a di¤erent example. Switch current interpreta-
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tions so that each d denotes a menu, each A denotes a decision rule (A maps
D into X), and d (A) denotes the alternative chosen from menu d given
the decision rule A (alternatively, one could write A (d) in place of d (A)).
Then the paper, including the main result Theorem 2.1 that characterizes
rationalizability, admits a dual interpretation as addressing identi�cation of
the distribution of menus given partial (or complete) ignorance about the
distribution of decision rules. We focus on the existing interpretation - the
identi�cation of the distribution of preferences (decision rules) - because of
the common presumption that preferences, unlike menus, might be expected
to be invariant across choice problems thus permitting predictions of choice
for other settings. However, though we do not pursue it further, the dual
analysis and identi�cation of menu formation, where menus are understood
as consideration sets, might be valuable along the lines indicated in the in-
troduction (Dardanoni et al 2020, Manzini and Mariotti 2014). For exam-
ple, it could help to discriminate empirically between alternative models of
consideration set formation, or to identify cognitive heterogeneity (suitably
de�ned).

2.2 Some speci�cations

Here we describe some particular speci�cations for the sets f�dg.6

Complete ignorance: Let �d = �(A) for each d as indicated above.

�-contamination: For each d, let b�d 2 �(A) be a focal probability distri-
bution over menus, perhaps the analyst�s best "point estimate," but one in
which she may not have complete con�dence. As a re�ection of her incom-
plete con�dence she entertains as possible all contaminations of b�d of the
form

�d = (1� �) b�d + �e�d,
where e�d is any measure on A and where 0 � � � 1 is a parameter to be
speci�ed by the analyst. That is, let

�d = f�d : �d = (1� �) b�d + �e�d; e�d 2 �(A)g (2.2)

= (1� �) b�d + ��(A) .
The extremes � = 0; 1 correspond respectively to the complete con�dence
and complete ignorance models respectively. Further, it is easy to see that

6They are all well-known in both robust statistics and in decision theory. We have
borrowed them and their properties described later from Wasserman and Kadane (1990).
However, we have not seen the last four used previously in the present context.
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�d grows larger in the sense of set inclusion as � increases in [0; 1]. This
suggests the interpretation of decreasing con�dence (or increasing ignorance)
as � increases.
The "�-contamination" model has been used frequently in robust statistics

(e.g. Huber (1964), Huber and Ronchetti 2009, Wasserman and Kadane
1990), and also in decision theory and its many applications where it is a
useful parametric specialization of the set of priors appearing in multiple-
priors utility (Gilboa and Schmeidler 1989).

Variation neighborhood: For any p0 and p in �(A), de�ne the distance
between them by

� (p0; p) = sup
A2A

j p0 (A)� p (A) j .

Fix a reference/focal measure Pd on A and �d > 0, and let

�d = fp 2 �(A) : � (pd; Pd) < �dg. (2.3)

Interval beliefs: Let p�d and p�d be measures (not probability measures) on
A, satisfying

p�d (�) � p�d (�) and 0 < p�d (A) < 1 < p�d (A) ,

and de�ne

�d = fpd 2 �(A) : p�d (�) � pd (�) � p�d (�) on Ag.

In the special case
p�d = adPd and p�d = bdPd,

where ad < 1 < bd and Pd is a (�xed) probability measure on A, one obtains

�d = fpd 2 �(A) : adPd � pd � bdPdg.

2-dimensional beliefs: Let P 1d and P
2
d be two distinct probability measures

on A. The analyst views these measures and all averages (mixtures) as the
set of relevant probability laws. Accordingly,

�d = f�P 1d + (1� �)P 2d : 0 � � � 1g.

In all cases, the identi�ed set is (weakly) smaller than the identi�ed set
under complete ignorance. More generally, it shrinks if con�dence increases
in the sense that each set �d shrinks; this happens, for example, if � is
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reduced in the �-contamination speci�cation or in the variation neighborhood
speci�cation. It is easy to see also that an increase in con�dence shrinks
the set of empirical measures � that can be rationalized by some Q. For
example, in the absence of any con�dence (complete ignorance), every �
with support in [dfd (A) : A 2 Ag can be rationalized by some Q,7 while
in the �-contamination speci�cation � can be rationalized only if it can be
expressed as a mixture (1� �) b�+�e� where b� is rationalizable under complete
con�dence (� = 0) and e� is rationalizable under zero con�dence (� = 1).
2.3 A characterization

The main question to be addressed is "which measures Q can rationalize �
given f�dg?" We provide a comprehensive answer under the assumption that
each �d is the core of a convex capacity, that is, for each d,8

�d = core (�d) , for some �d convex. (2.4)

Though limiting, (2.4) is of interest in light of the role of convex capacities,
described in the introduction, both in decision theory (speci�cally in model-
ing beliefs under ambiguity) and in robust statistics. We note also that it is
satis�ed by all of the preceding speci�cations.
We employ the following notation. Fix a decision rule d : A �! X. Then,

any distribution over menus �d 2 �(A), induces beliefs over alternatives
�d � d�1 2 �(X), where �d � d�1 denotes the probability measure given by�

�d � d�1
�
(a) = �d

�
d�1(a)

�
= �d (fA 2 A : d (A) = ag) . (2.5)

Similarly, any capacity �d on the set A of menus induces the capacity �d �d�1
on the set X of alternatives, where�

�d � d�1
�
(K) = �d(d

�1(K)) = �d (fA 2 A : d (A) 2 Kg) .

Under limited con�dence about probabilities, if �d models the analyst�s beliefs
about menus conditional on decision rule d, then �d �d�1 models her induced
beliefs about which alternatives are chosen by d.

Theorem 2.1. Let f�dg be such that, for each d , �d = core (�d) for some
convex capacity �d on A. Then Q 2 �(D) rationalizes � given f�dg if and
only if

� (K) �
X
d2D

Q (d) �
�
�d � d�1

�
(K) for all K � X. (2.6)

7A proof is given in the Supplementary Appendix.
8Since a convex capacity is uniquely determined by its core (see (A.3)), �d is necessarily

unique. Appendix A provides all details about capacities needed in the sequel.

10



In particular, this equivalence applies to the �ve special cases of f�dg de-
scribed above where the corresponding capacities �d are given by: For any
collection of menus C � A,

ignorance �d (C) = 1A (C)

contamination : �d (C) = (1� �) b�d (C) + �1A (C)
variation nbhd �d (C) =

maxfPd (C)� �; 0g if C 6= A
and = 1 if C = A

interval beliefs �d (C) =
maxfp�d (C) ; p�d (C)� �dg

�d = p
�
d (C)� 1

2-dim beliefs �d (C) = minfP 1d (C) ; P 2d (C)g

The main message is that the sharp identi�ed set of measures Q is the set
of solutions Q to the �nite set of linear inequalities (2.6), and constitutes a
(convex) polytope. Accordingly, the model is as tractable as the special cases
of complete con�dence and complete ignorance that have been studied in the
literature.
A proof follows.

Proof: We are given that, for each d, �d is a convex capacity on the set A of
menus and d : A �! X. The following facts about convex capacities gener-
alizes the well-known change-of-variable formula for probability measures:9

�d � d�1 is a convex capacity on X, (2.7)

and its core satis�es

core
�
�d � d�1

�
=
�
�d � d�1 : �d 2 core (�d)

	
. (2.8)

(See Appendix A for details.)
By (2.8) and the assumption that core (�d) = �d, the rationalizability

condition (2.1) amounts to the statement that

� 2
X
d

Q (d) core
�
�d � d�1

�
; (2.9)

9If �d is a probability measure, say pd, then �d�d�1 = pd�d�1, both cores are singletons
and (2.8) restates the preceding equation.
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while condition (2.6) is the statement that

� 2 core
 X

d

Q (d)
�
�d � d�1

�!
.

Because each capacity �d � d�1 is convex, the core of the mixture equals the
mixture of the cores (see (A.4)), and hence the required equivalence with
(2.6) is proven.
For the assertions regarding the special cases, one need only show that

in each case the indicated capacity �d is convex and that it has core equal
to the corresponding set �d. But these are well-known facts (Huber and
Strassen 1973, Wasserman and Kadane 1990); for 2-dimensional beliefs, see
also Topkis (1998, Lemma 2.6.4). �
Remark: As explained in section 2.5, our theorem is "essentially" equivalent
to Strassen�s (1965) Theorem 4, when the latter is specialized so that all
sets are �nite. However, our proof using the mixture-linearity property of
the core (A.4) is arguably much simpler. We view the greater simplicity as
signi�cant not as a mathematical contribution, but rather because it enhances
transparency and accessibility of the theorem which, we believe, may help to
expose and promote it as a useful tool for economists. Another value-added
over Strassen is our demonstration of the theorem�s usefulness.10

The following discussion provides additional perspective on the theorem
and its value-added. Consider �rst the special case of complete ignorance.
The associated capacities, written more fully, are given by

�d (C) =
�
1 C = A
0 C 6= A

The epistemic interpretation is certainty that (for every d) the menu is in A,
but there is complete ignorance within A. The condition (2.6) characterizing
rationalizability specializes to the set of inequalities

� (K) � Q (fd 2 D : [A2Ad (A) � Kg) for all K � X. (2.10)

Similar conditions have appeared previously in Barseghyan et al (2021, The-
orem 3.1) and in Azrieli and Rehbeck (2025). As indicated in the intro-
duction, the latter addresses di¤erent questions, and the former assumes a

10Doval and Eilat (2023) apply Strassen�s Theorem 3, in addition to network �ow argu-
ments, in their proofs.
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designated minimum size for menus. The ignorance special case admits al-
ternative proofs. For one, the associated capacities �d are belief functions
and hence the result for that case can be derived by using random set the-
ory, which is the approach taken by Barsheghyan et al (2021). Alternatively,
it follows immediately from the well-known structure of the core of a belief
function (Dempster (1967) or Wasserman (1990, Theorem 2.1)). Moreover,
these alternatives apply also to the �-contamination speci�cation since its �ds
are belief functions. However, they do not apply when the �ds are convex but
not belief functions, such as in the other three special cases or at the level of
generality in the theorem.
To illustrate further the greater richness provided by admitting capac-

ities that are convex rather than only belief functions, consider additional
speci�cations that extend those given in the theorem. As de�ned above the
�-contamination speci�cation models an analyst who is concerned that the
focal measure may be contaminated by any probability measure. In some
circumstances, however, only a subset of contaminations may be relevant
(in statistics see Berger and Berliner (1986) and Moreno and Cano (1991),
and in decision theory see Kopylov (2016)). For example, they might be re-
stricted to lie in a variation neighborhood (2.3), thus leading to the following
generalization of (2.2):

�d = (1� �) b�d + ��0d
where �0d � �(A) is de�ned as in (2.3), for some radius �0 6= � about �0d.
Then �d equals the core of the convex capacity (1� �) b�d + �� 0d, where � 0d
is the convex capacity whose core is �0d, and thus is accommodated by the
theorem. Similarly for the further generalization whereby

�d = (1� �) b�d + ��0d,
where b�d is the variation neighborhood about b�d with radius b� (with asso-
ciated convex capacity b�d). The interpretation is that there are two focal
measures b�d and �0d, but each is known (or believed to be valid) only up to
small perturbations of size b� and �0 respectively, and where the two hypothe-
ses have prior subjective probabilities (1� �) and �. Note that the theorem
applies to this speci�cation because, by the mixture linearity property (A.4),

�d = (1� �) b�d + ��0d
= (1� �) core (b�d) + �core (� 0d)
= core ((1� �) b�d + �� 0d) � core (�d) .

However, none of �d, b�d and � 0d is a belief function and therefore this speci-
�cation is not covered by the random set theory approach in Barseghyan et
al (2021).
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Another illustrative special case is where each �d = � is given by the
variation neighborhood (2.3) where the focal measure Pd = P and the radii
�d = � are common, and one thinks of � as being small. This models an ana-
lyst (analyst 1) who believes that every decision rule faces "approximately"
the same distribution over menus, but who allows for the possibility that
small di¤erences from the common focal measure may vary arbitrarily with
d. This contrasts with analyst 2 who is certain that every d faces the iden-
tical distribution while possibly being uncertain (ambiguous) about the spe-
ci�c common distribution. Thus analyst 2 is perfectly certain that menu
distributions are identical, while analyst 1 desires robustness against small
di¤erences. Each scenario is applicable to some settings. Models along the
lines of analyst 2 have been adopted in several applied works where one can
interpret the di¤erent menus as arising from feasibility rather than consider-
ation (Tenn and Yun 2008, Tenn 2009, Conlon and Mortimer 2013, Lu 2022),
and in the theoretical contribution by Azrieli and Rehbeck (2025, section 4).
However, we suggest that only analyst 1 �ts a setting where menus are sub-
jective consideration sets in which case one would expect menus to depend on
preference (or the decision rule), as in the applied papers by Goeree (2008),
and Abaluck and Adams-Prassl (2021). For the reasons given at the end of
section 2.1, analyst 2 is not accommodated in our model, speci�cally by our
notion of rationalizability (2.1).11 However, we can illustrate that the choice
of which model (analyst 1 or analyst 2) to adopt can lead to di¤erent con-
clusions about identi�cation. Suppose that the noted uncertainty of analyst
2 is also described by the set � above, and say that Q 2 �(D) rationalizes
� given � if there exists � 2 � such that

� (a) =
X
A

� (A)
X
d

Q (d)1d(A)=a, for all a 2 X.

Then it is easy to see that the latter is equivalent to the modi�cation of (2.1)
where one adds the restriction �d = �d0 for all d and d0. Hence adoption of
analyst 2 makes rationalizability more di¢ cult and consequently shrinks the
sharp identi�ed set.

Application of the theorem requires that when considering whether to
adopt a speci�cation of interest for the �ds one is able to check whether it
satis�es (2.4). For the particular speci�cations addressed in the theorem, the
literature has con�rmed (2.4). More generally, an important observation is
that, given f�dg, then, for each d, there is only one candidate for a suitable
capacity �d, namely the lower probability corresponding to �d and de�ned by

�d (C) = inff� (C) : � 2 �dg, for all C � A.
11A referee made this point.
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In other words, (2.4) is equivalent to the assumption that the lower proba-
bility capacity is convex and has �d as its core. (This follows directly from
(A.3).) Convexity of �d can be checked, in principle, by using its de�nition
(A.1) or any of its equivalent characterizations (Grabisch (2016, Theorem
3.15), for example). Since �d � core (�d) follows from the de�nition of lower
probability, equality amounts to the requirement that �d be su¢ ciently large
that it includes core (�d).12

A �nal related question is what can be done if one drops the assumption
(2.4). It is straightforward to show that the counterpart of (2.6) given below is
necessary for rationalizability given f�dg: If Q 2 �(D) rationalizes �, then,
for the lower probability capacity �d and given �d 2 �d, (using �d � core (�d)
and (A.5)),13

� =
X
d

Q (d) (�d � d�1) 2
X
d

Q (d) core
�
�d � d�1

�
� core

 X
d

Q (d) (�d � d�1)
!
=)

� (K) �
X
d

Q (d)
�
�d � d�1

�
(K) for all K � X.

2.4 Another application: satis�cing

Here we describe an application of our model where decision rules are not
based on preference maximization. (The next subsection outlines an appli-
cation that is not directly connected to choice.)
There is a population of satis�cing decision makers each of whom chooses

an alternative from the set X. They di¤er in two respects. First, aspiration
thresholds di¤er; the set of distinct thresholds is U . Second, individuals di¤er
in the order in which they consider alternatives (this may be a subjective
choice or exogenously imposed). Each sequential procedure follows a strict
total order > on X: the individual chooses the >-�rst alternative with a
value at least as large as her threshold u 2 U , and if there are no such
"satisfactory" alternatives then she chooses the >-last element in X. The
empirical frequency of choices � is observed, but both aspiration levels and
orders > are unobserved. Theorem 2.1, suitably reinterpreted, can be used to
partially identify the distribution of aspiration levels while respecting limited
12Alternatively, given convexity, one can compute the cores by using the greedy al-

gorithm Ichiishi (1981), or the algorithm in Chambers and Melkonyan (2005) that uses
information about willingness to buy or sell and thus may help the analyst to calibrate
parameters like �.
13We use the trivial fact that �d 2 core (�d) =) �d � d�1 2 core

�
�d � d�1

�
.
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knowledge of the distribution of orders >. To see why, view an order as the
counterpart of a menu and each threshold u, which maps each order into a
chosen alternative, as a decision rule.
Similar applications can be made to other problems of choice with frames

(Salant and Rubinstein 2008) where frames vary across individuals and are
unobserved by the analyst.

2.5 A model variant

To conclude, we describe a slight modi�cation of our model and then an
application.
An initial motivation is relevant also to the choice setting addressed in our

theorem. We have taken beliefs about menus, via f�dg, as a primitive and
de�ned rationalizability relative to f�dg. However, because it is ultimately
individuals�choices that matter for determining consistency with the data
�, an analyst might proceed by formulating beliefs directly on the space of
alternatives. That calls for taking as a primitive a set Rd � �(X) for each
d and adopting the following alternative de�nition of rationalizability: Say
that Q 2 �(D) rationalizes � given fRdg if, for all d, there exists �d 2 Rd

such that
� (a) =

X
d2D

Q (d) �d(a) for all a 2 X. (2.11)

Q rationalizes � given beliefs f�dg over menus if and only if (2.11) is satis�ed
for the particular set of measures over alternatives Rd = f�d�d�1 : �d 2 �dg;
hence our theorem characterizes (2.11) for those particular sets Rd.
But we seek an analogue of Theorem 2.1 that applies to families fRdg

taken as primitives. In fact, with minor changes the proof of Theorem 2.1
yields the following characterization result: Let fRdg be such that, for each
d , Rd = core (�d) for some convex capacity �d on X. Then Q 2 �(D)
rationalizes � given fRdg if and only if

� (K) �
X
d

Q (d)�d (K) for all K � X. (2.12)

(In fact, the proof is even simpler and consists exclusively of application of
the mixture-linearity property of the cores of convex capacities. The mapping
d from menus to alternatives, and its inverse d�1, play no role in the current
formulation. Because of this di¤erence from Theorem 2.1, the above charac-
terization result is equivalent to Strassen�s (1965) Theorem 4 specialized so
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that all sets are �nite.14)
We conclude with an application that illustrates when the new notion of

rationalizability may be particularly appealing.

Identifying the distribution of e¤ort: Consider a population of workers with
common observable characteristics (e.g. education and experience) who work
independently. Each produces a homogeneous output in quantity represented
by an element of X.15 The empirical frequency distribution of outputs is
given by � 2 �(X). Heterogeneity in output is attributed to di¤erences
in unobservable characteristics. The �rst unobservable is e¤ort - there are
�nitely many e¤ort levels d 2 D. The other unobservable is "everything
else." The analyst may not be able to describe these other factors precisely,
or even at all. However, we assume that she takes a stand on the set of their
possible output consequences. Formally, for each e¤ort d, the setRd � �(X)
describes her view of the likelihoods of possible outcomes. As a special case,
she views Od � X as the set of outputs possible given the e¤ort level d and
given what may ensue from "everything else." She "knows" the set Od, but
is ignorant about likelihoods within the set, that is, Rd = �(Od).16

With this reinterpretation, rationalizability of � given fRdg is well-de�ned,
and (2.12) can be applied to yield the (computationally tractable) sharp iden-
ti�ed set of measures Q over e¤ort levels.
An alternative approach, that would rely on our earlier rationalizability

notion (2.1), would be to introduce a parameter � 2 � to represent "every-
thing else," and, for each d, a �xed production function f such that the pair
(d; �) yields output f (d; �). Beliefs about � would be captured by sets �d
of distributions �d over � in the counterpart of de�nition (2.1). (Roughly, �
would play the role of the set of menus A above. With f presumed known,
an e¤ort d maps each � into an output level; thus d acts like a decision rule.)
However, such a formulation involving a production function f and proba-
bility distributions over � is arguably problematic in situations where the
analyst cannot even conceive of what is included in "everything else."

14Our proof of (2.12) uses convexity of the �ds only to justify applying the mixture-
linearity property of their cores, that is, the characterization provided by (2.6) is valid
also if convexity is replaced by this mixture-linearity.Tijs and Branzei (2002) and Bloch
and de Clippel (2010) give other assumptions, besides convexity, that imply mixture-
linearity of cores, and our result applies immediately to them as well. The same cannot
be said for Strassen�s theorem. But it remains for future work to determine if any of the
other assumptions provide alternatives to convexity that are interesting in our setting.
15To make clear the connection to the main choice model, we use the same symbols,

though with di¤erent interpretations.
16The assumption that Od can be speci�ed even though "everything else" is poorly

understood brings to mind Maskin and Tirole (1999) who argue that optimal contracts
survive even with unforeseen contingencies when agents can forecast future payo¤s.
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The upshot of this section, and of the paper more broadly, may be sum-
marized as follows. For the most part we have interpreted the paper as
addressing heterogeneity in choice assuming heterogeneity in decision rules
and the unobservability of menus. However, with suitable reinterpretations of
the formal model, its scope is broader. Theorem 2.1 is relevant also to other
contexts where one seeks the identi�cation of a heterogeneous characteristic
of prime interest that is robust to the distribution of other unobservables. In
addition, where those secondary factors are not only unobservable, but also
indescribable, or inde�nable, we propose the modi�ed notion of rationalizabil-
ity (2.11) and its characterization (2.12) as an arguably superior approach.
The distinction between the two formulations might be described by adapt-
ing Donald Rumsfeld�s famous quote and referring to robustness to known
unobservables (Theorem 2.1) versus robustness to unknown unobservables
(via (2.11) and (2.12)).

A Appendix: Basic facts about capacities

Consider capacities on an arbitrary �nite set Y ; in the two special cases of
interest Y equals the set of menus A or the set of alternatives X. Say that �
is a capacity on Y if � : 2Y ! [0; 1], � (?) = 0, � (Y ) = 1 and �(K 0) � �(K)
whenever K 0 is a superset of K. � is convex if, for all subsets K 0 and K,

�(K 0 [K) + �(K 0 \K) � �(K 0) + �(K). (A.1)

� is a belief function if, for all n, and for all subsets K1; :::; Kn,

�
�
[nj=1Kj

�
�

P
? 6=J�f1;:::;ng

(�1)jJ j+1 � (\j2JKj) . (A.2)

If one restricts n to be 2, then one obtains the condition de�ning convexity.
Hence every belief function is convex. (Convexity is sometimes referred to as
monotonicity of order 2 while (A.2) is called in�nite or total monotonicity.)
A more transparent and equivalent de�nition of a belief function is that � is
induced by a random set.17

Let C be a subset of Y and � a capacity on C (hence � (C) = 1). Then
� can be viewed also as a capacity on Y by identifying � with the capacity
� 0 on Y de�ned by

� 0 (K) = � (K \ C) for all K � Y .
17Dempster (1967) and Nguyen (1978) are two early references describing the connection

of random sets to belief functions. See also Nguyen (2006).
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Further, � 0 is convex if and only if � is convex. We often identify � and � 0

and do not distinguish them notationally.
For any capacity � on Y , its core is the set of all dominating probability

measures, that is,

core (�) = fp 2 �(Y ) : p (K) � � (K) for all K � Y g .

If � is convex, then its core is nonempty and � can be recovered from its core
as its lower bound or envelope:

� (K) = minfp(K) : p 2 core (�)g. (A.3)

If � = p is a probability measure, then it is convex and core (�) = fpg.
If � and � 0 are two convex capacities on Y , and if 0 � � � 1, then the

mixture �� + (1� �) � 0 is also a convex capacity and its core satis�es

core (�� + (1� �) � 0) = �core (�) + (1� �) core (� 0) . (A.4)

(See Danilov and Koshevoy (2000, p. 9) or Grabisch (2016, p. 156).) This
"mixture linearity" of the core is the key property that we exploit to prove
our theorem. Elsewhere, (at the end of section 2.3), we also make use of the
following weaker, and elementary, property that applies to any (not neces-
sarily convex) capacities

core (�� + (1� �) � 0) � �core (�) + (1� �) core (� 0) . (A.5)

Finally, consider the following assertions made in the proof of Theorem
2.1. We are given the convex capacity �d on A, and d : A �! X. De�ne the
capacity �d � d�1 on X. Then: �d � d�1 is convex, and

core
�
�d � d�1

�
=
�
� � d�1 : � 2 core (�d)

	
� R.

Proof: Convexity follows from verifying the de�ning inequalities (A.1). The
inclusion R � core (�d � d�1) is immediate. For the reverse inclusion, let
fKjg be any chain of subsets of X. Then fd�1(Kj)g is a chain in A. Since �d
is convex, there exists �� 2 core (�d) such that �� (d�1(Kj)) = �d (d

�1 (Kj))
for all j (Choquet 1953). Thus (�� � d�1) (Kj) = �d (Kj) for all j. Apply
Grabisch (2016, Theorem 3.15) to conclude that R = core (�d � d�1). �
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