JOURNAL OF ECONOMIC THEORY 61, 1-22 (1993)

Dynamically Consistent Beliefs Must Be Bayesian*
LARRY G. EPSTEIN

Department of Economics, University of Toronto, 150 St. George Sireet,
Toronto. Ontario, Canada M5S 141

AND

MiIcHEL LE BRETON

GREQE, Université d Aix-Marseille 2, 2, Rue de la Charité,
13002 Marseille, France

Received April 17, 1992; revised August 23, 1992

Experimental evidence such as the Ellsberg Paradox contradicts the Savage
model of decision making under uncertainty, since the representation of beliefs
underlying preferces by a single probability measure leaves no room for the degree
of imprecision in information to affect decisions. Proceeding axiomatically, this
paper shows that the existence of a Bayesain prior is implied, even if Savage’s
Sure-Thing Principle is deleted, if preferences (i} are “based on beliefs” and (ii}
admit dynamically consistent updating in response to new information. The result
raises questions about the appeal of models of preference that feature a separation
of tastes and beliefs. Journal of Economic Literature Classification Number: D8I,

€ 1991 Academic Press, Inc.

1. INTRODUCTION

1.1. Motivation and Outline

The standard way to model a decision maker’s belief in a situation of
uncertainty is by means of a subjective probability distribution or Bayesian
prior. Axiomatic justification for the assumption that there exists a prior is
provided by Savage [31]. However, behaviour such as that exhibited in the
Ellsberg Paradox [10] is inconsistent with the above Bayesian approach.
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The difficulty is that the “vagueness” or “ambiguity” that is common in
situations of uncertainty cannot be captured in the representation of beliefs
by a single prior. Such motivation underlies recent generalizations of the
Bayesian paradigm such as the non-additive probability model [32, 16]
and the multiple priors model [17]. (See also [S5, 6, 35, 37].)

In this paper we follow Savage in adopting a behaviourial or choice-
theoretic approach to modeling beliefs. Thus our primitive is a preference
ordering > over uncertain prospects (or acts). Beliefs are represented by a
binary ordering >, over events, where 4 >, B indicates that 4 is believed
to be at least as likely as B. Refer to > as being based on beliefs if there
exists a relation 2=, such that the decision maker would rather bet on the
event 4 than on event B if and only if 4 >, B. The restriction that > be
based on beliefs is Savage’s axiom P4; it imposes in a minimal way the
separation of beliefs regarding the likely realization of alternative events
from the valuation of the consequences associated with the realization of
these events.

Our principal contribution is to prove the following: Suppose that > is
based on beliefs and that the same is true for all preference orderings
derived from > by conditioning on available information in such a way as
to ensure dynamic consistency. Assume also that > satisfies the relatively
uncontroversial axioms in Savage, i.e., the Savage axioms minus the Sure-
Thing Principle. Finally, suppose that there exist at least three outcomes
that are pairwise nonindifferent. Then beliefs, in the form of =, can be
represented by a unique probability measure u over events. Moreover, the
preference ordering = is probabilistically sophisticated in the sense of
{29]; that is, two acts that induce (through pu) identical probability
distributions over outcomes must be indifferent according to >. Note
that though Savage’s model of beliefs (a single prior) is implied, the other
component of his model, namely the expected utility form for valuing
probability distributions, is not implied.

The importance of the theorem stems from the observation that most
choice problems are sequential and require the updating of preferences and
beliefs as new information arrives. Thus a satisfactory treatment of
updating is a prerequisite for fruitful applications of models of non-
Bayesian beliefs or probabilistically non-sophisticated preferences, whether
to intertemporal problems, game theory or statistical theory. Conditional
upon acceptance of our treatment of updating, there are a number of
possible reactions to our theorem. First, those committed to the Bayesian
model of beliefs may find it reassuring. On the other hand, for modelers
who think that vagueness in beliefs is an important component of decision-
making under uncertainty, our theorem may represent a distressing
negative result. At the very least, it indicates some “costs” to the modeler,
in terms of appealing axioms that must be relaxed, involved in modeling
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vagueness in beliefs. We turn now to a brief discussion of the central
feature of our approach to updating, namely “dynamic consistency.”

Dynamic consistency is assumed first at a meta level. Our view is that for
a model to be coherent, (nontechnical) axioms imposed on the initial
preference ordering > should be satisfied also by subsequent updated
orderings. In that sense, the model should be dynamically consistent. Such
consistency is reflected in our assumption that updated preferences are
based on beliefs. A separate justification for the latter assumption is that it
is clearly necessary for the issue of “updating beliefs” to be meaningful.

The second way in which dynamic consistency is assumed is through our
supposition that preferences are updated in response to new information in
such a way as to ensure the dynamic consistency of preferences. The
literature on “changing tastes,” beginning with the seminal article by Strotz
[36], has provided a number of approaches to describing choice behaviour
given dynamically inconsistent preferences (for example, see [30] and for
more recent illustrations in the context of choice under risk see [4, 24]).
Thus we acknowledge that for descriptive purposes it is an empirical ques-
tion whether dynamic consistency or inconsistency is more accurate. At the
same time, the assumption of dynamic consistency is clearly advantageous
in terms of theoretical elegance and simplicity and also analytical trac-
tability, and so is “natural” for these reasons. From a normative point of
view, it is difficult to imagine adopting or recommending a dynamically
inconsistent updating rule for use in statistical decision problems. Walley
[37, Chap. 6] reflects this view in his theory of statistical reasoning; he
adopts as a fundamental principle the conglomerative principle, which is
the counterpart of dynamic consistency for his slightly different formal
famework. In addition, Hammond [21] has shown that generally, the
choice behaviour implied by a set of dynamically inconsistent preferences
cannot be rationalized by a preference ordering. In Section 2.2 below, we
indicate for our specific famework some implications of dynamic incon-
sistency that seem undesirable in both normative and positive modeling
contexts.

The rest of the paper proceeds as follows: The Ellsberg Paradox is
described next, followed by a review of related literature. Then Section 2
contains our contribution. Section 3 reconsiders some of our assumptions
and Section 4 concludes. Proofs are collected in an Appendix.

1.2. The Elisberg Paradox

For the convenience of the reader, we describe a variation of the Ellsberg
Paradox: There are 90 balls in an urn, 30 red ones and the rest either black
of yellow, in unknown proportions. One ball is to be drawn at random.
The following preferences over acts are typical,
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[$100 if seR ] [ O if seR 7]
0 if seB >| 8100 if seB and
| 0 if s¢RUB) | 0 if s¢ RUB]
8100 if seR T [ 0 if serR 1
0 if seB <1 8100 if seB R
| 8100 if s¢ RuB ] | 8100 if s¢RUB

where R and B denote the events corresponding to the chosen ball being
red or black and s refers to the ball that is drawn. Since the substitution
of the outcome $100 for 0 in the event of a yellow ball being drawn reverses
the ranking, these choices contradict the Sure-Thing Principle. (A state-
ment of the latter is provided in Section 2.4.) Note that the above choices
seem sensible at a normative level, since they correspond to an aversion to
imprecise information. Therefore, they raise doubts about both the positive
and prescriptive appeal of the Sure-Thing Principle.

For later reference note that, if preferences are “based on beliefs,” then
the first ranking indicates that R is viewed as “more likely than” B, while
the second ranking indicates that the complement of R is viewed as “more
likely than” the complement of B. Therefore, the above choices contradict
not only the Sure-Thing Principle, but also the hypothesis that underlying
beliefs can be represented by a probability measure.

1.3 Related Literature

Though the formal Savage framework is atemporal, the Sure-Thing
Principle and its analogue for the case of risk, the independence axiom,
have been widely interpreted as dynamic consistency requirements.
Correspondingly, it has been thought that the dynamic consistency of
preference essentially implies the Savage expected utility model. Recently,
the basis for such an interpretation has been clarified. In particular, it has
been shown to rest in part on the implicit assumption of “consequen-
tialism” or “independence from unrealized alternatives™ (see [22, 28], for
example). Machina argues against consequentialism in part by drawing an
analogy with the implications of nonseparability for consumer choice under
certainty. Nonconsequentialism can arise also from a concern with the pro-
cess of choice; for instance, for reasons of ex ante fairness in social choice
situations (see [28, Sect. 4.27] and [12]), or as in orthodox (non-Bayesian)
statistics violating the likelihood principle, where, for exampie, inference is
based on the method of sampling as well as on the realized data.' In this
paper we show that if preferences are based on beliefs, then dynamic

!For another nonconsequentialist model see [20]. For some difficulties with non-
consequentialism see [19,2].
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consistency implies Savage’s model of beliefs (a single prior), even without
the assumption of consequentialism. See Section 3.4 for further discussion.

This paper is also closely related to Machina and Schmeidler [29]. They
disentangle axiomatically the property of probabilistic sophistication
(roughly, that beliefs are represented by a single prior) from Savage’s joint
model of beliefs (a single prior) and valuation (expected utility). They
accomplish this by dropping the Sure-Thing Principle and simultaneously
strengthening Savage’s P4 to what they call P4*. We adopt an alternative
strengthening of P4, denoted P4, that we show is equivalent to P4*, and
we then invoke Theorem 2 of Machina-Schmeidler to draw our conclu-
sions. Thus, methematically our result is a corollary of theirs. The value
added by this paper rests primarily on the superior, or at least substantially
different, intuitive appeal and economic significance that we claim for our
central axiom P4 as opposed to their P4*. (See Sections 2.2 and 2.4 for
further discussion.)

There is a large literature dealing with updating rules for vague beliefs,
frequently modeled by a set of priors. Walley [37, p. 2797 argues that the
Dempster-Shafer updating rule can lead the decision-maker to accept a
“sure loss,” essentially because of the associated dynamic inconsistency.
Adopting a decision-theoretic approach, Gilboa and Schmeidler [18]
impose some requirements on plausible updating rules in the context of
the nonadditive-prior and multiple-priors models of beliefs. Further, on
the intersection of these two models of beliefs, they cast light on the
Dempster—Shafer updating rule. Dynamic consistency is not one of the
requirements they impose; indeed, it is at least implicit in their paper that
there do not exist any updating rules that are compatible with dynamic
consistency, by which we mean that the models of preference they consider
violate our P4 It is straightforward to demonstrate this, as we do below,
and thus the models they consider possess the “undesirable” properties
described in Section 2.2. Our analysis shows that this negative conclusion
1s not restricted to the models considered in [18]; rather, it holds for a
large class of models of beliefs. In particular, our analysis reflects also on
the updating rules in [14,23,37], where explicit decision-theoretic
frameworks are not completely specified. This paper shows that there does
not exist a “satisfactory” decision-theoretic foundation for any rule for
updating vague (i.e., non-probabilistic) beliefs.

Finally, it is well-known (for example, see [26, Chap. 107 and [381]) that
given the Savage model of preference, dynamic consistency requires that
probability distributions be updated according to Bayes Rule as new infor-
mation is received. We also provide a consistency-based justification for
Bayes Rule, but with much weaker maintained assumptions regarding the
nature of utility and beliefs.
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2. DyNaAMICALLY CONSISTENT BELIEFS

2.1. Axioms and Theorem

Adopt the Savage framework, which consists of

{.., } a set of states
{ion

A, B, ..., E, ..} the set of events, ie., all subsets of S

S
&
X

{.., X, ¥, z, ...} the set of outcomes or consequenes, and
={.f g } the set of finite-outcomes acts on S, ie,

feF iff: §— X and if f(S) is a finite set.

Given a binary relation 2> on #, say that the event E is null, if any pair
of acts differing only on E are indifferent. Write x 2= y whenever the
constant act yielding x for all se S is weakly preferred to the constant act
yielding y.

The following variation of Savage’s axioms are assumed for . The
numbering is Savage’s and the names are adapted from those proposed by
Machina—Schmeidler. Where the axioms are self-explanatory or familiar
from Savage, little or no discussion is offered. See, however, Section 3 for

further discussion.

P1 (Ordering). The binary relation 2z is complete, reflexive and
transitive.

P3 (Eventwise Monotonicity). For all outcomes x and y, non-null events

E and acts g
[x if seE:lz[ y i SEE:lony.
g(s) if s¢E g(s) if s¢E

P4 (Weak Comparative Probability). For all events A, B and outcomes
x*>x and y* >y
[x* if sed x* jf seB
x If s¢A if s¢B

[y* if sed y* if seB
“ly i s¢A] [y if sséB]'

Y

Y



DYNAMICALLY CONSISTENT BELIEFS 7

Axiom P4 induces a complete, reflexive and transitive “comparative
likelihood” relation >>,, where: for all events 4 and B, A=, B if 3

Al

outcomes x* > x such that

x* if sed o x* if seB
x if s¢A|™| x if s¢B
The relation =, represents the beliefs about comparative likelihoods that
are implicit in >,
Savage adopts
P5 (Nondegeneracy). There exist outcomes x and y such that x> y.
We strengthen PS5 slightly to
P5* (Strong Nondegeneracy). There exist outcomes x, y, and z such
that x>y and y > =.
A “technical” axiom concerning the richness of the state space S is

P6 (Small Event Continuity). For any acts f > g and outcome x, there
exists a finite partition {A,, .., A,} of S such that

x if seA,
f>[g<s) if s¢A,]

and

x if seAd; o
l:f(s) if s¢A1]>g’ Jorall i,je{l,.., n}.

The above axioms, with the exception of P5*, are due to Savage. His
axiom P2, the Sure-Thing Principle, is excluded, since it conflicts with a
role for vagueness as demonstrated in the context of the Ellsberg Paradox.
In its place, we propose the following strengthening of P4:

P4¢ (Conditional Weak Comparative Probability). For all events T, A,
and B, Au B< T, outcomes x*, x, y*, and y, and acts g,

) x* if se x if seT]
" g s¢;]>[g(s) i os¢T

{y* if seT]>[ y i seT:l
gls) if s¢T gls) if s¢T]

and
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then
[ x* if sed | [ x* if seB
x Iif seDA|=| x if seT\B
| g(s) if s¢T | Lgts) if s¢T
" v* if sed ] [ y* if seB
= vy if seDA|=| y if seT'\B
Lets) if s¢T J Lgls) if s¢T

By taking 7=3S, we see that P4¢ implies Savage’s P4 and thus the
existence of the comparative likelihood relation ;. More generally, and as
we justify further below, P4 amounts to applying P4 “conditionally™ on
any event 7, which explains the name we have chosen for the axiom.

Our central result is?

THEOREM. If the preference relation = over F satisfies the axioms Pl,

~

P3, P4<, P5*, and P6, then there exists a unique finitely additive non-atomic

probuability measure p on & such thar: (a) p represents the comparative
likelihood relation z,, that is

AZ B u(A)= p(B);

and (b) for any pair of acts [ and g in F with respective outcome sels
contained in {x,, .., x,}:
If ulf "z =ulg ")) Vzelx,, . x,}, then f~g.

Under the conditions of the theorem, beliefs must be Bayesian in that =,
is representable by a prior probability distribution, contradicting typical
behaviour in the Ellsberg Paradox. Moreover, by part (b), any preference
ordering > satisfying the stated axioms must be probabilistically
sophisticated—two acts that imply the identical probability distribution
over outcomes are indifferent.’

Before turning to the interpretation of P4¢, we remark firstly that it is
vacuously satisfied if X contains only two distinct indifference classes,
which explains our strengthening of P5 to P5*. Secondly, note that, given
P3, P4 is equivalent to the following axiom, which is employed in the

2 A probability measure u is non-atomic if for any event 4 with u(4)>0 and any « in
(0, 1), 34* = 4 such that u(4*)=o . pu(A).

*As in [29, Th. 2], we can identify the exhaustive implications of the hypothesized axioms
for the structure of the utility function representation of . It is the associated strengthening
of (b) that Machina and Schmeidler refer to as probabilistic sophistication, but the difference
from (b) is not important in this paper.
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proof of our theorem and is more directly comparable with the Machina-
Schmeidler axiom described in Section 2.4

P4’.  For all events A, B, T such that A B< T, outcomes x* > x and
¥y oand acts g,

[ x* if sed | [ x* if seB
x if seTA|z| x if seT\B
Lg(s) if s¢T | Lgs) if s¢T |
(.V* if sed 7] (_v* if seB
=| v if seTA|z=| » if seT\B
L g(s) i s¢T 4 Lgls) if s¢T

To see the equivalence, note that both P4‘ and P4' are satisfied
vacuously if 7 is null. On the other hand, if T is non-null then by P3,
the hypotheses concerning x*, x, v*, and vy in the statement of P4‘ are
equivalent to x* > x and y* > y.

2.2 Dynamic Consistency

To interpret P4‘, think of two “times” at which choices are made. The
ex ante stage, t=0, refers to the point in time we have been discussing
where choices are dictated by >>. Fix an arbitrary event 7< S. Suppose
that by the intermediate stage, t =1, the decision maker will have learned
whether the true state of the world lies in the event 7< S or its comple-
ment S' 7. Suppose further that at =1 it is learned that in fact T contains
the true state and let the decision maker reconsider her options. Relevant
to deliberations at this stage are the new primitives: the set of states T, the
set &, of all subsets of 7, the set of outcomes X (unchanged) and the set
#, of finite-outcome acts on 7. Suppose that acts in .%, are ranked by a
complete, reflexive and transitive relation = *. It is natural to permit that
relation to depend on past choices. For example, suppose that at 1 =0 the

act

f(s)y if seT

gis) if s¢T
was chosen out of some feasible set. Then at r=1 the preference ordering
Z* over %, may very well depend on g due, for example, to feelings of
clation or disappointment at the realization of event 7 and thus at the

preclusion of the outcomes associated with g. Since = * obviously depends
on T, we will write =, , for 2 * Dynamic consistency requires that choice
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made at 1=0 be respected at t=1 and thus may be formalized as follows:
for all f, /' in %3 and g an act on S\7,

, [S(s) i se f'(s) if se
SRt 'ff[g(s) if s¢T z[g(s) if s¢ﬂ' (2.1)

{Note that if we had also required that 2, . be independent of g, then
dynamic consistency would imply that > satisfy the Sure-Thing Principle.)

The above consistency condition defines a unigue rule for updating = to
Zr . given the observation T and the “unrealized alternative” g. There are
two noteworthy implications of this rule for updating preferences. First, it
provides a simple interpretation for our central axiom: P4¢ is simply the
requirement that the updated ordering >, , be “based on beliefs” in the
sense of satisfying the appropriate form of Savage’s P4. Consequently P4¢
is a natural assumption if the theory is to be coherent in settings where
updating is called for. {1 makes little sense to impose P4 on = but not on
its updates; indeed, > itself is presumably an updated version of some
“earlier” preference ordering. Note that the appropriate forms of P1 and P3
are automatically satisfied by >, , given that = satisfies them, while P5*
is also inherited if 7 is non-null. Moreover, P4“ (and not merely P4) is
satisfied by the updated ordering if it is satisfied by >. Thus, with the
possible exception of the “technical” axiom P6, our set of axioms or model
is “dynamically consistent” (recall the discussion in the introduction).

A second implication of the consistency requirement on updating
preference is the following: Under the conditions of our theorem, the
comparative likelihood relation =, can be represented by the probability
measure u. Denote by = ., the updated comparative likelihood relation,
ie., that implicit in the updated preference ordering = ,. It follows from
Lemma 3 in the appendix that for all events 4, B, and T with AuB<T
and 7T non-null,

Az, B il A4x,B

Therefore, the Bayesian updated probability measure u(-)/u(7T) represents
beliefs about likelihoods of subevents of T. As noted in the introduction,
this link between dynamic consistency and the necessity of Bayes Rule for
updating beliefs generalizes the justification for the latter that is well known
within the framework of the Savage model.

As the preceding has made abundantly clear, the justification for P4<,
and hence also for our theorem, rests in large part on the assumption
that preferences are updated so as to ensure dynamic consistency in the
standard sense of (2.1). To conclude this subsection, we elaborate upon the
supporting arguments provided in the introduction for this assumption.
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A similar issue arises in the context of behaviour under risk (i.e., objective
probability distributions) given that the independence axiom is violated.
The reader is referred to Machina [28, Sect. 6.4] for a detailed discussion
which we here abbreviate and adapt to our setting.

The most common objection to the specification (2.1) for updating
preference is that behaviour can be consistent even if preferences are not,
and thus (2.1) is “unnecessary”: In the two-stage framework described
above, suppose that at 1 =1 preference over %, is ¥ and preference over
Fe. . the set of acts over S\T, is =¥ .. The asterisk is used to distinguish
these conditional orderings from those defined by (2.1). For simplicity, and
in conformity with all of the earlier literature on updating cited in the
introduction, we suppose that the conditional orderings do not depend on
previously chosen acts. As an extreme form of dynamic inconsistency of the
preference orderings >, =,, and > ,, suppose that there exist acts
satisfying

P % f % f(s) seT f'(s) seT
resn dxree e [0 -0 r e

Consider the choice between the above two composite acts over S, ie.,
between a and b in Fig. 1. It is argued that the inconsistency in (2.2} is not
an issue, since the choice problem would be solved recursively: f* is chosen
given T, g’ is chosen given S\T, and these choices are taken as constraints
at time 0. But now consider the choice between the same two acts in the
case where no new information, in the form of se T or s¢ 7, is forthcoming
at r=1, ie, c versus d in Fig. 1. Then clearly the act (fon T; g on S\T)
would be chosen. It follows that the actual choice between (fon T; g on
S\T) and (f" on T; g’ on S\T) depends on the prevailing information
structure and so cannot be rationalized by any preference ordering over #
[21]. While such dependence is sensible in some settings (see Section 3.3),
it seems to us difficult to justify at a prescriptive level in sequential
problems such as statistical decision problems.

Next suppose that at time 0 the decision maker can choose between the
partition {7, S\T} and the trivial partition {S, ¢} to determine the infor-
mation forthcoming at r=1, ie., she can choose the “experiment” to be
conducted. Then the recursive approach leads to the choice of the trivial
partition, ie., information will be rejected, even if it is costless. To highlight
the counterintuitive nature of this implication, consider a statistical deci-
sion problem in which at 1= 1 one chooses an element from D{4, é'}. That
choice and the true state of the world jointly determine the outcome via the
reward function r: Dx § — X. Define f*(-)=r(d',-) and f(-)=r(d,-) on T,
g'(\)=r(d,-)and g(-)=r(8’, -) on S\ T. Then the two conditional rankings
in (2.2) represent a situation where one would expect information to have
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f f
. g g
t= t=1 t=0 t=1
f(s) seT f'(s) seT
Cire “lg(s) seT do- T lg'(s) seT

FiG. 1. Two-stage acts.

strictly positive value, namely &' is better given T and ¢ is better given S.T.
But if the preference orderings violate dynamic consistency as in (2.2) and
if the problem is solved recursively, then at =0 the decision maker would
strictly prefer to have no information available to guide the later choice of
an element from D. Once again, though such an aversion to information is
plausible in intertemporal settings where the “real” time separating =0
and r=1 is substantial, we find it normatively unappealing in sequential
settings such as statistical decision problems. Moreover, on a positive level,
introspection and casual observation suggest to us that such aversion to
information is uncommon in sequential contexts.

2.3. An Example

We illustrate our theorem and the surrounding discussion by considering,
as in [ 18], the intersection of the nonadditive probability and multiple
priors models. According to this model, one possible representation for the
ordering > over # consists of a utility index u: X - R and a set 4 of
additive probability measures on S. (The set 4 is convex and closed in the
weak* topology.) The utility function U: # — R representing = is given
by

Uif)= min{f u(f(s))dp(s): pe A}. (2.3)
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The Savage expected utility model is obtained if 4 is a singleton. More
generally, = satisfies P1 and P4, with the implied comparative likelihood
relation =, represented by v(-), where

v(A)=min{p(4): ped}, for all events A.

PS* is satisfied if u(X) contains at least three elements, while P6 is satisfied
if v has convex range, ie., if A< Band /e (v(4), v(B)) imply 3C, AcC<= B
such that v(C)=1/ Axiom P3 is satisfied under additional restrictions on 4,
e.g., if all elements in 4 assign zero measure to the same events.

However, P4‘ is generally violated. To determine the circumstances
under which >z, , satisfies P4, note that it is represented by the utility
function U, ,: #r— R, where for each fe 7,

Uz f)=min u(f(s)) dp(s) + u(g(s))dp(s): ped;. (24)
T ST

Let x*>z>x and suppose the unrealized alternative g is such that
g(s)=z on S\T. Further, let A and B be arbitrary subsets of 7, and
consider comparison with respect to ;. , of the two bets

y¥ if sed y¥ if seB ]
Vs, .
y if sedA\T y if seT\B
Axiom P4 for z, . requires that the ranking of these bets be the same for
all specifications of y* > y. Taking (y*, y)=(x* -) and then (z, x), we
conclude immediately that v must satisfy

v(B)<v(A) iff v(Bu(S\T)H<v(A4u(S\T)).

Since this must be true for all events T, it follows that v is a qualitative
probability and, given P6, that v can be represented by a probability
measure p {[15, Theorem 14.27). In other words, v is a distortion of
probability measure u in the sense that

v(-)=g(u(-)) (2.5)

for some strictly increasing function ¢ from the unit interval onto itself.
Since, by assumption, > can be represented also by a Choquet integral
with respect to v ([32]), it follows that > is probabilistically sophisticated,
confirming our theorem.

To summarize, adopt the model of preference (2.3). Then the updating
rule defined by (2.4) delivers dynamic consistency, but the updated
ordering is generally not “based on beliefs”; in particular, it cannot be
represented by a minimum of expected utilities over some set of updated
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probability measures over 7. Alternatively, if p(T)>0 Vpe d, one could
apply Bayes Rule to each element of 4 to generate a set 4, of probability
measures over 7, and then represent the preference ordering conditional
on T by the suitable minimum of expected utilities. This procedure for
updating sets of measures element by element has been widely discussed
(see [14,23,37], for example). But it generally leads to the dynamic
inconsistency of preferences. Only in the event of (2.5) and hence that >
is probabilistically sophisticated, are both desiderata—dynamic consistency
and updated preference “based on beliefs”—satisfied; and then the above
two procedures for updating coincide.?

2.4 Machina—Schmeidler

As indicated earlier (Section 1.3) and as evidenced by the proof of our
theorem provided in the appendix, we rely heavily on Theorem 2 of
Machina and Schmeidler [29]. Since they also conclude that preference
must be probabilistically sophisticated, some elaboration on the value
added by this paper is in order.

Their Theorem 2 assumes P1, P3, P5 (rather than P5*), P6, and P4*
(rather than P4¢), where

P4* (Strong Comparative Probability). For all pairs of disjoint events
A and B, outcomes x* > x and y* > y, and acts g and h,

Fx* if seA T I x if sed ]
x if seB Z| x* if seB

| g(s) if s¢AuB]| [g(s) if s¢AUB]
[ y* if sed ] [y if sea
=! y if seB zZ| y* if seB

L h(s) if s¢AuB] | hls) if s¢AvB]

This axiom plays a central role in achieving the important objective
these authors define for themselves—to demonstrate that the notion of
probabilistic sophistication can be separated axiomatically from the
expected utility valuation component of the Savage model. Though
Machina and Schmeidler do not offer their Theorem 2 as an argument

4 The fact that the model (2.3) does not admit dynamically consistent updating has played
a key role in some recent applications to sequential settings. For example, [7,9] adopt the
Dempster—Shafer updating rule. These analyses can be understood as implicitly assuming that
the decision maker behaves naively in the face of the resulting dynamic inconsistency of
preferences. It is this naive behaviour, rather than the vagueness of beliefs, that underlies the
derived results. In contrast, the applications to portfolio choice in [8] deal with one-shot
choice problems and so updating is not an issue.
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against non-Bayesian models of beliefs, one might be tempted to interpret
it as such. But in that role, we feel that the theorem is unconvincing
because of the limited force of P4*.

The axiom P4* seems questionable to us because it requires that the
indicated ranking of acts be invariant if the act g on S\(4 U B) is replaced
by any other act k. If in P4* we restrict (y*, y)=(x* x), then such
invariance is implied by the Sure-Thing Principle which is restated here for
the convenience of the reader.

P2 (Sure-Thing Principle). For all events T and acts f, [, g, and h,
[f(S) if s€7']>[f’(S) if seT]
gls) if s¢T]17Lg(s) if s¢T
[f(S) if SGTJ [f’(S) if 367']
= > .
h(s) if s¢T [~ Lh(s) if s¢

The invariance in P4* corresponds to the special case T=AUB, f=
(x* on 4; x on B) and f'=(x on 4; x* on B). One can make the case, as
Machina and Schmeidier do, that this represents a plausible weakening or
specialization of the Sure-Thing Principle. However, once the latter is
rejected, it seems to us impossible to argue that any form of invariance
with respect to acts on complementary events is compelling at any level—
either as a coherence requirement for the model, or at the level of the
decision maker in a prescriptive or descriptive sense. In particular, we
expect that most researchers who take the Ellsberg Paradox seriously
and therefore admit violations of the Sure-Thing Principle, would be
willing to drop P4* if that were the “price” to be paid for modeling vague
beliefs.

A second difficulty with P4*, from the prespective of this paper, is that
it is explicitly violated by the typical choices in the Ellsberg Paradox
(Section 1.2).° Therefore, it hardly seems appropriate to assume P4* in
arguing against models of beliefs that are motivated by the Ellsberg
Paradox and similar evidence. Of course, Machina and Schmeidler do not
do so, and they observe the above violation; once again, we are merely
cautioning against a misinterpretation of their results.

In short, Machina and Schmeidler do not reveal any serious obstacles to
modeling preferences that are not probabilistically sophisticated. In par-
ticular, the connection between probabilistic sophistication and dynamic

consistency does not arise in their paper. That connection is the heart of
our contribution.

5 The conflict between P4 and Ellsberg-type behaviour is less direct (see Lemma 2 in the
Appendix).

642°61°1-2
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3. A REEXAMINATION

While P4¢ was discussed in detail above, the other assumptions in our
theorem were not. We turn now to an examination of some of those
assumptions, both explicit and implicit, to see if an “escape” can be found
from what we interpret as the negative conclusion of the theorem. Three
possibilities are considered briefly in turn, only the last of which seems to
us to be promising.

3.1. Incomplete Preferences

It can be argued that incompleteness is a natural feature of preference in
an environment where objective probabilities are unavailable (see [1, 37]).
If P1 is weakened by dropping the completeness requirement, then P3, P4
and indeed even P4¢ are satisfied by the following ordering: For a given
utility index » and 4, a set of additive probability measures on S,

fzeg jsu(f(s))dp(s>>jsu(g(s))dp<s> forall ped. (3.1)

On the other hand, as pointed out by Bewley, (3.1) cannot resolve the
Ellsberg Paradox. More generally, even if we drop the completeness
requirement from our set of axioms, Lemma 2 in the Appendix remains
valid, contradicting Ellsberg-type behaviour.

This observation is relevant to the literature on updating sets of priors,
including [14, 237]. Much of that literature does not specify an explicit deci-
sion-theoretic famework. Earlier we pointed out that a model of complete
preference does not provide an appropriate foundation for any procedure
for updating sets of priors. In contrast, the procedure of applying Bayes
Rule to each prior in a set can be rationalized by a model of incomplete
preference. For instance, given (3.1), when conditioning on an event 7 for
which p(T)> 0Vp e 4, the dynamic consistency of preference is implied if
the updating of preference is accomplished by applying Bayes Rule to each
element of 4. However, we have just seen that any such rationalization is
unsatisfactory in the sense of contradicting Ellsberg-type behaviour.

3.2. Weak Dynamic Consistency

One could argue that the following weakening of our dynamic
consistency requirement would suffice:

, _[Sfls) if se f'(s) if se
fzr‘gf:[g(s) if S¢T]z[g(s) if s¢T]' (3.2)
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This weak form of dynamic consistency would permit f =, , /' and (f on
T;gon S\T)~(f" on T; g on S\T). If the latter were chosen at =0, the
choice would be overturned later, but the 1=0 choice of (fon T; g on
S\T) would be respected at t=1. More, generally, condition (3.2) would
ensure that in suitable sequential optimization problems, some but possibly
not all acts that are optimal with respect to the ex ante preference ordering
would remain optimal at future decision nodes with respect to updated
preference.

The weakening of the dynamic consistency requirement from (2.1) to
(3.2) is relevant to the problem of updating conditional on events that ex
ante were not expected to occur [3]. If (2.1) is used to define updated
preference and 7T is null with respect to X, then all acts are indifferent
according to Z . This problematic feature of an updating rule is avoided
if only (3.2) is imposed.

Modify our theorem accordingly by assuming, instead of P4¢, that each
Zr. ¢ satisfies (3.2) and the appropriate form of P4. Then, by adapting the
proof of Lemma 2, we can show that for all events E,, E, and E,
(E\WE)NE=¢,

E > Ey~E VEZ E,VE,

which is still incompatible with the typical choices in the Ellsberg problem
described above (take £, =B, E,= R and E = S\(R U B)). In the context of
the example of the last section, the above weaker set of axioms is satisfied
if the distortion (2.5) is such that ¢ is nondecreasing and not necessarily
strictly increasing. We have not yet succeeded in deducing further implica-
tions of the weakened axioms in the general case.

3.3. Temporal Resolution of Uncertainty

A final possibility for escaping the grasp of our theorem arises if it is
recognized explicitly that arguments based on dynamic consistency
invariably refer to a domain consisting of multistage decision trees. In con-
trast, our analysis assumes that the objects of preference are acts over S,
and thus the domain does not permit one to encode the sequential resolu-
tion of uncertainty. For instance, the two-stage acts a and ¢ from Fig. 1 are
both identified with the same element of &, namely (fon T; g on S\T).
The restriction to such a narrow domain is justified if the decision maker
is indifferent to the way in which uncertainty is resolved through the tree
[27], that is, if she is indifferent between a and ¢. But when real time is
involved in passing between decision nodes, such indifference is not at all
compelling. Explicit reconsideration of the issues of this paper in the richer
domain implied by sequential decision making seems to us the most
promising way to model dynamically consistent vague beliefs, at least for



18 EPSTEIN AND LE BRETON

intertemporal problems. However, in cases where the interval between 1 =0
and t=1 is short or indeed only conceptual, indifference to the temporal
resolution of uncertainty seems to us to be compelling. In particular, this
“escape route” does not seem to apply to statistical decision problems.

This final suggestion draws attention to an interesting parallel with the
axiomatic underpinnings of the von Neumann-Morgenstern utility model
for the case of risk, i.e., objective probability distributions. Viewed from the
prespective of a domain of multistage lotteries, the vNM model is implied
by the assumptions of (a) dynamic consistency, (b) the axiom of reduction
of compound lotteries, and (c) independence from unrealized alternatives
or consequentialism. (See [28, 33, 11,25], for elaboration.) Above we
suggested that a counterpart to the axiom of reduction of compound
lotteries is implicit in our theorem. In a sense, therefore, the theorem shows
that in a framework of uncertainty the Bayesian beliefs component of the
Savage model is implied by the counterparts to (a) and (b).

We are led to make two remarks: First, consequentialism is not assumed
in our theorem in that we allow the updated ordering = , to depend on
g. In that sense, the argument that probabilistic non-sophistication entails
dynamic inconsistency is “stronger” than the parallel argument in the case
of risk that non-expected utility preferences necessarily lead to dynamic
inconsistencies. In particular, Machina’s [287] critique of the latter
argument, since it is essentially a critique of consequentialism, is not
relevant here. Second, in the case of risk, (a) and (c) are compatible with
non-expected utility functions if reduction is dropped (see the discussion of
recursive utility functions in [11]). Similarly, if reduction is dropped in
our setting, a recursive construction of utility can deliver preferences
that involve non-Bayesian beliefs and exhibit suitable forms of dynamic
consistency and independence from unrealized alternatives. Such a recur-
sive construction is used in [13] to define intertemporal utility in the
presence of vague beliefs.

4. CONCLUDING REMARKS

We have examined the question “can preferences that are based on
beliefs and admit dynamically consistent updating in response to new infor-
mation be probabilistically non-sophisticated?” Qur motivation has been
the presumption that the effect of vagueness on behaviour that is exhibited
in the context of the Ellsberg Paradox is present much more broadly in
situations of decision making under uncertainty. We have provided a
negative answer to the above question. Though an “escape” was suggested
for intertemporal settings—admitting nonindifference to the temporal
resolution of uncertainty—the negative answer seems to us to be
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significant, particularly from the perspective of normative choice theory. In
particular, it casts doubt upon whether recently developed models based on
non-additive probabilities or multiple priors can provide adequate founda-
tions for statistics. More generally, this paper casts doubt upon the appeal
of models of preference in which tastes and beliefs are separated in the
sense of Savage’s axiom P4. The investigation of alternatives to P4 seems
to us to be an important subject for further research.®

APPENDIX: PROOF OF THEOREM

In light of [29, Th. 2], we need only show that our axioms imply P4*,
Recall from Section 2.1 that given P3, P4¢ is equivalent to P4’, which
is more convenient below. The following lemma provides more than
needed.

LEmMMA 1. (a) P4*= P4’
(b) Given Pl and P5%*, then P4’ = P4¥*,
Proof. Consider A, B, T, x*, x, y*, p, and g as in the statement of P4,

The events An B, B\A, AA\B and T\(Au B) form a partition of T.
Therefore, the act

x* if sed
x if seT\4
g if s¢T

can be equivalently rewritten

x* if sedA\B

x if seB\A4

x* if sednB

x if seT\(AuB)
gls) if s¢T

A similar rewriting can be performed for the three other acts in the state-
ment of P4'. Now, if P4* is satisfied, apply it to the pair of disjoint events
A\B and B\ A, and in the “complementary act”

¢ Segal [34] describes a class of preferences, based on “probabilities over probabilities,”
that violate P4 and can resolve the Ellsberg Paradox. But they do not exhibit dynamic
consistency in the sense of this paper.
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x* if AnB
x if TNAuUB)
g(s) if s¢T

replace x* by y*, x by y, and g by g. Conclude that P4’ is satisfied.
Part (b) is an implication of the next two lemmas. |

LEMMA 2. Assume P4’ and P5*. Then for all events A, B, and C such
that CnA=Cn B=¢,

A>,B if and only if AuCz,BuC.

Proof. Consider outcomes x, y, and z such that x>y and y>z If
A >, B, then

x if sed x if seB 7]
y if s¢duC |z y if s¢BUC
y if seC y if seC i

By P4, therefore,

y if seAd y if seB
z if s¢gduC =]z if s¢ BuC |,
vy if seC y if seC

which implies that AU C >, B0 C. This argument can be reversed to
prove the converse implication. ||

LemMA 3. Assume Pl, P4, and P5*. Then for all events A, B, and E
such that AU B E, fe F and ouicomes x* and x with x* > x,

x* If sed x* if seB
AZz,B iff x if seENA x| x if seE\B
fls) if s¢E fls) if s¢E

Proof. Suppose A =, B. We proceed by induction on k = # f(S\E), the
cardinality of f(S\E). If k=1, let f(s})= y for se S\E. By P1 and P5%, 3z
in X such that either y >z or z > y. In the first case the desired ranking is
true if x*=y and x=7z, since A U(S\F)>=,BU(S\E) by Lemma 2. By
P4’, any x* > x will do. In the second case the desired ranking is true if
x*=z and x= y since A =, B. Again, P4’ implies that any x* > x will do.
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Suppose now that #f(S\E)=k+1, yef(S\E), and E,=f"'(y)n

(S\E). As before 3ze X such that either y >z or z> y. In the first case
we obtain the desired ranking for x*=y and x=z from the induction
assumption, since A U E, =, Bu E, be Lemma 2. In the second case the
desired ranking is true for x*=z and x=y because of the induction
hypothesis and 4 2=, B. In both cases, P4’ implies that the desired ranking
holds for all x* > x.

The preceding arguments can be reversed to prove the converse

implication. J
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