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1 Introduction

We study the following sequential choice problem. There are K arms (or ac-
tions), each yielding a random payo¤. Payo¤ distributions are independent
across arms and identical and independent for a given arm across distinct tri-
als. At each stage i = 1; 2; :::; n, the decision-maker (DM) must choose one arm,
knowing both the realized payo¤s from previous choices and the distribution of
the payo¤ for each arm. She chooses a strategy ex ante specifying future con-
tingent choices. This is a special case of a bandit problem, whence the usage of
�arm�rather than �action.� Alternatively, the decision problem can be viewed
as choice of a dynamic strategy when facing a repeated set of (single-stage)
gambles or lotteries and thus is an instance of dynamic risk management.
Because we are interested in varying horizons, we de�ne a strategy for an

in�nite horizon, and then use its truncation for any given �nite horizon. Re-
fer to a strategy as asymptotically optimal if the expected utility it implies in
the limit as horizon n ! 1 is at least as large as that implied by any other
strategy; or equivalently, if it is approximately optimal for large horizons. We
study large-horizon approximations to the value (indirect utility) of the sequen-
tial choice problem and also corresponding asymptotically optimal strategies.
Our focus is on the derivation of analytical (as opposed to computational) re-
sults, particularly with regard to the e¤ect of risk non-neutrality. For example,
we demonstrate that (non)constancy of risk attitude, suitably measured, deter-
mines whether specialization in a single arm throughout or diversi�cation across
time is asymptotically optimal.
Consider three concrete settings that �t our model well. Gambling: A gam-

bler chooses sequentially which of several given slot machines to play. News site:
Each visitor to a site decides whether to click depending on the news header
presented to her. The website (DM) chooses the header (arm) with clicks be-
ing the payo¤s. Users are drawn independently from a �xed distribution. Ad
selection: A website (DM) displays an ad (arm) for each visitor, who is an
i.i.d. draw as above. If she clicks, the payo¤ to the website is a predetermined
price, depending on the ad and paid by the advertiser. Importantly for the �t
with our model, in all three settings payo¤s are realized quickly after an arm is
chosen, and plausibly a large number of trials occur in a relatively short period
of time.1

We have two related reasons for studying asymptotics. First, from the mod-
eler�s perspective, it promotes tractability and the derivation of analytical re-
sults. Bandit problems are notoriously di¢ cult to solve analytically, as opposed
to numerically, in the presence of nonindi¤erence to risk. A second reason for
studying asymptotics is that tractability may be a concern also for the decision-
maker within the model who faces an extremely complicated large-horizon op-
timization problem. In such circumstances, she may seek a strategy that is

1Daily life provides other repeated choice problems, for example, which transportation
mode or route to use to get to work, though the longer time interval between choices suggests
a poorer �t with the model.
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approximately optimal if her horizon is su¢ ciently long. The presumption that
a large-horizon heuristic can alleviate cognitive limitations is supported by two
features of our results: (i) asymptotic optimality depends on payo¤distributions
and the values they induce only through their means and variances (Theorem
1), that is, DM need not know more about the distributions; and (ii) also by
the relative simplicity of the explicit asymptotically optimal strategies in some
cases (Theorem 3).
The focus on asymptotics leads to other noteworthy features of our analysis.

First, unsurprisingly, it leads to our exploiting limit theorems, most notably
a central limit theorem (CLT). The classical CLT considers a sequence (Xi)
of identically and independently distributed random variables, hence having a
�xed mean and variance, which assumptions are adequate for evaluation of the
repeated play of a single arm, and hence also for addressing the once-and-for-
all choice between arms. However, in the more economically relevant case of
sequential choice, we must evaluate strategies which permit switching between
arms, and hence also between payo¤ distributions, at any stage. Accordingly,
in our key technical result, CLT (Proposition 6), means and variances of (Xi)
can vary with i subject only to the restriction that they lie in a �xed set.
The role played by limit theorems is re�ected also in our speci�cation of

the utility index u. We adopt a form of multiattribute utility theory (Keeney
and Rai¤a 1993), whereby two attributes of random payo¤ streams are assumed
to be important. Accordingly, u : R2 �! R has two arguments, namely the
sample average and the

p
n-weighted average of deviations from conditional

means, exactly the statistics whose limiting distributions are the focus in the
LLN (law of large numbers) and CLT respectively. The function u itself is
restricted only by technical conditions. Nevertheless, the resulting model is both
tractable and also �exible enough to accommodate interesting special cases. As
an example of the diversity of cases accommodated, one is a form of mean-
variance for our sequential setting, and another essentially replaces variance by
semivariance. The di¤ering implications of these two speci�cations illustrate
one message that the paper is intended to convey: the mean-variance model
exhibits constant risk attitude and accordingly predicts specialization in one
arm, that is, time-diversi�cation is not important in su¢ ciently large horizons,
while risk attitude varies endogenously in the mean-semivariance model which
therefore predicts specialization only for some but not all parameter values.
The paper proceeds as follows. Related literature is discussed next. The

model and main results follow in Section 2. Most proofs are provided in the
Appendix, which also contains our CLT. Proofs of some details are collected in
the Online Appendix.

1.1 Related literature

Decision-making in the presence of repeated gambles has been studied in sev-
eral papers. We mention some that help to locate this paper in the context
of this literature. In McCardle and Winkler (1992), a coin with uncertain bias
is tossed repeatedly. The decision-maker observes the outcomes of all tosses,
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updates her beliefs accordingly, and chooses sequentially how much to bet on
heads at each history.Full Bayesian rationality is assumed. The authors argue
that some of the model�s predictions about willingness to bet are unintuitive and
they attribute this to the assumption that future betting opportunities are fully
anticipated and incorporated via optimization. Accordingly, they suggest the
need for simplifying heuristics that still accommodate some, but not all, "grand
world" considerations, though no speci�c heuristics are proposed. We share the
broad view that dynamic decision problems under uncertainty are exceedingly
complex and propose, for our setting, the simpli�cation consisting of approx-
imate optimality for large horizons. In Gollier (1996), a single lottery (with
known distribution) is repeated independently, and the decision-maker accepts
or rejects the lottery at each stage. Choice is determined by maximization of
the expected utility of terminal wealth. His paper and ours address di¤erent
questions. Gollier focuses on how the option to gamble in the future a¤ects the
willingness to gamble today, while we are focussed on behavior in the remote
future because it describes approximately optimal behavior for su¢ ciently long
horizons. Another di¤erence is that his setting with a riskless option can be
viewed as the special case of our setting where there are two lotteries at each
stage and where one is degenerate (attaches probability 1 to the outcome 0).
The assumption that there is only one risky asset (or lottery) and one riskless is
common in �nance. However, it is restrictive and it is not clear if and how Gol-
lier�s analysis would extend. Both options being risky poses signi�cant technical
complications for the modeler and cognitive challenges for the decision-maker
within the model.
Samuelson (1963) identi�ed as fallacious the reliance on the law of large

numbers as justifying acceptance of any su¢ ciently long sequence of repetitions
of a positive mean bet even if the single bet is rejected, and suggested that
it indicated undue attention to the variance associated with multiple repeti-
tions. While we do not address Samuelson�s fallacy here, we see in it the hint
that there could be a role for the other major limit theorem, the CLT, in the
broader study of risk-taking given repeated gambles. In that sense, this paper
is inspired by Samuelson (1963). Related is the literature examining the e¤ect
on �nancial risk-taking of horizon length (e.g. of age in a life-cycle portfolio
context), for example, whether a longer horizon promotes risk-taking because
it o¤ers a greater possibility to smooth out risks over time (see, for example,
Samuelson (1989) and Gollier and Zeckhauser (2002)). We di¤er from this lit-
erature in (at least) two respects. First, we model behavior in the long-horizon
limit; we do not study the e¤ect of di¤ering horizon length on risk-taking. A
second critical di¤erence is that while in the �nance literature, assets are di-
visible and can be combined into portfolios at any stage, the lotteries available
to our decision-maker are indivisible and only one can be chosen at any stage.
Consequently, portfolio diversi�cation is excluded herein while diversi�cation
over time is feasible and a focus.2

2When both kinds of diversi�cation are feasible, Samuelson (1989,1997) argues that time-
diversi�cation is inferior. Here we explore whether time-diversi�cation is useful for long
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Approximate optimality for long horizons has been studied in �nance in the
context of portfolio turnpike theorems (see, for example, Huberman and Ross
(1983) and the references therein). This literature studies the conditions un-
der which wealth-independent (hence "constant") portfolios are approximately
optimal for su¢ ciently long horizons. Accordingly, an important factor is the
relation between wealth and the bene�t from diversifying across assets at any
given time. In contrast, in our model at any instant the decision-maker can
choose a single lottery from the given �nite set, and thus only diversi�cation
over time is feasible. In addition, we study approximate optimality without
imposing any form of constancy; for example, Theorem 2(v) illustrates the case
of an asymptotically optimal strategy that is not constant across time (that is,
the gamble chosen varies with time).
All of the papers cited above assume maximization of the expected utility

of terminal wealth. As outlined earlier, we model payo¤s and utility di¤erently.
There are precedents for "nonstandard" utility speci�cations in the context of
repeated gambles; for example, alternatives to expected utility theory are either
adopted or advocated by Chew and Epstein (1988), Benartzi and Thaler (1999)
and Lopes (1996).
The other major connection is to the bandit literature since our decision

problem is the special case of a multi-armed bandit problem where payo¤ dis-
tributions are known and hence need not be learned. Most of the literature (see
Berry and Fristedt (1985) and Slivkins (2022) for textbook-like treatments) as-
sumes a �nite horizon and that choices are driven by expected total rewards,
that is, risk neutrality. Studies that explicitly address risk attitudes include
Sani, Lazaric and Munos (2013), Zimin, Ibsen-Jensen and Chatterjee (2014),
Vakili and Zhao (2016), and Cassel, Manor and Zeevi (2021). They assume
regret minimization rather than expected utility maximization, and focus on
computational algorithms rather than on qualitative theoretical results. Fur-
ther, they are motivated by the nature of learning about unknown payo¤ dis-
tributions, and thus by the exploration/exploitation tradeo¤, while we assume
known distributions and focus instead on the risk/reward tradeo¤. Though it
is important to understand both tradeo¤s and their interactions, as an initial
step we focus on only one in this paper, that being the tradeo¤ for which there
exists very limited theoretical analysis. Theorem 3 gives analytical results on
the latter tradeo¤by exploiting the advantages of large-horizon approximations.
In a more technical vein, our CLT connects this paper to the literature on

nonlinear CLTs, that is CLTs where the expectations operator is nonlinear,
for example, because of the multiplicity of priors and where expectation is
de�ned by the in�mum (or supremum) of expectations as one varies over all
priors. The in�mum is typically motivated, as in the maxmin model (Gilboa
and Schmeidler 1989), by robustness to ambiguity or model uncertainty. The
nonlinear CLTs in Peng (2007, 2019) and Fang et al (2019) are motivated in
this way (see Peng (2019, Thm 2.4.8), for example). They do not make a
connection to Bayesian sequential decision-making, nor is such a connection

horizon planning in settings where portfolio diversi�cation is not feasible.
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apparent in their work. In contrast, the decision-maker in our model is Bayesian
and does not perceive ambiguity. Nevertheless, a set of probability measures
arises (implicitly) from the multiplicity of arms and strategies, and a supremum
applies because of utility maximization over the set of strategies, or equivalently,
over the probability measures they induce. Chen, Epstein and Zhang (2023)
introduced the use of a nonlinear CLT to model Bayesian decision-makers. It
di¤ers from the present paper both technically and in its economic focus as
explained following the statement of our CLT (Proposition 6).

2 The Model

2.1 Preliminaries

Let (
;F ; P ) be the probability space on which all subsequent random variables
are de�ned. The random variables Xk, 1 � k � K, represent the random
rewards from the K arms, and fXk;n : n � 1g denote their independent and
identically distributed copies. We assume that each Xk has a �nite mean and
variance, denoted by

�k := EP [Xk]; �
2
k := V arP [Xk] ; 1 � k � K: (1)

The largest and smallest means and variances are given by

� = maxf�1; � � � ; �Kg; � = minf�1; � � � ; �Kg; (2)

�2 = maxf�21; � � � ; �2Kg; �2 = minf�21; � � � ; �2Kg:

The set of mean-variance pairs is

A = f
�
�k; �

2
k

�
: 1 � k � Kg. (3)

The convex hull of A is a convex polygon. Denote by Aext its set of extreme
points.
A strategy � is a sequence of f1; � � � ; Kg-valued random variables, � =

(�1; � � � ; �n; � � � ). � selects arm k at round n in states for which �n = k. Thus
the corresponding reward is Z�

n given by

Z�
n = Xk;n where �n = k. (4)

The strategy � is admissible if �n is H�
n�1-measurable for all n � 1, where

H�
n�1 = �fZ�

1 ; � � � ; Z�
n�1; �1; :::; �n�1g for n > 1, and H�

0 = f;;
g.

The information at stage n captured byH�
n�1 includes both past choices of arms

and the corresponding history of payo¤s. Allowing the arm chosen at stage n to
depend on past choices permits strategies that alternate stochastically between
arms. Given the serial independence of payo¤s, there is no learning rationale
for conditioning on past payo¤s. However, past payo¤s matter in general at any
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stage because they may in�uence the attitude towards the risk associated with
current and future choices.
The set of all admissible strategies is �. (All strategies considered below

will be admissible, even where not speci�ed explicitly.)

2.2 Utility

For each horizon n, we specify the expected utility function Un used to evaluate
strategies � and the payo¤ streams that they generate. Let u : R2 �! R be
the corresponding von-Neumann Morgenstern (vNM) utility index and de�ne
Un by

Un (�) = EP

"
u

 
1

n

nX
i=1

Z�
i ;

 
nX
i=1

1p
n

�
Z�
i � EP [Z

�
i jH�

i�1]
�!!#

. (5)

The two arguments of u correspond to the two attributes or characteristics of a
random payo¤ stream that DM takes into account. The �rst argument of u is
the sample average outcome under strategy �, and the second, the

p
n-weighted

average of deviations from conditional means, represents sample volatility. Ob-
serve that the second argument has zero expected value relative to the measure
P . Though one might have expected the term (as volatility) to be replaced by
its square or by its absolute value, the important point is that its evaluation
be nonlinear, and here nonlinearity enters via u. The presence of conditional
rather than unconditional means re�ects the sequential nature of the setting.
With regard to the

p
n-weighting, as is familiar from discussions of the classical

LLN and CLT, the scaling by 1
n
implies that in large samples "too little" weight

is given to volatility (e.g. variance) relative to mean. Roughly, as described fur-
ther at the end of this section, the above speci�cation models a decision-maker
who takes into account both mean and variance even asymptotically.

Remark: As is familiar, a Savage act (random variable) de�ned over a state
space that is endowed with a probability measure induces a lottery over out-
comes. Similarly here, any strategy � induces, via P , a multistage lottery, from
which it follows that � can be viewed as describing the sequential (or contingent)
choice from a set of repeated lotteries.

Admittedly, the speci�cation (5) is ad hoc in the sense of (currently) lacking
axiomatic foundations. We propose it because it seems plausible and it delivers
novel results. In addition, we are not aware of any other model of preference
over random payo¤ streams of arbitrary �nite length that has axiomatic foun-
dations and that has something interesting to say in our context. The special
case of (5) where u is additively separable and linear in its second argument (ex-
ample (u.1) below) can be axiomatized, but imposes a priori that only means
matter asymptotically when choosing between arms and hence is too special
(Theorem 3(v)). Take the further special case where u is also linear in its �rst
argument but where payo¤s are denominated in utils. This is the expected ad-
ditive utility model (discounting can be added) that is the workhorse model in
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economics. However, it does not work well in our setting, for example, in the
applied contexts in the introduction. We take the underlying payo¤s or rewards
at each stage to be objective quantities, such as the number of clicks or dollars.
In all these cases, the relevant payo¤ when choosing a strategy is the sum of
single stage payo¤s, e.g. the total number of clicks, or in more formal terms,
stage payo¤s are perfect substitutes. However, discounted expected utility with
nonlinear stage utility index models them as imperfect substitutes.
Utility has a particularly transparent form when � = ��;� speci�es choosing

an arm described by the pair (�; �2) repeatedly regardless of previous outcomes.
In this case payo¤s are i.i.d. with mean � and variance �2. Thus the conditional
expectation appearing in (5) equals �, and the classical LLN and CLT imply that
in the large horizon limit risk is described by the normal distribution N (0; �2)
and

lim
n!1

Un (�
�;�) =

Z
u (�; �) dN

�
0; �2

�
. (6)

Consequently, if u (�; �) is concave, then (asymptotic) risk aversion is indicated
in the sense that

lim
n!1

Un (�
�;�) � u (�; 0) .

Here are examples of utility indices u and the implied utility functions Un
that will be referred to again in the sequel.

Example (utility indices)
(u.1) u (x; y) = ' (x) + �y. Then

Un (�) = EP

"
'

 
1

n

nX
i=1

Z�
i

!#
(u.2) u (x; y) = ' ((1� �)x+ �y), where 0 < � � 1. Then

Un (�) = EP

"
'

 
(1� �)

1

n

nX
i=1

Z�
i + �

1p
n

nX
i=1

�
Z�
i � EP [Z

�
i jH�

i�1]
�!#

(u.3) (Mean-variance) u (x; y) = x� �y2, where � > 0. Then

Un (�) =
1

n
EP

"
nX
i=1

Z�
i

#
� �

1

n
V arP

"
nX
i=1

�
Z�
i � EP [Z

�
i jH�

i�1]
� #

(7)

=
1

n

"
nX
i=1

�
EP
�
Z�
i

�
� �V arP

�
Z�
i � EP [Z

�
i jH�

i�1]
��#

,

which is a form of the classic mean-variance speci�cation for our setting.3 For
any arm with mean-variance pair (�; �2) that is played repeatedly,

Un (�
�;�) = �� ��2, for every n. (8)

3The second equality follows from the fact that, for i 6= j, Z�i � EP [Z�i jH�
i�1] and

Z�j � EP [Z�j jH�
j�1] have zero covariance under P .
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(u.4) (Mean-semivariance) u (x; y) = x� �y2I(�1;0) (y). Only negative cumu-
lative deviations from (conditional) means are penalized. Then, given � and

letting Y =
nP
i=1

�
Z�
i � EP [Z

�
i jH�

i�1]
�
, V arP [Y ] in (7) is replaced by the semi-

variance EP [Y 2IY <0]. If � = ��;�, then

Un (�
�;�) �!

n!1
�� �

Z 0

�1
y2dN

�
0; �2

�
= �� ��2=2.

(u.5) (Shortfall penalty) u (x; y) = x � �I(�1;0) (y). Only the existence of a
shortfall, and not its size, matters. Then

Un (�
�;�) = �� �P

 
1p
n

nX
i=1

�
Z��;�

i � EP [Z
��;�

i jH��;�

i�1 ]
�
< 0

!
(9)

�!
n!1

�� �N(0;�2)(�1; 0) = �� �=2.

In particular, in the large horizon limit the utility of playing the single arm
(�; �2) repeatedly does not depend on the variance.

Remark: For the last 3 examples, horizon length drops out in the sense that
maximizing Un (�) is equivalent to maximizing the modi�ed objective function
U 0n (�) de�ned as in (5) except that both

1
n
and 1p

n
are deleted.

Our model of utility provides a (local) measure of risk aversion, or alterna-
tively, of the mean-variance tradeo¤, assuming that u is suitably di¤erentiable
(thus excluding examples (u.4) and (u.5)). Though it is a slight variant of
the well-known Arrow-Pratt measure (Pratt, 1964), it might be worthwhile to
derive it in our context. Consider a horizon equal to n stages and consider the
choice for the last stage contingent on the history represented by (x; y), (par-
tial sums corresponding to the two averages in (5)). Accordingly, DM uses the
utility index u (x+ �; y + �) to evaluate the next step. Consider her evaluation
of using the arm (�2�; �2�2) for the �nal stage, where � > 0 has the e¤ect, when
small, of scaling down both the mean and variance of payo¤s by �2. Using a
second-order Taylor series approximation of u (x+ �; y + �) about � = 0, one
obtains the expected utility

u (x; y) + @xu (x; y)
�2�

n
+
1

2
@2yyu (x; y)

�2�2

n
.

Therefore, if we let

� =
�1
2
@2yyu (x; y)

@xu (x; y)
�2, (10)

then we can interpret �@2yyu (x; y) =@xu (x; y) as approximating twice the mean-
variance ratio consistent with indi¤erence to a small increase in risk.
Two special cases are revealing. The measure of risk aversion is constant for

the mean-variance model:

�1
2
@2yyu (x; y)

@xu (x; y)
= � for all (x; y) .
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(See Theorem 3 and the ensuing discussion for behavioral implications of this
constancy.) Second, it is identically equal to 0 for (u.1), indicating risk neu-
trality in the sense de�ned by the measure, and this is so regardless of the
curvature of '. More generally, the measure does not involve @2xxu (x; y), con-
trary to what might be expected based on the Arrow-Pratt measure in expected
utility theory. As an "explanation" for this possibly puzzling feature, we point
out that @2xxu (x; y) would appear in a 2nd-order Taylor series expansion if the
added mean-variance pair (or arm) were (��; �2�2) instead of (�2�; �2�2), and
thus it is necessary to understand our choice of scaling.4 The latter scaling
�ts and "works in" our model because the scale-invariant mean-variance ratio
matches the key hypothesis embedded in (5), that as n increases and the payo¤
at each stage is e¤ectively a smaller gamble, neither the mean or the variance
dominates.

2.3 Optimization and the value of a set of arms

Given a horizon of length n, DM solves the following optimization problem:

Vn � sup
�2�

Un (�) . (11)

The �nite horizon problem is generally not tractable, even when u has the
special form (u.1). For reasons of tractability, Bayesian models in the literature
typically take ' in (u.1) to be linear, reducing the problem to maximization of
expected total rewards, but at the cost of assuming risk neutrality. Instead, we
consider large horizons and approximate optimality. Then we can accommodate
a much more general class of utility indices.
The �rst step in developing asymptotics is to de�ne

V � lim
n!1

Vn. (12)

Our �rst theorem proves that V is well-de�ned, that is, values have a limit, and
more. (Below jj(x; y)jj denotes the Euclidean norm.)

Theorem 1 Let u 2 C(R2) and let payo¤s to the K arms conform to (1),
with � � 0. Suppose further that there exists g � 1 such that u satis�es
the growth condition ju(x; y)j � c(1 + jj(x; y)jjg�1), and that payo¤s satisfy
sup1�k�K EP [jXkjg] <1. Then:

(i) Values have a limit: limn!1 Vn exists.

(ii) Only means and variances matter: Consider another set of arms, de-
scribed by the random payo¤s X 0

k, 1 � k � K 0, and denote the corre-
sponding set of mean-variance pairs by A0 and the corresponding values

4Our scaling may bring to mind the small risks modeled by Brownian motion for which
both drift and variance are proportional to the time interval dt (identi�ed here with �2).

10



by V 0
n and V

0. Let the mean-variance pairs (�0k; �
0 2
k ) be de�ned by the

obvious counterpart of (1). Then

A0 = A =) V 0 = V .

Thus we can write

V = V (A ) = V
�
f
�
�k; �

2
k

�
: 1 � k � Kg

�
.

(iii) Extreme arms are enough:

V (A ) = V
�
Aext

�
. (13)

Remark: The assumption that u is continuous rules out example (u.4). How-
ever, because these functions can be approximated by continuous functions, the
CLT (Proposition 6) and subsequently the above theorem, can be extended to
cover them as well. (See Chen, Epstein and Zhang (2023, section A.3), for a
similar extension from continuous functions to indicators.) Similarly for results
below. Because the details are standard, we will ignore the discontinuity of
(u.4).

The Appendix contains a proof of (i) and also gives two alternative ex-
pressions for the limit V . (ii) describes a simpli�cation for the decision-maker
a¤orded by adoption of the in�nite-horizon heuristic - she need only know and
take into account the means and variances for each arm. In addition, it permits
identifying an arm with its mean-variance pair; thus we will often refer to a pair
(�; �2) as an arm. (iii) describes a further possible simpli�cation for DM �she
need only consider "extreme arms", that is, the extreme points of the convex
polygon generated by A. All other arms are redundant. For example, given
two arms (�1; �

2
1) and (�2; �

2
2), then any arm lying on the straight line between

them has no value asymptotically even if it moderates large di¤erences in the
mean-variance characteristics of the two given arms. For another implication
of (iii), because A is contained in the rectangle de�ned by the four pairs on the
right, one obtains that

V (A) � V
��
(�; �2); (�; �2); (�; �2); (�; �2)

	�
.

Finally, note that both (ii) and (iii) are true under weak (nonparametric) as-
sumptions on u, for example, without any assumptions about monotonicity or
risk attitudes. Therefore, they accommodate situations that feature targets, as-
piration levels, loss aversion, and other deviations from the common assumption
of global monotonicity and risk aversion.
The su¢ ciency of means and variances might be expected from the classic

CLT, and arises here for similar reasons.5 We turn to intuition for (iii). Consider

5This is not to say that the result can be derived from the classical CLT, or that it is in
any way "obvious." Its proof is decidedly nontrivial.
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the evaluation of arm k in the context of making the contingent decision for
stage i. If the horizon n is large, then the payo¤ to arm k contributes little
to the averages determining overall utility. Accordingly, a second-order Taylor
series expansion provides a good approximation to the incremental bene�t from
arm k, which expansion, to order O (n�1), is linear in (�k; �

2
k). Therefore, the

value when maximizing over the K arms (asymptotically) equals that when
maximizing over the convex hull of A, or over its set of extreme points Aext, as
asserted in (13). In more economic terms, extreme arms are su¢ cient because
switching suitably between them across stages can, in the in�nite-horizon limit,
replicate or improve upon the payo¤ distribution achievable when choosing from
the entire set of K arms.

2.4 Strategies and the risk/reward tradeo¤

Turn to strategies. Given the K arms corresponding to A, the strategy �� is
asymptotically optimal if

lim
n!1

EPUn (�
�) = V (A) .

It follows that �� is approximately optimal for large horizons in that: for every
� > 0, there exists n� such that

j Un (��)� Vn j< � if n > n�.

Say that (�; �2) is feasible if it lies in A. Theorem 1(iii) states that DM can
limit herself to strategies that choose between extreme arms. More can be said
under added assumptions on the utility index and what is feasible, as illustrated
by the next result.

Theorem 2 Adopt the assumptions in Theorem 1. If u(x; y) is increasing in x
and concave in y, and if (�; �2) is feasible, then: the strategy of always choos-
ing an arm exhibiting (�; �2) is asymptotically optimal, and the corresponding
limiting value, de�ned in (12), is given by

V =

Z
u (�; �) dN

�
0; �2

�
.

Intuition argues for the choice of (�; �2) at stage n if there are no later
trials remaining, but may seem myopic more generally. Notably, the strategy
of always choosing the high-mean/low-variance pair is not in general optimal
given a �nite horizon (even apart from the fact that arms may not be adequately
characterized by mean and variance alone). That it is asymptotically optimal
demonstrates a simplifying feature of the long-horizon heuristic. An additional
comment is that one can similarly consider three other possible combinations of
monotonicity and curvature assumptions for u, where each property is assumed
to hold globally. For example, if u(x; y) is decreasing in x and concave (convex)
in y, then it is asymptotically optimal to always choose an arm exhibiting (�; �2)
((�; �2)) if it is feasible.
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However, the theorem does not provide any insight into the risk/reward
tradeo¤that is at the core of decision-making under uncertainty. Under common
assumptions about monotonicity and risk aversion, the tradeo¤ concerns the
increase in mean reward needed to compensate the individual for facing an
increase in risk (for example, a larger variance). But Theorem 2 assumes that
there exists an arm having both the largest mean and the smallest variance,
thus ruling out the need for DM to make such a tradeo¤.
Next we investigate asymptotic optimality when the risk/reward tradeo¤ is

integral. For greater clarity, we do so in a canonical setting where there are 2
arms (K = 2), described by (�1; �

2
1) and (�2; �

2
2), and where

�1 > �2, �1 > �2 � 0. (14)

Parts (i) and (ii) of the next theorem describe conditions under which it is
asymptotically optimal to specialize in one arm, that is, to choose that arm
always (at every stage and history). The remaining parts give conditions under
which specializing in one arm is not asymptotically optimal (that is, not even
approximately optimal for large horizons). Some results are limited to utility
speci�cations in the Example.

Theorem 3 Adopt the assumptions in Theorem 1 and consider the 2-arm case
above. Then, for each of the following speci�cations of u, the indicated strategy
is asymptotically optimal and V denotes the corresponding limiting value de�ned
in (12).

(i) Let u : R2 �! R be twice continuously di¤erentiable. Suppose that

@xu (x; y) (�1 � �2)+
1
2
@2yyu (x; y)

�
�21 � �22

�
� 0 for all (x; y) 2 R2: (15)

Then specializing in arm 1 always is asymptotically optimal and, (by
(6)), V =

R
u (�1; �) dN (0; �21). If @xu is everywhere positive, then (15) is

equivalent to

�1
2
@2yyu (x; y)

@xu (x; y)
� �1 � �2
�21 � �22

for all (x; y) 2 R2. (16)

When the inequality in (15) is reversed, then it is asymptotically optimal
to specialize in arm 2.

(ii) Adopt the conditions on u in (i), and assume that @xu (x; y) > 0 for all
(x; y) 2 R2. Suppose further that

�1
2
@2yyu

@xu
= � > 0 for all (x; y) 2 R2. (17)

Then specializing in arm 1 (arm 2) is asymptotically optimal if

� � ( � ) �1 � �2
�21 � �22

. (18)

Both strategies are asymptotically optimal when there is equality in (18).
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(iii) Let u (x; y) = x� �y2I(�1;0) (y) ; � > 0. Observe that

�1 � �2
�21 � �22

< � < �,

where the critical values � and � are given by6

� � 4(�1 � �2)

3(�21 � �22)
, � � 2(�1 � �2)

�2(�1 � �2)
.

If � � �1��2
�21��22

, then specializing in arm 1 is asymptotically optimal. If
� < � (respectively � < �), then specializing in arm 1 (arm 2) is not
asymptotically optimal, from which it follows that specialization in either
arm is not asymptotically optimal if � < � < �.

(iv) Let u (x; y) = x � �I(�1;0) (y), � > 0. Let �2 > 0. Then specializing in
arm 2 is not asymptotically optimal for any �, and, if

�0 � 2(�1 � �2)�1
(�1 � �2)

< �,

then neither is specializing in arm 1.

(v) Let u (x; y) = ' (x) + �y, ' 2 C (R) and � 2 R. Fix x� 2 arg max
�1�x��2

'(x),

and let � 2 [0; 1] be such that x� = ��1 + (1 � �)�2. Denote by  i the
number times that arm 1 is chosen in �rst i stages. Let the strategy ��

choose arm 1 at stage 1, and also at stage i + 1, (i � 1), if and only if
 i
i
� �. Then �� is asymptotically optimal and

V = max
�2�x��1

'(x):

Further, specializing in one arm is asymptotically optimal if and only if
maxf' (�1) ; ' (�2)g = max

�2�x��1
'(x).

Remark: It is straightforward to extend the theorem to an arbitrary set of K
arms. For example, in (i), with @xu everywhere positive, specializing in arm j
is asymptotically optimal if

j 2 arg max
k=1;:::;K

f�k � (
� 1
2
@2yyu(x;y)

@xu
)�2kg for all (x; y) ,

which simpli�es in the obvious way under the constancy condition (17).

We discuss each part of the theorem in turn.

6� =1 if �2 = 0.

14



(i) Focus on (16). Intuition derives from interpretation given above of
�@2yyu=@xu as a (local) measure of risk aversion.The relatively small degree
of risk aversion indicated in (16) implies that the larger mean for arm 1 more
than compensates for its larger variance. Moreover, this is true at each stage,
regardless of history, because the inequality in (16) is satis�ed globally.

(ii) This is an immediate consequence of (i) that we include in the statement
because the consequence of the indicated constancy warrants emphasis. Two
examples covered by this constancy are mean-variance and the special case
of (u.2) where ' is an exponential.At �rst glance, the implication regarding
the unimportance of diversi�cation might seem surprising, especially given its
central role in portfolio theory. Of course, diversi�cation in portfolio theory
refers to the simultaneous holding of several assets, which, interpreting each
arm as an asset, is excluded here. But diversi�cation over time is permitted
and that is its meaning here. The result that specialization in one arm over
time is always asymptotically optimal given (17) can be understood as follows.
Considering the factors that might lead to di¤erent arms being chosen at two
di¤erent stages, note �rst that the payo¤distribution for each arm is unchanged
by assumption. Second, though a �nite-horizon induces a nonstationarity that
can a¤ect choices, our decision-maker is, roughly speaking, acting as if solving
an in�nite-horizon problem. That leaves only the variation of risk attitude with
past outcomes, which is excluded if �@2yyu=@xu is constant.
(iii) Note �rst that it has often been argued, including by Markowitz (1959),

that investors are more concerned with downside risk than with variance, and
hence that semivariance is a better measure of the relevant risk. In our se-
quential choice context, the mean-semivariance model agrees partially with
the mean-variance model in that for both (the inequality � in) (18) implies
the asymptotic optimality of choosing (the high mean, high variance) arm 1
throughout. However, their agreement ends there. In particular, there is a role
for time-diversi�cation for the semivariance model, in that, for � < � < �,
asymptotic optimality can be achieved only by a strategy that employs both
arms. (In particular, if arm 2 is risk-free (�2 = 0), then time-diversi�cation
is necessary for asymptotic optimality if 3

4
� exceeds the risk-adjusted excess

mean (�1 � �2)=�
2
1.) Here is some intuition for the existence of a region with

nonspecialization. Since only negative deviations are penalized, it is as though
DM faces, or perceives, less risk than what is measured by �2. Alternatively,
in our preferred interpretation, for any given risk measured by variance, DM
is less averse to that risk in the present model as if her e¤ective � is smaller
than its nominal magnitude. Moreover, risk aversion varies across stages. For
example, contingent on cumulative past deviations being positive (negative) at
stage m, it is relatively unlikely (likely) that future choices will lead later to
negative cumulative deviations, and thus variance is less (more) of a concern.
Such endogenous changes in risk aversion can lead to specialization in either
single arm being dominated in large horizons.
In �nance, it has been argued (Nantell and Price 1979; Klebaner et al 2017)

that the change from variance to semivariance has limited consequences for
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received asset market theory. In contrast, a similar change in the bandit prob-
lem context leads to qualitative di¤erences regarding the importance of time-
diversi�cation.

(iv) This utility speci�cation, for which only the existence of a shortfall and
not its size matters, implies that it is never asymptotically optimal to specialize
in the low mean, low variance arm.7 Indeed, by (9), specializing in the high
mean, high variance arm is superior for large horizons without any regard to
the numerical magnitudes of �1 � �2 and �

2
1 � �22. However, specializing in the

high mean, high variance arm is also ruled out for large enough � - those lying
in (�0;1). Note that this set grows larger as �1 increases (keeping �1, �2 and
�2 �xed) - a larger variance makes it more likely that repeated choice of arm
1 will produce a cumulative shortfall, which is tolerable only if the associated
penalty parameter � is smaller. Therefore, as in the semivariance model (iii), for
a range of parameter values asymptotic optimality can be achieved only through
diversi�cation across time.

(v) The utility speci�cation u (x; y) = ' (x)+�y leads to an asymptotically
optimal strategy that is diversi�ed and that can be described explicitly. Con-
dition (15) suggests that either nonmonotonicity (e.g. a change in the sign of
@xu), or variable risk aversion (e.g. a change in the sign or magnitude of @2yyu)
might lead to the asymptotic optimality of switching between arms. This util-
ity speci�cation, with ' not necessarily monotonic, illustrates the former case.
The interpretation of the strategy �� de�ned in the theorem is that DM targets
x�, a maximizer of ' on [�2; �1]. (When (�2 + �1)=2 is a maximizer, then �

�

chooses arms according to the sequence 121212:::. When ' is monotonic, ��

specializes in arm 1 or in arm 2 according as ' is increasing or decreasing on
[�2; �1], respectively.) Irrespective of any nonlinearity of ', and the implied
non-neutrality to risk, variances do not matter asymptotically as in the classic
LLN.

3 Concluding Comments

Our model has produced new results regarding sequential choice between re-
peated gambles, most notably in describing connections, expressed in simple
formal terms, between the endogeneity of risk aversion and the value of time-
diversi�cation. Three features of the model that facilitate tractability are (i)
the heuristic of approximate optimality for large horizons, which is the decision-
maker�s assumed response to a complex problem; (ii) the existence of a suitable
measure of risk attitude (similar to, but distinct from, the Arrow-Pratt mea-
sure) that describes her risk/reward tradeo¤; and (iii) the fact that without loss

7Intuitively, relying exclusively on the more conservative arm increases the asymptotic
likelihood of cumulative shortfalls. The problem is reminiscent of the classic introductory
story in Dubins and Savage (1976, Ch. 1) of a gambler who must decide how to gamble in
order to minimize the probability that cumulative winnings fall short of a �xed target. Their
solution is that he should not gamble cautiously.
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of generality gambles can be represented by their mean and variance alone, thus
providing a new rationale for mean-variance analysis.
The results are general in the sense that payo¤distributions are unrestricted

except for the requirement that means and variances exist. However, results
depend on our nonstandard speci�cation of payo¤s (via averages) and utility
function. Speci�c assumptions are needed in order to derive analytical results,
and our assumption compares favourably, in our view, with the assumption of
risk neutrality adopted in much of the bandit literature. Given the complexity of
dynamic decision problems under uncertainty, it is natural to wonder if behavior
might be better described by "approximate optimality," and we view the paper
as a modest �rst step in this modeling direction. Undoubtedly more needs to
be done. Axiomatic analysis for such behavior poses an interesting challenge
for decision theorists.

A Appendix: Proofs

We remind the reader of the following notation used in this section: �; � and
�2; �2 are the bounds of means and variances given in (2), A denotes the set
of mean-variance pairs of all K arms, and Aext � A denotes the set of extreme
points of co (A). Pairs consisting of mean and standard deviation (rather than
variance) will also be important, and thus it is convenient to de�ne

[A] = f(�; �) :
�
�; �2

�
2 Ag, and

[A]ext = f(�; �) :
�
�; �2

�
2 Aextg

Let B = fBt = (B
(1)
t ; B

(2)
t )g be a two-dimensional standard Brownian mo-

tion de�ned on (
;F ; P ), and let fFtg be the natural �ltration generated by
(Bt). For a �xed T > 0, and any 0 � t � s � T , let [A](t; T ) denote the set of all
fFsg-progressively measurable processes, a = fas = (a(1)s ; a

(2)
s )g : [t; T ] � 
 !

[A] � R2. Finally, [A]ext(t; T ) is de�ned similarly by restricting the images of
each process a to lie in [A]ext.
The following lemma gives properties of fZ�

ng that will be used repeatedly.

Lemma 4 The rewards fZ�
n : n � 1g de�ned in (4) satisfy the following:

(1) For any n � 1,

� = ess sup
�2�

EP [Z
�
njH�

n�1]; � = ess inf
�2�

EP [Z
�
njH�

n�1]

�2 = ess sup
�2�

EP

h�
Z�
n � EP [Z

�
njH�

n�1]
�2 jH�

n�1

i
�2 = ess inf

�2�
EP

h�
Z�
n � EP [Z

�
njH�

n�1]
�2 jH�

n�1

i
:

(2) For any � 2 � and n � 1, let U �
n�1 be any H�

n�1-measurable random
variable. For any bounded measurable functions f0; f1 and f2 on R, let
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 (x; y) = f0(x) + f1(x)y + f2(x)y
2; (x; y) 2 R2. Then

sup
�2�

EP

h
 
�
U �n�1; Z

�
n

�i
= sup

�2�
EP

�
max
1�k�K

n
 k
�
U �n�1

�o�
where, for all x 2R and 1 � k � K,

 k(x) = EP [ (x;Xk;n)] = f0(x) + �k f1(x) + (�
2
k + �2k) f2(x): (19)

Proof: (1) fZ�
ng satisfy, for any � 2 � and n � 1,

EP [Z
�
njH�

n�1] =

KX
k=1

If�n=kgEP [Xk;njH�
n�1]

=

KX
k=1

If�n=kgEP [Xk;n] =

KX
k=1

If�n=kg�k:

Combine with the de�nitions of � and � in (2) to derive

ess sup
�2�

EP [Z
�
njH�

n�1] = �; ess inf
�2�

EP [Z
�
njH�

n�1] = �:

The other two equalities can be proven similarly.

(2) For any � 2 � and n � 1, let U �
n�1 be a H�

n�1-measurable random
variable. By direct calculation we obtain that

sup
�2�

EP
�
 
�
U �
n�1; Z

�
n

��
=sup

�2�
EP

"
KX
k=1

If�n=kgEP [ 
�
U �
n�1; Xk;n

�
jH�

n�1]

#

=sup
�2�

EP

�
max
1�k�K

 k
�
U �
n�1
��
;

where  k is given in (19). �
Following Peng (2019), our arguments make use of nonlinear partial di¤er-

ential equations (PDEs) and viscosity solutions. The following is taken from
Theorems 2.1.2, C.3.4 and C.4.5 in Peng�s book.

Lemma 5 For given T > 0, consider the following PDE:�
@tv(t; x; y) +G

�
@xv(t; x; y); @

2
yyv(t; x; y)

�
= 0; (t; x; y) 2 [0; T )� R2

v(T; x; y) = u(x; y);
(20)

where u 2 C(R2). Suppose that G is continuous on R2 and satis�es the following
conditions, for all (p; q); (p0; q0) 2 R2:

G(p; q) � G(p; q0); whenever q � q0; (21)

G(p; q)�G(p0; q0) � G(p� p0; q � q0); (22)

G(�p; �q) = �G(p; q); for � � 0: (23)
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Then, for any u 2 C(R2) satisfying a polynomial growth condition, there exists
a unique v 2 C([0; T ]�R2) such that v is a viscosity solution of the PDE (20).
Moreover, if 9� > 0 such that, for all p 2 R and q � q0 2 R,

G(p; q)�G(p; q0) � �(q � q0);

and if the initial condition u is uniformly bounded, then for each 0 < � < T ,
9� 2 (0; 1) such that

kvkC1+�=2;2+�([0;T��]�R2) <1: (24)

Here k � kC1+�=2;2+�([0;T��]�R2) is the Krylov (1987) norm on
C1+�=2;2+�([0; T � �] � R2), the set of (continuous and) suitably di¤erentiable
functions on [0; T � �]� R2.8

A.1 Proof of Theorem 1

We �rst prove a nonlinear central limit theorem for the bandit problem. The
values Vn and V are de�ned in (11) and (12) respectively.

Proposition 6 (CLT) Let u 2 Cb;Lip(R2), the class of all bounded and Lip-
schitz continuous functions on R2, and adopt all other assumptions and the
notation in Theorem 1. Then

lim
n!1

Vn = V = sup
a2[A](0;1)

EP

�
u

�Z 1

0

a(1)s ds;

Z 1

0

a(2)s dB(2)
s

��
(25)

= sup
a2[A]ext(0;1)

EP

�
u

�Z 1

0

a(1)s ds;

Z 1

0

a(2)s dB(2)
s

��
: (26)

The proof in this appendix assumes �> 0. The extension to �= 0 is proven in
the Online Appendix. The boundedness assumption on utility indices excludes
many interesting speci�cations. However, the Online Appendix shows that the
Proposition is valid for all u 2 C (R2) satisfying a growth condition.
The following immediate corollary is used frequently in later proofs of The-

orems 2 and 3 (the Online Appendix contains a proof).

Corollary 7 For all u 2 C (R2) satisfying a polynomial growth condition, the
limit in (25) can be described also by the solution of a PDE. Speci�cally,

V = v(0; 0; 0); (27)

where v is the solution of PDE (20), with function G given by

G(p; q) = sup
(�;�2)2A

�
�p+ 1

2
�2q
�
; (p; q) 2 R2: (28)

8Some detail is provided in the Online Appendix. See also Peng (2019, Ch. 2.1).
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Some related literature on CLTs was cited in the introduction. In addition,
Chen and Epstein (2022) and Chen, Epstein and Zhang (2022) have nonlinear
CLTs, which, when translated into the bandits context, restrict di¤erences be-
tween arms either by assuming that they all have the identical variance (in the
former paper), or the identical mean (in the latter paper). These restrictions
preclude study of the risk/reward tradeo¤. In addition, their objective is to
obtain simple closed-form expressions for the limit (what we denote by V ), and
for that purpose they adopt very special functional forms for u.9 In contrast,
Proposition 6 and its corollary apply to a much more general class of utility
indices. Moreover, as this paper shows, in spite of the complexity of the expres-
sion for V it is the basis for a range of results about the bandit problem even
allowing unrestricted heterogeneity across arms.
Next we proceed with lemmas that will lead to a proof of the CLT. They

assume u 2 C3b (R2) and relate to the functions fHtgt2[0;1] de�ned by, for all
(x; y) 2 R2,

Ht(x; y) = sup
a2[A](t;1+h)

EP

�
u

�
x+

Z 1+h

t

a(1)s ds; y +

Z 1+h

t

a(2)s dB(2)
s

��
; (29)

where h > 0 is �xed and dependence on h is suppressed notationally. In addi-
tion, we often write z = (z1; z2) = (x; y) and de�ne jz� z0j� = jz1� z01j� + jz2�
z02j�.

Lemma 8 The functions fHtgt2[0;1] satisfy the following properties:

(1) Ht 2 C2b (R2) and the �rst and second derivatives of Ht are uniformly
bounded for all t 2 [0; 1].

(2) There exist constants L > 0 and � 2 (0; 1), independent of t, such that for
any (z1; z2); (z01; z

0
2) 2 R2,

j@2zizjHt(z1; z2)� @2zizjHt(z
0
1; z

0
2)j � L(jz1 � z01j� + jz2 � z02j�); i; j = 1; 2:

(3) Dynamic programming principle: For any � 2 [0; 1 + h� t],

Ht (x; y) = sup
a2[A](t;t+�)

EP

�
Ht+�

�
x+

Z t+�

t

a(1)s ds; y +

Z t+�

t

a(2)s dB(2)
s

��
; (x; y) 2 R2:

(4) For the function G given in (28), we have

lim
n!1

nX
m=1

sup
(x;y)2R2

����Hm�1
n
(x; y)�Hm

n
(x; y)� 1

n
G
�
@xHm

n
(x; y); @2yyHm

n
(x; y)

����� = 0:
9In particular, the second paper cited assumes u (x; y) = ' (y), where ' (y) = '1 (y � c) if

y � c, and = ���1'1 (��(y � c)) if y < c, for some function '1 and c 2 R. This functional
form is motivated by loss aversion, but from the perspective of this paper is very special.
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(5) There exists a constant C0 > 0 such that

sup
(x;y)2R2

jH1(x; y)� u(x; y)j � C0h

sup
(x;y)2R2

jH0(x; y)�  (x; y)j � C0h;

where  (x; y) = supa2[A](0;1)EP
h
u
�
x+

R 1
0
a
(1)
s ds; y +

R 1
0
a
(2)
s dB

(2)
s

�i
.

Proof: For any t 2 [0; 1+h] and (x; y) 2 R2, we de�ne the function v(t; x; y) =
Ht(x; y). Then v is the solution of the HJB-equation (20) with function G given
in (28) (Yong and Zhou (1999, Theorem 5.2, Ch. 4)). By Lemma 5, 9� 2 (0; 1)
such that

kvkC1+�=2;2+�([0;1]�R2) <1:

This proves both (1) and (2).

(3) follows directly from the classical dynamic programming principle (Yong
and Zhou (1999, Theorem 3.3, Ch. 4)).

Prove (4): By Ito�s formula,

nX
m=1

sup
(x;y)2R2
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a(1)s ds; y +
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s
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where C is a constant that depends only on �; �; �2, the uniform bound of
@2xxHt; @

2
xyHt, and constant L in (2).

Prove (5): Use Ito�s formula to check that

sup
(x;y)2R2

jH1(x; y)� u(x; y)j

= sup
(x;y)2R2

����� sup
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where the constant C0 depends only on �; �; �2 and the uniform bound of
@xu; @

2
yyu.

Similarly, we can prove that sup(x;y)2R2 jH0(x; y)�  (x; y)j � C0h: �

Lemma 9 Take G to be the function de�ned in (28), let fHtgt2[0;1] be the func-
tions de�ned in (29), and de�ne fLm;ngnm=1 by10

Lm;n(z) = Hm
n
(z) +

1

n
G
�
@z1Hm

n
(z); @2z2z2Hm

n
(z)
�
; z 2 R2. (30)

For any � 2 � and n � 1, de�ne
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Z
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Proof: We need only prove
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where e(m;n) is given by
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10Again, z = (z1; z2) = (x; y).
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By Lemma 8, parts (1) and (2), 9C > 0, � 2 (0; 1) such that
sup
t2[0;1]

sup
z2R2

j@2zizjHt(z)j � C;

sup
t2[0;1]

sup
z;z02R2;z 6=z0

j@2zizjHt(z)� @2zizjHt(z
0)j

jz � z0j� � C; i; j = 1; 2:

It follows from Taylor�s expansion that 8� > 0 9� > 0 (depending only on C
and �), such that 8z; z0 2 R2, and 8t 2 [0; 1],11��Ht(z + z0)�Ht(z)�DzHt(z)z

0 � 1
2
tr
�
z0>D2

zHt(z)z
0���

��jz0j2Ifjz0j<�g + 2Cjz0j2Ifjz0j��g. (34)
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�
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n
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�
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�
. Use (34) to obtain
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and the latter expression converges to 0 as n!1 and �! 0. (Convergence is
due to the �niteness of �; � and �.) This proves (32).
Combine with Lemma 4 and show that e(m;n) =
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11Here Dz := (@zi)
2
i=1 and D

2
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2
i;j=1.
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This proves (33), and completes the proof of (31). �

Proof of Proposition 6: We prove it for u 2 C1b (R2). This su¢ ces because
any u 2 Cb;Lip(R2) can be approximated uniformly by a sequence of functions
in C1b (R2) (see Approximation Lemma in Feller (1971, Ch. VIII)). The proof
also assumes �> 0.
For small enough h > 0, we continue to use fHt(x; y)gt2[0;1+h] as de�ned in

(29). Let fLm;n(x; y)gnm=1 be the functions de�ned in (30). By direct calculation
we obtain
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Application of Lemma 9 implies that jI1nj ! 0 as n!1: Lemma 8 implies
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Combine the latter with Lemma 8, part (5), to obtain�����V � sup
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where the constant C0 depends only on �; �; � and the uniform bound of @xu
and @2yyu. By the arbitrariness of h, the proof of (25) is completed.
Finally, prove (26). Let G be de�ned by (28), and de�ne, for all (p; q) 2R2,

Gext(p; q) = sup
(�;�2)2Aext

�
�p+

1

2
�2q

�
.

Then
G(p; q) = Gext(p; q) 8(p; q) 2 R2: (35)

The proof is completed by applying a Comparison Theorem (Peng (2019, The-
orem C.2.5)). �

Proof of Theorem 1: All the results can be obtained from Proposition 6. That
u need only satisfy continuity and the stated growth condition is implied by
Lemma 2.4.12 and Exercise 2.5.7 in Peng (2019) (or by Rosenthal�s inequality
in Zhang (2016)). For the convenience of readers, we provide a proof in the
Online Appendix. �

A.2 Proof of Theorem 2

We are given that u(x; y) is increasing in x and concave in y, and (�; �2) 2A.
For any t 2 [0; 1] and (x; y) 2 R2, de�ne the function

v(t; x; y) = EP [u(x+ (1� t)�; y + �(B
(2)
1 �B

(2)
t ))]:

Then

v(0; 0; 0) = EP [u(�; �B
(2)
1 ] =

Z
u(�; �)dN(0; �2):
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By the (classic) Feynman-Kac formula (Mao (2008, Theorem 2.8.3)), v is the
solution of the (linear parabolic) PDE�

@tv(t; x; y) + �@xv(t; x; y) +
1
2
�2@2yyv(t; x; y) = 0, (t; x; y) 2 [0; 1)� R2

v(1; x; y) = u(x; y):
(36)

Since u(x; y) is increasing in x and concave in y, it follows that v(t; x; y) is
increasing in x and concave in y for any t 2 [0; 1], that is,

@xv(t; x; y) � 0 and @2yyv(t; x; y) � 0, 8(t; x; y) 2 [0; 1)� R2.

Given also (�; �2) 2A, it follows that
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�
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1
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�2@2yyv

	
= �@xv +

1
2
�2@2yyv;

and hence that v solves the PDE (20). By uniqueness of the solution (Lemma
5), and (27), conclude that

V = v(0; 0; 0) =

Z
u(�; �)dN(0; �2): �

A.3 Proof of Theorem 3

Throughout we assume that A = f(�1; �21); (�2; �22)g.
Proof of (i): The proof consists of three steps.
Step 1: From Theorem 1(i) and (27), it follows that
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"
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S�n
n
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where v(t; x; y) solves the PDE (20).
Step 2: Prove that the following function v solves the above PDE:

v̂(t; x; y) =EP [u(x+ (1� t)�1; y + �1(B
(2)
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t ))] (37)

=

Z
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p
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2 dr

By the Feynman-Kac formula, v̂ solves�
@tv̂(t; x; y) + �1@xv̂(t; x; y) +

1
2
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2
yyv̂(t; x; y) = 0, (t; x; y) 2 [0; 1)� R2

v̂(1; x; y) = u(x; y):
(38)

From (37) and assumption (15), it follows that, for all (t; x; y) 2 [0; 1)� R2,

1
2
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2
yyv̂(t; x; y) + �1@xv̂(t; x; y) � 1

2
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2
yyv̂(t; x; y) + �2@xv̂(t; x; y),
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that is,
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�
�@xv̂ +

1

2
�2@2yyv̂

�
= �1@xv̂ +

1
2
�21@

2
yyv̂. (39)

Thus v̂ solves the PDE (20). By uniqueness of the solution (Lemma 5), conclude
that

lim
n!1

Vn = v(0; 0; 0) = v̂(0; 0; 0) =

Z
u(�1; �)dN(0; �21):

Step 3: If �� denotes the strategy of choosing arm 1 always, then, using Step
1,
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(2)
1 )] = v (0; 0; 0) = V .

Hence �� is asymptotically optimal.

Proof of (iii): Case 1 (� � �1��2
�21��22

): De�ne v by (37). Although u is not twice

di¤erentiable, we can calculate @xv and @2yyv directly to obtain @xv = 1 and
@2yyv = �2��( �y

�1
p
1�t). Therefore,
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�1 � �2
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yyv:

Proceed as in the proof of (i).12

Case 2 (� < � < �): To prove that single-arm strategies are not asymptotically
optimal, it is enough to show that

V = sup
a2[A](0;1)
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a(2)s dB(2)
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(40)
Consider the bandit problem with set of arms given by

A0 = f(�1; �21); (�2; �22); (�3; �23)g,

where (�3; �
2
3) = (1 � �)(�1; �

2
1) + �(�2; �

2
2) for some 0 < � < 1 to be selected

below. Because A0 and A have the identical extreme points, Proposition 6
implies that
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.

12If we assume the reverse inequality in (18), then corresponding implications fail. For
example, if y > 0 is su¢ ciently large which would make �( �yp

1�t� ) close to zero for � =
�1; �2. t � 0, then the last two inequalities above could remain valid even though � >
(�1 � �2) =

�
�21 � �22

�
.

27



Take
(â(1)s ; â(2)s ) = (�1; �1)IfW�1;�3

s �0g + (�3; �3)IfW�1;�3
s <0g, (41)

where

W �1;�3
t =

Z t

0

�
�1IfW�1;�3

s �0g + �3IfW�1;�3
s <0g

�
dB(2)

s ;

W �1;�3
s is an oscillating Brownian motion, that is, the solution of the stochastic

di¤erential equation (SDE)

W �1;�3
t =
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�1IfW�1;�3
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By Keilson and Wellner (1978, Theorem 1), the probability density of W �1;�3
t is

q (t; �), where
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h
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i
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(42)

and q�(y;�2) = 1p
2��
exp (�(y=�)2=2) is the pdf for N (0; �2). Using this pdf,

we can calculate
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â(2)s dB(2)
s

��
=EP

�Z 1

0

�
�1IfW�1;�3
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Verify the inequality

�1
�3

�1 + �3
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and deduce that

� >
2(�1 � �3)

(�1 + 2�3)(�1 � �3)
=

�1 � �2
�21 � �22 + f(�)

where f(�) =
�
�1
p
(1� �)�21 + ��22 � �21

�
=2�. It can be veri�ed that f 0(�) <

0 for � 2 (0; 1) and lim�!0 f(�) = (�
2
2 � �21) =4:

Therefore, for any � > � = 4(�1��2)
3(�21��22)

, there exists �0 2 (0; 1) such that
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Choose � = �0 in the de�nition (41) of â = (â
(1)
s ; â

(2)
s ) and deduce that

V = sup
a2[A](0;1)
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1
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:

That is, when � > �, then specializing in arm 1 is NOT asymptotically optimal.
An analogous argument proves that specializing in arm 2 is not asymptoti-

cally optimal if � < �. Details are provided in the Online Appendix.

Proof of (iv): It remains to prove only the claim for the case �0 < �. The
proof is similar to that for (iii). Speci�cally, prove that (40) is satis�ed for the
process (â(1)s ; â

(2)
s ) where

(â(1)s ; â(2)s ) = (�1; �1)IfW�2;�1
s <0g + (�2; �2)IfW�2;�1

s �0g,

and W �2;�1
s is the oscillating Brownian motion given by

W �2;�1
t =

Z t

0

�
�1IfW�2;�1

s <0g + �2IfW�2;�1
s �0g

�
dB(2)

s .

The process W �2;�1
t admits a probability density analogous to (42).

Proof of (v): For i � 1, we have Z��
i = Xk;i where �

�
i = k, and fXk;i : i � 1g

are i.i.d. Then

EP

"
'

 
1

n

nX
i=1

Z��

i

!#
= EP

"
'

 
 n
n

P n
i=1X1;i

 n
+
n�  n
n

Pn� n
i=1 X2;i

n�  n

!#
Since  n=n ! � as n ! 1, combine with the classical LLN for fX1;i : i � 1g
and fX2;i : i � 1g to obtain

lim
n!1

EP

"
'

 
1

n

nX
i=1

Z��

i

!#
= ' (��1 + (1� �)�2) = '(x�).

Therefore, �� is asymptotically optimal because, by Proposition 6,

V = sup
a2[A](0;1)

EP

�
u

�Z 1

0

a(1)s ds;

Z 1

0

a(2)s dB(2)
s

��
= sup

a2[A](0;1)
EP

�
'

�Z 1

0

a(1)s ds

��
� '(x�).

The remaining assertion is implied by the fact that limn�!1 Un (�
�;�) =

' (�) for each (�; �2). �
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