Journal: Economic Theory

"Approximate optimality and the risk/reward tradeoff given repeated gambles"

Authors: Zengjing Chen, Larry G Epstein, and Guodong Zhang

Corresponding author: Larry G Epstein, McGill University, larry.epstein@mcgill.ca

ONLINE APPENDIX

Lemma: Our CLT, Proposition 6, is valid also if $\underline{\sigma} = 0$.

Proof: As in the proof of Proposition 6, it suffices to take $u \in C_b^{\infty}(\mathbb{R}^2)$.

Given $\underline{\sigma} = 0$, we add a perturbation to the random returns of the K arms. For any $1 \leq k \leq K$ and $n \geq 1$, let $X_{k,n}^{\epsilon} = X_{k,n} + \epsilon \zeta_n$, where $\epsilon > 0$ is a fixed small constant and $\{\zeta_n\}$ is a sequence of i.i.d. standard normal random variables, independent with $\{X_{k,n}\}$. Then, for any $\theta \in \Theta$ and $n \geq 1$, the corresponding reward is denoted by $Z_n^{\theta,\epsilon} = Z_n^{\theta} + \epsilon \zeta_n$, and the corresponding set of mean-variance pairs is denoted by

$$\mathcal{A}_{\epsilon} = \{ (\mu_{k,\epsilon}, \sigma_{k,\epsilon}^2) : 1 \le k \le K \},$$

where $\mu_{k,\epsilon} = \mu_k$ and $\sigma_{k,\epsilon}^2 = \sigma_k^2 + \epsilon^2$. The corresponding bounds are $\overline{\mu}_{\epsilon}, \underline{\mu}_{\epsilon}, \overline{\sigma}_{\epsilon}^2$, and $\underline{\sigma}_{\epsilon}^2 > 0$.

Define

$$V_n^{\epsilon} = \sup_{\theta \in \Theta} E_P \left[u \left(\frac{\sum_{i=1}^n Z_i^{\theta, \epsilon}}{n}, \frac{\sum_{i=1}^n (Z_i^{\theta, \epsilon} - E_P[Z_i^{\theta, \epsilon} | \mathcal{H}_{i-1}^{\theta}])}{\sqrt{n}} \right) \right]$$

By Proposition 6 for $\{Z_n^{\theta,\epsilon}\},\$

$$\lim_{n \to \infty} V_n^{\epsilon} = \sup_{a \in [\mathcal{A}_{\epsilon}](0,1)} E_P \left[u \left(\int_0^1 a_s^{(1)} ds, \int_0^1 a_s^{(2)} dB_s^{(2)} \right) \right] = v_{\epsilon}(0,0,0), \tag{43}$$

where $v_{\epsilon}(t, x, y)$ is the solution of PDE (20) with function G_{ϵ} instead of G,

$$G_{\epsilon}(p,q) = \sup_{(\mu,\sigma^2) \in \mathcal{A}_{\epsilon}} \left[\mu p + \frac{1}{2} \sigma^2 q \right], \quad (p,q) \in \mathbb{R}^2.$$
 (44)

By Yong and Zhou (1999, Propn. 5.10, Ch. 4), $\exists C' > 0$ such that

$$|v_{\epsilon}(t, x, y) - v(t, x, y)| \le C' \sqrt{\epsilon}, \quad \forall (t, x, y) \in [0, 1) \times \mathbb{R}^2.$$

We also have

$$|V_n - V_n^{\epsilon}|^2 \le C\epsilon^2 E_P \left[\left| \frac{\sum_{i=1}^n \zeta_i}{n} \right|^2 + \left| \frac{\sum_{i=1}^n \zeta_i}{\sqrt{n}} \right|^2 \right] \le 2C\epsilon^2,$$

where the constant C depends only on the bounds of $\partial_x u$ and $\partial_y u$.

Letting as $\epsilon \to 0$ in (43), the CLT (25) is proven for $\underline{\sigma} = 0$. Similar arguments show that (26) is also valid.

Lemma: Our CLT, Proposition 6, is valid also if u is continuous and, for some $g \ge 1$ and c > 0, $|u(x,y)| \le c(1+||(x,y)||^{g-1})$ and $\sup_{1 \le k \le K} E_P[|X_k|^g] < \infty$.

Proof: We prove that (25) remains valid. Refer to it as "the CLT."

Step 1: Prove the CLT for any $u \in C_b(\mathbb{R}^2)$ with compact support (constant outside a compact subset of \mathbb{R}^2). In this case, $\forall \epsilon > 0 \ \exists \hat{u} \in C_{b,Lip}(\mathbb{R}^2)$ such that $\sup_{z \in \mathbb{R}^2} |u(z) - \hat{u}(z)| \leq \frac{\epsilon}{2}$. Then

$$\left| \sup_{\theta \in \Theta} E_{P} \left[u \left(\frac{S_{n}^{\theta}}{n}, \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right) \right] - \sup_{a \in [\mathcal{A}](0,1)} E_{P} \left[u \left(\int_{0}^{1} a_{s}^{(1)} ds, \int_{0}^{1} a_{s}^{(2)} dB_{s}^{(2)} \right) \right] \right|$$

$$\leq \epsilon + \left| \sup_{\theta \in \Theta} E_{P} \left[\hat{u} \left(\frac{S_{n}^{\theta}}{n}, \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right) \right] - \sup_{a \in [\mathcal{A}](0,1)} E_{P} \left[\hat{u} \left(\int_{0}^{1} a_{s}^{(1)} ds, \int_{0}^{1} a_{s}^{(2)} dB_{s}^{(2)} \right) \right] \right|$$

Therefore,

$$\limsup_{n\to\infty} \left| \sup_{\theta\in\Theta} E_P \left[u \left(\frac{S_n^{\theta}}{n}, \frac{\overline{S}_n^{\theta}}{\sqrt{n}} \right) \right] - \sup_{a\in[\mathcal{A}](0,1)} E_P[u(\int_0^1 a_s^{(1)} ds, \int_0^1 a_s^{(2)} dB_s^{(2)})] \right| \le \epsilon,$$

which proves the CLT since ϵ is arbitrary.

Step 2: Let $u \in C(\mathbb{R}^2)$ satisfy the growth condition $|u(z)| \leq c(1+|z|^{g-1})$ for $g \geq 1$. For any N > 0, $\exists u_1, u_2 \in C(\mathbb{R}^2)$ such that $u = u_1 + u_2$, where u_1 has a compact support and $u_2(z) = 0$ for $|z| \leq N$, and $|u_2(z)| \leq |u(z)|$ for all z. Then

$$|u_2(z)| \le \frac{2c(1+|z|^g)}{N}, \quad \forall z \in \mathbb{R}^2,$$

and

$$\begin{split} & \left| \sup_{\theta \in \Theta} E_{P} \left[u \left(\frac{S_{n}^{\theta}}{n}, \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right) \right] - \sup_{a \in [\mathcal{A}](0,1)} E_{P}[u(\int_{0}^{1} a_{s}^{(1)} ds, \int_{0}^{1} a_{s}^{(2)} dB_{s}^{(2)})] \right| \\ & \leq \left| \sup_{\theta \in \Theta} E_{P} \left[u_{1} \left(\frac{S_{n}^{\theta}}{n}, \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right) \right] - \sup_{a \in [\mathcal{A}](0,1)} E_{P}[u_{1} \left(\int_{0}^{1} a_{s}^{(1)} ds, \int_{0}^{1} a_{s}^{(2)} dB_{s}^{(2)} \right)] \right| \\ & + \sup_{\theta \in \Theta} E_{P} \left[\left| u_{2} \left(\frac{S_{n}^{\theta}}{n}, \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right) \right| \right] + \sup_{a \in [\mathcal{A}](0,1)} E_{P}[|u_{2} \left(\int_{0}^{1} a_{s}^{(1)} ds, \int_{0}^{1} a_{s}^{(2)} dB_{s}^{(2)} \right)] \right] \\ & \leq \left| \sup_{\theta \in \Theta} E_{P} \left[u_{1} \left(\frac{S_{n}^{\theta}}{n}, \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right) \right] - \sup_{a \in [\mathcal{A}](0,1)} E_{P}[u_{1} \left(\int_{0}^{1} a_{s}^{(1)} ds, \int_{0}^{1} a_{s}^{(2)} dB_{s}^{(2)} \right)] \right| \\ & + \frac{2c}{N} \left(2 + \sup_{\theta \in \Theta} E_{P} \left[\left| \frac{S_{n}^{\theta}}{n} \right|^{g} + \left| \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right|^{g} \right] + \sup_{a \in [\mathcal{A}](0,1)} E_{P} \left[\left| \int_{0}^{1} a_{s}^{(1)} ds \right|^{g} + \left| \int_{0}^{1} a_{s}^{(2)} dB_{s}^{(2)} \right|^{g} \right] \right) \end{split}$$

By the Burkholder-Davis-Gundy inequality (Mao (2008, Theorem 1.7.3)),

$$\lim \sup_{n \to \infty} \left| \sup_{\theta \in \Theta} E_P \left[u \left(\frac{S_n^{\theta}}{n}, \frac{\overline{S}_n^{\theta}}{\sqrt{n}} \right) \right] - \sup_{a \in [\mathcal{A}](0,1)} E_P \left[u \left(\int_0^1 a_s^{(1)} ds, \int_0^1 a_s^{(2)} dB_s^{(2)} \right) \right] \right|$$

$$\leq \frac{2c}{N} \left(2 + \max\{|\overline{\mu}|^g, |\underline{\mu}|^g\} + \overline{\sigma}^g + \sup_{n} \sup_{\theta \in \Theta} E_P \left[\left| \frac{S_n^{\theta}}{n} \right|^g + \left| \frac{\overline{S}_n^{\theta}}{\sqrt{n}} \right|^g \right] \right).$$

Since N can be arbitrarily large, it suffices to prove

$$\sup_{n} \sup_{\theta \in \Theta} E_{P} \left[\left| \frac{S_{n}^{\theta}}{n} \right|^{g} + \left| \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right|^{g} \right] < \infty$$

Step 3: Prove the preceding inequality. For any n,

$$\sup_{\theta \in \Theta} E_P \left[\left| \frac{S_n^{\theta}}{n} \right|^g \right] \le \sup_{\theta \in \Theta} E_P \left[\frac{n^{g-1}}{n^g} \sum_{i=1}^n |Z_i^{\theta}|^g \right] \le K \sup_{1 \le k \le K} E_P[|X_k|^g].$$

For $1 \leq g \leq 2$,

$$\left(\sup_{\theta \in \Theta} E_{P} \left[\left| \frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right|^{g} \right] \right)^{\frac{2}{g}} \leq \sup_{\theta \in \Theta} E_{P} \left[\left(\frac{\overline{S}_{n}^{\theta}}{\sqrt{n}} \right)^{2} \right]
= \frac{1}{n} \sup_{\theta \in \Theta} E_{P} \left[\left(\overline{S}_{n-1}^{\theta} \right)^{2} + 2\overline{S}_{n-1}^{\theta} \overline{Z}_{n}^{\theta} + (\overline{Z}_{n}^{\theta})^{2} \right]
\leq \frac{1}{n} \sup_{\theta \in \Theta} E_{P} \left[\left(\overline{S}_{n-1}^{\theta} \right)^{2} + \overline{\sigma}^{2} \right] \leq \overline{\sigma}^{2}.$$

For g > 2,

$$|x+y|^g \leq 2^g g^2 |x|^g + |y|^g + gx|y|^{g-1} sgn(y) + 2^g g^2 x^2 |y|^{g-2}, \ \forall x, y \in \mathbb{R}.$$
Let $T_k^{\theta} = \max\{\overline{S}_k^{\theta}, \overline{S}_k^{\theta} - \overline{S}_1^{\theta}, \cdots, \overline{S}_k^{\theta} - \overline{S}_{k-1}^{\theta}\}$. Then $T_k^{\theta} = \overline{Z}_k^{\theta} + (T_{k-1}^{\theta})^+$ and
$$\sup_{\theta \in \Theta} E_P[|T_k^{\theta}|^g]$$

$$\leq 2^g g^2 \sup_{\theta \in \Theta} E_P[|\overline{Z}_k^{\theta}|^g] + \sup_{\theta \in \Theta} E_P[|(T_{k-1}^{\theta})^+|^g]$$

$$+ g \sup_{\theta \in \Theta} E_P[\overline{Z}_k^{\theta}|(T_{k-1}^{\theta})^+|^{g-1}] + 2^g g^2 \sup_{\theta \in \Theta} E_P[(\overline{Z}_k^{\theta})^2|(T_{k-1}^{\theta})^+|^{g-2}]$$

$$\leq 2^g g^2 \sum_{i=1}^k \sup_{\theta \in \Theta} E_P[|\overline{Z}_i^{\theta}|^g] + 2^g g^2 \sum_{i=2}^k \sup_{\theta \in \Theta} E_P[(\overline{Z}_i^{\theta})^2|(T_{i-1}^{\theta})^+|^{g-2}]$$

$$\leq 2^g g^2 \sum_{\theta \in \Theta} \sup_{\theta \in \Theta} E_P[|\overline{Z}_i^{\theta}|^g] + 2^g g^2 \overline{\sigma}^2 \sum_{\theta \in \Theta} \left(\sup_{\theta \in \Theta} E_P[|(T_i^{\theta})^+|^g]\right)^{\frac{g-2}{g}}.$$

Let $A_n = \sup_{k \le n} \sup_{\theta \in \Theta} E_P[|T_k^{\theta}|^g]$. Then, by Young's inequality (Peng (2019, Lemma 1.4.1)), $\overline{^{13}}$

$$A_{n} \leq 2^{g} g^{2} \sum_{i=1}^{n} \sup_{\theta \in \Theta} E_{P}[|\overline{Z}_{i}^{\theta}|^{g}] + 2^{g} g^{2} \overline{\sigma}^{2} n A_{n}^{\frac{g-2}{g}}$$

$$\leq 2^{g} g^{2} \sum_{i=1}^{n} \sup_{\theta \in \Theta} E_{P}[|\overline{Z}_{i}^{\theta}|^{g}] + \frac{2}{g} (2^{g} g^{2} \overline{\sigma}^{2} n)^{\frac{g}{2}} + \frac{g-2}{g} A_{n}.$$

Therefore,

$$\begin{split} A_n \leq & C_{g,1} \sum_{i=1}^n \sup_{\theta \in \Theta} E_P[|\overline{Z}_i^{\theta}|^g] + C_{g,2} n^{\frac{g}{2}} \\ \leq & C_{g,1} \sum_{i=1}^n \sup_{\theta \in \Theta} E_P[|Z_i^{\theta}|^g + \max\{|\overline{\mu}|^g, |\underline{\mu}|^g\}] + C_{g,2} n^{\frac{g}{2}} \\ \leq & C_{g,1} n K \sup_{1 \leq k \leq K} E_P[|X_k|^g] + C_{g,1} n \max\{|\overline{\mu}|^g, |\underline{\mu}|^g\} + C_{g,2} n^{\frac{g}{2}}. \end{split}$$

Finally,

$$\begin{split} \sup_{\theta \in \Theta} E_P \left[\left| \frac{\overline{S}_n^{\theta}}{\sqrt{n}} \right|^g \right] &\leq n^{-\frac{g}{2}} A_n \\ &\leq C_{g,1} n^{1-\frac{g}{2}} K \sup_{1 \leq k \leq K} E_P[|X_k|^g] + C_{g,1} n^{1-\frac{g}{2}} \max\{|\overline{\mu}|^g, |\underline{\mu}|^g\} + C_{g,2}. \end{split}$$

Since $\sup_{1 \le k \le K} E_P[|X_k|^g] < \infty$, Step 3 is complete and the Lemma is proven.

Proof of Corollary 7: The preceding Lemma proves the extension for Proposition 6.

To prove (27), define

$$v(t, x, y) = \sup_{a \in [A](t, 1)} E_P \left[u \left(x + \int_t^1 a_s^{(1)} ds, y + \int_t^1 a_s^{(2)} dB_s^{(2)} \right) \right], \quad (x, y) \in \mathbb{R}^2.$$

As in the proof of Lemma 8(1), for $u \in C_{b,Lip}(\mathbb{R}^2)$, it can be checked that (Yong and Zhou (1999, Theorem 5.2 in Chapter 4)) v is the unique viscosity solution of the HJB-equation (20) with function G given in (28). Then we have

$$V = \sup_{a \in [\mathcal{A}](0,1)} E_P \left[u \left(\int_t^1 a_s^{(1)} ds, \int_t^1 a_s^{(2)} dB_s^{(2)} \right) \right] = v(0,0,0).$$

For $u \in C(\mathbb{R}^2)$ with growth condition, the value function is still the unique viscosity solution of the PDE (20) with function G given in (28). Supporting

details can be found in Pham (2009, p.66) or Aivaliotis and Palczewski (2010, Corollary 4.7).

The Krylov norm: We use the notation in Krylov (1987, Section 1.1); see also Peng (2019, Chapter 2.1). For $\Gamma \subset [0, \infty) \times \mathbb{R}^2$, $C(\Gamma)$ denotes the set of all real-valued functions v defined on Γ , continuous in the relative topology on Γ and having a finite norm,

$$||v||_{C(\Gamma)} = \sup_{(t,z)\in\Gamma} |v(t,z)|.$$

Similarly, given $\alpha, \beta \in (0, 1)$,

$$||v||_{C^{\alpha,\beta}(\Gamma)} = ||v||_{C(\Gamma)} + \sup_{(t,z),(t',z')\in\Gamma,(t,z)\neq(t',z')} \frac{|v(t,z)-v(t',z')|}{|t-t'|^{\alpha} + |z-z'|^{\beta}}$$

$$||v||_{C^{1+\alpha,1+\beta}(\Gamma)} = ||v||_{C^{\alpha,\beta}(\Gamma)} + ||\partial_t v||_{C^{\alpha,\beta}(\Gamma)} + \sum_{i=1}^2 ||\partial_{z_i} v||_{C^{\alpha,\beta}(\Gamma)}.$$

$$||v||_{C^{1+\alpha,2+\beta}(\Gamma)} = ||v||_{C^{1+\alpha,1+\beta}(\Gamma)} + \sum_{i,j=1}^{2} ||\partial_{z_i z_j}^2 v||_{C^{\alpha,\beta}(\Gamma)}.$$

The corresponding subspaces of $C(\Gamma)$ in which the correspondent derivatives exist and the above norms are finite are denoted respectively by

$$C^{1+\alpha,1+\beta}(\Gamma)$$
 and $C^{1+\alpha,2+\beta}(\Gamma)$.

Therefore, the first and second derivatives v(t, z) with respect to z exist and the related norms are finite. In particular, $\exists L > 0$ such that

$$\sup_{(t,z),(t,z')\in\Gamma,z\neq z'}\frac{|v(t,z)-v(t,z')|}{|z-z'|^{\beta}} < L.$$

In the proof of Lemma 8, we applied the preceding to $v(t,z) = H_t(z)$.

Completion of the proof of Theorem 3(iii): Show that specializing in arm 2 is not asymptotically optimal if $\alpha < \overline{\alpha}$.

Verify the inequality

$$\mu_1 \frac{\sigma_3}{\sigma_1 + \sigma_3} + \mu_3 \frac{\sigma_1}{\sigma_1 + \sigma_3} - \alpha \frac{\sigma_1 \sigma_3^2}{\sigma_1 + \sigma_3} > \mu_2 - \alpha \frac{\sigma_2^2}{2} = E_P \left[u \left(\mu_2, \sigma_2 B_1^{(2)} \right) \right],$$

and deduce that

$$\alpha < \frac{2(\mu_1 - \mu_2) \left[(1 - \lambda)\sigma_1 + \sqrt{(1 - \lambda)\sigma_1^2 + \lambda \sigma_2^2} \right]}{2(1 - \lambda)\sigma_1^3 + (2\lambda - 1)\sigma_1\sigma_2^2 - \sigma_2^2 \sqrt{(1 - \lambda)\sigma_1^2 + \lambda \sigma_2^2}} \equiv 2(\mu_1 - \mu_2)g(\lambda).$$

It can be verified that, $g'(\lambda) > 0$ for $\lambda \in (0,1)$ and $\lim_{\lambda \to 1} g(\lambda) = \frac{1}{\sigma_2(\sigma_1 - \sigma_2)}$.

Therefore, for any $\alpha < \overline{\alpha} = \frac{2(\mu_1 - \mu_2)}{\sigma_2(\sigma_1 - \sigma_2)}$, there exists $\lambda_1 \in (0, 1)$ such that

$$\alpha < 2(\mu_1 - \mu_2)g(\lambda_1) < \frac{2(\mu_1 - \mu_2)}{\sigma_2(\sigma_1 - \sigma_2)}.$$

Choose $\lambda = \lambda_1$ in the definition (41) of $\hat{a} = (\hat{a}_s^{(1)}, \hat{a}_s^{(2)})$ and deduce that

$$V = \sup_{a \in [\mathcal{A}](0,1)} E_P \left[u \left(\int_0^1 a_s^{(1)} ds, \int_0^1 a_s^{(2)} dB_s^{(2)} \right) \right]$$

$$\geq E_P \left[u \left(\int_0^1 \hat{a}_s^{(1)} ds, \int_0^1 \hat{a}_s^{(2)} dB_s^{(2)} \right) \right]$$

$$> E_P \left[u \left(\mu_2, \sigma_2 B_1^{(2)} \right) \right].$$

Therfore, specializing in arm 2 is NOT asymptotically optimal.

When $\sigma_2 = 0$, we can set $\overline{\alpha} = \infty$, and the above proof still holds.