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ONLINE APPENDIX

Lemma: our CLT, Proposition 6, is valid also if o = 0.
Proof: As in the proof of Proposition 6, it suffices to take u €C§°(R?).

Given g = 0, we add a perturbation to the random returns of the K arms.
Forany 1 < k < K and n > 1, let X; = X, + €(C,, where ¢ > 0 is a
fixed small constant and {(,,} is a sequence of i.i.d. standard normal random
variables, independent with {Xj ,}. Then, for any # € © and n > 1, the
corresponding reward is denoted by Z%¢ = Z% + ¢(,,, and the corresponding set
of mean-variance pairs is denoted by

"46 = {<luk:,e7o-i,e) 1<k < K}7

where 1y, . =y, and of , = o} + €*. The corresponding bounds are 7i, p_, 72,
and g2 > 0.
Define

Ve =sup Ep
=E)

(T2 S Bl
n vn

By Proposition 6 for {Z%¢},
1 1
lim VS = sup Ep [u (/ agl)ds,/ ag;z)ngz))] = 0.(0,0,0),  (43)
n—00 a€lA](0,1) 0 0

where v (t, z,y) is the solution of PDE (20) with function G, instead of G,

1
Ge(p,q) = sup [up+ 50261] . (p.q) R (44)
(m,0?)€EA.

By Yong and Zhou (1999, Propn. 5.10, Ch. 4), 3C’ > 0 such that
oelt, 2,9) — o(t, ,9)| < O'Ve, W(t,,y) € [0,1) x B.

We also have

2

2 n
|V, — Vi]? < CEEp + )—Ei?l@ < 20¢,
n

2 iz Gi
n

where the constant C' depends only on the bounds of d,u and d,u.
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Letting as € — 01in (43), the CLT (25) is proven for ¢ = 0. Similar arguments
show that (26) is also valid. [

Lemma: our CLT, Proposition 6, is valid also if u is continuous and, for
some g > 1 and ¢ > 0, |u(z,y)| < c¢(1+ [[(z.y)]|?"") and sup, << Ep[|Xi|?] <
0.

Proof: We prove that (25) remains valid. Refer to it as "the CLT."

Step 1: Prove the CLT for any u € Cy(R?) with compact support (constant
outside a compact subset of R?). In this case, Ve > 0 i € C} 1;,(R?) such that
sup,epe [u(z) — @(z)| < 5. Then

Sy 5, L 0gs [ a@ap®
supEp [u| =, —2% || — sup Epu/ all ds,/ a®dB?
00 n’\/n aclA)(0,1) ol 0 0 )
g0 39 1 1
<e+|supEp |u| =, —2= || — sup Ep[ﬁ(/ agl)ds,/ aPdB®)]
0co n’\/n a€lA](0,1) 0 0
Therefore,
g0 g0 1 1
limsup [sup Ep |u | —=,—= || — sup EP[U(/ ag”ds,/ aPdB?)]| <e,
n—oo |6e® n’y/n a€[A4](0,1) 0 0

which proves the CLT since € is arbitrary.

Step 2: Let u € C(R?) satisfy the growth condition |u(z)| < ¢(1 + |2]971) for
g > 1. For any N > 0, Juy, us €C(R?) such that u = u; + uy, where u; has a
compact support and uy(z) = 0 for |z| < N, and |ua(z)| < |u(z)]| for all z. Then

2¢(1 + |z]9)

lug(2)] < N . VzeR?
and
[ (g0 &° 1 1
supEp |u| =, —= ]| — sup Ep[u(/ agl)ds,/ aPdB?)]
0€O i n n a€[A](0,1) 0 0
[ g0 §9 1 1
<l|supEp |us | =, —2 || — sup Ep[ul(/ agl)ds,/ aPdB®)]
0cO i n n ac[A](0,1) 0 0
st 3, L g [ 2050
+SupEP Ug | — ——= + sup EPHU2( Qg dS, ag st )H
0€O n n a€[A](0,1) 0 0
0 S, \ L 2 R®
S SupEP U _n’_n - sup EP[ul(/ Qg dS,/ Qg st )]
00 n’'\/n | aclon 0 0

—0 |9
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1 1
/ aVds / a?dB
0 0

+ sup Ep |:
a€[A](0,1)
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By the Burkholder-Davis-Gundy inequality (Mao (2008, Theorem 1.7.3)),

s S, g @R
u _n7 —= — Sup EP[U(/ asl dS,/ (132 st2 )]
n’\/n a€lA](0,1) 0 0

—0 |9
2 S
<= <2+max{|ﬁ|g,|,u|g}—|—6g+supsupEp = ])
N - n 0cO

sup Ep
0c©

lim sup
n—oo
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Since N can be arbitrarily large, it suffices to prove

AP

Step 3: Prove the preceding inequality. For any n,

—0
sup sup Ep + | —=
n 6€O

0
‘ S

56’ g ng—l
sup 50 |52 | < up 2 |27 1220 | < K sup Erll il
0cO n 0O v = 1<k<K
For1 < g <2,
—0 197\ 2 —o\ 2
S ! S
sup Ep ||—2% <sup F —=
<e£ "llva D “eeo | ﬁ)
1 (/=6 \2 =0 =0 0.
= SupEP <Snfl) +2Sn712n+(zn)
n gco L
1 (<0 2, =2 —2
<—sup Ep (Sn,l) +0°| <o°.
n gco L
For g > 2,

2+ yl? <296%|2|? + |y|? + gzlyl?  sgn(y) + 29g2*|y|? 2, Va,y € R.
Let T? = max{S;, 5, — 5, , 5, — S,_,}. Then T? = Z, + (T?_,)* and
sup Ep[| Ty |]
0cO
—0
<29¢*sup Ep||Z,|%] + sup Ep[|(T}_1) ")
0cO 0cO

—0 _ —0 —
+gsupEP[Zk|(Tszl)+|g 1]+2992SUPEP[(Zk)2|(Tk€fl>+|g ‘]

<27¢ ZSUPEP Z])] + 274 ZSHPEP (Z)2|(TL, )|
g—2

<y ngpEp Zp 1+29g20—22 (sup ety 1) *

0cOe
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Let A, = sup,<, supyee Ep[|T{|?]. Then, by Young’s inequality (Peng (2019,
Lemma 1.4.1)),"

P 0 92 50
A, <2% E sup Ep[|Z;|?] + 27g°5°n A’
‘— 0co
2N - 2 92 \g  §—2
<29¢g g sup Ep[|Z,°] + —(29g°c°n)2 + ——A,..
7 €O g 9

Therefore,

Ay <Cyu 3" sup Bp[|Z])7) + Cyn

‘— 0co

<Cuu'3 sup Epll 2019+ max{[l%, [uPH + Cyan'
i—1
<CyanK sup Ep[|Xy|] + Cginmax{[zal?, ||’} + C. 72n%.

1<k<K
Finally,
—0 |9
g
sup Ep | |—= <n:zA
) Vn ] "

SCg’lnk%K sup EpHXk|g]+Cg71n17%
1<k<K

max{ 7, 11} + Cyz

Since sup, ;< x Ep[|Xi|?] < 0o, Step 3 is complete and the Lemma is proven.
|

Proof of Corollary 7: The preceding Lemma proves the extension for Propo-
sition 6.
To prove (27), define

1 1
v(t,z,y) = sup FEp {u (ZL’ —i—/ agl)ds,y~|—/ ag2)dB§2))] , (z,y) € R
aclA](t,1) t t

As in the proof of Lemma 8(1), for u € Cj, 1,,(R?), it can be checked that (Yong
and Zhou (1999, Theorem 5.2 in Chapter 4)) v is the unique viscosity solution
of the HJB-equation (20) with function G given in (28). Then we have

1 1
V= sup Ep {u (/ agl)ds,/ aff)dBf))} = v(0,0,0).
a€c[A](0,1) t t

For u € C(R?) with growth condition, the value function is still the unique
viscosity solution of the PDE (20) with function G given in (28). Supporting

Blab|<ptlalP+qgt|al|?ifl <pg<ocand p™t4+q¢ ! =1
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details can be found in Pham (2009, p.66) or Aivaliotis and Palczewski (2010,
Corollary 4.7). [ |

The KI"leV NOrm: We use the notation in Krylov (1987, Section 1.1); see
also Peng (2019, Chapter 2.1). For I' C[0,00) x R?, C(T') denotes the set of all
real-valued functions v defined on I', continuous in the relative topology on I'
and having a finite norm,

[olloay = sup [o(t, 2)].
(t,z)erl’

Similarly, given «, 5 € (0,1),

H’UHCGB ry — HUHC(F) + sup |’U(t,Z) - U(ﬂ,Z’)‘
) (t,2),(t",2")ET,(t,2)#(t,2") ’t — t/‘a + |Z _ Z/|ﬁ

2

[vllgr+aitsmy = [vllcasmy + 10wl casry + Z |02
=1

|cas(r)-

2
[v]|or+ac+sry = [[v]|oran+tsry + Z HﬁiszHCaﬁ(r)-
i,j=1

The corresponding subspaces of C'(I') in which the correspondent derivatives
exist and the above norms are finite are denoted respectively by

CH BT and CHT2TA(T).

Therefore, the first and second derivatives v(t, z) with respect to z exist and
the related norms are finite. In particular, 3L > 0 such that

v(t,z) —v(t, 2
p 100021 =000.2)
(t,2),(t,2)€T 22! |z — 2|

< L.

In the proof of Lemma 8, we applied the preceding to v(t, z) = Hy(z).

Completion of the proof of Theorem 3(iii): Show that specializing in arm
2 is not asymptotically optimal if o < @.
Verify the inequality

2

2
O3 01 0'10'3 0'2 (2)
+ — >y —a—=F [u( ,028 ﬂ,
f o1+ 03 M301 + o3 o1+ 03 H2 2 P M2, T2

and deduce that

2 = 12) | (1 = oy + /(T = N + A3
2(1 = Aot + (2X — 1)o103 — 02/(1 — N)o? + Ao

a <

= 2(py — p2)g(N).

It can be verified that, ¢’(\) > 0 for A € (0,1) and limy_,; g(\) = ——2

o2(o1—02)"

37



Therefore, for any o < @ = 2(“1—7“2)), there exists A\; € (0, 1) such that

o2(01—02

2(pty — pio)

a < 2(“1 - /jl2)g()‘1) < 0_2(0_1 — 0_2)'

Choose A = )\ in the definition (41) of a = (dgl), &22)) and deduce that

1 1
V= sup Ep {u </ agl)ds,/ agQ)dB?))}
a€A](0,1) 0 0
1 1
>Ep [u < / aVds, / ag2>dB§2>)]
0 0

>FEp [u (uQ,agB£2)>} .

Therfore, specializing in arm 2 is NOT asymptotically optimal.
When o5 = 0, we can set @ = 0o, and the above proof still holds.
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