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Abstract

This paper studies a sequential decision problem where payo¤ distributions
are known and where the riskiness of payo¤s matters. Equivalently, it studies
sequential choice from a repeated set of independent lotteries. The decision-
maker is assumed to pursue strategies that are approximately optimal for large
horizons. By exploiting the tractability a¤orded by asymptotics, conditions are
derived characterizing when specialization in one action or lottery throughout
is asymptotically optimal and when optimality requires intertemporal diversi-
�cation. The key is the constancy or variability of risk attitude, that is, the
decision-maker�s risk/reward tradeo¤. The main technical tool is a new central
limit theorem.

Keywords: sequential decision problem, multi-armed bandit, risk/reward trade-
o¤, large-horizon approximations, central limit theorem, semivariance, asymp-
totics, repeated gambles, diversi�cation

1 Introduction

We study the following sequential choice problem. There are K arms (or actions),
each yielding a random payo¤. Payo¤ distributions are independent across arms
and identical and independent for a given arm across distinct trials. At each stage
i = 1; 2; :::; n, the decision-maker (DM) must choose one arm, knowing both the
realized payo¤s from previous choices and the distribution of the payo¤ for each
arm. She chooses a strategy ex ante specifying future contingent choices. This is
a special case of a bandit problem, whence the usage of �arm�rather than �action.�
Alternatively, the decision problem can be viewed as choice of a dynamic strategy
when facing a repeated set of (single-stage) gambles or lotteries, where each lottery
is repeated independently. Thus it is an instance of dynamic risk management.

Because we are interested in varying horizons, we de�ne a strategy for an in�nite
horizon, and then use its truncation for any given �nite horizon. Refer to a strategy
as asymptotically optimal if the expected utility it implies in the limit as horizon
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n!1 is at least as large as that implied by any other strategy; or equivalently, if it
is approximately optimal for large horizons. We study large-horizon approximations
to the value (indirect utility) of the sequential choice problem and also correspond-
ing asymptotically optimal strategies. Our focus is on the derivation of analytical
(as opposed to computational) results, particularly with regard to the e¤ect of risk
non-neutrality. For example, we demonstrate that (non)constancy of risk attitude,
suitably measured, determines whether specialization in a single arm throughout or
diversi�cation across time is asymptotically optimal.

Consider three concrete settings that �t our model well. Gambling : A gambler
chooses sequentially which of several given slot machines to play. News site: Each
visitor to a site decides whether to click depending on the news header presented to
her. The website (DM) chooses the header (arm) with clicks being the payo¤s. Users
are drawn independently from a �xed distribution. Ad selection: A website (DM)
displays an ad (arm) for each visitor, who is an i.i.d. draw as above. If she clicks, the
payo¤ to the website is a predetermined price, depending on the ad and paid by the
advertiser. Importantly for the �t with our model, in all three settings payo¤s are
realized quickly after an arm is chosen, and plausibly a large number of trials occur
in a relatively short period of time.1

We have two related reasons for studying asymptotics. First, from the modeler�s
perspective, it promotes tractability and the derivation of analytical results. Bandit
problems are notoriously di¢ cult to solve analytically, as opposed to numerically, in
the presence of nonindi¤erence to risk. A second reason for studying asymptotics
is that tractability may be a concern also for the decision-maker within the model
who faces an extremely complicated large-horizon optimization problem. In such cir-
cumstances, she may seek a strategy that is approximately optimal if her horizon is
su¢ ciently long. The presumption that a large-horizon heuristic can alleviate cogni-
tive limitations is supported by two features of our results: (i) asymptotic optimality
depends on payo¤ distributions and the values they induce only through their means
and variances (Theorem 1), that is, DM need not know more about the distributions;
and (ii) also by the relative simplicity of the explicit asymptotically optimal strategies
in some cases (Theorem 3).

The focus on asymptotics leads to other noteworthy features of our analysis.
First, unsurprisingly, it leads to our exploiting limit theorems, most notably a central
limit theorem (CLT). The classical CLT considers a sequence (Xi) of identically and
independently distributed random variables, hence having a �xed mean and variance,
which assumptions are adequate for evaluation of the repeated play of a single arm,
and hence also for addressing the once-and-for-all choice between arms. However, in
the more economically relevant case of sequential choice, we must evaluate strategies
which permit switching between arms, and hence also between payo¤ distributions,
at any stage. Accordingly, in our key technical result, CLT (Proposition 6), means
and variances of (Xi) can vary with i subject only to the restriction that they lie in
a �xed set.

The role played by limit theorems is re�ected also in our speci�cation of the util-
ity index u. We adopt a form of multiattribute utility theory (Keeney and Rai¤a
1993), whereby two attributes of random payo¤ streams are assumed to be impor-

1Daily life provides other repeated choice problems, for example, which transportation mode or
route to use to get to work, though the longer time interval between choices suggests a poorer �t
with the model.
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tant. Accordingly, u : R2 �! R has two arguments, namely the sample average and
the

p
n-weighted average of deviations from conditional means, exactly the statistics

whose limiting distributions are the focus in the LLN (law of large numbers) and CLT
respectively. The function u itself is restricted only by technical conditions. Neverthe-
less, the resulting model is both tractable and also �exible enough to accommodate
interesting special cases. As an example of the diversity of cases accommodated, one
is a form of mean-variance for our sequential setting, and another essentially replaces
variance by semivariance. The di¤ering implications of these two speci�cations illus-
trate one message that the paper is intended to convey: the mean-variance model
exhibits constant risk attitude and accordingly predicts specialization in one arm,
that is, time-diversi�cation is not important in su¢ ciently large horizons, while risk
attitude varies endogenously in the mean-semivariance model which therefore predicts
specialization only for some but not all parameter values.

The paper proceeds as follows. Related literature is discussed next. The model
and main results follow in Section 2. Most proofs are provided in the Appendix, which
also contains our CLT. Proofs of some details are collected in the Online Appendix.

1.1 Related literature

Decision-making in the presence of repeated gambles has been studied in several pa-
pers. We mention some that help to locate this paper in the context of this literature.
In McCardle and Winkler (1992), a coin with uncertain bias is tossed repeatedly. The
decision-maker observes the outcomes of all tosses, updates her beliefs accordingly,
and chooses sequentially how much to bet on heads at each history.Full Bayesian ra-
tionality is assumed. The authors argue that some of the model�s predictions about
willingness to bet are unintuitive and they attribute this to the assumption that fu-
ture betting opportunities are fully anticipated and incorporated via optimization.
Accordingly, they suggest the need for simplifying heuristics that still accommodate
some, but not all, "grand world" considerations, though no speci�c heuristics are pro-
posed. We share the broad view that dynamic decision problems under uncertainty
are exceedingly complex and propose, for our setting, the simpli�cation consisting of
approximate optimality for large horizons. In Gollier (1996), a single lottery (with
known distribution) is repeated independently, and the decision-maker accepts or re-
jects the lottery at each stage. Choice is determined by maximization of the expected
utility of terminal wealth. His paper and ours address di¤erent questions. Gollier
focuses on how the option to gamble in the future a¤ects the willingness to gamble
today, while we are focussed on behavior in the remote future because it describes
approximately optimal behavior for su¢ ciently long horizons. Another di¤erence is
that his setting with a riskless option can be viewed as the special case of our setting
where there are two lotteries at each stage and where one is degenerate (attaches
probability 1 to the outcome 0). The assumption that there is only one risky asset
(or lottery) and one riskless is common in �nance. However, it is restrictive and it is
not clear if and how Gollier�s analysis would extend. Both options being risky poses
signi�cant technical complications for the modeler and cognitive challenges for the
decision-maker within the model.

Samuelson (1963) identi�ed as fallacious the reliance on the law of large numbers
as justifying acceptance of any su¢ ciently long sequence of repetitions of a positive
mean bet even if the single bet is rejected, and suggested that it indicated undue
attention to the variance associated with multiple repetitions. While we do not ad-
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dress Samuelson�s fallacy here, we see in it the hint that there could be a role for
the other major limit theorem, the CLT, in the broader study of risk-taking given
repeated gambles. In that sense, this paper is inspired by Samuelson (1963). Related
is the literature examining the e¤ect on �nancial risk-taking of horizon length (e.g. of
age in a life-cycle portfolio context), for example, whether a longer horizon promotes
risk-taking because it o¤ers a greater possibility to smooth out risks over time (see,
for example, Samuelson (1989) and Gollier and Zeckhauser (2002)). We di¤er from
this literature in (at least) two respects. First, we model behavior in the long-horizon
limit; we do not study the e¤ect of di¤ering horizon length on risk-taking. A second
critical di¤erence is that while in the �nance literature, assets are divisible and can
be combined into portfolios at any stage, the lotteries available to our decision-maker
are indivisible and only one can be chosen at any stage. Consequently, portfolio di-
versi�cation is excluded herein while diversi�cation over time is feasible and a focus.2

Approximate optimality for long horizons has been studied in �nance in the con-
text of portfolio turnpike theorems (see, for example, Huberman and Ross (1983) and
the references therein). This literature studies the conditions under which wealth-
independent (hence "constant") portfolios are approximately optimal for su¢ ciently
long horizons. Accordingly, an important factor is the relation between wealth and
the bene�t from diversifying across assets at any given time. In contrast, in our model
at any instant the decision-maker can choose a single lottery from the given �nite set,
and thus only diversi�cation over time is feasible. In addition, we study approximate
optimality without imposing any form of constancy; for example, Theorem 2(v) illus-
trates the case of an asymptotically optimal strategy that is not constant across time
(that is, the gamble chosen varies with time).

All of the papers cited above assume maximization of the expected utility of
terminal wealth. As outlined earlier, we model payo¤s and utility di¤erently. There
are precedents for "nonstandard" utility speci�cations in the context of repeated
gambles; for example, alternatives to expected utility theory are either adopted or
advocated by Chew and Epstein (1988), Benartzi and Thaler (1999) and Lopes (1996).

The other major connection is to the bandit literature since our decision problem
is the special case of a multi-armed bandit problem where payo¤ distributions are
known and hence need not be learned. Most of the literature (see Berry and Fristedt
(1985) and Slivkins (2022) for textbook-like treatments) assumes a �nite horizon and
that choices are driven by expected total rewards, that is, risk neutrality. Studies that
explicitly address risk attitudes include Sani, Lazaric and Munos (2013), Zimin, Ibsen-
Jensen and Chatterjee (2014), Vakili and Zhao (2016), and Cassel, Manor and Zeevi
(2021). They assume regret minimization rather than expected utility maximization,
and focus on computational algorithms rather than on qualitative theoretical results.
Further, they are motivated by the nature of learning about unknown payo¤ distri-
butions, and thus by the exploration/exploitation tradeo¤, while we assume known
distributions and focus instead on the risk/reward tradeo¤. Though it is important
to understand both tradeo¤s and their interactions, as an initial step we focus on only
one in this paper, that being the tradeo¤ for which there exists very limited theoret-
ical analysis. Theorem 3 gives analytical results on the latter tradeo¤ by exploiting
the advantages of large-horizon approximations.

2When both kinds of diversi�cation are feasible, Samuelson (1989,1997) argues that time-
diversi�cation is inferior. Here we explore whether time-diversi�cation is useful for long horizon
planning in settings where portfolio diversi�cation is not feasible.

4



In a more technical vein, our CLT connects this paper to the literature on non-
linear CLTs, that is CLTs where the expectations operator is nonlinear, for example,
because of the multiplicity of priors and where expectation is de�ned by the in�mum
(or supremum) of expectations as one varies over all priors. The in�mum is typically
motivated, as in the maxmin model (Gilboa and Schmeidler 1989), by robustness to
ambiguity or model uncertainty. The nonlinear CLTs in Peng (2007, 2019) and Fang
et al (2019) are motivated in this way (see Peng (2019, Thm 2.4.8), for example).
They do not make a connection to Bayesian sequential decision-making, nor is such
a connection apparent in their work. In contrast, the decision-maker in our model
is Bayesian and does not perceive ambiguity. Nevertheless, a set of probability mea-
sures arises (implicitly) from the multiplicity of arms and strategies, and a supremum
applies because of utility maximization over the set of strategies, or equivalently, over
the probability measures they induce. Chen, Epstein and Zhang (2023) introduced
the use of a nonlinear CLT to model Bayesian decision-makers. It di¤ers from the
present paper both technically and in its economic focus as explained following the
statement of our CLT (Proposition 6).

2 The Model

2.1 Preliminaries

Let (
;F ; P ) be the probability space on which all subsequent random variables are
de�ned. The random variables Xk, 1 � k � K, represent the random rewards from
the K arms, and fXk;n : n � 1g denote their independent and identically distributed
copies. We assume that each Xk has a �nite mean and variance, denoted by

�k := EP [Xk]; �
2
k := V arP [Xk] ; 1 � k � K: (1)

The largest and smallest means and variances are given by

� = maxf�1; � � � ; �Kg; � = minf�1; � � � ; �Kg; (2)

�2 = maxf�21; � � � ; �2Kg; �2 = minf�21; � � � ; �2Kg:

The set of mean-variance pairs is

A = f
�
�k; �

2
k

�
: 1 � k � Kg. (3)

The convex hull of A is a convex polygon. Denote by Aext its set of extreme points.
A strategy � is a sequence of f1; � � � ;Kg-valued random variables, � = (�1; � � � ; �n; � � � ).

� selects arm k at round n in states for which �n = k. Thus the corresponding reward
is Z�n given by

Z�n = Xk;n where �n = k. (4)

The strategy � is admissible if �n is H�
n�1-measurable for all n � 1, where

H�
n�1 = �fZ�1 ; � � � ; Z�n�1; �1; :::; �n�1g for n > 1, and H�

0 = f;;
g.

The information at stage n captured by H�
n�1 includes both past choices of arms and

the corresponding history of payo¤s. Allowing the arm chosen at stage n to depend
on past choices permits strategies that alternate stochastically between arms. Given
the serial independence of payo¤s, there is no learning rationale for conditioning on
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past payo¤s. However, past payo¤s matter in general at any stage because they may
in�uence the attitude towards the risk associated with current and future choices.

The set of all admissible strategies is �. (All strategies considered below will be
admissible, even where not speci�ed explicitly.)

2.2 Utility

For each horizon n, we specify the expected utility function Un used to evaluate
strategies � and the payo¤ streams that they generate. Let u : R2 �! R be the
corresponding von-Neumann Morgenstern (vNM) utility index and de�ne Un by

Un (�) = EP

"
u

 
1

n

nX
i=1

Z�i ;

 
nX
i=1

1p
n

�
Z�i � EP [Z�i jH�

i�1]
�!!#

. (5)

The two arguments of u correspond to the two attributes or characteristics of a ran-
dom payo¤ stream that DM takes into account. The �rst argument of u is the sample
average outcome under strategy �, and the second, the

p
n-weighted average of devi-

ations from conditional means, represents sample volatility. Observe that the second
argument has zero expected value relative to the measure P . Though one might
have expected the term (as volatility) to be replaced by its square or by its absolute
value, the important point is that its evaluation be nonlinear, and here nonlinearity
enters via u. The presence of conditional rather than unconditional means re�ects
the sequential nature of the setting. With regard to the

p
n-weighting, as is famil-

iar from discussions of the classical LLN and CLT, the scaling by 1
n implies that in

large samples "too little" weight is given to volatility (e.g. variance) relative to mean.
Roughly, as described further at the end of this section, the above speci�cation models
a decision-maker who takes into account both mean and variance even asymptotically.

Remark: As is familiar, a Savage act (random variable) de�ned over a state space
that is endowed with a probability measure induces a lottery over outcomes. Similarly
here, any strategy � induces, via P , a multistage lottery, from which it follows that
� can be viewed as describing the sequential (or contingent) choice from a set of
repeated lotteries.

Admittedly, the speci�cation (5) is ad hoc in the sense of (currently) lacking
axiomatic foundations. We propose it because it seems plausible and it delivers
novel results. In addition, we are not aware of any other model of preference over
random payo¤ streams of arbitrary �nite length that has axiomatic foundations and
that has something interesting to say in our context. The special case of (5) where
u is additively separable and linear in its second argument (example (u.1) below)
can be axiomatized, but imposes a priori that only means matter asymptotically
when choosing between arms and hence is too special (Theorem 3(v)). Take the
further special case where u is also linear in its �rst argument but where payo¤s are
denominated in utils. This is the expected additive utility model (discounting can
be added) that is the workhorse model in economics. However, it does not work well
in our setting, for example, in the applied contexts in the introduction. We take the
underlying payo¤s or rewards at each stage to be objective quantities, such as the
number of clicks or dollars. In all these cases, the relevant payo¤ when choosing a
strategy is the sum of single stage payo¤s, e.g. the total number of clicks, or in more
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formal terms, stage payo¤s are perfect substitutes. However, discounted expected
utility with nonlinear stage utility index models them as imperfect substitutes.

Utility has a particularly transparent form when � = ��;� speci�es choosing an
arm described by the pair

�
�; �2

�
repeatedly regardless of previous outcomes. In this

case payo¤s are i.i.d. with mean � and variance �2. Thus the conditional expectation
appearing in (5) equals �, and the classical LLN and CLT imply that in the large
horizon limit risk is described by the normal distribution N

�
0; �2

�
and

lim
n!1

Un (�
�;�) =

Z
u (�; �) dN

�
0; �2

�
. (6)

Consequently, if u (�; �) is concave, then (asymptotic) risk aversion is indicated in the
sense that

lim
n!1

Un (�
�;�) � u (�; 0) .

Here are examples of utility indices u and the implied utility functions Un that
will be referred to again in the sequel.

Example (utility indices)
(u.1) u (x; y) = ' (x) + �y. Then

Un (�) = EP

"
'

 
1

n

nX
i=1

Z�i

!#
(u.2) u (x; y) = ' ((1� �)x+ �y), where 0 < � � 1. Then

Un (�) = EP

"
'

 
(1� �) 1

n

nX
i=1

Z�i + �
1p
n

nX
i=1

�
Z�i � EP [Z�i jH�

i�1]
�!#

(u.3) (Mean-variance) u (x; y) = x� �y2, where � > 0. Then

Un (�) =
1

n
EP

"
nX
i=1

Z�i

#
� � 1

n
V arP

"
nX
i=1

�
Z�i � EP [Z�i jH�

i�1]
�#

(7)

=
1

n

nX
i=1

�
EP

h
Z�i

i
� �V arP

h
Z�i � EP [Z�i jH�

i�1]
i�
,

which is a form of the classic mean-variance speci�cation for our setting.3 For any
arm with mean-variance pair

�
�; �2

�
that is played repeatedly,

Un (�
�;�) = �� ��2, for every n. (8)

(u.4) (Mean-semivariance) u (x; y) = x � �y2I(�1;0) (y). Only negative cumu-
lative deviations from (conditional) means are penalized. Then, given � and let-

ting Y =
nP
i=1

�
Z�i � EP [Z�i jH�

i�1]
�
, V arP [Y ] in (7) is replaced by the semivariance

EP
�
Y 2IY <0

�
. If � = ��;�, then

Un (�
�;�) �!

n!1
�� �

Z 0

�1
y2dN

�
0; �2

�
= �� ��2=2.

3The second equality follows from the fact that, for i 6= j, Z�i � EP [Z�i jH�
i�1] and

Z�j � EP [Z�j jH�
j�1] have zero covariance under P .
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(u.5) (Shortfall penalty) u (x; y) = x��I(�1;0) (y). Only the existence of a shortfall,
and not its size, matters. Then

Un (�
�;�) = �� �P

 
1p
n

nX
i=1

�
Z�

�;�

i � EP [Z�
�;�

i jH��;�

i�1 ]
�
< 0

!
(9)

�!
n!1

�� �N(0;�2)(�1; 0) = �� �=2.

In particular, in the large horizon limit the utility of playing the single arm
�
�; �2

�
repeatedly does not depend on the variance.

Remark: For the last 3 examples, horizon length drops out in the sense that max-
imizing Un (�) is equivalent to maximizing the modi�ed objective function U 0n (�)
de�ned as in (5) except that both 1

n and
1p
n
are deleted.

Our model of utility provides a (local) measure of risk aversion, or alternatively, of
the mean-variance tradeo¤, assuming that u is suitably di¤erentiable (thus excluding
examples (u.4) and (u.5)). Though it is a slight variant of the well-known Arrow-Pratt
measure (Pratt, 1964), it might be worthwhile to derive it in our context. Consider
a horizon equal to n stages and consider the choice for the last stage contingent on
the history represented by (x; y), (partial sums corresponding to the two averages in
(5)). Accordingly, DM uses the utility index u (x+ �; y + �) to evaluate the next step.
Consider her evaluation of using the arm

�
�2�; �2�2

�
for the �nal stage, where � > 0

has the e¤ect, when small, of scaling down both the mean and variance of payo¤s by
�2. Using a second-order Taylor series approximation of u (x+ �; y + �) about � = 0,
one obtains the expected utility

u (x; y) + @xu (x; y)
�2�

n
+
1

2
@2yyu (x; y)

�2�2

n
.

Therefore, if we let

� =
�1
2@
2
yyu (x; y)

@xu (x; y)
�2, (10)

then we can interpret�@2yyu (x; y) =@xu (x; y) as approximating twice the mean-variance
ratio consistent with indi¤erence to a small increase in risk.

Two special cases are revealing. The measure of risk aversion is constant for the
mean-variance model:

�1
2@
2
yyu (x; y)

@xu (x; y)
= � for all (x; y) .

(See Theorem 3 and the ensuing discussion for behavioral implications of this con-
stancy.) Second, it is identically equal to 0 for (u.1), indicating risk neutrality in
the sense de�ned by the measure, and this is so regardless of the curvature of '.
More generally, the measure does not involve @2xxu (x; y), contrary to what might be
expected based on the Arrow-Pratt measure in expected utility theory. As an "expla-
nation" for this possibly puzzling feature, we point out that @2xxu (x; y) would appear
in a 2nd-order Taylor series expansion if the added mean-variance pair (or arm) were�
��; �2�2

�
instead of

�
�2�; �2�2

�
, and thus it is necessary to understand our choice of

scaling.4 The latter scaling �ts and "works in" our model because the scale-invariant
4Our scaling may bring to mind the small risks modeled by Brownian motion for which both drift

and variance are proportional to the time interval dt (identi�ed here with �2).
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mean-variance ratio matches the key hypothesis embedded in (5), that as n increases
and the payo¤ at each stage is e¤ectively a smaller gamble, neither the mean or the
variance dominates.

2.3 Optimization and the value of a set of arms

Given a horizon of length n, DM solves the following optimization problem:

Vn � sup
�2�

EPUn (�) . (11)

The �nite horizon problem is generally not tractable, even when u has the special form
(u.1). For reasons of tractability, Bayesian models in the literature typically take ' in
(u.1) to be linear, reducing the problem to maximization of expected total rewards,
but at the cost of assuming risk neutrality. Instead, we consider large horizons and
approximate optimality. Then we can accommodate a much more general class of
utility indices.

The �rst step in developing asymptotics is to de�ne

V � lim
n!1

Vn. (12)

Our �rst theorem proves that V is well-de�ned, that is, values have a limit, and more.
(Below jj(x; y)jj denotes the Euclidean norm.)

Theorem 1 Let u 2 C(R2) and let payo¤s to the K arms conform to (1), with � � 0.
Suppose further that there exists g � 1 such that u satis�es the growth condition
ju(x; y)j � c(1 + jj(x; y)jjg�1), and that payo¤s satisfy sup1�k�K EP [jXkjg] < 1.
Then:

(i) Values have a limit: limn!1 Vn exists.

(ii) Only means and variances matter: Consider another set of arms, described
by the random payo¤s X 0

k, 1 � k � K 0, and denote the corresponding set of
mean-variance pairs by A0 and the corresponding values by V 0n and V 0. Let
the mean-variance pairs

�
�0k; �

0 2
k

�
be de�ned by the obvious counterpart of (1).

Then
A0 = A =) V 0 = V .

Thus we can write

V = V (A ) = V
�
f
�
�k; �

2
k

�
: 1 � k � Kg

�
.

(iii) Extreme arms are enough:

V (A ) = V
�
Aext

�
. (13)
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Remark: The assumption that u is continuous rules out example (u.4). However, be-
cause these functions can be approximated by continuous functions, the CLT (Propo-
sition 6) and subsequently the above theorem, can be extended to cover them as
well. (See Chen, Epstein and Zhang (2023, section A.3), for a similar extension from
continuous functions to indicators.) Similarly for results below. Because the details
are standard, we will ignore the discontinuity of (u.4).

The Appendix contains a proof of (i) and also gives two alternative expressions for
the limit V . (ii) describes a simpli�cation for the decision-maker a¤orded by adoption
of the in�nite-horizon heuristic - she need only know and take into account the means
and variances for each arm. In addition, it permits identifying an arm with its mean-
variance pair; thus we will often refer to a pair

�
�; �2

�
as an arm. (iii) describes a

further possible simpli�cation for DM �she need only consider "extreme arms", that
is, the extreme points of the convex polygon generated by A. All other arms are
redundant. For example, given two arms

�
�1; �

2
1

�
and

�
�2; �

2
2

�
, then any arm lying

on the straight line between them has no value asymptotically even if it moderates large
di¤erences in the mean-variance characteristics of the two given arms. For another
implication of (iii), because A is contained in the rectangle de�ned by the four pairs
on the right, one obtains that

V (A) � V
��
(�; �2); (�; �2); (�; �2); (�; �2)

	�
.

Finally, note that both (ii) and (iii) are true under weak (nonparametric) assumptions
on u, for example, without any assumptions about monotonicity or risk attitudes.
Therefore, they accommodate situations that feature targets, aspiration levels, loss
aversion, and other deviations from the common assumption of global monotonicity
and risk aversion.

The su¢ ciency of means and variances might be expected from the classic CLT,
and arises here for similar reasons.5 We turn to intuition for (iii). Consider the eval-
uation of arm k in the context of making the contingent decision for stage i. If the
horizon n is large, then the payo¤ to arm k contributes little to the averages deter-
mining overall utility. Accordingly, a second-order Taylor series expansion provides
a good approximation to the incremental bene�t from arm k, which expansion, to
order O

�
n�1

�
, is linear in

�
�k; �

2
k

�
. Therefore, the value when maximizing over the

K arms (asymptotically) equals that when maximizing over the convex hull of A, or
over its set of extreme points Aext, as asserted in (13). In more economic terms, ex-
treme arms are su¢ cient because switching suitably between them across stages can, in
the in�nite-horizon limit, replicate or improve upon the payo¤ distribution achievable
when choosing from the entire set of K arms.

2.4 Strategies and the risk/reward tradeo¤

Turn to strategies. Given the K arms corresponding to A, the strategy �� is asymp-
totically optimal if

lim
n!1

EPUn (�
�) = V (A) .

It follows that �� is approximately optimal for large horizons in that: for every � > 0,
there exists n� such that

j Un (��)� Vn j< � if n > n�.
5This is not to say that the result can be derived from the classical CLT, or that it is in any way

"obvious." Its proof is decidedly nontrivial.
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Say that
�
�; �2

�
is feasible if it lies in A. Theorem 1(iii) states that DM can

limit herself to strategies that choose between extreme arms. More can be said under
added assumptions on the utility index and what is feasible, as illustrated by the next
result.

Theorem 2 Adopt the assumptions in Theorem 1. If u(x; y) is increasing in x and
concave in y, and if (�; �2) is feasible, then: the strategy of always choosing an
arm exhibiting (�; �2) is asymptotically optimal, and the corresponding limiting value,
de�ned in (12), is given by

V =

Z
u (�; �) dN

�
0; �2

�
.

Intuition argues for the choice of
�
�; �2

�
at stage n if there are no later trials

remaining, but may seem myopic more generally. Notably, the strategy of always
choosing the high-mean/low-variance pair is not in general optimal given a �nite
horizon (even apart from the fact that arms may not be adequately characterized by
mean and variance alone). That it is asymptotically optimal demonstrates a simpli-
fying feature of the long-horizon heuristic. An additional comment is that one can
similarly consider three other possible combinations of monotonicity and curvature
assumptions for u, where each property is assumed to hold globally. For example, if
u(x; y) is decreasing in x and concave (convex) in y, then it is asymptotically optimal
to always choose an arm exhibiting (�; �2) ((�; �2)) if it is feasible.

However, the theorem does not provide any insight into the risk/reward tradeo¤
that is at the core of decision-making under uncertainty. Under common assumptions
about monotonicity and risk aversion, the tradeo¤ concerns the increase in mean
reward needed to compensate the individual for facing an increase in risk (for example,
a larger variance). But Theorem 2 assumes that there exists an arm having both the
largest mean and the smallest variance, thus ruling out the need for DM to make
such a tradeo¤.

Next we investigate asymptotic optimality when the risk/reward tradeo¤ is in-
tegral. For greater clarity, we do so in a canonical setting where there are 2 arms
(K = 2), described by

�
�1; �

2
1

�
and

�
�2; �

2
2

�
, and where

�1 > �2, �1 > �2 � 0. (14)

Parts (i) and (ii) of the next theorem describe conditions under which it is asymptot-
ically optimal to specialize in one arm, that is, to choose that arm always (at every
stage and history). The remaining parts give conditions under which specializing in
one arm is not asymptotically optimal (that is, not even approximately optimal for
large horizons). Some results are limited to utility speci�cations in the Example.

Theorem 3 Adopt the assumptions in Theorem 1 and consider the 2-arm case above.
Then, for each of the following speci�cations of u, the indicated strategy is asymptot-
ically optimal and V denotes the corresponding limiting value de�ned in (12).

(i) Let u : R2 �! R be twice continuously di¤erentiable. Suppose that

@xu (x; y) (�1 � �2) + 1
2@
2
yyu (x; y)

�
�21 � �22

�
� 0 for all (x; y) 2 R2: (15)

11



Then specializing in arm 1 always is asymptotically optimal and, (by (6)),
V =

R
u (�1; �) dN

�
0; �21

�
. If @xu is everywhere positive, then (15) is equivalent

to
�1
2@
2
yyu (x; y)

@xu (x; y)
� �1 � �2
�21 � �22

for all (x; y) 2 R2. (16)

When the inequality in (15) is reversed, then it is asymptotically optimal to
specialize in arm 2.

(ii) Adopt the conditions on u in (i), and assume that @xu (x; y) > 0 for all (x; y) 2
R2. Suppose further that

�1
2@
2
yyu

@xu
= � > 0 for all (x; y) 2 R2. (17)

Then specializing in arm 1 (arm 2) is asymptotically optimal if

� � ( � ) �1 � �2
�21 � �22

. (18)

Both strategies are asymptotically optimal when there is equality in (18).

(iii) Let u (x; y) = x� �y2I(�1;0) (y) ; � > 0. Observe that

�1 � �2
�21 � �22

< � < �,

where the critical values � and � are given by6

� � 4(�1 � �2)
3(�21 � �22)

, � � 2(�1 � �2)
�2(�1 � �2)

.

If � � �1��2
�21��22

, then specializing in arm 1 is asymptotically optimal. If � < �

(respectively � < �), then specializing in arm 1 (arm 2) is not asymptotically
optimal, from which it follows that specialization in either arm is not asymp-
totically optimal if � < � < �.

(iv) Let u (x; y) = x� �I(�1;0) (y), � > 0. Let �2 > 0. Then specializing in arm 2
is not asymptotically optimal for any �, and, if

�0 � 2(�1 � �2)�1
(�1 � �2)

< �,

then neither is specializing in arm 1.

(v) Let u (x; y) = ' (x) + �y, ' 2 C (R) and � 2 R. Fix x� 2 arg max
�1�x��2

'(x), and

let � 2 [0; 1] be such that x� = ��1 + (1 � �)�2. Denote by  i the number
times that arm 1 is chosen in �rst i stages. Let the strategy �� choose arm 1
at stage 1, and also at stage i + 1, (i � 1), if and only if  ii � �. Then �� is
asymptotically optimal and

V = max
�2�x��1

'(x):

Further, specializing in one arm is asymptotically optimal if and only if
maxf' (�1) ; ' (�2)g = max

�2�x��1
'(x).

6� =1 if �2 = 0.
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Remark: It is straightforward to extend the theorem to an arbitrary set of K arms.
For example, in (i), with @xu everywhere positive, specializing in arm j is asymptot-
ically optimal if

j 2 arg max
k=1;:::;K

f�k � (
� 1
2
@2yyu(x;y)

@xu
)�2kg for all (x; y) ,

which simpli�es in the obvious way under the constancy condition (17).

We discuss each part of the theorem in turn.

(i) Focus on (16). Intuition derives from interpretation given above of �@2yyu=@xu
as a (local) measure of risk aversion.The relatively small degree of risk aversion indi-
cated in (16) implies that the larger mean for arm 1 more than compensates for its
larger variance. Moreover, this is true at each stage, regardless of history, because
the inequality in (16) is satis�ed globally.

(ii) This is an immediate consequence of (i) that we include in the statement
because the consequence of the indicated constancy warrants emphasis. Two examples
covered by this constancy are mean-variance and the special case of (u.2) where
' is an exponential.At �rst glance, the implication regarding the unimportance of
diversi�cation might seem surprising, especially given its central role in portfolio
theory. Of course, diversi�cation in portfolio theory refers to the simultaneous holding
of several assets, which, interpreting each arm as an asset, is excluded here. But
diversi�cation over time is permitted and that is its meaning here. The result that
specialization in one arm over time is always asymptotically optimal given (17) can be
understood as follows. Considering the factors that might lead to di¤erent arms being
chosen at two di¤erent stages, note �rst that the payo¤ distribution for each arm is
unchanged by assumption. Second, though a �nite-horizon induces a nonstationarity
that can a¤ect choices, our decision-maker is, roughly speaking, acting as if solving
an in�nite-horizon problem. That leaves only the variation of risk attitude with past
outcomes, which is excluded if �@2yyu=@xu is constant.

(iii) Note �rst that it has often been argued, including by Markowitz (1959), that
investors are more concerned with downside risk than with variance, and hence that
semivariance is a better measure of the relevant risk. In our sequential choice context,
the mean-semivariance model agrees partially with the mean-variance model in that
for both (the inequality � in) (18) implies the asymptotic optimality of choosing (the
high mean, high variance) arm 1 throughout. However, their agreement ends there.
In particular, there is a role for time-diversi�cation for the semivariance model, in
that, for � < � < �, asymptotic optimality can be achieved only by a strategy
that employs both arms. (In particular, if arm 2 is risk-free (�2 = 0), then time-
diversi�cation is necessary for asymptotic optimality if 34� exceeds the risk-adjusted
excess mean (�1 � �2)=�

2
1.) Here is some intuition for the existence of a region with

nonspecialization. Since only negative deviations are penalized, it is as though DM
faces, or perceives, less risk than what is measured by �2. Alternatively, in our
preferred interpretation, for any given risk measured by variance, DM is less averse
to that risk in the present model as if her e¤ective � is smaller than its nominal
magnitude. Moreover, risk aversion varies across stages. For example, contingent on
cumulative past deviations being positive (negative) at stagem, it is relatively unlikely
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(likely) that future choices will lead later to negative cumulative deviations, and thus
variance is less (more) of a concern. Such endogenous changes in risk aversion can
lead to specialization in either single arm being dominated in large horizons.

In �nance, it has been argued (Nantell and Price 1979; Klebaner et al 2017) that
the change from variance to semivariance has limited consequences for received asset
market theory. In contrast, a similar change in the bandit problem context leads to
qualitative di¤erences regarding the importance of time-diversi�cation.

(iv) This utility speci�cation, for which only the existence of a shortfall and not
its size matters, implies that it is never asymptotically optimal to specialize in the low
mean, low variance arm.7 Indeed, by (9), specializing in the high mean, high variance
arm is superior for large horizons without any regard to the numerical magnitudes of
�1 � �2 and �

2
1 � �22. However, specializing in the high mean, high variance arm is

also ruled out for large enough � - those lying in (�0;1). Note that this set grows
larger as �1 increases (keeping �1, �2 and �2 �xed) - a larger variance makes it more
likely that repeated choice of arm 1 will produce a cumulative shortfall, which is
tolerable only if the associated penalty parameter � is smaller. Therefore, as in the
semivariance model (iii), for a range of parameter values asymptotic optimality can
be achieved only through diversi�cation across time.

(v) The utility speci�cation u (x; y) = ' (x) +�y leads to an asymptotically opti-
mal strategy that is diversi�ed and that can be described explicitly. Condition (15)
suggests that either nonmonotonicity (e.g. a change in the sign of @xu), or variable
risk aversion (e.g. a change in the sign or magnitude of @2yyu) might lead to the as-
ymptotic optimality of switching between arms. This utility speci�cation, with ' not
necessarily monotonic, illustrates the former case. The interpretation of the strat-
egy �� de�ned in the theorem is that DM targets x�, a maximizer of ' on [�2; �1].
(When (�2 + �1)=2 is a maximizer, then �

� chooses arms according to the sequence
121212:::. When ' is monotonic, �� specializes in arm 1 or in arm 2 according as '
is increasing or decreasing on [�2; �1], respectively.) Irrespective of any nonlinearity
of ', and the implied non-neutrality to risk, variances do not matter asymptotically
as in the classic LLN.

3 Concluding Comments

Our model has produced new results regarding sequential choice between repeated
gambles, most notably in describing connections, expressed in simple formal terms,
between the endogeneity of risk aversion and the value of time-diversi�cation. Three
features of the model that facilitate tractability are (i) the heuristic of approximate
optimality for large horizons, which is the decision-maker�s assumed response to a
complex problem; (ii) the existence of a suitable measure of risk attitude (similar to,
but distinct from, the Arrow-Pratt measure) that describes her risk/reward tradeo¤;
and (iii) the fact that without loss of generality gambles can be represented by their
mean and variance alone, thus providing a new rationale for mean-variance analysis.

7 Intuitively, relying exclusively on the more conservative arm increases the asymptotic likelihood
of cumulative shortfalls. The problem is reminiscent of the classic introductory story in Dubins
and Savage (1976, Ch. 1) of a gambler who must decide how to gamble in order to minimize the
probability that cumulative winnings fall short of a �xed target. Their solution is that he should not
gamble cautiously.
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The results are general in the sense that payo¤ distributions are unrestricted ex-
cept for the requirement that means and variances exist. However, results depend
on our nonstandard speci�cation of payo¤s (via averages) and utility function. Spe-
ci�c assumptions are needed in order to derive analytical results, and our assumption
compares favourably, in our view, with the assumption of risk neutrality adopted in
much of the bandit literature. Given the complexity of dynamic decision problems
under uncertainty, it is natural to wonder if behavior might be better described by
"approximate optimality," and we view the paper as a modest �rst step in this mod-
eling direction. Undoubtedly more needs to be done. Axiomatic analysis for such
behavior poses an interesting challenge for decision theorists.

A Appendix: Proofs

We remind the reader of the following notation used in this section: �; � and �2; �2

are the bounds of means and variances given in (2), A denotes the set of mean-
variance pairs of all K arms, and Aext � A denotes the set of extreme points of
co (A). Pairs consisting of mean and standard deviation (rather than variance) will
also be important, and thus it is convenient to de�ne

[A] = f(�; �) :
�
�; �2

�
2 Ag, and

[A]ext = f(�; �) :
�
�; �2

�
2 Aextg

Let B = fBt = (B
(1)
t ; B

(2)
t )g be a two-dimensional standard Brownian motion

de�ned on (
;F ; P ), and let fFtg be the natural �ltration generated by (Bt). For
a �xed T > 0, and any 0 � t � s � T , let [A](t; T ) denote the set of all fFsg-
progressively measurable processes, a = fas = (a

(1)
s ; a

(2)
s )g : [t; T ] � 
 ! [A] � R2.

Finally, [A]ext(t; T ) is de�ned similarly by restricting the images of each process a to
lie in [A]ext.

The following lemma gives properties of fZ�ng that will be used repeatedly.

Lemma 4 The rewards fZ�n : n � 1g de�ned in (4) satisfy the following:

(1) For any n � 1,

� = ess sup
�2�

EP [Z
�
njH�

n�1]; � = ess inf
�2�

EP [Z
�
njH�

n�1]

�2 = ess sup
�2�

EP

��
Z�n � EP [Z�njH�

n�1]
�2
jH�

n�1

�
�2 = ess inf

�2�
EP

��
Z�n � EP [Z�njH�

n�1]
�2
jH�

n�1

�
:

(2) For any � 2 � and n � 1, let U �n�1 be any H�
n�1-measurable random variable.

For any bounded measurable functions f0; f1 and f2 on R, let  (x; y) = f0(x)+
f1(x)y + f2(x)y

2; (x; y) 2 R2. Then

sup
�2�

EP
�
 
�
U�n�1; Z

�
n

��
= sup

�2�
EP

�
max
1�k�K

�
 k
�
U�n�1

�	�
where, for all x 2R and 1 � k � K,

 k(x) = EP [ (x;Xk;n)] = f0(x) + �k f1(x) + (�
2
k + �

2
k) f2(x): (19)
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Proof: (1) fZ�ng satisfy, for any � 2 � and n � 1,

EP [Z
�
njH�

n�1] =
KX
k=1

If�n=kgEP [Xk;njH�
n�1]

=

KX
k=1

If�n=kgEP [Xk;n] =

KX
k=1

If�n=kg�k:

Combine with the de�nitions of � and � in (2) to derive

ess sup
�2�

EP [Z
�
njH�

n�1] = �; ess inf
�2�

EP [Z
�
njH�

n�1] = �:

The other two equalities can be proven similarly.

(2) For any � 2 � and n � 1, let U �n�1 be a H�
n�1-measurable random variable.

By direct calculation we obtain that

sup
�2�

EP

h
 
�
U �n�1; Z

�
n

�i
=sup
�2�

EP

"
KX
k=1

If�n=kgEP [ 
�
U �n�1; Xk;n

�
jH�

n�1]

#

=sup
�2�

EP

�
max
1�k�K

 k
�
U �n�1

��
;

where  k is given in (19). �
Following Peng (2019), our arguments make use of nonlinear partial di¤erential

equations (PDEs) and viscosity solutions. The following is taken from Theorems
2.1.2, C.3.4 and C.4.5 in Peng�s book.

Lemma 5 For given T > 0, consider the following PDE:�
@tv(t; x; y) +G

�
@xv(t; x; y); @

2
yyv(t; x; y)

�
= 0; (t; x; y) 2 [0; T )� R2

v(T; x; y) = u(x; y);
(20)

where u 2 C(R2). Suppose that G is continuous on R2 and satis�es the following
conditions, for all (p; q); (p0; q0) 2 R2:

G(p; q) � G(p; q0); whenever q � q0; (21)

G(p; q)�G(p0; q0) � G(p� p0; q � q0); (22)

G(�p; �q) = �G(p; q); for � � 0: (23)

Then, for any u 2 C(R2) satisfying a polynomial growth condition, there exists a
unique v 2 C([0; T ]� R2) such that v is a viscosity solution of the PDE (20). More-
over, if 9� > 0 such that, for all p 2 R and q � q0 2 R,

G(p; q)�G(p; q0) � �(q � q0);

and if the initial condition u is uniformly bounded, then for each 0 < � < T , 9� 2
(0; 1) such that

kvkC1+�=2;2+�([0;T��]�R2) <1: (24)

Here k�kC1+�=2;2+�([0;T��]�R2) is the Krylov (1987) norm on C1+�=2;2+�([0; T��]�R2),
the set of (continuous and) suitably di¤erentiable functions on [0; T � �]� R2.8

8Some detail is provided in the Online Appendix. See also Peng (2019, Ch. 2.1).
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A.1 Proof of Theorem 1

We �rst prove a nonlinear central limit theorem for the bandit problem. The values
Vn and V are de�ned in (11) and (12) respectively.

Proposition 6 (CLT) Let u 2 Cb;Lip(R2), the class of all bounded and Lipschitz
continuous functions on R2, and adopt all other assumptions and the notation in
Theorem 1. Then

lim
n!1

Vn = V = sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
(25)

= sup
a2[A]ext(0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
: (26)

The proof in this appendix assumes �> 0. The extension to �= 0 is proven in
the Online Appendix. The boundedness assumption on utility indices excludes many
interesting speci�cations. However, the Online Appendix shows that the Proposition
is valid for all u 2 C

�
R2
�
satisfying a growth condition.

The following immediate corollary is used frequently in later proofs of Theorems
2 and 3 (the Online Appendix contains a proof).

Corollary 7 For all u 2 C
�
R2
�
satisfying a polynomial growth condition, the limit

in (25) can be described also by the solution of a PDE. Speci�cally,

V = v(0; 0; 0); (27)

where v is the solution of PDE (20), with function G given by

G(p; q) = sup
(�;�2)2A

�
�p+ 1

2�
2q
�
; (p; q) 2 R2: (28)

Some related literature on CLTs was cited in the introduction. In addition, Chen
and Epstein (2022) and Chen, Epstein and Zhang (2022) have nonlinear CLTs, which,
when translated into the bandits context, restrict di¤erences between arms either by
assuming that they all have the identical variance (in the former paper), or the iden-
tical mean (in the latter paper). These restrictions preclude study of the risk/reward
tradeo¤. In addition, their objective is to obtain simple closed-form expressions for
the limit (what we denote by V ), and for that purpose they adopt very special func-
tional forms for u.9 In contrast, Proposition 6 and its corollary apply to a much
more general class of utility indices. Moreover, as this paper shows, in spite of the
complexity of the expression for V it is the basis for a range of results about the
bandit problem even allowing unrestricted heterogeneity across arms.

Next we proceed with lemmas that will lead to a proof of the CLT. They assume
u 2 C3b (R2) and relate to the functions fHtgt2[0;1] de�ned by, for all (x; y) 2 R2,

Ht(x; y) = sup
a2[A](t;1+h)

EP

�
u

�
x+

Z 1+h

t
a(1)s ds; y +

Z 1+h

t
a(2)s dB(2)s

��
; (29)

where h > 0 is �xed and dependence on h is suppressed notationally. In addition, we
often write z = (z1; z2) = (x; y) and de�ne jz � z0j� = jz1 � z01j� + jz2 � z02j�.

9 In particular, the second paper cited assumes u (x; y) = ' (y), where ' (y) = '1 (y � c) if y � c,
and = ���1'1 (��(y � c)) if y < c, for some function '1 and c 2 R. This functional form is
motivated by loss aversion, but from the perspective of this paper is very special.
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Lemma 8 The functions fHtgt2[0;1] satisfy the following properties:

(1) Ht 2 C2b (R
2) and the �rst and second derivatives of Ht are uniformly bounded

for all t 2 [0; 1].

(2) There exist constants L > 0 and � 2 (0; 1), independent of t, such that for any
(z1; z2); (z

0
1; z

0
2) 2 R2,

j@2zizjHt(z1; z2)� @2zizjHt(z
0
1; z

0
2)j � L(jz1 � z01j� + jz2 � z02j�); i; j = 1; 2:

(3) Dynamic programming principle: For any � 2 [0; 1 + h� t],

Ht (x; y) = sup
a2[A](t;t+�)

EP

�
Ht+�

�
x+

Z t+�

t
a(1)s ds; y +

Z t+�

t
a(2)s dB(2)s

��
; (x; y) 2 R2:

(4) For the function G given in (28), we have

lim
n!1

nX
m=1

sup
(x;y)2R2

����Hm�1
n
(x; y)�Hm

n
(x; y)� 1

n
G
�
@xHm

n
(x; y); @2yyHm

n
(x; y)

����� = 0:
(5) There exists a constant C0 > 0 such that

sup
(x;y)2R2

jH1(x; y)� u(x; y)j � C0h

sup
(x;y)2R2

jH0(x; y)�  (x; y)j � C0h;

where  (x; y) = supa2[A](0;1)EP
h
u
�
x+

R 1
0 a

(1)
s ds; y +

R 1
0 a

(2)
s dB

(2)
s

�i
.

Proof: For any t 2 [0; 1 + h] and (x; y) 2 R2, we de�ne the function v(t; x; y) =
Ht(x; y). Then v is the solution of the HJB-equation (20) with function G given in
(28) (Yong and Zhou (1999, Theorem 5.2, Ch. 4)). By Lemma 5, 9� 2 (0; 1) such
that

kvkC1+�=2;2+�([0;1]�R2) <1:

This proves both (1) and (2).

(3) follows directly from the classical dynamic programming principle (Yong and Zhou
(1999, Theorem 3.3, Ch. 4)).

Prove (4): By Ito�s formula,

nX
m=1

sup
(x;y)2R2

����Hm�1
n
(x; y)�Hm

n
(x; y)� 1

n
G
�
@xHm

n
(x; y); @2yyHm

n
(x; y)

�����
=

nX
m=1

sup
(x;y)2R2

����� sup
�2[A](m�1

n
;m
n
)

EP

"
Hm

n

 
x+

Z m
n

m�1
n

a(1)s ds; y +

Z m
n

m�1
n

a(2)s dB(2)s

!#

�Hm
n
(x; y)� 1

n
G
�
@xHm

n
(x; y); @2yyHm

n
(x; y)

� �����
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=

nX
m=1

sup
(x;y)2R2

����� sup
�2[A](m�1

n
;m
n
)

EP

"Z m
n

m�1
n

@xHm
n

 
x+

Z s

m�1
n

a(1)s ds; y +

Z s

m�1
n

a(2)s dB(2)s

!
a(1)s ds

+
1

2

Z m
n

m�1
n

@2yyHm
n

 
x+

Z s

m�1
n

a(1)s ds; y +

Z s

m�1
n

a(2)s dB(2)s

!
(a(2)s )

2ds

#

� 1

n
G
�
@xHm

n
(x; y); @2yyHm

n
(x; y)

� �����
�C
n

nX
m=1

sup
z2R2

����� sup
�2[A](m�1

n
;m
n
)

EP

"
sup

s2[m�1
n

;m
n
]

 �����
Z s

m�1
n

a(1)s ds

�����+
�����
Z s

m�1
n

a(2)s dB(2)s

�����
!

+ sup
s2[m�1

n
;m
n
]

0@�����
Z s

m�1
n

a(1)s ds

�����
�

+

�����
Z s

m�1
n

a(2)s dB(2)s

�����
�
1A35������

! 0; as n!1;

where C is a constant that depends only on �; �; �2, the uniform bound of @2xxHt; @
2
xyHt,

and constant L in (2).

Prove (5): Use Ito�s formula to check that

sup
(x;y)2R2

jH1(x; y)� u(x; y)j

= sup
(x;y)2R2

����� sup
a2[A](1;1+h)

EP

�Z 1+h

1
@xu

�
x+

Z s

1
a(1)s ds; y +

Z s

1
a(2)s dB(2)s

�
a(1)s ds

+
1

2

Z 1+h

1
@2yyu

�
x+

Z s

1
a(1)s ds; y +

Z s

1
a(2)s dB(2)s

�
(a(2)s )

2ds

�����
� C0h;

where the constant C0 depends only on �; �; �2 and the uniform bound of @xu; @2yyu.
Similarly, we can prove that sup(x;y)2R2 jH0(x; y)�  (x; y)j � C0h: �

Lemma 9 Take G to be the function de�ned in (28), let fHtgt2[0;1] be the functions
de�ned in (29), and de�ne fLm;ngnm=1 by10

Lm;n(z) = Hm
n
(z) +

1

n
G
�
@z1Hm

n
(z); @2z2z2Hm

n
(z)
�
; z 2 R2. (30)

For any � 2 � and n � 1, de�ne

S�n =

nX
i=1

Z�i ; S
�
n =

nX
i=1

Z
�
i ; Z

�
n = Z�n � EP [Z�njH�

n�1]:

Then

lim
n!1

nX
m=1

�����sup�2�
EP

"
Hm

n

 
S�m
n
;
S
�
mp
n

!#
� sup
�2�

EP

"
Lm;n

 
S�m�1
n

;
S
�
m�1p
n

!#����� = 0: (31)

10Again, z = (z1; z2) = (x; y).
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Proof: We need only prove

lim
n!1

nX
m=1

�����sup�2�
EP

"
Hm

n

 
S�m
n
;
S
�
mp
n

!#
� e(m;n)

����� = 0 and (32)

lim
n!1

nX
m=1

�����e(m;n)� sup�2�
EP

"
Lm;n

 
S�m�1
n

;
S
�
m�1p
n

!#����� = 0; (33)

where e(m;n) is given by

e(m;n) = sup
�2�

EP

"
Hm

n

 
S�m�1
n

;
S
�
m�1p
n

!
+ @z1Hm

n

 
S�m�1
n

;
S
�
m�1p
n

!
Z�m
n

+@z2Hm
n

 
S�m�1
n

;
S
�
m�1p
n

!
Z
�
mp
n
+ @2z2z2Hm

n

 
S�m�1
n

;
S
�
m�1p
n

!
(Z

�
m)

2

2n

#
:

By Lemma 8, parts (1) and (2), 9C > 0, � 2 (0; 1) such that

sup
t2[0;1]

sup
z2R2

j@2zizjHt(z)j � C;

sup
t2[0;1]

sup
z;z02R2;z 6=z0

j@2zizjHt(z)� @2zizjHt(z
0)j

jz � z0j� � C; i; j = 1; 2:

It follows from Taylor�s expansion that 8� > 0 9� > 0 (depending only on C and �),
such that 8z; z0 2 R2, and 8t 2 [0; 1],11���Ht(z + z

0)�Ht(z)�DzHt(z)z
0 � 1

2 tr
�
z0>D2

zHt(z)z
0
����

��jz0j2Ifjz0j<�g + 2Cjz0j2Ifjz0j��g. (34)

Set z =
�
S�m�1
n ;

S
�
m�1p
n

�
and z0 =

�
Z�m
n ;

Z
�
mp
n

�
. Use (34) to obtain

nX
m=1

�����sup�2�
EP

"
Hm

n

 
S�m
n
;
S
�
mp
n

!#
� e(m;n)

�����
�C
2

nX
m=1

sup
�2�

EP

"����Z�mn
����2 + ����Z�mn

����
�����Z

�
mp
n

�����
#

+ �

nX
m=1

sup
�2�

EP

2664
0@����Z�mn

����2 +
�����Z

�
mp
n

�����
2
1A I8<:

s����Z�mn ����2+����Z�mpn
����2<�

9=;

3775

+ 2C
nX

m=1

sup
�2�

EP

2664
0@����Z�mn

����2 +
�����Z

�
mp
n

�����
2
1A I8<:

s����Z�mn ����2+����Z�mpn
����2��

9=;

3775
!0; as n!1 and �! 0:

11Here Dz := (@zi)
2
i=1 and D

2
z := (@

2
zizj )

2
i;j=1.
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The convergence is due to the �niteness of �; � and �. This proves (32).
Combine with Lemma 4 and show that

e(m;n)

= sup
�2�

EP

"
Hm

n

 
S�m�1
n

;
S
�
m�1p
n

!
+ @z1Hm

n

 
S�m�1
n

;
S
�
m�1p
n

!
Z�m
n

+@2z2z2Hm
n

 
S�m�1
n

;
S
�
m�1p
n

!
(Z

�
m)

2

2n

#

=sup
�2�

EP

"
Hm

n

 
S�m�1
n

;
S
�
m�1p
n

!
+ max
1�k�K

EP

"
@z1Hm

n

 
S�m�1
n

;
S
�
m�1p
n

!
�k
n

+@2z2z2Hm
n

 
S�m�1
n

;
S
�
m�1p
n

!
�2k
2n

##

=sup
�2�

EP

"
Lm;n

 
S�m�1
n

;
S
�
m�1p
n

!#
:

This proves (33), and completes the proof of (31). �

Proof of Proposition 6: We prove it for u 2 C1b (R
2). This su¢ ces because any

u 2 Cb;Lip(R2) can be approximated uniformly by a sequence of functions in C1b (R2)
(see Approximation Lemma in Feller (1971, Ch. VIII)). The proof also assumes �> 0.

For small enough h > 0, we continue to use fHt(x; y)gt2[0;1+h] as de�ned in (29).
Let fLm;n(x; y)gnm=1 be the functions de�ned in (30). By direct calculation we obtain

sup
�2�

EP

"
H1

 
S�n
n
;
S
�
np
n

!#
�H0(0; 0)

=

nX
m=1

(
sup
�2�

EP

"
Hm

n

 
S�m
n
;
S
�
mp
n

!#
� sup
�2�

EP

"
Hm�1

n

 
S�m�1
n

;
S
�
m�1p
n

!#)

=

nX
m=1

(
sup
�2�

EP

"
Hm

n

 
S�m
n
;
S
�
mp
n

!#
� sup
�2�

EP

"
Lm;n

 
S�m�1
n

;
S
�
m�1p
n

!#)

+
nX

m=1

(
sup
�2�

EP

"
Lm;n

 
S�m�1
n

;
S
�
m�1p
n

!#
� sup
�2�

EP

"
Hm�1

n

 
S�m�1
n

;
S
�
m�1p
n

!#)
=: I1n + I2n.

Application of Lemma 9 implies that jI1nj ! 0 as n!1: Lemma 8 implies

jI2nj �
nX

m=1

sup
�2�

EP

"�����Lm;n
 
S�m�1
n

;
S
�
m�1p
n

!
�Hm�1

n

 
S�m�1
n

;
S
�
m�1p
n

!�����
#

�
nX

m=1

sup
(x;y)2R2

���Lm;n(x; y)�Hm�1
n
(x; y)

���
! 0; as n!1;
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which implies that

lim
n!1

�����sup�2�
EP

"
H1

 
S�n
n
;
S
�
np
n

!#
�H0(0; 0)

����� = 0.
Combine the latter with Lemma 8, part (5), to obtain�����V � sup

a2[A](0;1)
EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

�������
= lim
n!1

�����sup�2�
EP

"
u

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

�������
� lim
n!1

�����sup�2�
EP

"
'

 
S�n
n
;
S
�
np
n

!#
� sup
�2�

EP

"
H1

 
S�n
n
;
S
�
np
n

!#�����
+ lim
n!1

�����sup�2�
EP

"
H1

 
S�n
n
;
S
�
np
n

!#
�H0(0; 0)

�����
+

�����H0(0; 0)� sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

������� � C0h,

where the constant C0 depends only on �; �; � and the uniform bound of @xu and
@2yyu. By the arbitrariness of h, the proof of (25) is completed.

Finally, prove (26). Let G be de�ned by (28), and de�ne, for all (p; q) 2R2,

Gext(p; q) = sup
(�;�2)2Aext

�
�p+

1

2
�2q

�
.

Then
G(p; q) = Gext(p; q) 8(p; q) 2 R2: (35)

The proof is completed by applying a Comparison Theorem (Peng (2019, Theorem
C.2.5)). �

Proof of Theorem 1: All the results can be obtained from Proposition 6. That u
need only satisfy continuity and the stated growth condition is implied by Lemma
2.4.12 and Exercise 2.5.7 in Peng (2019) (or by Rosenthal�s inequality in Zhang
(2016)). For the convenience of readers, we provide a proof in the Online Appen-
dix. �

A.2 Proof of Theorem 2

We are given that u(x; y) is increasing in x and concave in y, and (�; �2) 2A.
For any t 2 [0; 1] and (x; y) 2 R2, de�ne the function

v(t; x; y) = EP [u(x+ (1� t)�; y + �(B(2)1 �B(2)t ))]:

Then

v(0; 0; 0) = EP [u(�; �B
(2)
1 ] =

Z
u(�; �)dN(0; �2):
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By the (classic) Feynman-Kac formula (Mao (2008, Theorem 2.8.3)), v is the solution
of the (linear parabolic) PDE�

@tv(t; x; y) + �@xv(t; x; y) +
1
2�

2@2yyv(t; x; y) = 0, (t; x; y) 2 [0; 1)� R2
v(1; x; y) = u(x; y):

(36)

Since u(x; y) is increasing in x and concave in y, it follows that v(t; x; y) is increasing
in x and concave in y for any t 2 [0; 1], that is,

@xv(t; x; y) � 0 and @2yyv(t; x; y) � 0, 8(t; x; y) 2 [0; 1)� R2.

Given also (�; �2) 2A, it follows that

sup
(�;�2)2A

�
�@xv +

1
2�

2@2yyv
	
= �@xv +

1
2�

2@2yyv;

and hence that v solves the PDE (20). By uniqueness of the solution (Lemma 5), and
(27), conclude that

V = v(0; 0; 0) =

Z
u(�; �)dN(0; �2):

�

A.3 Proof of Theorem 3

Throughout we assume that A = f(�1; �21); (�2; �22)g.
Proof of (i): The proof consists of three steps.
Step 1: From Theorem 1(i) and (27), it follows that

lim
n!1

Vn = lim
n!1

sup
�2�

EP

"
u

 
S�n
n
;
S
�
np
n

!#
= v(0; 0; 0)

where v(t; x; y) solves the PDE (20).
Step 2: Prove that the following function v solves the above PDE:

v̂(t; x; y) =EP [u(x+ (1� t)�1; y + �1(B
(2)
1 �B(2)t ))] (37)

=

Z
R
u(x+ (1� t)�1; y +

p
1� t�1r)

1p
2�
e�

r2

2 dr

By the Feynman-Kac formula, v̂ solves�
@tv̂(t; x; y) + �1@xv̂(t; x; y) +

1
2�

2
1@
2
yyv̂(t; x; y) = 0, (t; x; y) 2 [0; 1)� R2

v̂(1; x; y) = u(x; y):
(38)

From (37) and assumption (15), it follows that, for all (t; x; y) 2 [0; 1)� R2,

1
2�

2
1@
2
yyv̂(t; x; y) + �1@xv̂(t; x; y) � 1

2�
2
2@
2
yyv̂(t; x; y) + �2@xv̂(t; x; y),

that is,

sup
(�;�2)2A

�
�@xv̂ +

1

2
�2@2yyv̂

�
= �1@xv̂ +

1
2�

2
1@
2
yyv̂. (39)
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Thus v̂ solves the PDE (20). By uniqueness of the solution (Lemma 5), conclude that

lim
n!1

Vn = v(0; 0; 0) = v̂(0; 0; 0) =

Z
u(�1; �)dN(0; �21):

Step 3: If �� denotes the strategy of choosing arm 1 always, then, using Step 1,

lim
n!1

EP

"
u

 
S�

�
n

n
;
S
��

np
n

!#
= EP [u(�1; �1B

(2)
1 )] = v (0; 0; 0) = V .

Hence �� is asymptotically optimal.

Proof of (iii): Case 1 (� � �1��2
�21��22

): De�ne v by (37). Although u is not twice

di¤erentiable, we can calculate @xv and @2yyv directly to obtain @xv = 1 and @
2
yyv =

�2��( �y
�1
p
1�t). Therefore,

� <
�1 � �2
�21 � �22

=)

�1 � ��(
�yp
1� t�1

)�21 > �2 � ��(
�yp
1� t�1

)�22 =)

�1@xv +
1
2�

2
1@
2
yyv > �2@xv +

1
2�

2
2@
2
yyv:

Proceed as in the proof of (i).12

Case 2 (� < � < �): To prove that single-arm strategies are not asymptotically
optimal, it is enough to show that

V = sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
> max

i=1;2
EP

h
u
�
�i; �iB

(2)
1

�i
. (40)

Consider the bandit problem with set of arms given by

A0 = f(�1; �21); (�2; �22); (�3; �23)g,

where (�3; �
2
3) = (1� �)(�1; �21) + �(�2; �22) for some 0 < � < 1 to be selected below.

Because A0 and A have the identical extreme points, Proposition 6 implies that

V = sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
= sup
a2[A0](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
.

Take
(â(1)s ; â(2)s ) = (�1; �1)IfW�1;�3

s �0g + (�3; �3)IfW�1;�3
s <0g, (41)

where

W �1;�3
t =

Z t

0

�
�1IfW�1;�3

s �0g + �3IfW�1;�3
s <0g

�
dB(2)s ;

12 If we assume the reverse inequality in (18), then corresponding implications fail. For example, if
y > 0 is su¢ ciently large which would make �( �yp

1�t� ) close to zero for � = �1; �2. t � 0, then the
last two inequalities above could remain valid even though � > (�1 � �2) =

�
�21 � �22

�
.
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W �1;�3
s is an oscillating Brownian motion, that is, the solution of the stochastic dif-

ferential equation (SDE)

W �1;�3
t =

Z t

0

�
�1IfW�1;�3

s �0g + �3IfW�1;�3
s <0g

�
dB(2)s .

By Keilson and Wellner (1978, Theorem 1), the probability density ofW �1;�3
t is q (t; �),

where

q (t; y) =

8>><>>:
q�
�
y;�21t

� h
2�3

�1+�3

i
y � 0

q�
�
y;�23t

� h
2�1

�1+�3

i
y < 0

(42)

and q�(y;�2) = 1p
2��

exp
�
�(y=�)2=2

�
is the pdf for N

�
0; �2

�
. Using this pdf, we can

calculate

EP

�
u

�Z 1

0
â(1)s ds;

Z 1

0
â(2)s dB(2)s

��
=EP

�Z 1

0

�
�1IfW�1;�3

s �0g + �2IfW�1;�3
s <0g

�
ds

�
� �EP

h
(W �1;�3

1 )
2
IfW�1;�3

1 �0g

i
=�1

Z 1

0
P (W �1;�3

s � 0)ds+ �3
Z 1

0
P (W �1;�3

s < 0)ds� �
Z 0

�1
y2q(1; y)dy

=�1

Z 1

0

Z 1

0
q(s; y)dyds+ �3

Z 1

0

Z 0

�1
q(s; y)dyds� �

Z 0

�1
y2q(1; y)dy

=�1
�3

�1 + �3
+ �3

�1
�1 + �3

� � �1�
2
3

�1 + �3
.

Verify the inequality

�1
�3

�1 + �3
+ �3

�1
�1 + �3

� � �1�
2
3

�1 + �3
> �1 � �

�21
2
= EP

h
u
�
�1; �1B

(2)
1

�i
,

and deduce that

� >
2(�1 � �3)

(�1 + 2�3)(�1 � �3)
=

�1 � �2
�21 � �22 + f(�)

where f(�) =
�
�1
p
(1� �)�21 + ��22 � �21

�
=2�. It can be veri�ed that f 0(�) < 0 for

� 2 (0; 1) and lim�!0 f(�) =
�
�22 � �21

�
=4:

Therefore, for any � > � = 4(�1��2)
3(�21��22)

, there exists �0 2 (0; 1) such that

� >
�1 � �2

�21 � �22 + f(�0)
>
4(�1 � �2)
3(�21 � �22)

:

Choose � = �0 in the de�nition (41) of â = (â
(1)
s ; â

(2)
s ) and deduce that

V = sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
�EP

�
u

�Z 1

0
â(1)s ds;

Z 1

0
â(2)s dB(2)s

��
>EP

h
u
�
�1; �1B

(2)
1

�i
:
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That is, when � > �, then specializing in arm 1 is NOT asymptotically optimal.
An analogous argument proves that specializing in arm 2 is not asymptotically

optimal if � < �. Details are provided in the Online Appendix.

Proof of (iv): It remains to prove only the claim for the case �0 < �. The proof
is similar to that for (iii). Speci�cally, prove that (40) is satis�ed for the process
(â
(1)
s ; â

(2)
s ) where

(â(1)s ; â(2)s ) = (�1; �1)IfW�2;�1
s <0g + (�2; �2)IfW�2;�1

s �0g,

and W �2;�1
s is the oscillating Brownian motion given by

W �2;�1
t =

Z t

0

�
�1IfW�2;�1

s <0g + �2IfW�2;�1
s �0g

�
dB(2)s .

The process W �2;�1
t admits a probability density analogous to (42).

Proof of (v): For i � 1, we have Z��i = Xk;i where ��i = k, and fXk;i : i � 1g are
i.i.d. Then

EP

"
'

 
1

n

nX
i=1

Z�
�
i

!#
= EP

"
'

 
 n
n

P n
i=1X1;i
 n

+
n�  n
n

Pn� n
i=1 X2;i
n�  n

!#

Since  n=n ! � as n ! 1, combine with the classical LLN for fX1;i : i � 1g and
fX2;i : i � 1g to obtain

lim
n!1

EP

"
'

 
1

n

nX
i=1

Z�
�
i

!#
= ' (��1 + (1� �)�2) = '(x�).

Therefore, �� is asymptotically optimal because, by Proposition 6,

V = sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
= sup
a2[A](0;1)

EP

�
'

�Z 1

0
a(1)s ds

��
� '(x�).

The remaining assertion is implied by the fact that limn�!1 Un (�
�;�) = ' (�) for

each
�
�; �2

�
. �
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ONLINE APPENDIX

Lemma: Our CLT, Proposition 6, is valid also if � = 0.
Proof: As in the proof of Proposition 6, it su¢ ces to take u 2C1b (R2).

Given � = 0, we add a perturbation to the random returns of the K arms. For
any 1 � k � K and n � 1, let X�

k;n = Xk;n+��n, where � > 0 is a �xed small constant
and f�ng is a sequence of i.i.d. standard normal random variables, independent with
fXk;ng. Then, for any � 2 � and n � 1, the corresponding reward is denoted by
Z�;�n = Z�n + ��n, and the corresponding set of mean-variance pairs is denoted by

A� = f(�k;�; �2k;�) : 1 � k � Kg;

where �k;� = �k and �
2
k;� = �2k + �2. The corresponding bounds are ��; ��; �

2
� , and

�2� > 0.
De�ne

V �
n = sup

�2�
EP

"
u

 Pn
i=1 Z

�;�
i

n
;

Pn
i=1(Z

�;�
i � EP [Z�;�i jH�

i�1]p
n

!#

By Proposition 6 for fZ�;�n g,

lim
n!1

V �
n = sup

a2[A�](0;1)
EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
= v�(0; 0; 0); (43)

where v�(t; x; y) is the solution of PDE (20) with function G� instead of G,

G�(p; q) = sup
(�;�2)2A�

�
�p+

1

2
�2q

�
, (p; q) 2 R2. (44)

By Yong and Zhou (1999, Propn. 5.10, Ch. 4), 9C 0 > 0 such that

jv�(t; x; y)� v(t; x; y)j � C 0
p
�; 8(t; x; y) 2 [0; 1)� R2:

We also have

jVn � V �
n j
2 � C�2EP

"����Pn
i=1 �i
n

����2 + ����Pn
i=1 �ip
n

����2
#
� 2C�2,

where the constant C depends only on the bounds of @xu and @yu.
Letting as � ! 0 in (43), the CLT (25) is proven for � = 0. Similar arguments

show that (26) is also valid. �

Lemma: Our CLT, Proposition 6, is valid also if u is continuous and, for some
g � 1 and c > 0, ju(x; y)j � c(1 + jj(x:y)jjg�1) and sup1�k�K EP [jXkjg] <1.
Proof: We prove that (25) remains valid. Refer to it as "the CLT."
Step 1: Prove the CLT for any u 2 Cb(R2) with compact support (constant outside a
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compact subset of R2). In this case, 8� > 0 9û 2 Cb;Lip(R2) such that supz2R2 ju(z)�
û(z)j � �

2 . Then�����sup�2�
EP

"
u

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP [u(

Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )]

�����
��+

�����sup�2�
EP

"
û

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP [û(

Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )]

�����
Therefore,

lim sup
n!1

�����sup�2�
EP

"
u

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP [u(

Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )]

����� � �;

which proves the CLT since � is arbitrary.
Step 2: Let u 2 C(R2) satisfy the growth condition ju(z)j � c(1 + jzjg�1) for g � 1.
For any N > 0, 9u1; u2 2C(R2) such that u = u1 + u2, where u1 has a compact
support and u2(z) = 0 for jzj � N , and ju2(z)j � ju(z)j for all z. Then

ju2(z)j �
2c(1 + jzjg)

N
; 8z 2 R2,

and�����sup�2�
EP

"
u

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP [u(

Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )]

�����
�
�����sup�2�

EP

"
u1

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP [u1(

Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )]

�����
+ sup
�2�

EP

"�����u2
 
S�n
n
;
S
�
np
n

!�����
#
+ sup
a2[A](0;1)

EP [ju2(
Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )j]

�
�����sup�2�

EP

"
u1

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP [u1(

Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )]

�����
+
2c

N

 
2 + sup

�2�
EP

"����S�nn
����g +

����� S
�
np
n

�����
g#
+ sup
a2[A](0;1)

EP

�����Z 1

0
a(1)s ds

����g + ����Z 1

0
a(2)s dB(2)s

����g�
!

By the Burkholder-Davis-Gundy inequality (Mao (2008, Theorem 1.7.3)),

lim sup
n!1

�����sup�2�
EP

"
u

 
S�n
n
;
S
�
np
n

!#
� sup
a2[A](0;1)

EP [u(

Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s )]

�����
�2c
N

 
2 + maxfj�jg; j�jgg+ �g + sup

n
sup
�2�

EP

"����S�nn
����g +

����� S
�
np
n

�����
g#!

:

Since N can be arbitrarily large, it su¢ ces to prove

sup
n
sup
�2�

EP

"����S�nn
����g +

����� S
�
np
n

�����
g#

<1

30



Step 3: Prove the preceding inequality. For any n,

sup
�2�

EP

�����S�nn
����g� � sup

�2�
EP

"
ng�1

ng

nX
i=1

jZ�i jg
#
� K sup

1�k�K
EP [jXkjg]:

For 1 � g � 2, 
sup
�2�

EP

"����� S
�
np
n

�����
g#! 2

g

� sup
�2�

EP

24 S
�
np
n

!235
=
1

n
sup
�2�

EP

��
S
�
n�1

�2
+ 2S

�
n�1Z

�
n + (Z

�
n)
2

�
� 1
n
sup
�2�

EP

��
S
�
n�1

�2
+ �2

�
� �2:

For g > 2,

jx+ yjg � 2gg2jxjg + jyjg + gxjyjg�1sgn(y) + 2gg2x2jyjg�2; 8x; y 2 R:

Let T �k = maxfS
�
k; S

�
k � S

�
1; � � � ; S

�
k � S

�
k�1g. Then T �k = Z

�
k + (T

�
k�1)

+ and

sup
�2�

EP [jT �k jg]

�2gg2 sup
�2�

EP [jZ
�
kjg] + sup

�2�
EP [j(T �k�1)+jg]

+ g sup
�2�

EP [Z
�
kj(T �k�1)+jg�1] + 2gg2 sup

�2�
EP [(Z

�
k)
2j(T �k�1)+jg�2]

�2gg2
kX
i=1

sup
�2�

EP [jZ
�
i jg] + 2gg2

kX
i=2

sup
�2�

EP [(Z
�
i )
2j(T �i�1)+jg�2]

�2gg2
nX
i=1

sup
�2�

EP [jZ
�
i jg] + 2gg2�2

nX
i=1

�
sup
�2�

EP [j(T �i )+jg]
� g�2

g

.

Let An = supk�n sup�2�EP [jT �k jg]. Then, by Young�s inequality (Peng (2019, Lemma
1.4.1)),13

An �2gg2
nX
i=1

sup
�2�

EP [jZ
�
i jg] + 2gg2�2nA

g�2
g

n

�2gg2
nX
i=1

sup
�2�

EP [jZ
�
i jg] +

2

g
(2gg2�2n)

g
2 +

g � 2
g

An:

Therefore,

An �Cg;1
nX
i=1

sup
�2�

EP [jZ
�
i jg] + Cg;2n

g
2

�Cg;1
nX
i=1

sup
�2�

EP [jZ�i jg +maxfj�jg; j�jgg] + Cg;2n
g
2

�Cg;1nK sup
1�k�K

EP [jXkjg] + Cg;1nmaxfj�jg; j�jgg+ Cg;2n
g
2 :

13 j ab j� p�1 j a jp +q�1 j a jq if 1 < p; q <1 and p�1 + q�1 = 1.
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Finally,

sup
�2�

EP

"����� S
�
np
n

�����
g#
� n�

g
2An

�Cg;1n1�
g
2K sup

1�k�K
EP [jXkjg] + Cg;1n1�

g
2 maxfj�jg; j�jgg+ Cg;2:

Since sup1�k�K EP [jXkjg] <1, Step 3 is complete and the Lemma is proven. �

Proof of Corollary 7: The preceding Lemma proves the extension for Proposition
6.

To prove (27), de�ne

v(t; x; y) = sup
a2[A](t;1)

EP

�
u

�
x+

Z 1+h

t
a(1)s ds; y +

Z 1+h

t
a(2)s dB(2)s

��
; (x; y) 2 R2:

As in the proof of Lemma 8(1), for u 2 Cb;Lip(R2), it can be checked that (Yong
and Zhou (1999, Theorem 5.2 in Chapter 4)) v is the unique viscosity solution of the
HJB-equation (20) with function G given in (28). Then we have

V = sup
a2[A](0;1)

EP

�
u

�
x+

Z 1+h

t
a(1)s ds; y +

Z 1+h

t
a(2)s dB(2)s

��
= v(0; 0; 0).

For u 2 C(R2) with growth condition, the value function is still the unique viscosity
solution of the PDE (20) with function G given in (28). Supporting details can be
found in Pham (2009, p.66) or Aivaliotis and Palczewski (2010, Corollary 4.7). �

The Krylov norm: W use the notation in Krylov (1987, Section 1.1); see also
Peng (2019, Chapter 2.1). For � �[0;1)�R2, C(�) denotes the set of all real-valued
functions v de�ned on �, continuous in the relative topology on � and having a �nite
norm,

kvkC(�) = sup
(t;z)2�

jv(t; z)j:

Similarly, given �; � 2 (0; 1),

kvkC�;�(�) = kvkC(�) + sup
(t;z);(t0;z0)2�;(t;z) 6=(t0;z0)

jv(t; z)� v(t0; z0)j
jt� t0j� + jz � z0j�

kvkC1+�;1+�(�) = kvkC�;�(�) + k@tvkC�;�(�) +
2X
i=1

k@zivkC�;�(�):

kvkC1+�;2+�(�) = kvkC1+�;1+�(�) +
2X

i;j=1

k@2zizjvkC�;�(�):

The corresponding subspaces of C(�) in which the correspondent derivatives exist
and the above norms are �nite are denoted respectively by

C1+�;1+�(�) and C1+�;2+�(�):
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Therefore, the �rst and second derivatives v(t; z) with respect to z exist and the
related norms are �nite. In particular, 9L > 0 such that

sup
(t;z);(t;z0)2�;z 6=z0

jv(t; z)� v(t; z0)j
jz � z0j� < L:

In the proof of Lemma 8, we applied the preceding to v(t; z) = Ht(z).

Completion of the proof of Theorem 3(iii): Show that specializing in arm 2 is
not asymptotically optimal if � < �.

Verify the inequality

�1
�3

�1 + �3
+ �3

�1
�1 + �3

� � �1�
2
3

�1 + �3
> �2 � �

�22
2
= EP

h
u
�
�2; �2B

(2)
1

�i
,

and deduce that

� <
2(�1 � �2)

h
(1� �)�1 +

p
(1� �)�21 + ��22

i
2(1� �)�31 + (2�� 1)�1�22 � �22

p
(1� �)�21 + ��22

� 2(�1 � �2)g(�):

It can be veri�ed that, g0(�) > 0 for � 2 (0; 1) and lim�!1 g(�) =
1

�2(�1��2) :

Therefore, for any � < � = 2(�1��2)
�2(�1��2) , there exists �1 2 (0; 1) such that

� < 2(�1 � �2)g(�1) <
2(�1 � �2)
�2(�1 � �2)

:

Choose � = �1 in the de�nition (41) of â = (â
(1)
s ; â

(2)
s ) and deduce that

V = sup
a2[A](0;1)

EP

�
u

�Z 1

0
a(1)s ds;

Z 1

0
a(2)s dB(2)s

��
�EP

�
u

�Z 1

0
â(1)s ds;

Z 1

0
â(2)s dB(2)s

��
>EP

h
u
�
�2; �2B

(2)
1

�i
:

Therfore, specializing in arm 2 is NOT asymptotically optimal.
When �2 = 0, we can set � =1, and the above proof still holds. �
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